Annex 8

to the Convention on
International Civil Aviation

Airworthiness of Aircraft

This edition incorporates all amendments adopted by the Council prior to 3 March 2001 and supersedes, on 2 March 2004, all previous editions of Annex 8.

For information regarding the applicability of the Standards, see sections 1.1, 2.1, 3.1 and 4.1 of Part II, 1.1 of Part IIIA, A.1.1 of Part IIIB and the Foreword.

Ninth Edition
July 2001

International Civil Aviation Organization
AMENDMENTS

The issue of amendments is announced regularly in the *ICAO Journal* and in the monthly *Supplement to the Catalogue of ICAO Publications and Audio-visual Training Aids*, which holders of this publication should consult. The space below is provided to keep a record of such amendments.

RECORD OF AMENDMENTS AND CORRIGENDA

<table>
<thead>
<tr>
<th>AMENDMENTS</th>
<th>CORRIGENDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>No.</td>
</tr>
<tr>
<td>Date applicable</td>
<td>Date of issue</td>
</tr>
<tr>
<td>Date entered</td>
<td>Date entered</td>
</tr>
<tr>
<td>Entered by No.</td>
<td>Entered by</td>
</tr>
<tr>
<td>1-98</td>
<td>Incorporated in this edition</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

FOREWORD .. (vii)

PART I. DEFINITIONS ... I-1

PART II. PROCEDURES FOR CERTIFICATION
AND CONTINUING AIRWORTHINESS II-1-1

CHAPTER 1. Type certification II-1-1
1.1 Applicability . II-1-1
1.2 Design aspects of the appropriate
airworthiness requirements II-1-1
1.3 Proof of compliance with the design
aspects of the appropriate airworthiness
requirements . II-1-1
1.4 Type Certificate . II-1-2

CHAPTER 2. Production . II-2-1
2.1 Applicability . II-2-1
2.2 Production . II-2-1

CHAPTER 3. Certificate of Airworthiness II-3-1
3.1 Applicability . II-3-1
3.2 Issuance and renewal of a Certificate
of Airworthiness . II-3-1
3.3 Standard form of Certificate
of Airworthiness II-3-1
3.4 Aircraft limitations and information . . II-3-1
3.5 Temporary loss of airworthiness II-3-1
3.6 Damage to aircraft II-3-1

CHAPTER 4. Continuing airworthiness
of aircraft . II-4-1
4.1 Applicability . II-4-1
4.2 Determination of continuing
airworthiness . II-4-1
4.3 Information related to continuing
airworthiness of aircraft II-4-1

PART III. LARGE AEROPLANES

PART IIIA. Aeroplanes over 5 700 kg for which
application for certification was submitted on or
after 13 June 1960 . IIA-1-1

CHAPTER 1. General . IIA-1-1
1.1 Applicability . IIA-1-1

CHAPTER 2. Flight . IIA-2-1
2.1 General . IIA-2-1
2.2 Performance . IIA-2-1
2.3 Flying qualities IIA-2-2

CHAPTER 3. Structures . IIA-3-1
3.1 General . IIA-3-1
3.2 Airspeeds . IIA-3-1
3.3 Flight loads . IIA-3-1
3.4 Ground and water loads IIA-3-2
3.5 Miscellaneous loads IIA-3-2
3.6 Flutter, divergence and vibration . . IIA-3-2
3.7 Fatigue strength IIA-3-2

CHAPTER 4. Design and construction IIA-4-1
4.1 General . IIA-4-1

CHAPTER 5. Engines . IIA-5-1
5.1 Scope . IIA-5-1
5.2 Design, construction and functioning . . IIA-5-1
5.3 Declared ratings, conditions and
limitations . IIA-5-1
5.4 Tests . IIA-5-1

CHAPTER 6. Propellers . IIA-6-1
6.1 Scope . IIA-6-1
6.2 Design, construction and functioning . . IIA-6-1
6.3 Declared ratings, conditions and
limitations . IIA-6-1
6.4 Tests . IIA-6-1

CHAPTER 7. Powerplant installation IIA-7-1
7.1 General . IIA-7-1
7.2 Arrangement and functioning IIA-7-1

CHAPTER 8. Instruments and equipment IIA-8-1
8.1 Required instruments and equipment IIA-8-1
8.2 Installation . IIA-8-1
8.3 Safety and survival equipment IIA-8-1
8.4 Navigation lights and anti-collision
lights . IIA-8-1
Annex 8 — Airworthiness of Aircraft

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 9. Operating limitations and information</td>
<td>IIAA-9-1</td>
<td>General</td>
</tr>
<tr>
<td>9.1 General</td>
<td>IIAA-9-1</td>
<td></td>
</tr>
<tr>
<td>9.2 Operating limitations</td>
<td>IIAA-9-1</td>
<td></td>
</tr>
<tr>
<td>9.3 Operating information and procedures</td>
<td>IIAA-9-1</td>
<td></td>
</tr>
<tr>
<td>9.4 Performance information</td>
<td>IIAA-9-2</td>
<td></td>
</tr>
<tr>
<td>9.5 Aeroplane flight manual</td>
<td>IIAA-9-2</td>
<td></td>
</tr>
<tr>
<td>9.6 Markings and placards</td>
<td>IIAA-9-2</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 10. Continuing airworthiness — maintenance information</td>
<td>IIIA-10-1</td>
<td></td>
</tr>
<tr>
<td>10.1 General</td>
<td>IIIA-10-1</td>
<td></td>
</tr>
<tr>
<td>10.2 Maintenance information</td>
<td>IIIA-10-1</td>
<td></td>
</tr>
<tr>
<td>10.3 Maintenance programme information</td>
<td>IIIA-10-1</td>
<td></td>
</tr>
<tr>
<td>10.4 Maintenance information resulting from the type design approval</td>
<td>IIIA-10-1</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 11. Security</td>
<td>IIIA-11-1</td>
<td></td>
</tr>
<tr>
<td>11.1 Least-risk bomb location</td>
<td>IIIA-11-1</td>
<td></td>
</tr>
<tr>
<td>11.2 Protection of the flight crew compartment</td>
<td>IIIA-11-1</td>
<td></td>
</tr>
<tr>
<td>11.3 Interior design</td>
<td>IIIA-11-1</td>
<td></td>
</tr>
<tr>
<td>PART IIIB. Aeroplanes over 5 700 kg for which application for certification was submitted on or after 2 March 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUB-PART A. General</td>
<td>IIIB-A-1</td>
<td></td>
</tr>
<tr>
<td>A.1 Applicability</td>
<td>IIIB-A-1</td>
<td></td>
</tr>
<tr>
<td>A.2 Operating limitations</td>
<td>IIIB-A-1</td>
<td></td>
</tr>
<tr>
<td>A.3 Unsafe features and characteristics</td>
<td>IIIB-A-1</td>
<td></td>
</tr>
<tr>
<td>A.4 Proof of compliance</td>
<td>IIIB-A-1</td>
<td></td>
</tr>
<tr>
<td>SUB-PART B. Flight</td>
<td>IIIB-B-1</td>
<td></td>
</tr>
<tr>
<td>B.1 General</td>
<td>IIIB-B-1</td>
<td></td>
</tr>
<tr>
<td>B.2 Performance design parameters</td>
<td>IIIB-B-1</td>
<td></td>
</tr>
<tr>
<td>B.3 Flying qualities</td>
<td>IIIB-B-2</td>
<td></td>
</tr>
<tr>
<td>B.4 Stability and control</td>
<td>IIIB-B-3</td>
<td></td>
</tr>
<tr>
<td>SUB-PART C. Structure</td>
<td>IIIB-C-1</td>
<td></td>
</tr>
<tr>
<td>C.1 General</td>
<td>IIIB-C-1</td>
<td></td>
</tr>
<tr>
<td>C.2 Mass and mass distribution</td>
<td>IIIB-C-1</td>
<td></td>
</tr>
<tr>
<td>C.3 Limit loads</td>
<td>IIIB-C-1</td>
<td></td>
</tr>
<tr>
<td>C.4 Deformation and ultimate strength</td>
<td>IIIB-C-1</td>
<td></td>
</tr>
<tr>
<td>C.5 Airspeeds</td>
<td>IIIB-C-1</td>
<td></td>
</tr>
<tr>
<td>C.6 Strength</td>
<td>IIIB-C-1</td>
<td></td>
</tr>
<tr>
<td>C.7 Survivability</td>
<td>IIIB-C-2</td>
<td></td>
</tr>
<tr>
<td>C.8 Structural durability</td>
<td>IIIB-C-2</td>
<td></td>
</tr>
<tr>
<td>C.9 Lightning protection</td>
<td>IIIB-C-2</td>
<td></td>
</tr>
<tr>
<td>SUB-PART D. Design and construction</td>
<td>IIIB-D-1</td>
<td></td>
</tr>
<tr>
<td>D.1 General</td>
<td>IIIB-D-1</td>
<td></td>
</tr>
<tr>
<td>D.2 Systems design features</td>
<td>IIIB-D-1</td>
<td></td>
</tr>
<tr>
<td>D.3 Aeroelasticity</td>
<td>IIIB-D-2</td>
<td></td>
</tr>
<tr>
<td>D.4 Occupants accommodation features</td>
<td>IIIB-D-2</td>
<td></td>
</tr>
<tr>
<td>D.5 Electrical bonding</td>
<td>IIIB-D-2</td>
<td></td>
</tr>
<tr>
<td>SUB-PART E. Powerplant</td>
<td>IIIB-E-1</td>
<td></td>
</tr>
<tr>
<td>E.1 Engines</td>
<td>IIIB-E-1</td>
<td></td>
</tr>
<tr>
<td>E.2 Propellers</td>
<td>IIIB-E-1</td>
<td></td>
</tr>
<tr>
<td>E.3 Powerplant installation</td>
<td>IIIB-E-1</td>
<td></td>
</tr>
<tr>
<td>SUB-PART F. Systems and equipment</td>
<td>IIIB-F-1</td>
<td></td>
</tr>
<tr>
<td>F.1 General</td>
<td>IIIB-F-1</td>
<td></td>
</tr>
<tr>
<td>F.2 Installation</td>
<td>IIIB-F-1</td>
<td></td>
</tr>
<tr>
<td>F.3 Safety and survival equipment</td>
<td>IIIB-F-1</td>
<td></td>
</tr>
<tr>
<td>F.4 Navigation lights and anti-collision lights</td>
<td>IIIB-F-1</td>
<td></td>
</tr>
<tr>
<td>F.5 Electromagnetic interference protection</td>
<td>IIIB-F-2</td>
<td></td>
</tr>
<tr>
<td>F.6 Ice protection</td>
<td>IIIB-F-2</td>
<td></td>
</tr>
<tr>
<td>SUB-PART G. Operating limitations and information</td>
<td>IIIB-G-1</td>
<td></td>
</tr>
<tr>
<td>G.1 General</td>
<td>IIIB-G-1</td>
<td></td>
</tr>
<tr>
<td>G.2 Operating limitations</td>
<td>IIIB-G-1</td>
<td></td>
</tr>
<tr>
<td>G.3 Operating information and procedures</td>
<td>IIIB-G-1</td>
<td></td>
</tr>
<tr>
<td>G.4 Performance information</td>
<td>IIIB-G-2</td>
<td></td>
</tr>
<tr>
<td>G.5 Flight manual</td>
<td>IIIB-G-2</td>
<td></td>
</tr>
<tr>
<td>G.6 Markings and placards</td>
<td>IIIB-G-2</td>
<td></td>
</tr>
<tr>
<td>G.7 Continuing airworthiness</td>
<td>IIIB-G-2</td>
<td></td>
</tr>
<tr>
<td>SUB-PART H. Systems software</td>
<td>IIIB-H-1</td>
<td></td>
</tr>
<tr>
<td>SUB-PART I. Crashworthiness and cabin safety</td>
<td>IIIB-I-1</td>
<td></td>
</tr>
<tr>
<td>I.1 General</td>
<td>IIIB-I-1</td>
<td></td>
</tr>
<tr>
<td>I.2 Design emergency landing loads</td>
<td>IIIB-I-1</td>
<td></td>
</tr>
<tr>
<td>I.3 Cabin fire protection</td>
<td>IIIB-I-1</td>
<td></td>
</tr>
<tr>
<td>I.4 Evacuation</td>
<td>IIIB-I-1</td>
<td></td>
</tr>
<tr>
<td>I.5 Lighting and marking</td>
<td>IIIB-I-1</td>
<td></td>
</tr>
<tr>
<td>I.6 Survival equipment</td>
<td>IIIB-I-1</td>
<td></td>
</tr>
<tr>
<td>SUB-PART J. Operating environment and Human Factors</td>
<td>IIIB-J-1</td>
<td></td>
</tr>
<tr>
<td>J.1 General</td>
<td>IIIB-J-1</td>
<td></td>
</tr>
<tr>
<td>J.2 Flight crew</td>
<td>IIIB-J-1</td>
<td></td>
</tr>
<tr>
<td>J.3 Ergonomics</td>
<td>IIIB-J-1</td>
<td></td>
</tr>
<tr>
<td>J.4 Operating environmental factors</td>
<td>IIIB-J-1</td>
<td></td>
</tr>
<tr>
<td>SUB-PART K. Security</td>
<td>IIIB-K-1</td>
<td></td>
</tr>
<tr>
<td>K.1 Least-risk bomb location</td>
<td>IIIB-K-1</td>
<td></td>
</tr>
<tr>
<td>K.2 Protection of the flight crew compartment</td>
<td>IIIB-K-1</td>
<td></td>
</tr>
<tr>
<td>K.3 Interior design</td>
<td>IIIB-K-1</td>
<td></td>
</tr>
<tr>
<td>PART IV. HELICOPTERS</td>
<td>IV-1-1</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1. General</td>
<td>IV-1-1</td>
<td></td>
</tr>
<tr>
<td>1.1 Applicability</td>
<td>IV-1-1</td>
<td></td>
</tr>
<tr>
<td>1.2 Limitations</td>
<td>IV-1-1</td>
<td></td>
</tr>
</tbody>
</table>

2/3/04 (iv)
Table of Contents

1.3 Unsafe features and characteristics IV-1-1
1.4 Proof of compliance IV-1-1

CHAPTER 2. Flight . IV-2-1
2.1 General . IV-2-1
2.2 Performance . IV-2-1
2.3 Flying qualities IV-2-2

CHAPTER 3. Structures IV-3-1
3.1 General . IV-3-1
3.2 Airspeeds . IV-3-1
3.3 Main rotor(s) rotational speed limits . . . IV-3-1
3.4 Flight loads . IV-3-1
3.5 Ground and water loads IV-3-2
3.6 Miscellaneous loads IV-3-2
3.7 Flutter, divergence and vibration IV-3-2
3.8 Fatigue strength IV-3-2

CHAPTER 4. Design and construction IV-4-1
4.1 General . IV-4-1

CHAPTER 5. Engines . IV-5-1
5.1 Scope . IV-5-1
5.2 Design, construction and functioning . . . IV-5-1
5.3 Declared ratings, conditions and limitations . . . IV-5-1
5.4 Tests . IV-5-1

CHAPTER 6. Rotor and power transmission systems and powerplant installation IV-6-1
6.1 General . IV-6-1

CHAPTER 7. Instruments and equipment IV-7-1
7.1 Required instruments and equipment IV-7-1
7.2 Installation . IV-7-1
7.3 Safety and survival equipment IV-7-1
7.4 Navigation lights and anti-collision lights IV-7-1

CHAPTER 8. Electrical systems IV-8-1

CHAPTER 9. Operating limitations and information . IV-9-1
9.1 General . IV-9-1
9.2 Operating limitations IV-9-1
9.3 Operating information and procedures IV-9-1
9.4 Performance information IV-9-2
9.5 Helicopter flight manual IV-9-2
9.6 Markings and placards IV-9-2
FOREWORD

Historical background

Standards and Recommended Practices for the Airworthiness of Aircraft were adopted by the Council on 1 March 1949 pursuant to the provisions of Article 37 of the Convention on International Civil Aviation (Chicago 1944) and designated as Annex 8 to the Convention.

The Annex contained, in Part II, general airworthiness procedures applicable to all aircraft and in Part III, minimum airworthiness characteristics for aeroplanes provided, or to be provided, with certificates of airworthiness classifying them in an established ICAO category. Part I contained definitions.

At its fourth session, the Airworthiness Division collaborating with the Operations Division made recommendations concerning the use of a performance code as an alternative to the one contained in the Annex, in which the climb values had the status of Recommended Practices. Further, the Airworthiness Division made recommendations concerning certain aspects of the certification in ICAO categories. As a result of those recommendations, the Council approved the incorporation of the alternative performance code as Attachment A but stated its belief that since agreement had not yet been reached on Standards for performance, there existed no basis for certification in ICAO Category A. It urged the Contracting States to refrain from such certification pending the becoming effective of Standards on performance or until such time as the Council decides on the basic policy on airworthiness.

The Assembly at its seventh session (June 1953) endorsed the action already taken by the Council and the Air Navigation Commission to initiate a fundamental study of ICAO policy on international airworthiness and directed the Council to complete the study as rapidly as practicable.

In pursuing such study, the Air Navigation Commission was helped by an international body of experts designated as the “Airworthiness Panel”, which contributed to the preparation of the work of the Third Air Navigation Conference.

As a result of these studies, a revised policy on international airworthiness was developed and it was approved by the Council in 1956. According to this policy, the principle of certification in an ICAO Category was abandoned. Instead, Annex 8 included broad Standards which defined, for application by the competent national authorities, the complete minimum international basis for the recognition by States of certificates of airworthiness for the purpose of the flight of aircraft of other States into or over their territories, thereby achieving, among other purposes, protection of other aircraft, third persons and property. It was considered that this met the obligation of the Organization under Article 37 of the Convention to adopt International Standards of airworthiness.

It was recognized that the ICAO Standards of airworthiness would not replace national regulations and that national codes of airworthiness containing the full scope and extent of detail considered necessary by individual States would be necessary as the basis for the certification of individual aircraft. Each State would establish its own comprehensive and detailed code of airworthiness or would select a comprehensive and detailed code established by another Contracting State. The level of airworthiness defined by this code would be indicated by the Standards, supplemented, if necessary, by Acceptable Means of Compliance.

In application of those principles, the Annex was declared as constituting the minimum standards for the purpose of Article 33. It was also recognized that the Annex might, at the time of adoption, not include technical Standards for all classes of aircraft or even for all classes of aeroplanes, if the Council felt that no technical Standards were required at that time to render Article 33 operative. Furthermore, adoption or amendment of the Annex declared to be complete for the purpose of Article 33 did not constitute the end of ICAO’s work in the airworthiness field, as there was a need to continue international collaboration in airworthiness matters.

A revised text for Annex 8 consistent with the above principles was prepared on the basis of the recommendations made by the Third Air Navigation Conference (Montreal, September–October 1956). Part III of the Annex was limited to broad Standards stating the objectives rather than the methods of realizing those objectives. However, to indicate by examples the level of airworthiness intended by some of the broad Standards, specifications of a more detailed and quantitative nature were included under the title “Acceptable Means of Compliance”. These specifications were intended to assist the Contracting States in the establishment and application of comprehensive and detailed national airworthiness codes.

To adopt a code giving an appreciably lower level of airworthiness than that given in an Acceptable Means of Compliance was considered to be a violation of the Standard supplemented by that Acceptable Means of Compliance.

The revised text for Annex 8 was included in the Fourth Edition of the Annex, which superseded the First, Second and Third Editions.

Another recommendation of the Third Air Navigation Conference led to the establishment by the Council in 1957 of
the Airworthiness Committee, consisting of airworthiness experts with broad experience and selected from those Contracting States and International Organizations willing to contribute.

Present policy on international airworthiness. There had been some concern about the slow progress that had been made over the years with respect to developing supplementary airworthiness specifications in the form of Acceptable Means of Compliance. It was noted that the majority of the Acceptable Means of Compliance in Annexes 6 and 8 had been developed in 1957 and were therefore applicable to only those aeroplane types operating at that time. No effort had been made to update the specifications in these Acceptable Means of Compliance nor had there been any recommendations from the Airworthiness Committee for upgrading of any of the Provisional Acceptable Means of Compliance, which had been developed as potential material for full-fledged Acceptable Means of Compliance. The Air Navigation Commission therefore requested the Airworthiness Committee to review the progress made by it since its inception with a view to determining whether or not desired results had been achieved and to recommend any changes to improve the development of detailed airworthiness specifications.

The Airworthiness Committee at its Ninth Meeting (Montreal, November/December 1970) made a detailed study of the problems and recommended that the concept of developing airworthiness specifications in the form of Acceptable Means of Compliance and Provisional Acceptable Means of Compliance be abandoned and a provision be made for an airworthiness technical manual to be prepared and published by ICAO to include guidance material intended to facilitate the development and uniformity of national airworthiness codes by Contracting States.

The Air Navigation Commission reviewed the recommendations of the Airworthiness Committee in the light of the history of the development of the airworthiness policy approved by the Council in 1956. It came to the conclusion that the basic objectives and principles on which the ICAO airworthiness policy had been based were sound and did not require any significant change. It was also concluded that the main reason for the slow progress in the development of airworthiness specifications in the form of Acceptable Means of Compliance and Provisional Acceptable Means of Compliance was the degree of mandatory status to the former implied by the following statement included in the Forewords of the Fourth and Fifth Editions of Annex 8:

“To adopt a code giving an appreciably lower level of airworthiness than that given in an Acceptable Means of Compliance would be a violation of the Standard supplemented by that Acceptable Means of Compliance.”

Several approaches were examined by the Air Navigation Commission to eliminate this difficulty. Finally, it came to the conclusion that the idea of developing airworthiness specifications in the form of Acceptable Means of Compliance and Provisional Acceptable Means of Compliance should be abandoned and ICAO should declare that the States’ obligations, for the purpose of Article 33 of the Convention, shall be met by their compliance with the broad Standards in Annex 8 supplemented, as necessary, by airworthiness technical guidance material, devoid of all mandatory implications or obligations. Also the requirement that each Contracting State should either establish its own comprehensive and detailed code of airworthiness or select a comprehensive and detailed code established by another Contracting State should be retained.

The Council on 15 March 1972 approved the above approach to form the basis for the present policy of ICAO in the field of airworthiness. According to this policy:

a) the objective of international airworthiness Standards is to define, for application by the competent national authorities, the minimum level of airworthiness constituting the international basis for the recognition by States, under Article 33 of the Convention, of certificates of airworthiness for the purpose of the flight of aircraft of other States into or over their territories, thereby achieving, among other things, protection of other aircraft, third parties and property;

b) the Standards developed to meet the objective stated in a) are considered by the Council as meeting, in the necessary scope and detail, the obligations of the Organization under Article 37 of the Convention to adopt International Standards of airworthiness;

c) international airworthiness Standards adopted by the Council are recognized as being the complete international code necessary to bring into force and effect the rights and obligations which arise under Article 33 of the Convention;

d) the technical airworthiness Standards in Annex 8 shall be presented as broad specifications stating the objectives rather than the means of realizing these objectives; ICAO recognizes that national codes of airworthiness containing the full scope and extent of detail considered necessary by individual States are required as the basis for the certification by individual States of airworthiness of each aircraft;

e) to assist States in applying the Standards of Annex 8 and in developing their own comprehensive national codes in a uniform manner, detailed guidance material shall be developed and published expeditiously in the working languages of the Organization.

The Council also approved the issuance of the airworthiness guidance material under the title of Airworthiness Technical Manual. It was understood that the guidance material will, before issuance, be examined by the Air Navigation Commission. It will however have no formal status and its main
Foreword

The Council has urged Contracting States not to impose on visiting aeroplanes operational requirements other than those established by the State of Registry, provided those requirements are not lower than the Standards of Chapter 5 of Annex 6, Part I, as amended by Amendment 2, 2.2 of Part IIIA and B.2 of Part IIIB of this edition of Annex 8.

Action by Contracting States

Notification of differences. The attention of Contracting States is drawn to the obligation imposed by Article 38 of the Convention by which Contracting States are required to notify the Organization of any differences between their national regulations and practices and the International Standards contained in this Annex and any amendments thereto. Contracting States are invited to keep the Organization currently informed of any differences which may subsequently occur or of the withdrawal of any differences previously notified. A specific request for notification of differences will be sent to Contracting States immediately after the adoption of each Amendment to this Annex.

Use of the text of the Annex in national regulations. The Council, on 13 April 1948, adopted a resolution inviting the attention of Contracting States to the desirability of using in their own national regulations, as far as practicable, the precise language of those ICAO Standards which are of a regulatory character and also of indicating departures from the Standards, including any additional regulations that are important for the safety or regularity of air navigation. Wherever possible, the provisions of Part II of this Annex have been written in such a way as would facilitate incorporation, without major textual changes, into national legislation. The provisions of Parts IIIA and IIIB of this Annex, on the other hand, are applicable to aeroplanes through the medium of national codes more comprehensive and detailed than the Standards, so that the Council Resolution of 13 April 1948 does not apply to Parts IIIA and IIIB.

Information concerning the national codes establishing compliance with the Annex. States are invited to notify the Organization either of the establishment or of the selection of the comprehensive and detailed national codes mentioned in 3.2.2 of Part II. States that establish such codes are invited to forward a copy of each with its successive amendments, and any appropriate interpretation document concerning them. States that select codes of other Contracting States to comply with 3.2.2 of Part II are invited to indicate the codes that they intend to use.

Use of the guidance material in the Airworthiness Manual (Doc 9760). Contracting States are invited to note that the material in the Airworthiness Manual is intended to guide them in the development of their detailed and comprehensive national codes with a view to introducing uniformity in those national codes. The material has no mandatory status and Contracting States are quite free to differ from it either in detail or in methods. States are also not required to notify any
differences that may exist between their detailed national regulations and practices and the relevant material in the Airworthiness Manual.

Status of Annex components

An Annex is made up of the following component parts, not all of which, however, are necessarily found in every Annex; they have the status indicated.

1.— Material comprising the Annex proper

a) Standards and Recommended Practices adopted by the Council under the provisions of the Convention. They are defined as follows:

Standard: Any specification for physical characteristics, configuration, matériel, performance, personnel or procedure, the uniform application of which is recognized as necessary for the safety or regularity of international air navigation and to which Contracting States will conform in accordance with the Convention; in the event of impossibility of compliance, notification to the Council is compulsory under Article 38.

Recommended Practice: Any specification for physical characteristics, configuration, matériel, performance, personnel or procedure, the uniform application of which is recognized as desirable in the interest of safety, regularity or efficiency of international air navigation, and to which Contracting States will endeavour to conform in accordance with the Convention.

b) Appendices comprising material grouped separately for convenience but forming part of the Standards and Recommended Practices adopted by the Council.

c) Definitions of terms used in the Standards and Recommended Practices which are not self-explanatory in that they do not have accepted dictionary meanings. A definition does not have an independent status but is an essential part of each Standard and Recommended Practice in which the term is used, since a change in the meaning of the term would affect the specification.

d) Tables and Figures, which add to or illustrate a Standard or Recommended Practice and which are referred to therein, form part of the associated Standard or Recommended Practice and have the same status.

2.— Material approved by the Council for publication in association with the Standards and Recommended Practices

a) Forewords comprising historical and explanatory material based on the action of the Council and includ-
<table>
<thead>
<tr>
<th>Amendment(s)</th>
<th>Source(s)</th>
<th>Subject(s)</th>
<th>Adopted</th>
<th>Effective</th>
<th>Applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Edition</td>
<td>First and Second Sessions of the Airworthiness Division (1946 and 1947)</td>
<td>—</td>
<td>1 March 1949</td>
<td>1 August 1949</td>
<td>1 September 1949</td>
</tr>
<tr>
<td>1 to 63 (2nd Edition)</td>
<td>Third and Fourth Sessions of the Airworthiness Division (1949 and 1951)</td>
<td>—</td>
<td>26 January 1950</td>
<td>1 January 1951</td>
<td>1 February 1951</td>
</tr>
<tr>
<td>64 to 83</td>
<td>Third and Fourth Sessions of the Airworthiness Division (1949 and 1951)</td>
<td>—</td>
<td>13 November 1951</td>
<td>15 April 1952</td>
<td>15 May 1952</td>
</tr>
<tr>
<td>84 (3rd Edition)</td>
<td>Fourth Session of the Airworthiness Division (1951)</td>
<td>Incorporation of an alternative performance code as an attachment.</td>
<td>2 December 1952</td>
<td>1 May 1953</td>
<td>1 June 1953</td>
</tr>
<tr>
<td>85 (4th Edition)</td>
<td>Third Air Navigation Conference (1956)</td>
<td>Revised text consistent with new policy on international airworthiness approved by the Council; Part III of Annex 8 limited to broad Standards stating objectives with more detailed examples of the level of airworthiness intended being included as “Acceptable Means of Compliance”.</td>
<td>13 June 1957</td>
<td>1 October 1957</td>
<td>1 December 1957 or 13 June 1960 depending on date of application for certification for the aeroplane</td>
</tr>
<tr>
<td>86 (5th Edition)</td>
<td>Fourth Meeting of the Airworthiness Committee</td>
<td>Amendment of Standards for navigation lights and introduction of requirements for anti-collision lights.</td>
<td>13 December 1961</td>
<td>1 April 1962</td>
<td>13 December 1964</td>
</tr>
<tr>
<td>87</td>
<td>Proposal of the United States Committee on the Extension to the Standard Atmosphere</td>
<td>Redefinition of the standard atmosphere.</td>
<td>12 November 1963</td>
<td>1 April 1964</td>
<td>12 November 1966</td>
</tr>
<tr>
<td>88</td>
<td>Consequence of Amendment 2 to Annex 7</td>
<td>Revised definition of aircraft; revision of 2.2.3.2 b) of Part III to cater for 3-engined aeroplanes.</td>
<td>8 November 1967</td>
<td>8 March 1968</td>
<td>22 August 1968</td>
</tr>
<tr>
<td>92</td>
<td>Tenth Meeting of the Airworthiness Committee</td>
<td>Introduction of provisions relating to the transmission of continuing airworthiness information; addition of a note concerning lease, charter and interchange of aircraft.</td>
<td>3 April 1974</td>
<td>3 August 1974</td>
<td>27 February 1975</td>
</tr>
<tr>
<td>93</td>
<td>Study by the Air Navigation Commission</td>
<td>Revision of the provisions relating to exterior lights to align with new provisions in Annexes 2 and 6.</td>
<td>22 March 1982</td>
<td>22 July 1982</td>
<td>22 March 1985</td>
</tr>
<tr>
<td>Amendment(s)</td>
<td>Source(s)</td>
<td>Subject(s)</td>
<td>Adopted</td>
<td>Effective</td>
<td>Applicable</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>94 (7th Edition)</td>
<td>Fourteenth Meeting of the Airworthiness Committee (1981)</td>
<td>Introduction of a new provision relating to information on faults, malfunctions, defects and other occurrences and to include SI units in conformity with Annex 5 provisions.</td>
<td>6 December 1982</td>
<td>6 April 1983</td>
<td>24 November 1983</td>
</tr>
<tr>
<td>98 (9th Edition)</td>
<td>Fifth Meeting of the Continuing Airworthiness Panel (CAP/5); Air Navigation Commission studies</td>
<td>a) new definitions of Human Factors principles, human performance, maintenance, repair, Type Certificate; b) restructuring of Part II into four chapters: Type Certificate, Production, Certificate of Airworthiness and Continuing Airworthiness; c) revision of the provisions in Part II to allow the introduction of type certificate concept and production control; d) restructuring of Part III into Part IIIA (same provisions as those contained in the current Part III of Annex 8, Eighth Edition, including Amendment 97, except for applicability clauses and cross-references) and Part IIIB (new); e) revision of provisions (old Part III) in Part IIIB pertaining to performance, stability, control, and cargo compartment fire protection, and new provisions pertaining to cabin environment, electrical bonding, emergency landing, electromagnetic interference, ice protection and systems software; f) the provision of translation into English for Certificates of Airworthiness; and g) new provisions concerning Human Factors.</td>
<td>2 March 2001</td>
<td>16 July 2001</td>
<td>2 March 2004</td>
</tr>
</tbody>
</table>
INTERNATIONAL STANDARDS

PART I. DEFINITIONS

When the following terms are used in the Standards for the Airworthiness of Aircraft, they have the following meanings:

Aeroplane. A power-driven heavier-than-air aircraft, deriving its lift in flight chiefly from aerodynamic reactions on surfaces which remain fixed under given conditions of flight.

Aircraft. Any machine that can derive support in the atmosphere from the reactions of the air other than the reactions of the air against the earth’s surface.

Anticipated operating conditions. Those conditions which are known from experience or which can be reasonably envisaged to occur during the operational life of the aircraft taking into account the operations for which the aircraft is made eligible, the conditions so considered being relative to the meteorological state of the atmosphere, to the configuration of terrain, to the functioning of the aircraft, to the efficiency of personnel and to all the factors affecting safety in flight. Anticipated operating conditions do not include:

a) those extremes which can be effectively avoided by means of operating procedures; and

b) those extremes which occur so infrequently that to require the Standards to be met in such extremes would give a higher level of airworthiness than experience has shown to be necessary and practical.

Appropriate airworthiness requirements. The comprehensive and detailed airworthiness codes established, adopted or accepted by a Contracting State for the class of aircraft, engine or propeller under consideration (see 3.2.2 of Part II of this Annex).

Approved. Accepted by a Contracting State as suitable for a particular purpose.

Configuration (as applied to the aeroplane). A particular combination of the positions of the moveable elements, such as wing flaps and landing gear, etc., that affect the aerodynamic characteristics of the aeroplane.

Critical power-unit(s). The power-unit(s) failure of which gives the most adverse effect on the aircraft characteristics relative to the case under consideration.

Design landing mass. The maximum mass of the aircraft at which, for structural design purposes, it is assumed that it will be planned to land.

Design take-off mass. The maximum mass at which the aircraft, for structural design purposes, is assumed to be planned to be at the start of the take-off run.

Design taxiing mass. The maximum mass of the aircraft at which structural provision is made for load liable to occur during use of the aircraft on the ground prior to the start of take-off.

Factor of safety. A design factor used to provide for the possibility of loads greater than those assumed, and for uncertainties in design and fabrication.

Final approach and take-off area (FATO). A defined area over which the final phase of the approach manoeuvre to hover or landing is completed and from which the take-off manoeuvre is commenced. Where the FATO is to be used by performance Class 1 helicopters, the defined area includes the rejected take-off area available.

Helicopter. A heavier-than-air aircraft supported in flight chiefly by the reactions of the air on one or more power-driven rotors on substantially vertical axes.

Human Factors principles. Principles which apply to aeronautical design, certification, training, operations and maintenance and which seek safe interface between the human and other system components by proper consideration to human performance.

Human performance. Human capabilities and limitations which have an impact on the safety and efficiency of aeronautical operations.

Landing surface. That part of the surface of an aerodrome which the aerodrome authority has declared available for the normal ground or water run of aircraft landing in a particular direction.

Limit loads. The maximum loads assumed to occur in the anticipated operating conditions.

Load factor. The ratio of a specified load to the weight of the aircraft, the former being expressed in terms of aerodynamic forces, inertia forces, or ground reactions.
Annex 8 — Airworthiness of Aircraft

Maintenance. The performance of tasks required to ensure the continuing airworthiness of an aircraft, including any one or combination of overhaul, inspection, replacement, defect rectification, and the embodiment of a modification or repair.

Performance Class 1 helicopter. A helicopter with performance such that, in case of engine failure, it is able to land on the rejected take-off area or safely continue the flight to an appropriate landing area.

Performance Class 2 helicopter. A helicopter with performance such that, in case of engine failure, it is able to safely continue the flight, except when the failure occurs prior to a defined point after take-off or after a defined point before landing, in which cases a forced landing may be required.

Performance Class 3 helicopter. A helicopter with performance such that, in case of engine failure at any point in the flight profile, a forced landing must be performed.

Power-unit. A system of one or more engines and ancillary parts which are together necessary to provide thrust, independently of the continued operation of any other power-unit(s), but not including short period thrust-producing devices.

Pressure-altitude. An atmospheric pressure expressed in terms of altitude which corresponds to that pressure in the Standard Atmosphere.

Rendering (a Certificate of Airworthiness) valid. The action taken by a Contracting State, as an alternative to issuing its own Certificate of Airworthiness, in accepting a Certificate of Airworthiness issued by any other Contracting State as the equivalent of its own Certificate of Airworthiness.

Repair. The restoration of an aeronautical product to an airworthy condition to ensure that the aircraft continues to comply with the design aspects of the appropriate airworthiness requirements used for the issuance of the Type Certificate for the respective aircraft type, after it has been damaged or subjected to wear.

Standard atmosphere. An atmosphere defined as follows:

a) the air is a perfect dry gas;

b) the physical constants are:

- Sea level mean molar mass: \(M_0 = 28.964420 \times 10^{-3} \) kg mol\(^{-1}\)
- Sea level atmospheric pressure: \(P_0 = 1013.250 \) hPa
- Sea level temperature: \(t_0 = 15°C \)
 \(T_0 = 288.15 \) K
- Sea level atmospheric density: \(\rho_0 = 1.2250 \) kg m\(^{-3}\)
- Temperature of the ice point: \(T_i = 273.15 \) K
- Universal gas constant: \(R^* = 8.31432 \) JK\(^{-1}\)mol\(^{-1}\)

c) the temperature gradients are:

<table>
<thead>
<tr>
<th>Geopotential altitude (km)</th>
<th>Temperature gradient (Kelvin per standard geopotential kilometre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>To</td>
</tr>
<tr>
<td>-5.0</td>
<td>11.0</td>
</tr>
<tr>
<td>11.0</td>
<td>20.0</td>
</tr>
<tr>
<td>20.0</td>
<td>32.0</td>
</tr>
<tr>
<td>32.0</td>
<td>47.0</td>
</tr>
<tr>
<td>47.0</td>
<td>51.0</td>
</tr>
<tr>
<td>51.0</td>
<td>71.0</td>
</tr>
<tr>
<td>71.0</td>
<td>80.0</td>
</tr>
</tbody>
</table>

Note 1.— The standard geopotential metre has the value 9.80665 m\(^2\) s\(^{-2}\).

Note 2.— See Doc 7488 for the relationship between the variables and for tables giving the corresponding values of temperature, pressure, density and geopotential.

Note 3.— Doc 7488 also gives the specific weight, dynamic viscosity, kinematic viscosity and speed of sound at various altitudes.

State of Design. The State having jurisdiction over the organization responsible for the type design.

State of Manufacture. The State having jurisdiction over the organization responsible for the final assembly of the aircraft.

State of Registry. The State on whose register the aircraft is entered.

Note.— In the case of the registration of aircraft of an international operating agency on other than a national basis, the States constituting the agency are jointly and severally bound to assume the obligations which, under the Chicago Convention, attach to a State of Registry. See, in this regard, the Council Resolution of 14 December 1967 on Nationality and Registration of Aircraft Operated by International Operating Agencies which can be found in Policy and Guidance Material on the Economic Regulation of International Air Transport (Doc 9587).

Take-off surface. That part of the surface of an aerodrome which the aerodrome authority has declared available for the normal ground or water run of aircraft taking off in a particular direction.
Type Certificate. A document issued by a Contracting State to define the design of an aircraft type and to certify that this design meets the appropriate airworthiness requirements of that State.

Ultimate load. The limit load multiplied by the appropriate factor of safety.
PART II. PROCEDURES FOR CERTIFICATION AND CONTINUING AIRWORTHINESS

Note.— Although the Convention on International Civil Aviation allocates to the State of Registry certain functions which that State is entitled to discharge, or obligated to discharge, as the case may be, the Assembly recognized, in Resolution A23-13, that the State of Registry may be unable to fulfil its responsibilities adequately in instances where aircraft are leased, chartered or interchanged — in particular without crew — by an operator of another State and that the Convention may not adequately specify the rights and obligations of the State of an Operator in such instances until such time as Article 83 bis of the Convention enters into force. Accordingly, the Council urged that if, in the abovementioned instances, the State of Registry finds itself unable to discharge adequately the functions allocated to it by the Convention, it delegate to the State of the Operator, subject to acceptance by the latter State, those functions of the State of Registry that can more adequately be discharged by the State of the Operator. It was understood that pending entry into force of Article 83 bis of the Convention, the foregoing action would only be a matter of practical convenience and would not affect either the provisions of the Chicago Convention prescribing the duties of the State of Registry or any third State. However, as Article 83 bis entered into force on 20 June 1997, such transfer agreements will have effect in respect of those Contracting States which have ratified the related Protocol (Doc 9318) upon fulfilment of the conditions established in Article 83 bis.

CHAPTER 1. TYPE CERTIFICATION

1.1 Applicability

The Standards of this chapter shall be applicable to all aircraft of types for which the application for certification was submitted to a Contracting State on or after 13 June 1960, except that the provisions of 1.4 of this part shall only be applicable to an aircraft type for which an application for a Type Certificate is submitted to the State of Design on or after 2 March 2004.

Note.— Normally, a request for a type certificate is submitted by the aircraft manufacturer when the aircraft is intended for serial production.

1.2 Design aspects of the appropriate airworthiness requirements

1.2.1 The design aspects of the appropriate airworthiness requirements, used by a Contracting State for type certification in respect of a class of aircraft or for any change to such type certification, shall be such that compliance with them will ensure compliance with the Standards of Part II of this Annex and, where applicable, with the Standards of Parts IIIA, IIIB and IV of this Annex.

1.2.2 The design shall not have any features or characteristics that render it unsafe under the anticipated operating conditions.

1.2.3 Where the design features of a particular aircraft render any of the design aspects of the appropriate airworthiness requirements or the Standards in Parts IIIA, IIIB or IV inappropriate, the Contracting State shall apply appropriate requirements that will give at least an equivalent level of safety.

1.2.4 Where the design features of a particular aircraft render any of the design aspects of the appropriate airworthiness requirements or the Standards in Parts IIIA, IIIB or IV inadequate, additional technical requirements that are considered by the Contracting State to give at least an equivalent level of safety shall be applied.

Note.— An Airworthiness Manual (Doc 9760) containing guidance material has been published by ICAO.

1.3 Proof of compliance with the design aspects of the appropriate airworthiness requirements

1.3.1 There shall be an approved design consisting of such drawings, specifications, reports and documentary evidence as are necessary to define the design of the aircraft and to show compliance with the design aspects of the appropriate airworthiness requirements.

Note.— The approval of the design is facilitated, in some States, by approving the design organization.
1.3.2 The aircraft shall be subjected to such inspections and ground and flight tests as are deemed necessary by the State to show compliance with the design aspects of the appropriate airworthiness requirements.

1.3.3 In addition to determining compliance with the design aspects of the appropriate airworthiness requirements for an aircraft, Contracting States shall take whatever other steps they deem necessary to ensure that the design approval is withheld if the aircraft is known or suspected to have dangerous features not specifically guarded against by those requirements.

1.3.4 A Contracting State issuing an approval for the design of a modification, of a repair or of a replacement part shall do so on the basis of satisfactory evidence that the aircraft continues to comply with the design aspects of the appropriate airworthiness requirements used for the type certification of that aircraft type or amended Type Certificate.

Note.—The approval of the design of a modification to an aircraft is signified, in some States, by the issuance of a supplemental Type Certificate or amended Type Certificate.

1.4 Type Certificate

1.4.1 The State of Design, upon receipt of satisfactory evidence that the aircraft type is in compliance with the design aspects of the appropriate airworthiness requirements, shall issue a Type Certificate to define the design and to signify approval of the design of the aircraft type.

1.4.2 When a Contracting State, other than the State of Design, issues a Type Certificate for an aircraft type, it shall do so on the basis of satisfactory evidence that the aircraft type is in compliance with the design aspects of the appropriate airworthiness requirements.
CHAPTER 2. PRODUCTION

2.1 Applicability

The Standards of this chapter are applicable to all aircraft.

2.2 Production

2.2.1 Aircraft production

The State of Manufacture shall ensure that each aircraft, including parts manufactured by sub-contractors, conforms to the approved design.

2.2.2 Parts production

The Contracting State taking responsibility for the production of parts manufactured under the design approval referred to in 1.3.4 of Part II shall ensure that the parts conform to the approved design.

2.2.3 Production control

When approving production of aircraft or aircraft parts, a Contracting State shall ensure that it is performed in a controlled manner including the use of a quality system so that construction and assembly are satisfactory.

Note.— The oversight of production is facilitated, in some States, by approving the production organization.

2.2.4 Traceability

Records shall be maintained such that the identification of the aircraft and of the parts with their approved design and production can be established.
CHAPTER 3. CERTIFICATE OF AIRWORTHINESS

Note.— The Certificate of Airworthiness as used in these Standards is the Certificate of Airworthiness referred to in Article 31 of the Convention.

3.1 Applicability

The Standards of this chapter are applicable in respect of all aircraft, except 3.3 and 3.4 which are not applicable in respect of all aircraft that are of a type of which the prototype was submitted to appropriate national authorities for certification before 13 June 1960.

3.2 Issuance and renewal of a Certificate of Airworthiness

3.2.1 A Certificate of Airworthiness shall be issued by a Contracting State on the basis of satisfactory evidence that the aircraft complies with the design aspects of the appropriate airworthiness requirements.

3.2.2 A Contracting State shall not issue or render valid a Certificate of Airworthiness for which it intends to claim recognition pursuant to Article 33 of the Convention on International Civil Aviation unless it has satisfactory evidence that the aircraft complies with the applicable Standards of this Annex through compliance with appropriate airworthiness requirements.

3.2.3 A Certificate of Airworthiness shall be renewed or shall remain valid, subject to the laws of the State of Registry, provided that the State of Registry shall require that the continuing airworthiness of the aircraft shall be determined by a periodical inspection at appropriate intervals having regard to lapse of time and type of service or, alternatively, by means of a system of inspection, approved by the State, that will produce at least an equivalent result.

3.2.4 When an aircraft possessing a valid Certificate of Airworthiness issued by a Contracting State is entered on the register of another Contracting State, the new State of Registry, when issuing another Certificate of Airworthiness or rendering the original certificate valid, may consider prior issuance of the Certificate of Airworthiness by a Contracting State as satisfactory evidence, in whole or in part, that the aircraft is airworthy and in compliance with the appropriate airworthiness requirements. The validity of the authorization shall not extend beyond the period of validity of the Certificate of Airworthiness.

3.3 Standard form of Certificate of Airworthiness

3.3.1 The Certificate of Airworthiness shall contain the information shown in Figure 1 and shall be generally similar to it.

3.3.2 When Certificates of Airworthiness are issued in a language other than English, they shall include an English translation.

Note.— Article 29 of the Convention on International Civil Aviation requires that the Certificate of Airworthiness be carried on board every aircraft engaged in international air navigation.

3.4 Aircraft limitations and information

Each aircraft shall be provided with a flight manual, placards, or other documents stating the approved limitations within which the aircraft is considered airworthy as defined by the appropriate airworthiness requirements, and additional instructions and information necessary for the safe operation of the aircraft.

3.5 Temporary loss of airworthiness

Any failure to maintain an aircraft in an airworthy condition as defined by the appropriate airworthiness requirements shall render the aircraft ineligible for operation until the aircraft is restored to an airworthy condition.

3.6 Damage to aircraft

3.6.1 When an aircraft has sustained damage, the State of Registry shall judge whether the damage is of a nature such that the aircraft is no longer airworthy as defined by the appropriate airworthiness requirements.
3.6.2 If the damage is sustained or ascertained when the aircraft is in the territory of another Contracting State, the authorities of the other Contracting State shall be entitled to prevent the aircraft from resuming its flight on the condition that they shall advise the State of Registry immediately, communicating to it all details necessary to formulate the judgement referred to in 3.6.1.

3.6.3 When the State of Registry considers that the damage sustained is of a nature such that the aircraft is no longer airworthy, it shall prohibit the aircraft from resuming flight until it is restored to an airworthy condition; the State of Registry may, however, in exceptional circumstances, prescribe particular limiting conditions to permit the aircraft to fly without fare-paying passengers to an aerodrome at which it will be restored to an airworthy condition, and the Contracting State that had originally, in accordance with 3.6.2, prevented the aircraft from resuming flights shall permit such flight.

3.6.4 When the State of Registry considers that the damage sustained is of a nature such that the aircraft is still airworthy, the aircraft shall be allowed to resume its flight.

CERTIFICATE OF AIRWORTHINESS

<table>
<thead>
<tr>
<th>1. Nationality and registration marks</th>
<th>2. Manufacturer and manufacturer’s designation of aircraft**</th>
<th>3. Aircraft serial number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 4. Categories | | |
|--------------------------------------| | |

| 5. This Certificate of Airworthiness is issued pursuant to the Convention on International Civil Aviation dated 7 December 1944 and †.. in respect of the abovementioned aircraft which is considered to be airworthy when maintained and operated in accordance with the foregoing and the pertinent operating limitations. |
|--------------------------------------|--|--------------------------|
| Date of issue | Signature | |

† Insert reference to appropriate Airworthiness Code.

<table>
<thead>
<tr>
<th>6. ***</th>
</tr>
</thead>
</table>

* For use of the State of Registry.

** Manufacturer’s designation of aircraft should contain the aircraft type and model.

*** This space shall be used either for periodic endorsement (giving date of expiry) or for a statement that the aircraft is being maintained under a system of continuous inspection.

Figure 1
CHAPTER 4. CONTINUING AIRWORTHINESS OF AIRCRAFT

4.1 Applicability

The Standards of this chapter are applicable to all aircraft.

4.2 Determination of continuing airworthiness

4.2.1 The State of Registry shall develop or adopt requirements to ensure the continued airworthiness of the aircraft during its service life, including requirements to ensure that the aircraft:

a) continues to comply with the appropriate airworthiness requirements after a modification, a repair or the installation of a replacement part; and

b) is maintained in an airworthy condition and in compliance with the maintenance requirements of Annex 6 and, where applicable, Parts IIIA, IIIB and IV of this Annex.

4.2.2 The continuing airworthiness of an aircraft shall be determined by the State of Registry in relation to the appropriate airworthiness requirements in force for that aircraft.

4.3 Information related to continuing airworthiness of aircraft

4.3.1 When a Contracting State first enters on its register an aircraft of a particular type for which it is not the State of Design and issues or validates a Certificate of Airworthiness in accordance with 3.2.2 of this part, it shall advise the State of Design that it has entered such an aircraft on its register.

4.3.2 The State of Design of an aircraft shall transmit any generally applicable information which it has found necessary for the continuing airworthiness of the aircraft and for the safe operation of the aircraft (hereinafter called mandatory continuing airworthiness information) as follows:

a) to every Contracting State which has in accordance with 4.3.1 advised the State of Design that it has entered the aircraft on its register; and

b) to any other Contracting State upon request.

Note 1.— In 4.3, the term “mandatory continuing airworthiness information” is intended to include mandatory requirements for modification, replacement of parts or inspection of aircraft and amendment of operating limitations and procedures. Among such information is that issued by Contracting States in the form of airworthiness directives.

Note 2.— Circular 95, The Continuing Airworthiness of Aircraft in Service, provides the necessary information to assist Contracting States in establishing contact with competent authorities of other Contracting States, for the purpose of maintaining continuing airworthiness of aircraft in service.

4.3.3 The State of Registry shall, upon receipt of mandatory continuing airworthiness information from the State of Design, adopt the mandatory information directly or assess the information received and take appropriate action.

4.3.4 Any Contracting State that has entered on its register an aircraft in respect of which that Contracting State is not the State of Design and for which it has issued or validated a Certificate of Airworthiness in accordance with 3.2 of this part shall ensure the transmission to the State of Design of all mandatory continuing airworthiness information which it, as the State of Registry, originated in respect of that aircraft.

4.3.5 The State of Registry shall ensure that in respect of aeroplanes of over 5 700 kg and helicopters over 3 180 kg maximum certificated take-off mass, there exists a system whereby information on faults, malfunctions, defects and other occurrences that cause or might cause adverse effects on the continuing airworthiness of the aircraft is transmitted to the organization responsible for the type design of that aircraft.

Note.— Guidance on interpretation of “the organization responsible for the type design” is contained in Volume II, Part A, of the Airworthiness Manual (Doc 9760).

4.3.6 The State of Design shall ensure that in respect of aeroplanes over 5 700 kg and helicopters over 3 180 kg maximum certificated take-off mass, there exists a system for:

a) receiving information submitted in accordance with 4.3.5;

b) deciding if and when airworthiness action is needed;

c) developing the necessary airworthiness actions; and
d) promulgating the information on those actions including that required in 4.3.2.

4.3.7 The State of Design shall ensure that in respect of aeroplanes over 5 700 kg maximum certificated take-off mass, there exists a continuing structural integrity programme to ensure the airworthiness of the aeroplane. The programme shall include specific information concerning corrosion prevention and control.

4.3.8 Each Contracting State shall establish, in respect of aeroplanes over 5 700 kg and helicopters over 3 180 kg maximum certificated take-off mass, the type of service information that is to be reported to its airworthiness authority by operators, organizations responsible for type design and maintenance organizations. Procedures for reporting this information shall also be established.

4.3.9 Where the State of Manufacture of an aircraft is other than the State of Design, there shall be an agreement acceptable to both States to ensure that the manufacturing organization cooperates with the organization responsible for the type design in assessing information received on experience with operating the aircraft.
PART III. LARGE AEROPLANES

PART IIIA. AEROPLANES OVER 5 700 KG FOR WHICH APPLICATION FOR CERTIFICATION WAS SUBMITTED ON OR AFTER 13 JUNE 1960

Note.— The provisions of Part IIIA are the same as those contained in Part III of Annex 8, Eighth Edition (including Amendment 97), except for modified applicability clauses and cross-references.

CHAPTER 1. GENERAL

1.1 Applicability

1.1.1 The Standards of Part IIIA, except for those specified in 8.4, are applicable in respect of all aeroplanes designated in 1.1.3 that are of types of which the prototype is submitted to the appropriate national authorities for certification on or after 13 June 1960, but before 2 March 2004.

1.1.2 The Standards specified in 8.4 of Part IIIA are applicable in respect of all aeroplanes designated in 1.1.3 that are of types of which the prototype is submitted to the appropriate national authorities for certification on or after 22 March 1985, but before 2 March 2004.

1.1.3 The Standards of Part IIIA shall apply to aeroplanes of over 5 700 kg maximum certificated take-off mass intended for the carriage of passengers or cargo or mail in international air navigation.

Note.— The following Standards do not include quantitative specifications comparable to those found in national airworthiness codes. In accordance with 3.2.2 of Part II, they are to be supplemented by national requirements prepared by Contracting States.

1.1.4 The level of airworthiness defined by the appropriate parts of the comprehensive and detailed national code referred to in 3.2.2 of Part II for the aeroplanes designated in 1.1.3 shall be at least substantially equivalent to the overall level intended by the broad Standards of Part IIIA.

1.1.5 Unless otherwise stated, the Standards apply to the complete aeroplane including power-units, systems and equipment.

1.2 Number of power-units

The aeroplane shall have not less than two power-units.

1.3 Operating limitations

1.3.1 Limiting conditions shall be established for the aeroplane, its power-units and its equipment (see 9.2). Compliance with the Standards of Part IIIA shall be established assuming that the aeroplane is operated within the limitations specified. The limitations shall be sufficiently removed from any condition(s) prejudicial to the safety of the aeroplane to render the likelihood of accidents arising therefrom extremely remote.

1.3.2 Limiting ranges of mass, centre of gravity location, load distribution, speeds, and altitude or pressure-altitude shall be established within which compliance with all the pertinent Standards in Part IIIA is shown, except that combinations of conditions which are fundamentally impossible to achieve need not be considered.

Note 1.— The maximum operating mass and centre of gravity limits may vary, for example, with each altitude and with each separate operating condition, e.g. take-off, en route, landing.

Note 2.— The following items, for instance, may be considered as basic aeroplane limitations:

— maximum certificated take-off mass
— maximum certificated taxing mass
— maximum certificated landing mass
— maximum certificated zero fuel mass
— most forward and rearward centre of gravity positions in various configurations (take-off, en route, landing).

Note 3.— Maximum operating mass may be limited by the application of Noise Certification Standards (see Annex 16, Vol. I, and Annex 6, Parts I and II).
1.4 Unsafe features and characteristics

The aeroplane shall not possess any feature or characteristic that renders it unsafe under the anticipated operating conditions.

1.5 Proof of compliance

1.5.1 Compliance with the appropriate airworthiness requirements shall be based on evidence either from tests, calculations, or calculations based on tests, provided that in each case the accuracy achieved will ensure a level of airworthiness equal to that which would be achieved were direct tests conducted.

1.5.2 The tests of 1.5.1 shall be such as to provide reasonable assurance that the aeroplane, its components and equipment are reliable and function correctly under the anticipated operating conditions.
CHAPTER 2. FLIGHT

2.1 General

2.1.1 Compliance with the Standards prescribed in Chapter 2 shall be established by flight or other tests conducted upon an aeroplane or aeroplanes of the type for which a Certificate of Airworthiness is sought, or by calculations based on such tests, provided that the results obtained by calculations are equal in accuracy to, or conservatively represent, the results of direct testing.

2.1.2 Compliance with each Standard shall be established for all applicable combinations of aeroplane mass and centre of gravity position, within the range of loading conditions for which certification is sought.

2.1.3 Where necessary, appropriate aeroplane configurations shall be established for the determination of performance in the various stages of flight and for the investigation of the aeroplane’s flying qualities.

2.2 Performance

2.2.1 General

2.2.1.1 Sufficient data on the performance of the aeroplane shall be determined and scheduled in the aeroplane flight manual to provide operators with the necessary information for the purpose of determining the total mass of the aeroplane on the basis of the values, peculiar to the proposed flight, of the relevant operational parameters, in order that the flight may be made with reasonable assurance that a safe minimum performance for that flight will be achieved.

2.2.1.2 The performance scheduled for the aeroplane shall take into consideration human performance and in particular shall not require exceptional skill or alertness on the part of the flight crew.

Note.— Guidance material on human performance can be found in the Human Factors Training Manual (Doc 9683).

2.2.1.3 The scheduled performance of the aeroplane shall be consistent with compliance with 1.3.1 and with the operation in logical combinations of those of the aeroplane’s systems and equipment, the operation of which may affect performance.

2.2.2 Minimum performance

At the maximum mass scheduled (see 2.2.3) for take-off and for landing as functions of the aerodrome elevation or pressure-altitude either in the standard atmosphere or in specified still air atmospheric conditions, and, for seaplanes, in specified conditions of smooth water, the aeroplane shall be capable of accomplishing the minimum performances specified in 2.2.2.1 and 2.2.2.2, respectively, not considering obstacles, or runway or water run length.

Note.— This Standard permits the maximum take-off mass and maximum landing mass to be scheduled in the aeroplane flight manual against, for example:

— aerodrome elevation, or
— pressure-altitude at aerodrome level, or
— pressure-altitude and atmospheric temperature at aerodrome level,

so as to be readily usable when applying the national code on aeroplane performance operating limitations.

2.2.2.1 Take-off

a) The aeroplane shall be capable of taking off assuming the critical power-unit to fail (see 2.2.3), the remaining power-units being operated within their take-off power limitations.

b) After the end of the period during which the take-off power may be used, the aeroplane shall be capable of continuing to climb, with the critical power-unit inoperative and the remaining power-units operated within their maximum continuous power limitations, up to a height that it can maintain and at which it can carry out a circuit of the aerodrome.

c) The minimum performance at all stages of take-off and climb shall be sufficient to ensure that under conditions of operation departing slightly from the idealized conditions for which data are scheduled (2.2.3), the departure from the scheduled values is not disproportionate.

2.2.2.2 Landing

a) Starting from the approach configuration and with the critical power-unit inoperative, the aeroplane shall be
Annex 8 — Airworthiness of Aircraft

Part IIIA

The aeroplane shall be capable, in the event of a missed approach, of continuing the flight to a point from which a fresh approach can be made.

b) Starting from the landing configuration, the aeroplane shall be capable, in the event of a balked landing, of making a climb-out, with all power-units operating.

2.2.3 Scheduling of performance

Performance data shall be determined and scheduled in the aeroplane flight manual so that their application by means of the operating rules to which the aeroplane is to be operated in accordance with 5.2 of Annex 6, Part I, will provide a safe relationship between the performance of the aeroplane and the aerodromes and routes on which it is capable of being operated. Performance data shall be determined and scheduled for the following stages for the ranges of mass, altitude or pressure-altitude, wind velocity, gradient of the take-off and landing surface for landplanes; water surface conditions, density of water and strength of current for seaplanes; and for any other operational variables for which the aeroplane is to be certificated.

2.2.3.1 Take-off. The take-off performance data shall include the accelerate-stop distance and the take-off path.

2.2.3.1.1 Accelerate-stop distance. The accelerate-stop distance shall be the distance required to accelerate and stop, or, for a seaplane to accelerate and come to a satisfactorily low speed, assuming the critical power-unit to fail suddenly at a point not nearer to the start of the take-off than that assumed when determining the take-off path (see 2.2.3.1.2).

2.2.3.1.2 Take-off path. The take-off path shall comprise the ground or water run, initial climb and climb-out, assuming the critical power-unit to fail suddenly during the take-off (see 2.2.3.1.1). The take-off path shall be scheduled up to a height that the aeroplane can maintain and at which it can carry out a circuit of the aerodrome. The climb-out shall be made at a speed not less than the take-off safety speed as determined in accordance with 2.2.3.1.3.

2.2.3.2 En route. The en-route climb performance shall be the climb (or descent) performance with the aeroplane in the en-route configuration with:

a) the critical power-unit inoperative; and

b) the two critical power-units inoperative in the case of aeroplanes having three or more power-units.

The operating engines shall not exceed maximum continuous power.

2.2.3.3 Landing. The landing distance shall be the horizontal distance traversed by the aeroplane from a point on the approach flight path at a selected height above the landing surface to the point on the landing surface at which the aeroplane comes to a complete stop or, for a seaplane, comes to a satisfactorily low speed. The selected height above the landing surface and the approach speed shall be appropriately related to operating practices. This distance may be supplemented by such distance margin as may be necessary; if so, the selected height above the landing surface, the approach speed and the distance margin shall be appropriately interrelated and shall make provision for both normal operating practices and reasonable variations therefrom.

Note.— If the landing distance includes the distance margin specified in this Standard, it is not necessary to allow for the expected variations in the approach and landing techniques in applying 5.2.11 of Annex 6, Part I.

2.3 Flying qualities

The aeroplane shall comply with the Standards of 2.3 at all altitudes up to the maximum anticipated altitude relevant to the particular requirement in all temperature conditions relevant to the altitude in question and for which the aeroplane is approved.

2.3.1 Controllability

The aeroplane shall be controllable and manoeuvrable under all anticipated operating conditions, and it shall be possible to make smooth transitions from one flight condition to another (e.g. turns, sideslips, changes of engine power, changes of aeroplane configurations) without requiring exceptional skill, alertness, or strength on the part of the pilot even in the event of failure of any power-unit. A technique for safely controlling the aeroplane shall be established for all stages of flight and aeroplane configurations for which performance is scheduled.

Note.— This Standard is intended, among other things, to relate to operation in conditions of no appreciable atmospheric turbulence and also to ensure that there is no undue deterioration of the flying qualities in turbulent air.

2.3.1.1 Controllability on the ground (or water). The aeroplane shall be controllable on the ground (or on the water) during taxiing, take-off and landing under the anticipated operating conditions.

2.3.1.2 Controllability during take-off. The aeroplane shall be controllable in the event of sudden failure of the critical power-unit at any point in the take-off, when the aeroplane is handled in the manner associated with the scheduling of take-off paths and accelerate-stop distances.

2.3.1.3 Take-off safety speed. The take-off safety speeds assumed when the performance of the aeroplane
(after leaving the ground or water) during the take-off is
determined shall provide an adequate margin above the
stall and above the minimum speed at which the aeroplane
remains controllable after sudden failure of the critical
power-unit.

2.3.2 Trim

The aeroplane shall have such trim and other characteristics as
to ensure that the demands made on the pilot’s attention and
ability to maintain a desired flight condition are not excessive
when account is taken of the stage of flight at which these
demands occur and their duration. This shall apply both in
normal operation and in the conditions associated with the
failure of one or more power-units for which performance
characteristics are established.

2.3.3 Stability

The aeroplane shall have such stability in relation to its other
flight characteristics, performance, structural strength, and
most probable operating conditions (e.g. aeroplane config-
urations and speed ranges) as to ensure that demands made on
the pilot’s powers of concentration are not excessive when the
stage of the flight at which these demands occur and their
duration are taken into account. The stability of the aeroplane
shall not, however, be such that excessive demands are
made on the pilot’s strength or that the safety of the aeroplane
is prejudiced by lack of manoeuvrability in emergency
conditions.

2.3.4 Stalling

2.3.4.1 Stall warning. When the aeroplane is made to
approach a stall both in straight and turning flight with all
power-units operating and with one power-unit inoperative, a
clear and distinctive stall warning shall be apparent to the
pilot with the aeroplane in all permissible configurations and
powers, except those which are not considered to be essential
for safe flying. The stall warning and other characteristics of
the aeroplane shall be such as to enable the pilot to arrest the
development of the stall after the warning begins and, without
altering the engine power, to maintain full control of the
aeroplane.

2.3.4.2 Behaviour following a stall. In any configuration
and power in which it is considered that the ability to recover
from a stall is essential, the behaviour of the aeroplane
following a stall shall not be so extreme as to make difficult a
prompt recovery without exceeding the airspeed or strength
limitations of the aeroplane. It shall be acceptable to throttle
back the operating power-units during recovery from the stall.

2.3.4.3 Stalling speeds. The stalling speeds or minimum
steady flight speeds in configurations appropriate for each
stage of flight (e.g. take-off, en route, landing) shall be
established. One of the values of the power used in
establishing the stalling speeds shall be not more than that
necessary to give zero thrust at a speed just above the stall.

2.3.5 Flutter and vibration

It shall be demonstrated by suitable tests that all parts of the
aeroplane are free from flutter and excessive vibration in all
aeroplane configurations under all speed conditions within the
operating limitations of the aeroplane (see 1.3.2). There shall
be no buffeting severe enough to interfere with control of the
aeroplane, to cause structural damage or to cause excessive
fatigue to the flight crew.

Note.— Buffeting as a stall warning is considered
desirable and discouragement of this type of buffeting is not
intended.
CHAPTER 3. STRUCTURES

3.1 General

The Standards of Chapter 3 apply to the aeroplane structure consisting of all portions of the aeroplane, the failure of which would seriously endanger the aeroplane.

3.1.1 Mass and mass distribution

Unless otherwise stated, all structural Standards shall be complied with when the mass is varied over the applicable range and is distributed in the most adverse manner, within the operating limitations on the basis of which certification is sought.

3.1.2 Limit loads

Except as might be otherwise qualified, the external loads and the corresponding inertia loads, or resisting loads obtained for the various loading conditions prescribed in 3.3, 3.4 and 3.5 shall be considered as limit loads.

3.1.3 Strength and deformation

In the various loading conditions prescribed in 3.3, 3.4 and 3.5, no part of the aeroplane structure shall sustain detrimental deformation at any load up to and including the limit load, and the aeroplane structure shall be capable of supporting the ultimate load.

3.2 Airspeeds

3.2.1 Design airspeeds

Design airspeeds shall be established for which the aeroplane structure is designed to withstand the corresponding manoeuvring and gust loads in accordance with 3.3. In establishing the design airspeeds, consideration shall be given to the following speeds:

a) \(V_A \), the design manoeuvring speed;

b) \(V_B \), the speed at which the maximum vertical gust velocity assumed in accordance with 3.3.2 can be withstood;

c) \(V_C \), a speed not expected to be exceeded in normal cruising flight taking into account possible effects of upsets when flying in turbulent conditions;

d) \(V_D \), maximum dive speed, sufficiently greater than the speed in c), to make it unlikely that such a design speed would be exceeded as a result of inadvertent speed increases in the anticipated operating conditions, taking into account the flying qualities and other characteristics of the aeroplane;

e) \(V_{E_1} \) to \(V_{E_n} \), maximum speeds at which flaps and landing gears may be extended or other configuration changes be made.

The speeds \(V_A \), \(V_B \), \(V_C \), and \(V_E \) in a), b), c) and e) shall be sufficiently greater than the stalling speed of the aeroplane to safeguard against loss of control in turbulent air.

3.2.2 Limiting airspeeds

Limiting airspeeds, based on the corresponding design airspeeds with safety margins, where appropriate, in accordance with 1.3.1 shall be included in the aeroplane flight manual as part of the operating limitations (see 9.2.2).

3.3 Flight loads

The flight loading conditions of 3.3.1, 3.3.2 and 3.5 shall be considered for the range of mass and mass distributions prescribed in 3.1.1 and at airspeeds established in accordance with 3.2.1. Asymmetrical as well as symmetrical loading shall be taken into account. The air, inertia, and other loads resulting from the specified loading conditions shall be distributed so as to approximate actual conditions closely or to represent them conservatively.

3.3.1 Manoeuvring loads

Manoeuvring loads shall be computed on the basis of manoeuvring load factors appropriate to the manoeuvres permitted by the operating limitations. They shall not be less than values that experience indicates will be adequate for the anticipated operating conditions.

3.3.2 Gust loads

Gust loads shall be computed for vertical and horizontal gust velocities and gradients that statistics or other evidence indicate will be adequate for the anticipated operating conditions.
3.4 Ground and water loads

The structure shall be able to withstand all the loads due to the reactions of the ground and water surface that are likely to arise during taxiing, take-off and landing.

3.4.1 Landing conditions

The landing conditions at the design take-off mass and at the design landing mass shall include such symmetrical and asymmetrical attitudes of the aeroplane at ground or water contact, such velocities of descent and such other factors affecting the loads imposed upon the structure as might be present in the anticipated operating conditions.

3.5 Miscellaneous loads

In addition to or in conjunction with the manoeuvring and gust loads and with the ground and water loads, consideration shall be given to all other loads (flight control loads, cabin pressures, effects of engine operation, loads due to changes of configuration, etc.) that are likely to occur in the anticipated operating conditions.

3.6 Flutter, divergence and vibration

The aeroplane structure shall be designed to be free from flutter, structural divergence (i.e. unstable structural distortion due to aerodynamic loading), and loss of control due to structural deformation, at speeds within and sufficiently beyond the operating limitations to comply with 1.3.1. Adequate strength shall be provided to withstand the vibration and buffeting that might occur in the anticipated operating conditions.

3.7 Fatigue strength

The strength and fabrication of the aeroplane shall be such as to ensure that the probability of disastrous fatigue failure of the aeroplane’s structure under repeated loads and vibratory loads in the anticipated operating conditions is extremely remote.
CHAPTER 4. DESIGN AND CONSTRUCTION

4.1 General

Details of design and construction shall be such as to give reasonable assurance that all aeroplane parts will function effectively and reliably in the anticipated operating conditions. They shall be based upon practices that experience has proven to be satisfactory or that are substantiated by special tests or by other appropriate investigations or both. They shall observe Human Factors principles.

Note.— Guidance material on Human Factors principles can be found in the Human Factors Training Manual (Doc 9683).

4.1.1 Substantiating tests

The functioning of all moving parts essential to the safe operation of the aeroplane shall be demonstrated by suitable tests in order to ensure that they will function correctly under all operating conditions for such parts.

4.1.2 Materials

All materials used in parts of the aeroplane essential for its safe operation shall conform to approved specifications. The approved specifications shall be such that materials accepted as complying with the specifications will have the essential properties assumed in the design.

4.1.3 Fabrication methods

The methods of fabrication and assembly shall be such as to produce a consistently sound structure which shall be reliable with respect to maintenance of strength in service.

4.1.4 Protection

The structure shall be protected against deterioration or loss of strength in service due to weathering, corrosion, abrasion, or other causes, which could pass unnoticed, taking into account the maintenance the aeroplane will receive.

4.1.5 Inspection provisions

Adequate provision shall be made to permit any necessary examination, replacement, or reconditioning of parts of the aeroplane that require such attention, either periodically or after unusually severe operations.

4.1.6 Design features

Special consideration shall be given to design features that affect the ability of the flight crew to maintain controlled flight. This shall include at least the following:

a) Controls and control systems. The design of the controls and control systems shall be such as to minimize the possibility of jamming, inadvertent operations, and unintentional engagement of control surface locking devices.

b) System survivability. As of 12 March 2000, aeroplane systems shall be designed, arranged and physically separated to maximize the potential for continued safe flight and landing after any event resulting in damage to the aeroplane structure or systems.

c) Crew environment. The design of the flight crew compartment shall be such as to minimize the possibility of incorrect or restricted operation of the controls by the crew, due to fatigue, confusion or interference. Consideration shall be given at least to the following: layout and identification of controls and instruments, rapid identification of emergency situations, sense of controls, ventilation, heating and noise.

d) Pilot vision. The arrangement of the pilot compartment shall be such as to afford a sufficiently extensive, clear and undistorted field of vision for the safe operation of the aeroplane, and to prevent glare and reflections that would interfere with the pilot's vision. The design features of the pilot windshield shall permit, under precipitation conditions, sufficient vision for the normal conduct of flight and for the execution of approaches and landings.

e) Provision for emergencies. Means shall be provided which shall either automatically prevent, or enable the flight crew to deal with, emergencies resulting from foreseeable failures of equipment and systems, the failure of which would endanger the aeroplane. Reasonable provisions shall be made for continuation of essential services following power-unit or systems' failures to the extent that such failures are catered for in the performance and operating limitations specified in the Standards in this Annex and in Annex 6, Parts I and II.

f) Fire precautions. The design of the aeroplane and the materials used in its manufacture, including cabin interior furnishing materials replaced during major
refurbishing, shall be such as to minimize the possibility of in-flight and ground fires and also to minimize the production of smoke and toxic gases in the event of a fire. Means shall be provided to contain or to detect and extinguish such fires as might occur in such a way that no additional danger to the aeroplane is caused.

g) Fire suppression. As of 12 March 2000, cargo compartment fire suppression systems, including their extinguishing agents, shall be designed so as to take into account a sudden and extensive fire such as could be caused by an explosive or incendiary device.

h) Incapacitation of occupants. Design precautions shall be taken to protect against possible instances of cabin depressurization and against the presence of smoke or other toxic gases, including, as of 12 March 2000, those caused by explosive or incendiary devices, that could incapacitate the occupants of the aeroplane.

i) Protection of the flight crew compartment from smoke and fumes. As of 12 March 2000, means shall be provided to minimize entry into the flight crew compartment of smoke, fumes and noxious vapours generated by an explosion or fire on the aeroplane.

4.1.7 Emergency landing provisions

4.1.7.1 Provisions shall be made in the design of the aeroplane to protect the occupants, in the event of an emergency landing, from fire and from the direct effects of deceleration forces as well as from injuries arising from the effect of deceleration forces on the aeroplane’s interior equipment.

4.1.7.2 Facilities shall be provided for the rapid evacuation of the aeroplane in conditions likely to occur following an emergency landing. Such facilities shall be related to the passenger and crew capacity of the aeroplane.

4.1.7.3 The interior layout of the cabin and the position and number of emergency exits, including the means of locating and illuminating the escape paths and exits, shall be such as to facilitate rapid evacuation of the aeroplane in conditions likely to occur following an emergency landing.

4.1.7.4 On aeroplanes certificated for ditching conditions, provisions shall be made in the design to give maximum practicable assurance that safe evacuation from the aeroplane of passengers and crew can be executed in case of ditching.

4.1.8 Ground handling

Adequate provisions shall be made in the design to minimize the risk that ground-handling operations (e.g. towing, jacking) may cause damage, which could pass unnoticed, to the parts of the aeroplane essential for its safe operation. The protection that any limitations and instructions for such operations might provide may be taken into account.
CHAPTER 5. ENGINES

5.1 Scope

The Standards of Chapter 5 shall apply to engines of all types that are used on the aeroplane as primary propulsion units.

5.2 Design, construction and functioning

The engine complete with accessories shall be designed and constructed so as to function reliably within its operating limitations under the anticipated operating conditions when properly installed in the aeroplane in accordance with Chapter 7 and, if applicable, fitted with a suitable propeller.

5.3 Declared ratings, conditions and limitations

The power ratings and the conditions of the atmosphere upon which they are based and all operating conditions and limitations, which are intended to govern the operation of the engine, shall be declared.

5.4 Tests

An engine of the type shall complete satisfactorily such tests as are necessary to verify the validity of the declared ratings, conditions and limitations and to ensure that it will operate satisfactorily and reliably. The tests shall include at least the following:

a) Power calibration. Tests shall be conducted to establish the power or thrust characteristics of the engine when new and also after the tests in b) and c). There shall be no excessive decrease in power at the conclusion of all the tests specified.

b) Operation. Tests shall be conducted to ensure that starting, idling, acceleration, vibration, overspeeding and other characteristics are satisfactory and to demonstrate adequate margins of freedom from detonation, surge, or other detrimental conditions as may be appropriate to the particular type engine.

c) Endurance. Tests of sufficient duration shall be conducted at such powers, thrust, speeds and other operating conditions as are necessary to demonstrate reliability and durability of the engine. They shall also include operation under conditions in excess of the declared limits to the extent that such limitations might be exceeded in actual service.
CHAPTER 6. PROPELLERS

6.1 Scope

The Standards of Chapter 6 shall apply to propellers of all types.

6.2 Design, construction and functioning

The propeller assembly complete with accessories shall be designed and constructed so as to function reliably within its operating limitations under the anticipated operating conditions when properly fitted to the engine and installed in the aeroplane in accordance with Chapter 7.

6.3 Declared ratings, conditions and limitations

The power ratings and all operating conditions and limitations, which are intended to govern the operation of the propeller, shall be declared.

6.4 Tests

A propeller of the type shall complete satisfactorily such tests as are necessary to ensure that it will operate satisfactorily and reliably within the declared ratings, conditions and limitations. The tests shall include at least the following:

a) Operation. Tests shall be conducted to ensure that strength vibration and overspeeding characteristics are satisfactory and to demonstrate proper and reliable functioning of pitch changing and control mechanisms.

b) Endurance. Tests of sufficient duration shall be conducted at such powers, speeds and other operating conditions as are necessary to demonstrate reliability and durability of the propeller.
CHAPTER 7. POWERPLANT INSTALLATION

7.1 General

7.1.1 Applicable Standards
The powerplant installation shall comply with the Standards of Chapter 4 and with the Standards of this chapter.

7.1.2 Compliance with engine and propeller limitations
The powerplant installation shall be so designed that the engines and propellers (if applicable) are capable of being used in the anticipated operating conditions. In conditions established in the aeroplane flight manual, the aeroplane shall be capable of being operated without exceeding the limitations established for the engines and propellers in accordance with Chapters 5, 6 and 7.

7.1.3 Control of engine rotation
In those installations where continued rotation of a failed engine would increase the hazard of fire or of a serious structural failure, means shall be provided for the crew to stop the rotation of the engine in flight or to reduce it to a safe level.

7.1.4 Engine restarting
Means shall be provided for restarting an engine at altitudes up to a declared maximum altitude.

7.2 Arrangement and functioning

7.2.1 Independence of power-units
The powerplant shall be arranged and installed so that each power-unit together with its associated systems is capable of being controlled and operated independently from the others and so that there is at least one arrangement of the powerplant and systems in which any failure, unless the probability of its occurrence is extremely remote, cannot result in a loss of more power than that resulting from complete failure of the critical power-unit.

7.2.2 Propeller vibration
The propeller vibration stresses shall be determined and shall not exceed values that have been found safe for operation within the operating limitations established for the aeroplane.

7.2.3 Cooling
The cooling system shall be capable of maintaining powerplant temperatures within the established limits (see 7.1.2) at ambient air temperatures up to the maximum air temperature appropriate to the intended operation of the aeroplane. The maximum and, if necessary, minimum air temperature for which the powerplant has been established as being suitable shall be scheduled in the aeroplane flight manual.

7.2.4 Associated systems
The fuel, oil, air induction, and other systems associated with the powerplant shall be capable of supplying each engine in accordance with its established requirements, under all conditions affecting the functioning of the systems (e.g. engine power, aeroplane attitudes and accelerations, atmospheric conditions, fluid temperatures) within the anticipated operating conditions.

7.2.5 Fire protection
For regions of the powerplant where the potential fire hazards are particularly serious because of the proximity of ignition sources to combustible materials, the following shall apply in addition to the general Standard of 4.1.6 e).

a) Isolation. Such regions shall be isolated by fire-resisting material from other regions of the aeroplane where the presence of fire would jeopardize continued flight, taking into account the probable points of origin and paths of propagation of fire.

b) Flammable fluids. Flammable fluid system components located in such regions shall be capable of containing the fluid when exposed to fire conditions. Means shall be provided for the crew to shut off the flow of flammable fluids into such regions if a fire occurs.

c) Fire detection. There shall be provided a sufficient number of fire detectors so located as to ensure rapid detection of any fire that might occur in such regions.
d) **Fire extinguishment.** Such regions shall be provided with a fire extinguisher system capable of extinguishing any fire likely to occur therein, unless the degree of isolation, quantity of combustibles, fire resistance of the structure, and other factors are such that any fire likely to occur in the region would not jeopardize the safety of the aeroplane.
CHAPTER 8. INSTRUMENTS AND EQUIPMENT

8.1 Required instruments and equipment

The aeroplane shall be provided with approved instruments and equipment necessary for the safe operation of the aeroplane in the anticipated operating conditions. These shall include the instruments and equipment necessary to enable the crew to operate the aeroplane within its operating limitations.

Note 1.— Instruments and equipment additional to the minimum necessary for the issuance of a Certificate of Airworthiness are prescribed in Annex 6, Parts I and II, for particular circumstances or on particular kinds of routes.

Note 2.— Instruments and equipment design shall observe Human Factors principles.

Note 3.— Guidance material on Human Factors principles can be found in the Human Factors Training Manual (Doc 9683) and in the Human Factors Guidelines for Air Traffic Management (ATM) Systems (Doc 9758).

8.2 Installation

Instrument and equipment installations shall comply with the Standards of Chapter 4.

8.3 Safety and survival equipment

Prescribed safety and survival equipment that the crew or passengers are expected to use or operate at the time of an emergency shall be reliable, readily accessible and easily identified, and its method of operation shall be plainly marked.

8.4 Navigation lights and anti-collision lights

8.4.1 The lights required by Annex 2 to be displayed by aeroplanes in flight or operating on the movement area of an aerodrome shall have intensities, colours, fields of coverage and other characteristics such that they furnish the pilot of another aircraft or personnel on the ground with as much time as possible for interpretation and for subsequent manoeuvre necessary to avoid a collision. In the design of such lights, due account shall be taken of the conditions under which they may reasonably be expected to perform these functions.

Note 1.— It is likely that lights will be viewed against a variety of backgrounds, such as typical city lighting, clear starry sky, moonlit water and daytime conditions of low background luminance. Furthermore, collision risk situations are most likely to arise in terminal control areas in which aircraft are manoeuvring in the intermediate and lower flight levels at closing speeds that are unlikely to exceed 900 km/h (500 kt).

Note 2.— See the Airworthiness Manual (Doc 9760, Volume II, Part A) for detailed technical specifications for exterior lights for aeroplanes.

8.4.2 Lights shall be installed in aeroplanes so as to minimize the possibility that they will:

a) adversely affect the satisfactory performance of the flight crews' duties; or

b) subject an outside observer to harmful dazzle.

Note.— In order to avoid the effects mentioned in 8.4.2, it will be necessary in some cases to provide means whereby the pilot can switch off or reduce the intensity of the flashing lights.

* Please refer to 1.1.2 of this part.
CHAPTER 9. OPERATING LIMITATIONS AND INFORMATION

9.1 General

The operating limitations within which compliance with the Standards of this Annex is determined, together with any other information necessary to the safe operation of the aeroplane, shall be made available by means of an aeroplane flight manual, markings and placards, and such other means as may effectively accomplish the purpose. The limitations and information shall include at least those prescribed in 9.2, 9.3 and 9.4.

9.2 Operating limitations

Limitations which there is a risk of exceeding in flight and which are defined quantitatively shall be expressed in suitable units and corrected if necessary for errors in measurements so that the flight crew can, by reference to the instruments available to them, readily determine when the limitations are reached.

9.2.1 Loading limitations

The loading limitations shall include all limiting masses, centres of gravity positions, mass distributions, and floor loadings (see 1.3.2).

9.2.2 Airspeed limitations

The airspeed limitations shall include all speeds (see 3.2) that are limiting from the standpoint of structural integrity or flying qualities of the aeroplane, or from other considerations. These speeds shall be identified with respect to the appropriate aeroplane configurations and other pertinent factors.

9.2.3 Powerplant limitations

The powerplant limitations shall include all those established for the various powerplant components as installed in the aeroplane (see 7.1.2 and 7.2.3).

9.2.4 Limitations on equipment and systems

The limitations on equipment and systems shall include all those established for the various equipment and systems as installed in the aeroplane.

9.2.5 Miscellaneous limitations

Miscellaneous limitations shall include any necessary limitations with respect to conditions found to be prejudicial to the safety of the aeroplane (see 1.3.1).

9.2.6 Flight crew limitations

The flight crew limitations shall include the minimum number of flight crew personnel necessary to operate the aeroplane, having regard, among other things, to the accessibility to the appropriate crew members of all necessary controls and instruments and to the execution of the established emergency procedures.

Note.— See Annex 6 — Operation of Aircraft, Parts I and II, for the circumstances in which the flight crew shall include members in addition to the minimum flight crew defined in this Annex.

9.2.7 Flying time limitation after system or power-unit failure

The systems limitations shall include the maximum flying time for which system reliability has been established in relation to the approval of operations by aeroplanes with two turbine power-units beyond the threshold time established in accordance with 4.7 of Annex 6, Part I.

Note.— The maximum time established in accordance with 4.7 of Annex 6, Part I, for a particular route may be less than that determined in accordance with 9.2.7 because of the operational considerations involved.

9.3 Operating information and procedures

9.3.1 Types of eligible operations

There shall be listed the particular types of operations, as may be defined in Annex 6, Parts I and II, or be generally recognized, for which the aeroplane has been shown to be eligible by virtue of compliance with the appropriate airworthiness requirements.

9.3.2 Loading information

The loading information shall include the empty mass of the aeroplane, together with a definition of the condition of the
aeroplane at the time of weighing, the corresponding centre of gravity position, and the reference points and datum lines to which the centre of gravity limits are related.

Note.— Usually the empty mass excludes the mass of the crew and payload, the usable fuel supply and the drainable oil; it includes the mass of all fixed ballast, unusable fuel supply, undrainable oil, total quantity of engine coolant and total quantity of hydraulic fluid.

9.3.3 Operating procedures

A description shall be given of normal and emergency operating procedures which are peculiar to the particular aeroplane and necessary for its safe operation. These shall include procedures to be followed in the event of failure of one or more power-units.

9.3.4 Handling information

Sufficient information shall be given on any significant or unusual features of the aeroplane characteristics. Those stalling speeds or minimum steady flight speeds required to be established by 2.3.4.3 shall be scheduled.

9.3.5 Least-risk bomb location

A least-risk location on the aeroplane shall be identified where a bomb or other explosive device may be placed to minimize the effects on the aeroplane in the case of detonation.

9.4 Performance information

The performance of the aeroplane shall be scheduled in accordance with 2.2. There shall be included information regarding the various aeroplane configurations and powers involved and the relevant speeds, together with information that would assist the flight crew in attaining the performance as scheduled.

9.5 Aeroplane flight manual

An aeroplane flight manual shall be made available. It shall identify clearly the specific aeroplane or series of aeroplanes to which it is related. The aeroplane flight manual shall include at least the limitations, information and procedures specified in this chapter.

9.6 Markings and placards

9.6.1 Markings and placards on instruments, equipment, controls, etc., shall include such limitations or information as necessary for the direct attention of the flight crew during flight.

9.6.2 Markings and placards or instructions shall be provided to give any information that is essential to the ground crew in order to preclude the possibility of mistakes in ground servicing (e.g. towing, refuelling) that could pass unnoticed and that could jeopardize the safety of the aeroplane in subsequent flights.
CHAPTER 10. CONTINUING AIRWORTHINESS — MAINTENANCE INFORMATION

10.1 General
Information for use in developing procedures for maintaining the aeroplane in an airworthy condition shall be made available. The information shall include that described in 10.2, 10.3 and 10.4.

10.2 Maintenance information
Maintenance information shall include a description of the aeroplane and recommended methods for the accomplishment of maintenance tasks. Such information shall include guidance on defect diagnosis.

10.3 Maintenance programme information
Maintenance programme information shall include the maintenance tasks and the recommended intervals at which these tasks are to be performed.

10.4 Maintenance information resulting from the type design approval
Maintenance tasks and frequencies that have been specified as mandatory by the State of Design in approval of the type design shall be identified as such.
CHAPTER 11. SECURITY

11.1 Least-risk bomb location

As of 12 March 2000, consideration shall be given during the design of the aeroplane to the provision of a least-risk bomb location.

11.2 Protection of the flight crew compartment

As of 12 March 2000, in all aeroplanes that are equipped with a flight crew compartment door, this door and the flight crew compartment bulkhead shall be designed to minimize penetration by small arms fire and grenade shrapnel.

11.3 Interior design

As of 12 March 2000, consideration shall be given to design features that will deter the easy concealment of weapons, explosives or other dangerous objects on board aircraft and that will facilitate search procedures for such objects.
PART IIIB. AEROPLANES OVER 5 700 KG FOR WHICH APPLICATION FOR CERTIFICATION WAS SUBMITTED ON OR AFTER 2 MARCH 2004

SUB-PART A. GENERAL

A.1 Applicability

A.1.1 The Standards of Part IIIB are applicable in respect of all aeroplanes designated in A1.2 for which an application for the issue of a type certificate is submitted to the appropriate national authorities on or after 2 March 2004.

A.1.2 The Standards of Part IIIB shall apply to all aeroplanes over 5 700 kg maximum certificated take-off mass intended for the carriage of passengers or cargo or mail in international air navigation.

Note 1.— The aeroplanes described in A.1.2 are known in some States as transport category aeroplanes.

Note 2.— The following Standards do not include quantitative specifications comparable to those found in national airworthiness codes. In accordance with 3.2.2 of Part II, they are to be supplemented by national requirements prepared by Contracting States.

A.1.3 The level of airworthiness defined by the appropriate parts of the comprehensive and detailed national code referred to in 3.2.2 of Part II for the aeroplanes designated in A.1.2 shall be at least substantially equivalent to the overall level intended by the broad Standards of Part IIIB.

A.1.4 Unless otherwise stated, the Standards apply to the complete aeroplane including power-units, systems and equipment.

A.2 Operating limitations

A.2.1 Limiting conditions shall be established for the aeroplane, its power-units and its equipment (see G.2). Compliance with the Standards of Part IIIB shall be established assuming that the aeroplane is operated within the limitations specified. The limitations shall include a margin of safety to render the likelihood of accidents arising therefrom extremely remote.

Note.— Guidance material concerning the expression “extremely remote” is contained in the Airworthiness Manual (Doc 9760), Volume II, Part A.

A.2.2 Limiting ranges of mass, centre of gravity location, load distribution, speeds, ambient air temperature and altitude or pressure-altitude shall be established within which compliance with all the pertinent Standards in Part IIIB is shown.

Note 1.— The maximum operating mass and centre of gravity limits may vary, for example, with each altitude and with each separate operating condition, e.g. take-off, en route, landing.

Note 2.— Maximum operating mass may be limited by the application of Noise Certification Standards (see Annex 16, Vol. I, and Annex 6, Parts I and II).

A.3 Unsafe features and characteristics

Under all anticipated operating conditions, the aeroplane shall not possess any feature or characteristic that renders it unsafe.

A.4 Proof of compliance

Compliance with the appropriate airworthiness requirements shall be based on evidence from tests, calculations or any acceptable combination of tests and calculations, provided that in each case the accuracy achieved will be such as to provide reasonable assurance that the aeroplane, its components and equipment comply with the requirements and are reliable and function correctly under the anticipated operating conditions.
SUB-PART B. FLIGHT

B.1 General

B.1.1 Compliance with the Standards prescribed in Sub-part B shall be established by flight or other tests conducted upon an aeroplane or aeroplanes of the type for which a Type Certificate is sought, or by calculations based on such tests, provided that the results obtained by calculations are equal in accuracy to, or conservatively represent, the results of direct testing.

B.1.2 Compliance with each Standard shall be established for all applicable combinations of aeroplane mass and centre of gravity position, within the range of loading conditions for which certification is sought.

B.1.3 Where necessary, appropriate aeroplane configurations shall be established for the determination of performance in the various stages of flight and for the investigation of the aeroplane’s flying qualities.

B.2 Performance design parameters

B.2.1 Sufficient data on the performance of the aeroplane shall be determined and scheduled in the flight manual to provide operators with the necessary information for the purpose of determining the total mass of the aeroplane on the basis of the values, peculiar to the proposed flight, of the relevant operational parameters, in order that the flight may be made with reasonable assurance that a safe minimum performance for that flight will be achieved.

B.2.2 Achieving the performance scheduled for the aeroplane shall take into consideration human performance and in particular shall not require exceptional skill or alertness on the part of the flight crew.

Note.— Guidance material on human performance can be found in the Human Factors Training Manual (Doc 9683).

B.2.3 The scheduled performance of the aeroplane shall be consistent with compliance with A.2.1 and with the operation in logical combinations of those of the aeroplane’s systems and equipment, the operation of which may affect performance.

B.2.4 Minimum performance

At the maximum mass scheduled (see B.2.7) for take-off and for landing as functions of the aerodrome elevation or pressure-altitude either in the standard atmosphere or in specified still air atmospheric conditions, and, for seaplanes, in specified conditions of smooth water, the aeroplane shall be capable of accomplishing the minimum performances specified in B.2.5 and B.2.6, respectively, not considering obstacles, or runway or water run length.

Note.— This Standard permits the maximum take-off mass and maximum landing mass to be scheduled in the aeroplane flight manual against, for example:

— aerodrome elevation, or
— pressure-altitude at aerodrome level, or
— pressure-altitude and atmospheric temperature at aerodrome level,
so as to be readily usable when applying the national code on aeroplane performance operating limitations.

B.2.5 Take-off

a) The aeroplane shall be capable of taking off assuming the critical power-unit to fail (see B.2.7), the remaining power-units being operated within their take-off power or thrust limitations.

b) After the end of the period during which the take-off power or thrust may be used, the aeroplane shall be capable of continuing to climb, with the critical power-unit inoperative and the remaining power-units operated within their maximum continuous power or thrust limitations, up to a height that it can maintain and at which it can continue safe flight and landing.

c) The minimum performance at all stages of take-off and climb shall be sufficient to ensure that under conditions of operation departing slightly from the idealized conditions for which data are scheduled (B.2.7), the departure from the scheduled values is not disproportionate.

B.2.6 Landing

a) Starting from the approach configuration and with the critical power-unit inoperative, the aeroplane shall be capable, in the event of a missed approach, of continuing the flight to a point from which a fresh approach can be made.
b) Starting from the landing configuration, the aeroplane shall be capable, in the event of a balked landing, of making a climb-out, with all power-units operating.

B.2.7 Scheduling of performance

Performance data shall be determined and scheduled in the flight manual so that their application by means of the operating rules to which the aeroplane is to be operated in accordance with 5.2 of Annex 6, Part I, will provide a safe relationship between the performance of the aeroplane and the aerodromes and routes on which it is capable of being operated. Performance data shall be determined and scheduled for the following stages for the ranges of mass, altitude or pressure-altitude, wind velocity, gradient of the take-off and landing surface for landplanes; water surface conditions, density of water and strength of current for seaplanes; and for any other operational variables for which the aeroplane is to be certificated.

a) Take-off. The take-off performance data shall include the accelerate-stop distance and the take-off path.

b) Accelerate-stop distance. The accelerate-stop distance shall be the distance required to accelerate and stop, or, for a seaplane to accelerate and come to a satisfactorily low speed, assuming the critical power-unit to fail suddenly at a point not nearer to the start of the take-off than that assumed when determining the take-off path (see B.2.7 c)). For landplanes, the distance shall be based on operations with worn brakes.

c) Take-off path. The take-off path shall comprise the ground or water run, initial climb and climb-out, assuming the critical power-unit to fail suddenly during the take-off (see B.2.7 b)). The take-off path shall be scheduled up to a height from which the aeroplane can continue safe flight and landing. The climb-out shall be made at a speed not less than the take-off safety speed as determined in accordance with B.3.2.4.

d) En route. The en-route climb performance shall be the climb (or descent) performance with the aeroplane in the en-route configuration with:

1) the critical power-unit inoperative; and
2) the two critical power-units inoperative in the case of aeroplanes having three or more power-units.

The operating engines shall not exceed maximum continuous power or thrust.

e) Landing. The landing distance shall be the horizontal distance traversed by the aeroplane from a point on the approach flight path at a selected height above the landing surface to the point on the landing surface at which the aeroplane comes to a complete stop or, for a seaplane, comes to a satisfactorily low speed. The selected height above the landing surface and the approach speed shall be appropriately related to operating practices. This distance may be supplemented by such distance margin as may be necessary; if so, the selected height above the landing surface, the approach speed and the distance margin shall be appropriately interrelated and shall make provision for both normal operating practices and reasonable variations therefrom. For landplanes, this distance shall be based on operations with worn brakes.

Note.— If the landing distance includes the distance margin specified in this Standard, it is not necessary to allow for the expected variations in the approach and landing techniques in applying 5.2.11 of Annex 6, Part I.

B.3 Flying qualities

B.3.1 The aeroplane shall comply with the Standards of B.3 at all altitudes up to the maximum anticipated altitude relevant to the particular requirement in all temperature conditions relevant to the altitude in question and for which the aeroplane is approved.

B.3.2 Controllability

B.3.2.1 The aeroplane shall be controllable and manoeuvrable under all anticipated operating conditions, and it shall be possible to make smooth transitions from one flight condition to another (e.g. turns, sideslips, changes of engine power or thrust, changes of aeroplane configurations) without requiring exceptional skill, alertness, or strength on the part of the pilot even in the event of failure of any power-unit. A technique for safely controlling the aeroplane shall be established for all stages of flight and aeroplane configurations for which performance is scheduled.

Note.— This Standard is intended, among other things, to relate to operation in conditions of no appreciable atmospheric turbulence and also to ensure that there is no undue deterioration of the flying qualities in turbulent air.

B.3.2.2 Controllability on the ground (or water). The aeroplane shall be controllable on the ground (or on the water) during taxiing, take-off and landing under the anticipated operating conditions.

B.3.2.3 Controllability during take-off. The aeroplane shall be controllable in the event of sudden failure of the critical power-unit at any point in the take-off, when the aeroplane is handled in the manner associated with the scheduling of take-off paths and accelerate-stop distances.

B.3.2.4 Take-off safety speed. The take-off safety speeds assumed when the performance of the aeroplane (after leaving

Note: The text represents a complete transcription of the document in question, adhering to the guidelines for natural text representation.
the ground or water) during the take-off is determined shall provide an adequate margin above the stall and above the minimum speed at which the aeroplane remains controllable after sudden failure of the critical power-unit.

B.3.3 Trim

The aeroplane shall have such trim and other characteristics as to ensure that the demands made on the pilot’s attention and ability to maintain a desired flight condition are not excessive when account is taken of the stage of flight at which these demands occur and their duration. This shall apply both in normal operation and in the conditions associated with the failure of one or more power-units for which performance characteristics are established.

B.4 Stability and control

B.4.1 Stability

The aeroplane shall have such stability in relation to its other flight characteristics, performance, structural strength, and most probable operating conditions (e.g. aeroplane configurations and speed ranges) as to ensure that demands made on the pilot’s powers of concentration are not excessive when the stage of the flight at which these demands occur and their duration are taken into account. The stability of the aeroplane shall not, however, be such that excessive demands are made on the pilot’s strength or that the safety of the aeroplane is prejudiced by lack of manoeuvrability in emergency conditions. The stability may be achieved by natural or artificial means, or a combination of both. In those cases where artificial stability is necessary to show compliance with the Standards of this part, it shall be shown that any failure or condition that would result in the need for exceptional pilot skill or strength for recovery of aeroplane stability is extremely improbable.

Note.— Guidance material concerning the expression “extremely improbable” is contained in the Airworthiness Manual (Doc 9760), Volume II, Part A.

B.4.2 Stalling

B.4.2.1 Stall warning. When the aeroplane is made to approach a stall both in straight and turning flight with all power-units operating and with one power-unit inoperative, a clear and distinctive stall warning shall be apparent to the pilot with the aeroplane in all permissible configurations and speeds or thrusts, except those which are not considered to be essential for safe flying. The stall warning and other characteristics of the aeroplane shall be such as to enable the pilot to arrest the development of the stall after the warning begins and, without altering the engine power or thrust, to maintain full control of the aeroplane.

B.4.2.2 Behaviour following a stall. In any configuration and power or thrust in which it is considered that the ability to recover from a stall is essential, the behaviour of the aeroplane following a stall shall not be so extreme as to make difficult a prompt recovery without exceeding the airspeed or strength limitations of the aeroplane. It shall be acceptable to throttle back the operating power-units during recovery from the stall.

B.4.2.3 Stalling speeds. The stalling speeds or minimum steady flight speeds in configurations appropriate for each stage of flight (e.g. take-off, en route, landing) shall be established. One of the values of the power or thrust used in establishing the stalling speeds shall be not more than that necessary to give zero thrust at a speed just above the stall.

B.4.3 Flutter and vibration

B.4.3.1 It shall be demonstrated by suitable tests, analyses or any acceptable combination of tests and analyses that all parts of the aeroplane are free from flutter and excessive vibration in all aeroplane configurations under all speed conditions within the operating limitations of the aeroplane (see A.2.2). There shall be no vibration or buffeting severe enough to cause structural damage.

B.4.3.2 There shall be no vibration or buffeting severe enough to interfere with control of the aeroplane or to cause excessive fatigue to the flight crew.

Note.— Buffeting as a stall warning is considered desirable and discouragement of this type of buffeting is not intended.
C.1 General

The aeroplane structure shall be designed, manufactured and provided with instructions for its maintenance and repair with the objective of avoiding catastrophic failure throughout its operational life.

C.2 Mass and mass distribution

Unless otherwise stated, all structural Standards shall be complied with when the mass is varied over the applicable range and is distributed in the most adverse manner, within the operating limitations on the basis of which certification is sought.

C.3 Limit loads

Except as might be otherwise qualified, the external loads and the corresponding inertia loads, or resisting loads obtained for the various loading conditions prescribed in C.6 shall be considered as limit loads.

C.4 Deformation and ultimate strength

In the various loading conditions prescribed in C.6, no part of the aeroplane structure shall sustain detrimental deformation at any load up to and including the limit load, and the aeroplane structure shall be capable of supporting the ultimate load.

C.5 Airspeeds

C.5.1 Design airspeeds

Design airspeeds shall be established for which the aeroplane structure is designed to withstand the corresponding manoeuvring and gust loads. To avoid inadvertent exceedances due to upsets or atmospheric variations, the design airspeeds shall provide sufficient margin for the establishment of practical operational limiting airspeeds. In addition, the design airspeeds shall be sufficiently greater than the stalling speed of the aeroplane to safeguard against loss of control in turbulent air. Consideration shall be given to a design manoeuvring speed, a design cruising speed, a design dive speed, and any other design airspeeds necessary for configurations with high lift or other special devices.

C.5.2 Limiting airspeeds

Limiting airspeeds, based on the corresponding design airspeeds with safety margins, where appropriate, in accordance with A.2.1 shall be included in the flight manual as part of the operating limitations (see G.2).

C.6 Strength

C.6.1 All structural elements shall be designed to withstand the expected loads in service without failure, permanent distortion or loss of functionality. In determining the expected loads in service, account shall be taken of:

a) the expected operational life of the aeroplane;

b) the expected vertical and horizontal gust environment, taking into consideration the expected variations in mission profile, operating locations and loading configurations;

c) the likely manoeuvre spectrum, taking into account likely variations in mission profiles, loading configurations, and pilot abilities;

d) asymmetrical as well as symmetrical loading;

e) the likely ground and water loads, including taxi, landing and take-off loads, and ground/water handling loads;

f) the likely speed range of the aeroplane, taking into account the aeroplane characteristics, placarded operation limitations, and variations in pilot abilities;

g) vibration and buffeting loads which might be expected to occur;

h) likely corrosion or other degradation, given the maintenance specified, and various operating environments; and

i) any other loads that are likely to occur in service, such as flight control loads, cabin pressurization loads, engine loads, or dynamic loads due to changes to the steady state configuration.
C.6.2 The air, inertia and other loads resulting from the specific loading conditions shall be distributed so as to approximate actual conditions closely or to represent them conservatively.

C.7 Survivability

The aeroplane shall be designed so as to provide the occupants with the maximum practicable protection in the event of structural failure, or in the event of damage due to ground, water, or object impact. Consideration shall be given to at least the following:

a) likely impact with birds;

b) energy absorption by the airframe, occupant seats and restraints;

c) the probable behaviour of the aeroplane in ditching; and

d) allowing egress in the shortest practicable time.

C.8 Structural durability

The design and construction of the aeroplane shall, wherever practicable, conform to damage tolerance principles and shall be such as to ensure that the probability of catastrophic failure during the operational life is extremely remote, taking into account:

a) the expected environment;

b) the expected repeated loads applied in service;

c) expected vibrations from aerodynamic interaction or internal sources;

d) thermal cycles;

e) likely corrosion or other degradation;

f) specified maintenance; and

g) likely structural repairs.

Note.— Guidance material concerning the expression “extremely remote” is contained in the Airworthiness Manual (Doc 9760), Volume II, Part A.

C.9 Lightning protection

The aeroplane shall be protected against catastrophic effects of lightning. Due account shall be taken of the materials used in the construction of the aeroplane.
SUB-PART D. DESIGN AND CONSTRUCTION

D.1 General

D.1.1 Details of design and construction shall be such as to give reasonable assurance that all aeroplane parts will function effectively and reliably in the anticipated operating conditions. They shall be based upon practices that experience has proven to be satisfactory or that are substantiated by special tests or by other appropriate investigations or both. They shall also observe Human Factors principles.

Note.— Guidance material on Human Factors principles can be found in the Human Factors Training Manual (Doc 9683).

D.1.2 Substantiating tests

The functioning of all moving parts essential to the safe operation of the aeroplane shall be demonstrated by suitable tests in order to ensure that they will function correctly under all operating conditions for such parts.

D.1.3 Materials

All materials used in parts of the aeroplane essential for its safe operation shall conform to approved specifications. The approved specifications shall be such that materials accepted as complying with the specifications will have the essential properties assumed in the design. The effect of the materials on the occupants of the aeroplane and other persons on the ground, and the environment in general, in normal and emergency situations, shall be taken into account.

D.1.4 Fabrication methods

The methods of fabrication and assembly shall be such as to produce a consistently sound structure which shall be reliable with respect to maintenance of strength in service.

D.1.5 Protection

The structure shall be protected against deterioration or loss of strength in service due to weathering, corrosion, abrasion, or other causes, which could pass unnoticed, taking into account the maintenance the aeroplane will receive.

D.1.6 Inspection provisions

Adequate provision shall be made to permit any necessary examination, replacement, or reconditioning of parts of the aeroplane that require such attention, either periodically or after unusually severe operations.

D.2 Systems design features

Special consideration shall be given to design features that affect the ability of the flight crew to maintain controlled flight. This shall include at least the following:

a) Controls and control systems. The design of the controls and control systems shall be such as to minimize the possibility of jamming, inadvertent operation including prevention of mis-assembly, and unintentional engagement of control surface locking devices.

b) System survivability. Aeroplane systems shall be designed and arranged to maximize the potential for continued safe flight and landing after any event resulting in damage to the aeroplane structure or systems.

c) Crew environment. The design of the flight crew compartment shall be such as to minimize the possibility of incorrect or restricted operation of the controls by the crew, due to fatigue, confusion or interference. Consideration shall be given at least to the following: layout and identification of controls and instruments, rapid identification of emergency situations, sense of controls, ventilation, heating and noise.

d) Pilot vision. The arrangement of the flight crew compartment shall be such as to afford a sufficiently extensive, clear and undistorted field of vision for the safe operation of the aeroplane, and to prevent glare and reflections that would interfere with the pilot’s vision. The design features of the windshield shall permit, under precipitation conditions, sufficient vision for the normal conduct of flight and for the execution of approaches and landings.

e) Provision for emergencies. Means shall be provided which shall either automatically prevent, or enable the flight crew to deal with, emergencies resulting from foreseeable failures of equipment and systems, the failure of which would endanger the aeroplane.
Reasonable provisions shall be made for continuation of essential services following power-unit or systems' failures to the extent that such failures are catered for in the performance and operating limitations specified in the Standards in this Annex and in Annex 6, Parts I and II.

f) **Fire precautions.** The design of the aeroplane and the materials used in its manufacture shall be such as to minimize the possibility of in-flight and ground fires, to minimize the production of smoke and toxic gases in the event of a fire and to delay the occurrence of flashover in the cabin. Means shall be provided to contain or to detect and extinguish such fires as might occur in such a way that no additional danger to the aeroplane is caused. Lavatories installed in aeroplanes shall be equipped with a smoke detection system and a built-in fire extinguisher system for each receptacle intended for the disposal of towels, paper or waste.

g) **Cargo compartment protection.**
1) each cargo compartment accessible to a crew member in a passenger-carrying aeroplane shall be equipped with a fire suppression system;
2) each cargo compartment not accessible to a crew member shall be equipped with a built-in fire detection system and a built-in fire starvation or suppression system; and
3) cargo compartment fire suppression systems, including their extinguishing agents, shall be designed so as to take into account a sudden and extensive fire such as could be caused by an explosive or incendiary device or dangerous goods.

h) **Incapacitation of occupants.** Design precautions shall be taken to protect against possible instances of cabin depressurization and against the presence of smoke or other toxic gases, including those caused by explosive or incendiary devices or dangerous goods, that could incapacitate the occupants of the aeroplane.

i) **Protection of the flight crew compartment from smoke and fumes.** Means shall be provided to minimize entry into the flight crew compartment of smoke, fumes and noxious vapours generated by an explosion or fire on the aeroplane.

D.3 Aeroelasticity

The aeroplane shall be designed to be free from flutter, structural divergence, and loss of control due to structural deformation, at all speeds within and sufficiently beyond the design envelope to comply with A.2.1. Account shall be taken of the characteristics of the aeroplane and variations in pilot skill and workload. Allowable limits for aerodynamic control surfaces and how those limits are to be monitored shall be specified so as to ensure that the aeroplane remains free from aeroelastic problems during its operational life.

D.4 Occupants accommodation features

D.4.1 Seating and restraints

Adequate seating and restraints shall be provided for the occupants, taking account of the likely flight and emergency landing loads to be encountered. Attention shall be paid to minimizing injury to occupants due to contact with surrounding structure during the operation of the aeroplane.

D.4.2 Cabin environment

Ventilation, heating and, where applicable, pressurization systems shall be designed to provide the cabin with an adequate environment during the anticipated flight and ground or water operating conditions. The systems design shall also consider likely emergency conditions.

D.5 Electrical bonding

Electrical bonding and protection against lightning and static electricity shall be such as to:

a) protect the aeroplane, its systems, its occupants and those who come in contact with the aeroplane on the ground or water from the dangerous effects of lightning discharge and electrical shock; and

b) prevent dangerous accumulation of electrostatic charge.

D.6 Emergency landing provisions

D.6.1 Provisions shall be made in the design of the aeroplane to protect the occupants, in the event of an emergency landing, from fire and from the direct effects of deceleration forces as well as from injuries arising from the effect of deceleration forces on the aeroplane’s interior equipment.

D.6.2 Facilities shall be provided for the rapid evacuation of the aeroplane in conditions likely to occur following an emergency landing. Such facilities shall be related to the passenger and crew capacity of the aeroplane and shall be shown to be suitable for their intended purpose.

D.6.3 The interior layout of the cabin and the position and number of emergency exits, including the means of locating
and illuminating the escape paths and exits, shall be such as to facilitate rapid evacuation of the aeroplane in conditions likely to occur following an emergency landing.

D.6.4 On aeroplanes certificated for ditching conditions, provisions shall be made in the design to give maximum practicable assurance that safe evacuation from the aeroplane of passengers and crew can be executed in case of ditching.

D.7 Ground handling

Adequate provisions shall be made in the design to minimize the risk that ground-handling operations (e.g. towing, jacking) may cause damage, which could pass unnoticed, to the parts of the aeroplane essential for its safe operation. The protection that any limitations and instructions for such operations might provide may be taken into account.
SUB-PART E. POWERPLANT

E.1 Engines
Each engine type shall be certificated to an appropriate airworthiness requirement.

E.2 Propellers
Each propeller type shall be certificated to an appropriate airworthiness requirement.

E.3 Powerplant installation
E.3.1 Compliance with engine and propeller limitations
The powerplant installation shall be so designed that the engines and propellers (if applicable) are capable of being used in the anticipated operating conditions. In conditions established in the flight manual, the aeroplane shall be capable of being operated without exceeding the limitations established for the engines and propellers in accordance with this sub-part.

E.3.2 Control of engine rotation
In those installations where continued rotation of a failed engine would increase the hazard of fire or of a serious structural failure, means shall be provided for the crew to stop the rotation of the engine in flight or to reduce it to a safe level.

E.3.3 Turbine engine
For a turbine engine installation:

a) the design shall minimize the hazards to the aeroplane in the event of failure of engine rotating parts, or an engine fire which burns through the engine case; and

b) the power-unit together with the associated engine control devices, systems and instrumentation shall be designed to give reasonable assurance that those engine operating limitations that adversely affect the structural integrity of rotating parts shall not be exceeded in service.

E.3.4 Engine restarting
Means shall be provided for restarting an engine in flight at altitudes up to a declared maximum altitude.

E.3.5 Arrangement and functioning
E.3.5.1 Independence of power-units
The powerplant shall be arranged and installed so that each power-unit together with its associated systems is capable of being controlled and operated independently from the others and so that there is at least one arrangement of the powerplant and systems in which any failure, unless the probability of its occurrence is extremely remote, cannot result in a loss of more power than that resulting from complete failure of the critical power-unit.

E.3.5.2 Propeller vibration
The propeller vibration stresses shall be determined and shall not exceed values that have been found safe for operation within the operating limitations established for the aeroplane.

E.3.5.3 Cooling
The cooling system shall be capable of maintaining powerplant temperatures within the established limits (see E.3.1) at ambient air temperatures up to the maximum air temperature appropriate to the intended operation of the aeroplane. The maximum and, if necessary, minimum ambient air temperature for which the powerplant has been established as being suitable shall be scheduled in the flight manual.

E.3.5.4 Associated systems
The fuel, oil, air induction, and other systems associated with the power-unit shall be capable of supplying each engine in accordance with its established requirements, under all conditions affecting the functioning of the systems (e.g. engine power or thrust, aeroplane attitudes and accelerations, atmospheric conditions, fluid temperatures) within the anticipated operating conditions.
E.3.5.5 Fire protection

For regions of the powerplant where the potential fire hazards are particularly serious because of the proximity of ignition sources to combustible materials, the following shall apply in addition to the general Standard of D.2 e).

a) Isolation. Such regions shall be isolated by fireproof material from other regions of the aeroplane where the presence of fire would jeopardize continued flight, taking into account the probable points of origin and paths of propagation of fire.

b) Flammable fluids. Flammable fluid system components located in such regions shall be capable of containing the fluid when exposed to fire conditions. Drainage of each region shall be provided to minimize hazards resulting from the failure of any component containing flammable fluids. Means shall be provided for the crew to shut off the flow of flammable fluids into such regions if a fire occurs.

c) Fire detection. A sufficient number of fire detectors shall be provided and located to ensure rapid detection of any fire that might occur in such regions.

d) Fire extinguishment. Such regions shall be provided with a fire extinguisher system capable of extinguishing any fire likely to occur therein, unless the degree of isolation, quantity of combustibles, fire resistance of the structure, and other factors are such that any fire likely to occur in the region would not jeopardize the safety of the aeroplane.
SUB-PART F. SYSTEMS AND EQUIPMENT

F.1 General

F.1.1 The aeroplane shall be provided with approved instruments, equipment and systems, including guidance and flight management systems necessary for the safe operation of the aeroplane in the anticipated operating conditions. These shall include the instruments and equipment necessary to enable the crew to operate the aeroplane within its operating limitations. Instruments and equipment design shall observe Human Factors principles.

Note 1.— Instruments and equipment additional to the minimum necessary for the issuance of a Certificate of Airworthiness are prescribed in Annex 6, Parts I and II, for particular circumstances or on particular kinds of routes.

Note 2.— For systems software assessment, see Sub-part H.

Note 3.— Guidance material on Human Factors principles can be found in the Human Factors Training Manual (Doc 9683) and in the Human Factors Guidelines for Air Traffic Management (ATM) Systems (Doc 9758).

F.1.2 The design of the instruments, equipment and systems required by F.1.1 and their installation shall be such that:

a) an inverse relationship exists between the probability of a failure condition and the severity of its effect on the aircraft and its occupants, as determined by a system safety assessment process;

b) they perform their function under all anticipated operating conditions; and

c) electromagnetic interference between them is minimized.

F.1.3 Means shall be provided to warn the crew of unsafe system operating conditions and to enable them to take corrective action.

F.1.4 The design of the electrical power supply system shall be such as to enable it to supply power loads during normal operations of the aeroplane and essential power loads after failures that affect the electrical generating system and under expected environmental conditions.

F.2 Installation

Instrument and equipment installations shall comply with the Standards of Sub-part D.

F.3 Safety and survival equipment

Prescribed safety and survival equipment that the crew or passengers are expected to use or operate at the time of an emergency shall be reliable, readily accessible and easily identified, and its method of operation shall be plainly marked.

F.4 Navigation lights and anti-collision lights

F.4.1 The lights required by Annex 2 to be displayed by aeroplanes in flight or operating on the movement area of an aerodrome shall have intensities, colours, fields of coverage and other characteristics such that they furnish the pilot of another aircraft or personnel on the ground with as much time as possible for interpretation and for subsequent manoeuvre necessary to avoid a collision. In the design of such lights, due account shall be taken of the conditions under which they may reasonably be expected to perform these functions.

Note 1.— It is likely that lights will be viewed against a variety of backgrounds, such as typical city lighting, clear starry sky, moonlit water and daytime conditions of low background luminance. Furthermore, collision risk situations are most likely to arise in terminal control areas in which aircraft are manoeuvring in the intermediate and lower flight levels at closing speeds that are unlikely to exceed 900 km/h (500 kt).

Note 2.— See Volume II, Part A, Chapter 4 of the Airworthiness Manual (Doc 9760) for detailed technical specifications for exterior lights for aeroplanes.

F.4.2 Lights shall be installed in aeroplanes so as to minimize the possibility that they will:

a) adversely affect the satisfactory performance of the flight crews’ duties; or

b) subject a person outside the aeroplane to harmful dazzle.
Note.— In order to avoid the effects mentioned in F.4.2, it will be necessary in some cases to provide means whereby the pilot can switch off or reduce the intensity of the flashing lights.

F.5 Electromagnetic interference protection

Aeroplane electronic systems, particularly flight-critical and flight-essential systems, shall be protected against electromagnetic interference from both internal and external sources.

F.6 Ice protection

If certification for flight in icing conditions is requested, the aeroplane shall be shown to be able to operate safely in icing conditions likely to be encountered in all expected operating environments.
SUB-PART G. OPERATING LIMITATIONS AND INFORMATION

G.1 General

The operating limitations within which compliance with the Standards of this Annex is determined, together with any other information necessary to the safe operation of the aeroplane, shall be made available by means of a flight manual, markings and placards, and such other means as may effectively accomplish the purpose. The limitations and information shall include at least those prescribed in this sub-part.

G.2 Operating limitations

G.2.1 Limitations which there is a risk of exceeding in flight and which are defined quantitatively shall be expressed in suitable units and corrected if necessary for errors in measurements so that the flight crew can, by reference to the instruments available to them, readily determine when the limitations are reached.

G.2.2 Loading limitations

The loading limitations shall include all limiting masses, centres of gravity positions, mass distributions, and floor loadings (see A.2.2).

G.2.3 Airspeed limitations

The airspeed limitations shall include all speeds (see C.5) that are limiting from the standpoint of structural integrity or flying qualities of the aeroplane, or from other considerations. These speeds shall be identified with respect to the appropriate aeroplane configurations and other pertinent factors.

G.2.4 Powerplant limitations

The powerplant limitations shall include all those established for the various powerplant components as installed in the aeroplane (see E.3.1 and E.3.5.3).

G.2.5 Limitations on equipment and systems

The limitations on equipment and systems shall include all those established for the various equipment and systems as installed in the aeroplane.

G.2.6 Miscellaneous limitations

Miscellaneous limitations shall include any necessary limitations with respect to conditions found to be prejudicial to the safety of the aeroplane (see A.2.1).

G.2.7 Flight crew limitations

The flight crew limitations shall include the minimum number of flight crew personnel necessary to operate the aeroplane, having regard, among other things, to the accessibility to the appropriate crew members of all necessary controls and instruments and to the execution of the established emergency procedures.

Note.— See Annex 6 — Operation of Aircraft, Parts I and II, for the circumstances in which the flight crew shall include members in addition to the minimum flight crew defined in this Annex.

G.2.8 Flying time limitation after system or power-unit failure

The systems limitations shall include the maximum flying time for which system reliability has been established in relation to the approval of operations by aeroplanes with two turbine power-units beyond the threshold time established in accordance with 4.7 of Annex 6, Part I.

Note.— The maximum time established in accordance with 4.7 of Annex 6, Part I, for a particular route may be less than that determined in accordance with G.2.8 because of the operational considerations involved.

G.3 Operating information and procedures

G.3.1 Types of eligible operations

The particular types of operations for which the aeroplane has been shown to be eligible by virtue of compliance with the appropriate airworthiness requirements shall be listed.

G.3.2 Loading information

The loading information shall include the empty mass of the aeroplane, together with a definition of the condition of the
Annex 8 — Airworthiness of Aircraft

aeroplane at the time of weighing, the corresponding centre of gravity position, and the reference points and datum lines to which the centre of gravity limits are related.

Note.— Usually the empty mass excludes the mass of the crew and payload, the usable fuel supply and the drainable oil; it includes the mass of all fixed ballast, unusable fuel supply, undrainable oil, total quantity of engine coolant and total quantity of hydraulic fluid.

G.3.3 Operating procedures

A description shall be given of normal and emergency operating procedures which are peculiar to the particular aeroplane and necessary for its safe operation. These shall include procedures to be followed in the event of failure of one or more power-units.

G.3.4 Handling information

Sufficient information shall be given on any significant or unusual features of the aeroplane characteristics. Those stalling speeds or minimum steady flight speeds required to be established by B.4.2.3 shall be scheduled.

G.4 Performance information

The performance of the aeroplane shall be scheduled in accordance with B.2. There shall be included information regarding the various aeroplane configurations and powers or thrusts involved and the relevant speeds, together with information that would assist the flight crew in attaining the performance as scheduled.

G.5 Flight manual

A flight manual shall be made available. It shall identify clearly the specific aeroplane or series of aeroplanes to which it is related. The flight manual shall include at least the limitations, information and procedures specified in this sub-part, except those specified in G.7.

G.6 Markings and placards

G.6.1 Markings and placards on instruments, equipment, controls, etc., shall include such limitations or information as necessary for the direct attention of the flight crew during flight.

G.6.2 Markings and placards or instructions shall be provided to give any information that is essential to the ground crew in order to preclude the possibility of mistakes in ground servicing (e.g. towing, refuelling) that could pass unnoticed and that could jeopardize the safety of the aeroplane in subsequent flights.

G.7 Continuing airworthiness

G.7.1 General

Information for use in developing procedures for maintaining the aeroplane in an airworthy condition shall be made available. The information shall include that described in G.7.2, G.7.3 and G.7.4.

G.7.2 Maintenance information

Maintenance information shall include a description of the aeroplane and recommended methods for the accomplishment of maintenance tasks. Such information shall include guidance on defect diagnosis.

G.7.3 Maintenance programme information

Maintenance programme information shall include the maintenance tasks and the recommended intervals at which these tasks are to be performed.

G.7.4 Maintenance information resulting from the type design approval

Maintenance tasks and frequencies that have been specified as mandatory by the State of Design in approval of the type design shall be identified as such.
SUB-PART H. SYSTEMS SOFTWARE

All systems software shall be designed and validated such as to ensure that the systems in which they are used perform their intended functions with a level of safety that complies with the requirements of Part IIIB, notably those of F.1.2 a) and F.1.3.

Note.— Some States accept the use of national/international industry standards, such as RTCA/DO-178 or EUROCAE ED12, for the design and testing of systems software.
SUB-PART I. CRASHWORTHINESS AND CABIN SAFETY

1.1 General
Developments in the subject of crashworthiness shall be taken into account in the design of aeroplanes to improve the probability of occupant survival.

1.2 Design emergency landing loads
Emergency landing (crash) loads shall be determined for all categories of aeroplanes so that the interiors, furnishings, support structure and safety equipment can be designed to maximize survivability for the occupants. Items to be considered shall include:

a) dynamic effects;
b) restraint criteria for items that could cause a hazard;
c) distortion of the fuselage in the areas of emergency exits;
d) fuel cell integrity and position; and
e) integrity of electrical systems to avoid sources of ignition.

1.3 Cabin fire protection
The cabin shall be so designed as to provide fire protection to the occupants in the event of airborne systems failures or a crash situation. Items to be considered shall include:

a) flammability of cabin interior materials;
b) fire resistance and the generation of smoke and toxic fumes;
c) provision of safety features to allow for safe evacuation; and
d) fire detection and suppression equipment.

1.4 Evacuation
The aeroplane shall be equipped with sufficient emergency exits to allow maximum opportunity for cabin evacuation within an appropriate time period. Items to be considered shall include:

a) number of seats and seating configuration;
b) number, location and size of exits;
c) marking of exits and provision of instructions for use;
d) likely blockages of exits;
e) operation of exits; and
f) positioning and weight of evacuation equipment at exits, e.g. slides and rafts.

1.5 Lighting and marking
Emergency lighting shall be provided which includes the following characteristics:

a) independence from main electrical supply;
b) automatic activation upon loss of normal power/impact;
c) visual indication of the path to emergency exits in smoke-filled cabin conditions;
d) illumination both inside and outside the aeroplane during evacuation; and
e) no additional hazard in the event of fuel spillage.

1.6 Survival equipment
The aeroplane shall be so equipped as to provide the crew and occupants with the maximum opportunity to survive in the expected external environment for a reasonable time-span. Items to be considered shall include:

a) number of life-rafts/life jackets;
b) survival equipment suited to the likely environment;
c) emergency radios and pyrotechnical distress signalling equipment; and
d) automatic emergency radio beacons.
SUB-PART J. OPERATING ENVIRONMENT AND HUMAN FACTORS

J.1 General

The aeroplane shall be designed to allow safe operation within the performance limitations of its passengers and those who operate, maintain and service it.

Note.—The human/machine interface is often the weak link in an operating environment and so it is necessary to ensure that the aeroplane is capable of being controlled at all phases of the flight (including any degradation due to failures) and that neither the crew nor passengers are harmed by the environment in which they have been placed for the duration of the flight.

J.2 Flight crew

J.2.1 The aeroplane shall be designed in such a way as to allow safe and efficient control by the flight crew. The design shall allow for variations in flight crew skill and physiology commensurate with flight crew licensing limits. Account shall be taken of the different expected operating conditions of the aeroplane in its environment, including operations degraded by failures.

J.2.2 The workload imposed on the flight crew by the design of the aeroplane shall be reasonable at all stages of flight. Workload may be considered to be both cognitive and physiological. Particular consideration shall be given to critical stages of flight and critical events which may reasonably be expected to occur during the service life of the aeroplane, such as a contained engine failure or windshear encounter.

J.3 Ergonomics

During design of the aeroplane, account shall be taken of ergonomic factors including:

a) ease of use and prevention of inadvertent misuse;
b) ease of access;
c) working environment;
d) standardization and commonality; and
e) maintainability.

J.4 Operating environmental factors

The design of the aeroplane shall take into consideration the flight crew operating environment including:

a) effect of aeromedical factors such as level of oxygen, temperature, humidity, noise and vibration;
b) effect of physical forces during normal flight;
c) effect of prolonged operation at high altitude; and
d) physical comfort.
SUB-PART K. SECURITY

K.1 Least-risk bomb location
Consideration shall be given during the design of the aeroplane to the provision of a least-risk bomb location.

K.2 Protection of the flight crew compartment
In all aeroplanes that are equipped with a flight crew compartment door, this door and the flight crew compartment bulkhead shall be designed to minimize penetration by small arms fire and grenade shrapnel.

K.3 Interior design
Consideration shall be given to design features that will deter the easy concealment of weapons, explosives or other dangerous objects on board aircraft and that will facilitate search procedures for such objects.
PART IV. HELICOPTERS

CHAPTER 1. GENERAL

1.1 Applicability

1.1.1 The Standards of Part IV are applicable in respect of all helicopters designated in 1.1.2 that are of types of which the prototype is submitted to the appropriate national authorities for certification on or after 22 March 1991.

Note.— The Council recognizes that the Standards relating to fire protection, crash survival and provisions for emergency are very important to safety and urges the implementation of the substance of these Standards as soon as it is feasible and practicable before the applicable date.

1.1.2 The Standards of Part IV shall apply to helicopters intended for the carriage of passengers or cargo or mail in international air navigation.

Note.— The following Standards do not include quantitative specifications comparable to those found in national airworthiness codes. In accordance with 3.2.2 of Part II, they are to be supplemented by national requirements prepared by Contracting States.

1.1.3 The level of airworthiness defined by the appropriate parts of the comprehensive and detailed national code referred to in 3.2.2 of Part II for the helicopters designated in 1.1.2 shall be at least substantially equivalent to the overall level intended by the broad Standards of Part IV.

1.1.4 Unless otherwise stated, the Standards apply to the complete helicopter including power-units, systems and equipment.

1.2 Limitations

1.2.1 Limiting conditions shall be established for the helicopter, its power-units and its equipment (see 9.2). Compliance with the Standards of Part IV shall be established assuming that the helicopter is operated within the limitations specified. The limitations shall be sufficiently removed from any conditions prejudicial to the safety of the helicopter to render the likelihood of accidents arising therefrom extremely remote.

1.2.2 Limiting ranges of mass, centre of gravity location, load distribution, speeds and ambient conditions shall be established within which compliance with all the pertinent Standards in Part IV is shown, except that combinations of conditions which are fundamentally impossible to achieve need not be considered.

Note 1.— The maximum operating mass and centre of gravity limits may vary, for example, with each altitude and with each separate operating condition, e.g. take-off, en route, landing.

Note 2.— The following items, for instance, may be considered as basic helicopter limitations:

— maximum certificated take-off (including lift-off) mass
— maximum certificated ground-taxing mass
— maximum certificated landing mass
— most forward, rearward, and lateral centre of gravity positions in various configurations
— maximum certificated cargo sling mass.

Note 3.— Maximum operating mass may be limited by the application of Noise Certification Standards (see Annex 16, Vol. I, and Annex 6, Part III).

1.3 Unsafe features and characteristics

The helicopter shall not possess any feature or characteristic that renders it unsafe under the anticipated operating conditions.

1.4 Proof of compliance

1.4.1 Compliance with the appropriate airworthiness requirements shall be based on evidence either from tests, calculations, calculations based on tests, or other methods, provided that in each case the accuracy achieved will ensure a level of airworthiness equal to that which would be achieved were direct tests conducted.

1.4.2 The tests of 1.4.1 shall be such as to provide reasonable assurance that the helicopter, its components and equipment are reliable and function correctly under the anticipated operating conditions.
CHAPTER 2. FLIGHT

2.1 General

2.1.1 Compliance with the Standards prescribed in Chapter 2 shall be established by flight or other tests conducted upon a helicopter or helicopters of the type for which a Certificate of Airworthiness is sought, or by calculations (or other methods) based on such tests, provided that the results obtained by calculations (or other methods) are equal in accuracy to, or conservatively represent, the results of direct testing.

2.1.2 Compliance with each Standard shall be established for all applicable combinations of helicopter mass and centre of gravity position, within the range of loading conditions for which certification is sought.

2.1.3 Where necessary, appropriate helicopter configurations shall be established for the determination of performance in the various stages of flight and for the investigation of the helicopter’s flying qualities.

2.2 Performance

2.2.1 General

2.2.1.1 Sufficient data on the performance of the helicopter shall be determined and scheduled in the helicopter flight manual to provide operators with the necessary information for the purpose of determining the total mass of the helicopter on the basis of the values, peculiar to the proposed flight, of the relevant operational parameters, in order that the flight may be made with reasonable assurance that a safe minimum performance for that flight will be achieved.

2.2.1.2 The performance scheduled for the helicopter shall take into consideration human performance and in particular shall not require exceptional skill or alertness on the part of the pilot.

Note.— Guidance material on human performance can be found in the Human Factors Training Manual (Doc 9683).

2.2.1.3 The scheduled performance of the helicopter shall be consistent with compliance with 1.2.1 and with the operation in logical combinations of those of the helicopter’s systems and equipment, the operation of which may affect performance.

2.2.2 Minimum performance

At the maximum mass scheduled (see 2.2.3) for take-off and for landing as functions of the take-off or landing site elevation or pressure-altitude either in the standard atmosphere or in specified still air atmospheric conditions, and, for water operations, in specified conditions of smooth water, the helicopter shall be capable of accomplishing the minimum performances specified in 2.2.2.1 and 2.2.2.2, respectively, not considering obstacles, or final approach and take-off area length.

Note.— This Standard permits the maximum take-off mass and maximum landing mass to be scheduled in the helicopter flight manual against, for example at the take-off or landing site:

— elevation, or
— pressure-altitude, or
— pressure-altitude and atmospheric temperature,

so as to be readily usable when applying the national code on helicopter performance operating limitations.

2.2.2.1 Take-off

a) In the event of critical power-unit failure, at or after the take-off decision point (for performance Class 1) or the defined point after take-off (for performance Class 2), performance Classes 1 and 2 helicopters shall be capable of continuing safe flight, the remaining power-unit(s) being operated within the approved limitations.

b) The minimum performance at all stages of take-off and climb shall be sufficient to ensure that under conditions of operation departing slightly from the idealized conditions for which data are scheduled (2.2.3), the departure from the scheduled values is not disproportionate.

2.2.2.2 Landing

a) Starting from the approach configuration, in the event of critical power-unit failure at or before the landing decision point (performance Class 1) or the defined point before landing (performance Class 2), the helicopter shall be capable of continuing safe flight, the remaining power-unit(s) being operated within the approved limitations.
b) Starting from the landing configuration, the helicopter shall be capable, in the event of a balked landing, of making a climb-out, with all power-units operating.

2.2.3 Scheduling of performance

Performance data shall be determined and scheduled in the helicopter flight manual so that their application by means of the operating rules to which the helicopter is to be operated in accordance with 5.1.2 of Annex 6, Part III, will provide a safe relationship between the performance of the helicopter and the aerodromes, heliports and routes on which it is capable of being operated. Performance data shall be determined and scheduled for the following stages for the ranges of mass, altitude or pressure-altitude, wind velocity, and other ambient conditions and any other operational variables for which the helicopter is to be certificated, and additionally for amphibians, water surface conditions and strength of current.

2.2.3.1 Take-off. The take-off performance data shall include the take-off distance required and the take-off path. For performance Class 1 helicopters, it shall also include the rejected take-off distance required.

2.2.3.1.1 Take-off decision point. (For performance Class 1 helicopters only) The take-off decision point shall be the point in the take-off phase used in determining take-off performance and from which either a rejected take-off may be made or a take-off safely continued, with the critical power-unit inoperative.

2.2.3.1.2 Take-off distance required. (For performance Class 1 helicopters only) The take-off distance required shall be the horizontal distance required from the start of the take-off to the point at which V_{TOS}, a selected height above the take-off surface, and a positive climb gradient are achieved, following failure of the critical power-unit at the take-off decision point, the remaining power-unit(s) operating within approved operating limits.

2.2.3.1.3 Rejected take-off distance required. (For performance Class 1 helicopters only) The rejected take-off distance required shall be the horizontal distance required from the start of the take-off to the point where the helicopter comes to a complete stop following a power-unit failure and rejection of the take-off at the take-off decision point.

2.2.3.1.4 Take-off distance required. (For performance Class 2 and 3 helicopters only) The take-off distance required shall be the horizontal distance required from the start of take-off to the point where the best rate of climb speed (Vy) or the best angle of climb speed (Vx) or a selected intermediate speed (provided this speed does not involve flight within the avoid areas of the height-velocity diagrams) and a selected height above the take-off surface are achieved, all engines operating at approved take-off power.

2.2.3.2 En route. The en-route performance shall be the climb, cruise, or descent performance with:

a) the critical power-unit inoperative;

b) the two critical power-units inoperative in the case of helicopters having three or more power-units; and

c) the operating engine(s) not exceeding the power for which they are certificated.

2.2.3.3 Landing. The landing performance data shall include the landing distance required and, for performance Class 1 helicopters, the landing decision point.

2.2.3.3.1 Landing decision point. (For performance Class 1 helicopters only) The landing decision point shall be the latest point in the approach phase from which either a landing may be made or a rejected landing (go-around) safely initiated, with the critical power-unit inoperative.

2.2.3.3.2 Landing distance required. Landing distance required shall be the horizontal distance required to land and come to a complete stop from a point on the approach flight path at a selected height above the landing surface.

2.3 Flying qualities

The helicopter shall comply with the Standards of 2.3 at all altitudes up to the maximum anticipated altitude relevant to the particular requirement in all temperature conditions relevant to the altitude in question and for which the helicopter is approved.

2.3.1 Controllability

The helicopter shall be controllable and manoeuvrable under all anticipated operating conditions, and it shall be possible to make smooth transitions from one flight condition to another (e.g. turns, sideslips, changes of engine power, changes of helicopter configurations) without requiring exceptional skill, alertness, or strength on the part of the pilot even in the event of failure of any power-unit. A technique for safely controlling the helicopter shall be established for all stages of flight and helicopter configurations for which performance is scheduled.

Note.— This Standard is intended, among other things, to relate to operation in conditions of no appreciable atmospheric turbulence and also to ensure that there is no undue deterioration of the flying qualities in turbulent air.

2.3.1.1 Controllability on the ground (or water). The helicopter shall be controllable on the ground (or on the water) during taxiing, take-off and landing under the anticipated operating conditions.
2.3.1.2 Controllability during take-off. The helicopter shall be controllable in the event of sudden failure of the critical power-unit at any point in the take-off, when the helicopter is handled in the manner associated with the scheduling of the take-off data.

2.3.2 Characteristics of flight controls
The helicopter shall have such trim and handling capabilities as to ensure that the demands made on the pilot’s attention and ability to maintain a desired flight condition are not excessive when account is taken of the stage of flight at which these demands occur and their duration. In the event of a malfunction of the systems associated with the flight controls, there must not be any significant deterioration of the handling characteristics.

2.3.3 Stability
The helicopter shall have such stability in relation to its other flight characteristics, performance, structural strength, and most probable operating conditions (e.g. helicopter configurations and speed ranges) as to ensure that demands made on the pilot’s powers of concentration are not excessive when the stage of the flight at which these demands occur and their duration are taken into account. The stability of the helicopter shall not, however, be such that excessive demands are made on the pilot’s strength or that the safety of the helicopter is prejudiced by lack of manoeuvrability in emergency conditions.

2.3.4 Autorotation

2.3.4.1 Rotor speed control. The autorotation characteristics of the helicopter shall be such as to enable the pilot to control the rotor speed to within prescribed limits and to maintain full control of the helicopter.

2.3.4.2 Behaviour following a power loss. The behaviour of the helicopter following a power loss shall not be so extreme as to make difficult a prompt recovery of rotor speed without exceeding the airspeed or strength limitations of the helicopter.

2.3.4.3 Autorotation airspeeds. The autorotation airspeeds recommended for maximum range and minimum rate of descent shall be established.

2.3.5 Flutter and vibration
It shall be demonstrated by suitable tests that all parts of the helicopter are free from flutter and excessive vibration in all helicopter configurations under all speed conditions within the operating limitations of the helicopter (see 1.2.2). There shall be no vibration severe enough to interfere with control of the helicopter, to cause structural damage or to cause excessive fatigue to the flight crew.
CHAPTER 3. STRUCTURES

3.1 General
The Standards of Chapter 3 apply to the helicopter structure consisting of all portions of the helicopter, the failure of which would seriously endanger the helicopter.

3.1.1 Mass and mass distribution
Unless otherwise stated, all structural Standards shall be complied with when the mass is varied over the applicable range and is distributed in the most adverse manner, within the operating limitations on the basis of which certification is sought.

3.1.2 Limit loads
Except as might be otherwise qualified, the external loads and the corresponding inertia loads, or resisting loads obtained for the various loading conditions prescribed in 3.4, 3.5 and 3.6 shall be considered as limit loads.

3.1.3 Strength and deformation
In the various loading conditions prescribed in 3.4, 3.5 and 3.6, no part of the helicopter structure shall sustain detrimental deformation at any load up to and including the limit load, and the helicopter structure shall be capable of supporting the ultimate load.

3.2 Airspeeds

3.2.1 Design airspeeds
Design airspeeds shall be established for which the helicopter structure is designed to withstand the corresponding manoeuvring and gust loads in accordance with 3.4.

3.2.2 Limiting airspeeds
Limiting airspeeds, based on the corresponding design airspeeds with safety margins, where appropriate, in accordance with 1.2.1 shall be included in the helicopter flight manual as part of the operating limitations (see 9.2.2). When airspeed limitations are a function of mass, mass distribution, altitude, rotor speed, power or other factors, airspeed limitations based on the critical combination of these factors shall be established.

3.3 Main rotor(s) rotational speed limits
A range of main rotor(s) speeds shall be established that:

a) with power on, provides adequate margin to accommodate the variations in rotor speed occurring in any appropriate manoeuvre and is consistent with the kind of governor or synchronizer used; and

b) with power off, allows each appropriate autorotative manoeuvre to be performed throughout the ranges of airspeed and mass for which certification is requested.

3.4 Flight loads
The flight loading conditions of 3.4.1, 3.4.2 and 3.6 shall be considered for the range of mass and mass distributions prescribed in 3.1.1 and at airspeeds established in accordance with 3.2.1. Asymmetrical as well as symmetrical loading shall be taken into account. The air, inertia, and other loads resulting from the specified loading conditions shall be distributed so as to approximate actual conditions closely or to represent them conservatively.

3.4.1 Manoeuvring loads
Manoeuvring loads shall be computed on the basis of manoeuvring load factors appropriate to the manoeuvres permitted by the operating limitations. They shall not be less than values that experience indicates will be adequate for the anticipated operating conditions.

3.4.2 Gust loads
Gust loads shall be computed for vertical and horizontal gust velocities that statistics or other evidence indicate will be adequate for the anticipated operating conditions.
3.5 Ground and water loads

The structure shall be able to withstand all the loads due to the reactions of the ground or water surface, as applicable, that are likely to arise during start-up, ground and water taxiing, lift-off, touchdown and rotor braking.

3.5.1 Landing conditions

The landing conditions at the design take-off mass and at the design landing mass shall include such symmetrical and asymmetrical attitudes of the helicopter at ground or water contact, such velocities of descent and such other factors affecting the loads imposed upon the structure as might be present in the anticipated operating conditions.

3.6 Miscellaneous loads

In addition to or in conjunction with the manoeuvring and gust loads and with the ground and water loads, consideration shall be given to all other loads (flight control loads, cabin pressures, effects of engine operation, loads due to changes of configuration, loads due to external mass, etc.) that are likely to occur in the anticipated operating conditions.

3.7 Flutter, divergence and vibration

Each part of the helicopter structure shall be free from excessive vibration or oscillation (ground resonance, flutter, etc.) under each appropriate speed and power condition.

3.8 Fatigue strength

The strength and fabrication of the helicopter shall be such as to ensure that the probability of disastrous fatigue failure of the helicopter’s structure under repeated loads and vibratory loads in the anticipated operating conditions is extremely remote.

Note.— This Standard can be complied with by the establishment of “safe lives” or “fail safe” characteristics of the structure, having regard to the reasonable expected load magnitudes and frequencies under the anticipated operating conditions and inspection procedures. For some parts of the structure, it might be necessary to establish “fail safe” characteristics as well as “safe lives”.

2/3/04 IV-3-2
CHAPTER 4. DESIGN AND CONSTRUCTION

4.1 General

Details of design and construction shall be such as to give reasonable assurance that all helicopter parts will function effectively and reliably in the anticipated operating conditions. They shall be based upon practices that experience has proven to be satisfactory or that are substantiated by special tests or by other appropriate investigations or both. They shall observe Human Factors principles.

Note.— Guidance material on Human Factors principles can be found in the Human Factors Training Manual (Doc 9683).

4.1.1 Substantiating tests

The functioning of all moving parts essential to the safe operation of the helicopter shall be demonstrated by suitable tests in order to ensure that they will function correctly under all operating conditions for such parts.

4.1.2 Materials

All materials used in parts of the helicopter essential for its safe operation shall conform to approved specifications. The approved specifications shall be such that materials accepted as complying with the specifications will have the essential properties assumed in the design.

4.1.3 Fabrication methods

The methods of fabrication and assembly shall be such as to produce a consistently sound structure which shall be reliable with respect to maintenance of strength in service.

4.1.4 Protection

The structure shall be protected against deterioration or loss of strength in service due to weathering, corrosion, abrasion, or other causes, which could pass unnoticed, taking into account the maintenance the helicopter will receive.

4.1.5 Inspection provisions

Adequate provision shall be made to permit any necessary examination, replacement, or reconditioning of parts of the helicopter that require such attention, either periodically or after unusually severe operations.

4.1.6 Design features

Special consideration shall be given to design features that affect the ability of the flight crew to maintain controlled flight. This shall include at least the following:

a) Controls and control systems. The design of the controls and control systems shall be such as to minimize the possibility of jamming, inadvertent operations, and unintentional engagement of control surface locking devices.

i) Each control and control system shall operate with the ease, smoothness and effectiveness appropriate to its function; and

ii) each element of each flight control system shall be designed to minimize the probability of any incorrect assembly that could result in the malfunction of the system.

b) Crew environment. The design of the flight crew compartment shall be such as to minimize the possibility of incorrect or restricted operation of the controls by the crew, due to fatigue, confusion or interference. Consideration shall be given at least to the following: layout and identification of controls and instruments, rapid identification of emergency situations, sense of controls, ventilation, heating and noise.

c) Pilot vision. The arrangement of the pilot compartment shall be such as to afford a sufficiently extensive, clear and undistorted field of vision for the safe operation of the helicopter, and to prevent glare and reflections that would interfere with the pilot's vision. The design features of the pilot windshield shall permit, under precipitation conditions, sufficient vision for the normal conduct of flight and for the execution of approaches and landings.

d) Provision for emergencies. Means shall be provided which shall either automatically prevent, or enable the flight crew to deal with, emergencies resulting from foreseeable failures of equipment and systems, the failure of which would endanger the helicopter. Reasonable provisions shall be made for continuation of
essential services following power-unit or systems’ failures to the extent that such failures are catered for in the performance and operating limitations specified in the Standards in this Annex and in Annex 6, Part III.

e) Fire precautions. The design of the helicopter and the materials used in its manufacture, including cabin interior furnishing materials replaced during major refurbishing, shall be such as to minimize the possibility of in-flight and ground fires and also to minimize the production of smoke and toxic gases in the event of a fire. Means shall be provided to contain or to detect and extinguish, wherever possible, all accessible fires as might occur in such a way that no additional danger to the helicopter is caused.

f) Incapacitation of occupants. Design precautions shall be taken to protect against possible instances of cabin depressurization and against the presence of smoke or other toxic gases that could incapacitate the occupants of the helicopter.

4.1.7 Emergency landing provisions

Provisions shall be made in the design of the helicopter to protect the occupants from fire and effects of deceleration in the event of an emergency landing. Facilities shall be provided for the rapid evacuation of the helicopter in conditions likely to occur following an emergency landing. Such facilities shall be related to the passenger and crew capacity of the helicopter. On helicopters certificated for ditching conditions, provisions shall also be made in the design to give maximum practicable assurance that safe evacuation from the helicopter of passengers and crew can be executed in case of ditching.

4.1.8 Ground handling

Adequate provisions shall be made in the design to minimize the risk that ground-handling operations (e.g. towing, jacking) may cause damage, which could pass unnoticed, to the parts of the helicopter essential for its safe operation. The protection that any limitations and instructions for such operations might provide may be taken into account.
CHAPTER 5. ENGINES

5.1 Scope
The Standards of Chapter 5 shall apply to engines of all types that are used on the helicopter as primary propulsion units.

5.2 Design, construction and functioning
The engine complete with accessories shall be designed and constructed so as to function reliably within its operating limitations under the anticipated operating conditions when properly installed in the helicopter in accordance with Chapter 6 and with the suitable rotor and power transmission installed.

5.3 Declared ratings, conditions and limitations
The power ratings and the conditions of the atmosphere upon which they are based and all operating conditions and limitations, which are intended to govern the operation of the engine, shall be declared.

5.4 Tests
An engine of the type shall complete satisfactorily such tests as are necessary to verify the validity of the declared ratings, conditions and limitations and to ensure that it will operate satisfactorily and reliably. The tests shall include at least the following:

a) Power calibration. Tests shall be conducted to establish the power characteristics of the engine when new and also after the tests in b) and c). There shall be no excessive decrease in power at the conclusion of all the tests specified.

b) Operation. Tests shall be conducted to ensure that starting, idling, acceleration, vibration, overspeeding and other characteristics are satisfactory and to demonstrate adequate margins of freedom from detonation, surge, or other detrimental conditions as may be appropriate to the particular type engine.

c) Endurance. Tests of sufficient duration shall be conducted at such powers, engine and rotor speeds and other operating conditions as are necessary to demonstrate reliability and durability of the engine. They shall also include operation under conditions in excess of the declared limits to the extent that such limitations might be exceeded in actual service.
CHAPTER 6. Rotor and Power Transmission Systems and Powerplant Installation

6.1 General

The powerplant installation, including rotor and power transmission system, shall comply with the Standards of Chapter 4 and with the Standards of this chapter.

6.2 Design, construction and functioning

The rotor and power transmission systems assembly complete with accessories shall be designed and constructed so as to function reliably within its operating limitations under the anticipated operating conditions when properly fitted to the engine and installed in the helicopter in accordance with this chapter.

6.3 Declared ratings, conditions and limitations

The power ratings and all operating conditions and limitations, which are intended to govern the operation of the rotor and power transmission systems, shall be declared.

6.3.1 Maximum and minimum rotor rotational speed limitations

Maximum and minimum speeds for the rotors in both power-on and power-off conditions shall be established. Any operating conditions (e.g. airspeed) that affect such maxima or minima shall be declared.

6.3.2 Rotor underspeed and overspeed warnings

When the helicopter is made to approach a rotor rotational speed limit, with or without power-units inoperative, clear and distinctive warnings shall be apparent to the pilot. The warnings and initial characteristics of the condition shall be such as to enable the pilot to arrest the development of the condition after the warning begins, and to recover the rotor rotational speed to within prescribed normal limits and to maintain full control of the helicopter.

6.4 Tests

Rotor and power transmission systems shall complete satisfactorily such tests as are necessary to ensure that they will operate satisfactorily and reliably within the declared ratings, conditions and limitations. The tests shall include at least the following:

a) Operation. Tests shall be conducted to ensure that strength vibration and overspeeding characteristics are satisfactory and to demonstrate proper and reliable functioning of pitch changing and control mechanisms and free wheel mechanisms.

b) Endurance. Tests of sufficient duration shall be conducted at such powers, engine and rotor speeds and other operating conditions as are necessary to demonstrate reliability and durability of the rotor and power transmission systems.

6.5 Compliance with engine and rotor and power transmission systems limitations

The powerplant installation shall be so designed that the engines and rotor and power transmission systems are capable of being used in the anticipated operating conditions. In conditions established in the helicopter flight manual, the helicopter shall be capable of being operated without exceeding the limitations established for the engines and rotor and power transmission systems in accordance with Chapters 5 and 6.

6.6 Control of engine rotation

In those installations where continued rotation of a failed engine would increase the hazard of fire or of a serious structural failure, means shall be provided for the crew to stop the rotation of the engine in flight or to reduce it to a safe level.

6.7 Engine restarting

Means shall be provided for restarting an engine at altitudes up to a declared maximum altitude.
6.8 Arrangement and functioning

6.8.1 Independence of power-units
For performance Class 1 and 2 helicopters, the power-plant shall be arranged and installed so that each power-unit together with its associated systems is capable of being controlled and operated independently from the others and so that there is at least one arrangement of the powerplant and systems in which any failure, unless the probability of its occurrence is extremely remote, cannot result in a loss of more power than that resulting from complete failure of the critical power-unit.

6.8.2 Rotor and power transmission systems vibration
The vibration stresses for the rotor and power transmission systems shall be determined and shall not exceed values that have been found safe for operation within the operating limitations established for the helicopter.

6.8.3 Cooling
The cooling system shall be capable of maintaining power-plant and power transmission systems temperatures within the established limits (see 6.5) at ambient air temperatures approved for operation of the helicopter. The maximum and minimum air temperatures for which the powerplant and power transmission systems have been established as being suitable shall be scheduled in the helicopter flight manual.

6.8.4 Associated systems
The fuel, oil, air induction, and other systems associated with each power-unit, each power transmission unit and each rotor shall be capable of supplying the appropriate unit in accordance with its established requirements, under all conditions affecting the functioning of the systems (e.g. engine power setting, helicopter attitudes and accelerations, atmospheric conditions, fluid temperatures) within the anticipated operating conditions.

6.8.5 Fire protection
For designated fire zones where the potential fire hazards are particularly serious because of the proximity of ignition sources to combustible materials, the following shall apply in addition to the general Standard of 4.1.6 e).

a) Isolation. Such zones shall be isolated by fire-resisting material from other zones of the helicopter where the presence of fire would jeopardize continued flight, taking into account the probable points of origin and paths of propagation of fire.

b) Flammable fluids. Flammable fluid system components located in such zones shall be capable of containing the fluid when exposed to fire conditions. Means shall be provided for the crew to shut off the flow of hazardous quantities of flammable fluids into such zones if a fire occurs.

c) Fire protection. There shall be provided a sufficient number of fire detectors so located as to ensure rapid detection of any fire that might occur in such zones.

d) Fire extinguishment. Such zones shall be provided with a fire extinguisher system capable of extinguishing any fire likely to occur therein, unless the degree of isolation, quantity of combustibles, fire resistance of the structure, and other factors are such that any fire likely to occur in the zone would not jeopardize the safety of the helicopter.
CHAPTER 7. INSTRUMENTS AND EQUIPMENT

7.1 Required instruments and equipment

The helicopter shall be provided with approved instruments and equipment necessary for the safe operation of the helicopter in the anticipated operating conditions. These shall include the instruments and equipment necessary to enable the crew to operate the helicopter within its operating limitations. Instruments and equipment design shall observe Human Factors principles.

Note 1.— Instruments and equipment additional to the minimum necessary for the issuance of a Certificate of Airworthiness are prescribed in Annex 6, Part III, for particular circumstances or on particular kinds of routes.

Note 2.— Guidance material on Human Factors principles can be found in the Human Factors Training Manual (Doc 9683) and in the Human Factors Guidelines for Air Traffic Management (ATM) Systems (Doc 9758).

7.2 Installation

Instrument and equipment installations shall comply with the Standards of Chapter 4.

7.3 Safety and survival equipment

Prescribed safety and survival equipment that the crew or passengers are expected to use or operate at the time of an emergency shall be reliable, readily accessible and easily identified, and its method of operation shall be plainly marked.

7.4 Navigation lights and anti-collision lights

7.4.1 The lights required by Annex 2 to be displayed by helicopters in flight or operating on the movement area of an aerodrome or a heliport shall have intensities, colours, fields of coverage and other characteristics such that they furnish the pilot of another aircraft or personnel on the ground with as much time as possible for interpretation and for subsequent manoeuvre necessary to avoid a collision. In the design of such lights, due account shall be taken of the conditions under which they may reasonably be expected to perform these functions.

Note 1.— It is likely that lights will be viewed against a variety of backgrounds, such as typical city lighting, clear starry sky, moonlit water and daytime conditions of low background luminance. Furthermore, collision risk situations are most likely to arise in terminal control areas in which aircraft are manoeuvring in the intermediate and lower flight levels at closing speeds that are unlikely to exceed 900 km/h (500 kt).

Note 2.— See the Airworthiness Manual (Doc 9760), Volume II, Part A, for detailed technical specifications for exterior lights for helicopters.

7.4.2 Lights shall be installed in helicopters so as to minimize the possibility that they will:

a) adversely affect the satisfactory performance of the flight crews’ duties; or
b) subject an outside observer to harmful dazzle.

Note.— In order to avoid the effects mentioned in 7.4.2, it will be necessary in some cases to provide means whereby the pilot can switch off or reduce the intensity of the flashing lights.
CHAPTER 8. ELECTRICAL SYSTEMS

The electrical system shall be so designed and installed as to ensure that it will perform its intended function under any foreseeable operating conditions.
CHAPTER 9. OPERATING LIMITATIONS AND INFORMATION

9.1 General

The operating limitations within which compliance with the Standards of this Annex is determined, together with any other information necessary to the safe operation of the helicopter, shall be made available by means of a helicopter flight manual, markings and placards, and such other means as may effectively accomplish the purpose. The limitations and information shall include at least those prescribed in 9.2, 9.3 and 9.4.

9.2 Operating limitations

Limitations which there is a risk of exceeding in flight and which are defined quantitatively shall be expressed in suitable units and corrected if necessary for errors in measurements so that the flight crew can, by reference to the instruments available to them, readily determine when the limitations are reached.

9.2.1 Loading limitations

The loading limitations shall include all limiting masses, centres of gravity positions, mass distributions, and floor loadings (see 1.2.2).

9.2.2 Airspeed limitations

The airspeed limitations shall include all speeds (see 3.2) that are limiting from the standpoint of structural integrity or flying qualities of the helicopter, or from other considerations. These speeds shall be identified with respect to the appropriate helicopter configurations and other pertinent factors.

9.2.3 Powerplant and power transmission limitations

The powerplant limitations shall include all those established for the various powerplant and transmission components as installed in the helicopter (see 6.5 and 6.6 of this part).

9.2.4 Rotor limitations

Limitations on rotor speeds shall include maximum and minimum rotor speeds for power-off (autorotation) and power-on conditions.

9.2.5 Limitations on equipment and systems

The limitations on equipment and systems shall include all those established for the various equipment and systems as installed in the helicopter.

9.2.6 Miscellaneous limitations

Miscellaneous limitations shall include any necessary limitations with respect to conditions found to be prejudicial to the safety of the helicopter (see 1.2.1).

9.2.7 Flight crew limitations

The flight crew limitations shall include the minimum number of flight crew personnel necessary to operate the helicopter, having regard, among other things, to the accessibility to the appropriate crew members of all necessary controls and instruments and to the execution of the established emergency procedures.

Note.— See Annex 6 — Operation of Aircraft, Part III, for the circumstances in which the flight crew shall include members in addition to the minimum flight crew defined in this Annex.

9.3 Operating information and procedures

9.3.1 Types of eligible operations

There shall be listed the particular types of operations, as may be defined in Annex 6, Part III, or be generally recognized, for which the helicopter has been shown to be eligible by virtue of compliance with the appropriate airworthiness requirements.

9.3.2 Loading information

The loading information shall include the empty mass of the helicopter, together with a definition of the condition of the helicopter at the time of weighing, the corresponding centre of gravity position, and the reference points and datum lines to which the centre of gravity limits are related.
Annex 8 — Airworthiness of Aircraft

Note.— Usually the empty mass excludes the mass of the crew and payload, the usable fuel supply and the drainable oil; it includes the mass of all fixed ballast, unusable fuel supply, undrainable oil, total quantity of engine coolant and total quantity of hydraulic fluid.

9.3.3 Operating procedures

A description shall be given of normal and emergency operating procedures which are peculiar to the particular helicopter and necessary for its safe operation. These shall include procedures to be followed in the event of failure of one or more power-units.

9.3.4 Handling information

Sufficient information shall be given on any significant or unusual features of the helicopter characteristics.

9.4 Performance information

The performance of the helicopter shall be scheduled in accordance with 2.2. There shall be included information regarding the various helicopter configurations and powers involved and the relevant speeds, together with information that would assist the flight crew in attaining the performance as scheduled.

9.5 Helicopter flight manual

A helicopter flight manual shall be made available. It shall identify clearly the specific helicopter or series of helicopters to which it is related. The helicopter flight manual shall include at least the limitations, information and procedures specified in this chapter.

9.6 Markings and placards

9.6.1 Markings and placards on instruments, equipment, controls, etc., shall include such limitations or information as necessary for the direct attention of the flight crew during flight.

9.6.2 Markings and placards or instructions shall be provided to give any information that is essential to the ground crew in order to preclude the possibility of mistakes in ground servicing (e.g. towing, refuelling) that could pass unnoticed and that could jeopardize the safety of the helicopter in subsequent flights.

— END —