Flight Crew Operating Manual

FCOM

Volume 2

A310

FLIGHT CREW OPERATING MANUAL

	GENERAL INFORMATION	2.00.00	
		PAGE 1	
	CONTENTS	REV 31	SEO 001

```
2.00 GENERAL INFORMATION
    2.00.00 CONTENTS
        COMMENTS - QUESTIONS - SUGGESTIONS
        LETTER OF TRANSMITTAL
    2.00.01 ORGANIZATION OF THE MANUAL
    2.00.02 PRELIMINARY PAGES
```

 - Cross Reference Table
 - Highlights
 - List of Effective Pages
 - List of MOD/MP/SB affecting the manual
 2.00.03 LIST OF NORMAL REVISIONS
 2.00.04 RECORD OF TEMPORARY REVISIONS
 2.00.25 LIST OF EQUIVALENCE CODES
 2.01 OPERATING LIMITATIONS
2.02 PROCEDURES AND TECHNIQUES
2.03 STANDARD OPERATING PROCEDURES
2.04 EMERGENCY PROCEDURES
2.05 ABNORMAL PROCEDURES
2.06 LOADING FUEL/LOAD AND TRIM SHEET
2.08 OPERATING DATA
2.09 THRUST SETTING
2.10 TAKE OFF
2.11 CLIMB
2.12 CRUISE
2.13 HOLDING
2.14 DESCENT APPROACH
2.15 LANDING
2.16 ONE ENGINE INOPERATIVE
2.17 FLIGHT PLANNING
2.18 SPECIAL OPERATIONS
2.19 OPERATION ENGINEERING BULLETINS
2.20 FCOM BULLETINS

	GENERAL INFORMATION	2.00.00	
		PAGE 2	
		REV 31	SEQ 001

COMMENTS - QUESTIONS - SUGGESTIONS

All manual holders and users are encouraged to forward their questions and suggestions regarding the Flight Crew Operating Manual.
Any questions with respect to use of this manual or information contained herein shall be directed to :

AIRBUS - BP 33
1 ROND POINT MAURICE BELLONTE 31707 BLAGNAC CEDEX - FRANCE TELEX TLSBI7X or 530526F
FAX: 33/5.61.93.29.68
ATTN. Flight Operations Support - STLW

```
AIRBUS
1 ROND POINT MAURICE BELLONTE
31707 BLAGNAC CEDEX - FRANCE
TELEX TLSBP7X or 530526F
FAX: 33/5.61.93.28.06
ATTN. Technical Data Support & Services - SDC
```


GENERAL

The purpose of this letter of transmittal is to provide some general information on the revision. It is used also in order to highlight the main changes introduced with the revision (additionally, each page revised contains its own highlight as listed in subchapter 2.00.02).

MAIN TOPICS OF REVISION 36

With the revision 36 the main topics are as follow.

1. This revision implements a new process for OEB in the QRH.

The objective is to ease the OEB review that is recommended during preliminary cockpit preparation. Starting with this revision, an extract of the OEB procedure part is published in ORH for each OEB.

In that frame of the following FCOM/QRH modifications have been done:

- The "OEB General Description" section (FCOM 2.19.10) gives all details on OEB definitions and handling in both FCOM and ORH.
Note that in this chapter, the section "SUBJECT" (FCOM 2.19.30) has been removed since the List Of Effective OEB (LEOEB) has been enhanced and provides now the title of each OEB.
- The SOP section for Flight Preparation (FCOM 2.03.02) recommends that the flight crew access the OEB section in the QRH and carefully review all OEBs (particularly red OEBs) that are applicable to the aircraft.
- In the FCOM"Emergency\& Abnormal" Chapters, section "Introduction" (FCOM 2.04.10 \& 2.05.10) have been amended to be in line with the definitions provided in chapter 2.19.
In the "General" chapter of QRH (ORH 0.04), an "OEB PROC" paragraph is added to provide the Operators with explanations about the organization of the OEB QRH chapter (ORH 19.00).

2. Recommendation when performing Flexible Takeoff (2.03.07 page 01 and 2.10.20 page 1 and 2) :

To avoid any misinterpretation and to clearly reflect AIRBUS recommendation, this paragraph is reworded to recommend that the highest FLEX temperature should be used. However, when the FLEX temperature difference between two FLAPS configuration is less than $5^{\circ} \mathrm{C}$, choosing the highest FLAPS configuration is recommended because it provides lower speeds while not decreasing significantly the benefit of the Flexible thrust (save engine life).

3. SOP Takeoff with crosswind greater than 20kt (2.03.12 page 01)

The previous revision introduced specific takeoff thrust setting for strong crosswind conditions. This was a precautionary measure following report of suspected engine surge at low speed due to crosswind.
The current revision removes this procedure.
Reasons are explained here below:

- The objective of the previous procedure was to minimize the effect of crosswind during takeoff roll on engine stability. Thus the objective was to apply thrust manually in order to get an higher ground speed with a relatively slower engine acceleration compared to the A/THR thrust setting.
- The revision induced an increased crew workload, and, in some cases, could lead to apply the power more rapidly than with the A/THR.
- The impact of the previous procedure on performance was not negligible while engine surge prevention was not confirmed in all cases.
- For some aircraft configurations, the previous procedure was not compatible with the crew decision to use FLEX TO and could lead to undesired A/THR behavior.
- Today on the A310/A300-600 fleet, no event of engine surge at low speed due to strong crosswind condition has been reported and documented.
- Experience has shown that the difficulties to apply the revised procedure invalidate its benefits. Consequently we have decided to remove it.

4. SOP Takeoff roll (2.03.12 page 01)

Recommendation on PF input on the control column is added to the takeoff procedure. This is to improve Nose Landing Gear adherence to the ground and to ensure a good on-ground controllability of the aircraft. PF must thus apply forward control column until 80 kts depending on CG position (in order to counteract the pitch up moment during thrust application), runway and crosswind conditions keeping in mind that too much forward input on the control column might lead to possible vibrations of the nose wheels.

5. PW4000 (only) : starter reengagement limit increased (2.01.40 p 05, 2.03.08 p 02, 2.05.70 p 11/13/14)

The starter re-engagement limit has been reviewed by Hamilton Sundstrand which is the starter manufacturer for PW 4000 engines. This study concludes that the starter re-engament limit can be increased from $15 \% \mathrm{~N} 2$ in normal cases but not exceeding $20 \% \mathrm{~N} 2$ in abnormal situations up to $30 \% \mathrm{~N} 2$ in any and all cases. This change has been reflected in PW4000 Operating Instructions. With this revision, Operating Limitations, Standard Operating Procedures and Abnormal Procedures have been amended to cope with this new limit.

	GENERAL INFORMATION	2.00.00	
		PAGE 4	
	LETTER OF TRANSMITTAL	REV 36	SEQ 001

6. EGPWS (only) : Recommendations regarding the use of TERR on ND (2.03.10 p 02 and 2.03.17 p 02)

On aircraft fitted with EGPWS, it is now recommended to set TERR on ND during TAXI and during DESCENT when external conditions are poor in order to improve situational awareness. The TERR on ND should preferably be set on PF side. However, should the weather radar be required in the meantime, TERR should be selected on PNF ND and weather radar information on PF ND.

7. QFU and threshold check after line up (2.03.10 p 02 and 2.03.17 p 02)

To be in line with the FAA Safety Alert For Operators SAFO 06013 and SAFO 07003, AIRBUS standard operating procedures (SOPs) request flight crews to ensure that the airplane is at the selected takeoff runway and recommend the use of ND and airport charts.

8. IRS alignment check for FMS data confirmation

 (2.02.21 p 05 and 2.02.31 p 05)The standard operating procedures request the flight crew to confirm the FMS data. Among the checks, the crew has to verify the IRS alignment by confirmation of the coordinates. The procedures and techniques now provides actions to perform in order to obtain this confirmation. It consists in ensuring that position entered in the FMS and sent to the IRS are consistent with the SID and surrounding NAVAIDS. In addition, on aircraft fitted with the POSITION MONITOR page on the FMS, a cross-check of the IRS position against the FMS is necessary.

The objective of these additional steps is to emphasize, regardless of the aircraft equipment (e.g. GPS), the importance of the navigation starting point done through the IRS alignment.

9. GPWS memory item enhancement (2.04.34 p 01)

When a call containing "PULL UP" is triggered, the memory item regarding the BANK could have been misunderstood and misleading. This memory item is reworded to remind that the best climb gradient is obtained when the bank is close to wings level, and to clarify that climb initiation should not be delayed until wings are leveled.

FOREWORD

This manual is complementary to the approved Flight Manual. While every endeavour is made to ensure that the data contained herein and that in the Flight Manual are in agreement, in the event of disagreement the Flight Manual is the final authority.

CONTENT

The Flight Crew Operating Manual is the support documentation for flight crew operations.
The Flight Crew Operating Manual provides operating crews with the technical, procedural and performance characteristics of the A310 aircraft to ensure a safe and efficient operation during normal and/or abnormal/ emergency situations on ground and in flight.
However, the Flight Crew Operating Manual is not intended to provide basic jet aircraft piloting techniques or information that are considered as basic airmanship for trained flight crews familiar with that type of aircraft and with its general handling characteristics.
The Flight Crew Operating Manual is intended :

- to be used directly as flight crew operating manual or to be the basis for elaboration of the relevant parts of the "crew manual" by the operations department of the operator in accordance with applicable requirements.
- to be used as a flight crew training manual (initial and refresher).
However, the Flight Crew Operating Manual is not intended to be used for teaching basic piloting skills.
The contents are divided into two volumes:
- Vol. 1 : SYSTEMS DESCRIPTION

Volume 1 contains description of the aircraft and the systems.

- Vol. 2 : PROCEDURES AND PERFORMANCE.

Volume 2 contains operating and performance information plus loading data.
The material included in this volume has been extracted from the Flight Manual as far as the certified parts, are concerned.
If any of the procedures or performance data contained in Vol. 2 are not in agreement with the Flight Manual, the latter will supersede.
Airline experience and flight test inputs have been taken into account.

WARNINGS, CAUTIONS AND NOTES

Text of the warning

Used to denote important notice that, if not immediately applied, would affect safety.

Text of the caution.

Used to precise certain procedures or to avoid a misusing.
Note: Text of the note.
supplementary explanation.

PAGINATION

TOP OF THE PAGE

(1) Chapter title
(2) Blank space
(3) FCOM Volume/Chapter/Section number
(4) Page number followed by L which indicates weights are given in pounds. If there is no indication, the page is valid for both pounds and tons.
When a new page must be inserted between two existing pages, a suffix letter is added to the page number.
Ex.: Page 24-A must be inserted between page 24 and page 25.
(5) Sequence number:

It allows an easier management of the pages for Airbus Industrie and allows to enter the List of Effective Pages. It may be used by each manual holder to simplify manuals updating.
(6) Number of the revision.
(7) Section title.
(8) Airbus logo or airline logo.

BOTTOM OF THE PAGE

(1) This zone contains :

- either, applicable modification (MOD) or/and modification proposal (MP) number(s) (validation criteria).
- or, a "Code» number (ex: 0029) (validation criteria) when a combination of various modifications applies.
A table of correspondance between "Code" numbers and MOD/MP number(s) is given in this chapter 2.00.25.
(2) Indicates page specific to the particular aircraft version (validation criteria). When there is no indication or ALL indication, the page is valid for all versions restricted by others validation criteria.
(3) Indicates page specific to type of engine installed (validation criteria). When there is no indication or ALL indication, the page is valid for all engines, restricted by others validation criteria.
(4) This zone is used for listing operator's aircraft MSN or tail number if this option has been taken.
(5) Airline three-letter abbreviation (e.g. $X X X$) if page only applicable to $X X X$ airline.
(6) The two-letter abbreviation (e.g.YY) indicates a specific page written to comply with local regulations, eg :
- AA : for Australian regulations
- UK : for C.A.A. regulations
- US : for F.A.A. regulations

REVISIONS

NORMAL REVISIONS

Issued periodically to cover non-urgent corrections, changes or/and to add new data.
They are accompanied by filing instructions and an updated List of Effective Pages including customized pages.
Highlight are also provided to give background information on the changes introduced with the revision.
A normal revision record sheet is provided at the front of each volume.
In addition, a «List of MOD/MP affecting the manual » is provided, giving a simple explanation of the technical content of each MOD/MP incorporated and their validity per aircraft.

TEMPORARY REVISIONS

Printed on yellow paper, issued to cover urgent matters arising between normal revisions, they are accompanied by filing instructions.

The applicability of each temporary revision is given on the customized list of effective temporary revisions issued with each new temporary revision.

INTERMEDIATE REVISIONS

Intermediate revisions of the FCOM/QRH are used when the need occurs to :

- supply the contractual allocation of manuals to a new operator between two normal revisions
- validate aircraft configuration changes by retrofit of Airbus Industrie Service Bulletins between two normal revisions (on request of the operator)
- validate fleet composition changes (new aircraft) between two normal revisions.

EXAMPLE

A suffix after the revision number indicates an intermediate revision, between two normal revisions e.g. 023A issued between normal revision 023 and 024.
This service allows Airbus Operators to use at any time up-to-date manuals. It is quicker than issuing a Temporary Revision and allows direct replacement in the manuals of only the affected white pages instead of inserting yellow pages.

INCORPORATION OF SERVICE BULLETINS IN THE FCOM

When a Service Bulletin has been accomplished on one or more aircraft of the operators fleet, and notified to AIRBUS, all affected manuals will reflect the new aircraft configuration at the next revision. If judged necessary by AIRBUS, or requested by the operator, a "Temporary Revision" will be issued between normal revisions.

OPERATIONS ENGINEERING BULLETINS

Issued as the need arises to advise operators of revised or new technical or procedural information between normal revisions of the manual.
OEBs are provided with an OEB record sheet. This record sheet is re-issued with each normal revision to update the bulletin embodiment status.

HOW TO INSERT A REVISION

GENERAL

FCOM and checklists are customized in such a way to allow an airline to elaborate :either, an envelope airline manual (available in a library)
or, an airplane manual valid for a particular airplane (on board of this airplane).
Two documents added to each revision allow this work:

- the "Filing instructions".
- the «List of Effective Pages - LEP ».

FILING INSTRUCTIONS

Use the filing instructions as follows:

- REMOVE : The page must be removed. It may be replaced by a new page if associated with an "INSERT" instruction. If not, the page is cancelled.
- INSERT : The page must be inserted. If not associated with a "REMOVE" instruction, the page is new for the operator fleet and does not replace an existing one.
The column "NOTE" indicates the reason for change. It states "EFFECTIVITY CHANGE ONLY" if the page is only revised due to effectivity change and not due to technical content.

LIST OF EFFECTIVE PAGES (LEP)

The manual after revision must comply with the LEP, which lists all the pages that are in the manual. The new pages are indicated by " N " and the revised pages by " R ".

	GENERAL INFORMATION	2.00.01	
		PAGE 3	
	ORGANIZATION OF THE MANUAL	REV 33	SEO 001

R

BEST WAY TO GET UPDATED DOCUMENTATION

The best way, for an airline, to be sure getting, regularly, correct updated documentation is to advise :

AIRBUS
BP 33
31707 BLAGNAC CEDEX
FRANCE
Telex : TLSBP7X.. or 530526F
FAX : (33) 5 61.93.28.06
ATTN : Customer Service Directorate - Technical Data Support and Services (SDC)
or via e-mail at : sb.reporting@airbus.com
as soon as any Airbus Service Bulletin is completely performed on any airplane.

	GENERAL INFORMATION	2.00.01	
		PAGE 4	
	ORGANIZATION OF THE MANUAL	REV 34	SEQ 001

CUSTOMER ORIGINATED CHANGE (COC) UPDATE

COC IDENTIFICATION

Customer Originated Changes, incorporated into the FCOM at customer request to reflect data or procedures originated by and peculiar to that specific customer, will be identified by the COC reference number (1). As from REV 33, the COC information is indicated by triangles in the margin of the individual pages. As from REV 33, a triangle in the header indicates that the complete page is impacted by the COC (2).

RESPONSIBILITY

AIRBUS does not assume responsibility for the validity and/or the technical accuracy of material so identified.

AIRBUS will not undertake to test or evaluate in any form the validity or the technical accuracy of the customer originated material, and the customer shall have the sole and exclusive responsibility for the validity and accuracy of materials submitted for incorporation into the FCOM.

DISCLAIMER CLAUSE

AIRBUS HEREBY EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES, EXPRESSEDOR IMPLIED, ORALOR WRITTEN, ARISING BY LAW, COURSE OF DEALING, OR OTHERWISE', AND WITHOUT LIMITATION ALL WARRANTIES AS TO QUALITY, OPERATION, MERCHANTABILITY, FITNESS FOR ANYINTENDEDPURPOSE,ANDALLOTHERCHARACTERISTICS WHATSOEVER, OF CUSTOMER ORIGINATED MATERIAL INCORPORATED INTO THE FCOM. THE FOREGOING DISCLAIMER APPLIES TO ANY OTHER PORTION OF THE FCOM WHICH MAY BE AFFECTED OR COMPROMISED BY SUCH CUSTOMER ORIGINATED CHANGES.

THIS TABLE GIVES, FOR EACH AIRCRAFT INCLUDED IN THE MANUAL, THE CROSS REFERENCE BETWEEN :

- THE MANUFACTURING SERIAL NUMBER (MSN) WHICH APPEARS IN THE LIST OF EFFECTIVE PAGES
- THE REGISTRATION NUMBER OF THE AIRCRAFT AS KNOWN BY AIRBUS INDUSTRIE.

V CH SEC ---PAGE-- SEQ- --REV-- ----VALIDATION CRITERIA----------------------- REASONS OF CHANGE-

M V CH SEC ---pAGE-- SEQ- --REV-- ----VALIDATION CRITERIA---
M V CH SEC ...PAGE.. SEO- --REV..VALIDATION CRITERIA --REV-- ------EVALIDATION CRITERIA-----

2	18	40	001	001	REV030	$\text { STD: M: } 5229: 5606$	
2	18	40	002	270	$\begin{aligned} & \text { REVO3O } \\ & \text { ALL } \end{aligned}$	M: 4863+86	$16 / P W 4000$
2	18	40	003	170	REV030	M: 48 63/PW	4000
2	18	40	004	160	$\begin{aligned} & \text { REVO21 } \\ & \text { ALL } \end{aligned}$	MOD 4863	PW 4000
2	18	40	005	160	REV031	Mi $4863 / \mathrm{PW}$	4000
2	18	40	006	160	$\begin{aligned} & \text { REVO31 } \\ & \text { ALL } \end{aligned}$	M:4853/PW	4000
2	18	40	007	060	REVO24	MOD 4863	PW 4000
2	18	40	008	060	REVO21	PW4000	4863

| 2 | 18 | 50 | 001 | 001 | REVO35 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 18 | 50 | 002 | 064 | REVO25 MOD $4863+5443$ PW 4152 | ALL

2	18	50	003	050	REVO25	MOD	4863	+	5443	PW	4152
2	18	50	004	050	REVO25 ALL	MOD	4863	+	5443	PW	4152
2	18	50	005	050	REVO25	MOD	4863	+	5443	PW	4152
2	18	50	006	050	$\begin{aligned} & \text { REVO25 } \\ & \text { ALL } \end{aligned}$	MOD	4863	+	5443	PW	4152
2	18	50	007	065	REVO25	MOD	4863	+	5443	PW	4152
2	18	50	008	001	REVO25						

| 21850 | $009-10$ | 065 | REV029
 ALL | Mi4863+5443/4152 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 21870 | 001 | 001 | REV024 | |

| 2 | 18 | 70 | 002 | 001 |
| :--- | :--- | :--- | :--- | :--- | ALL

$21870 \quad 003 \quad 001$ REVO29
$21870 \quad 004$ ALL

2	18	70	005	001	REV035	M: 4863 /PW 4000	
2	18	70	006	120	$\begin{aligned} & \text { REVO29 } \\ & \text { ALL } \end{aligned}$		
2	18	70	007	120	REVO22	PW ENG:4000	MOD4863
2	18	70	008	120	$\begin{aligned} & \text { REVO22 } \\ & \text { ALL } \end{aligned}$	PW ENG:4000	MOD4863
2	18	70	009	120	REVO22	PW ENG:4000	MOD4863
2	18	70	010	120	$\begin{aligned} & \text { REVO22 } \\ & \text { ALL } \end{aligned}$	PW ENG:4000	MOD4863
2	18	70	011-12	120	$\begin{aligned} & \text { REVO22 } \\ & \text { ALL } \end{aligned}$	PW ENG:4000	MOD4863
2	18	90	001	001	REVO35		
2	18	90	002	001	$\begin{aligned} & \text { REVO25 } \\ & \text { ALL } \end{aligned}$		
2	18	95	001	110		CODE:0417	
2	18	95	002	110	$\begin{aligned} & \text { REVO33 } \\ & \text { ALL } \end{aligned}$	CODE:O417	
2	18	95	003	110	REVO33		
2	18	95	004	110	$\begin{aligned} & \text { REVO33 } \\ & \text { ALL } \end{aligned}$	CODE:O417	
2	19	00	001	001	REVO3 6		
2	19	00	002	001	$\begin{aligned} & \text { REVO36 } \\ & \text { ALL } \end{aligned}$		
2	19	10	001	001	REVO3 6		
2	19	10	002	001	$\begin{aligned} & \text { REVO3 } \\ & \text { ALL } \end{aligned}$		
2	19	20	OO1-LEBBU	001	REVO33 ALL	LIST OF OEB	\& FCOM B

2.00 .02

09 JUL 2008

	A310		FCOM	
	LIST	$\begin{array}{r} \text { : } \\ 0 F \end{array}$	MOD/MP/SB	AFFECTING THE MANUAL REVISION : 03
M				
V	REV	MOD	MP	TITLE
T	SB			VALIDITY
	033	5910	0	ELECTRICAL POWER - INSTALL SYSTEM PROVISION FOR INSTALLATION OF AN AC/DC STANDBY GENERAT HYDRO-ELECTRICAL UNIT ALL
	033	5911	1	ELECTRICAL POWER - INSTALL AN AC/DC STANDBY GENERATION HYDRO ELECTRICAL UNIT ALL
-	033	5917	7 -. - - - -	AIRBORNE AUXILLIARY POWER - STARTING EXTEND RELIGHT ALTITUDE ALL
0335918				FUSELAGE - APU AIR INTAKE - INSTALL FIXED DIVERTER AND MODIFY FLUID BARRIERS ALL
.	034	5944	4	GENERAL - CERTIFY AIRCRAFT FOLLOWING F.A.A. REQUIREMENTS (AS PART) ALL
	033	5953	$3 \text { - - - - - }$	$\begin{gathered} \text { AUTO FLIGHT - AP LOSS PROBABILITY - REPLACE } \\ \text { ALL } \end{gathered}$
	036	5994	4	POWER PLANT - INSTALL P.\& W. ENGINES 4152 - (ST7 ONLY) ALL
	033	6007		PNEUMATIC - ENGINE BLEED AIR SUPPLY SYSTEM MODIFY TRIGGERING THRESHOLD OF BLEED VALVE FAULT WARNING ALL
	033	6041	1	INDICATING/RECORDING SYSTEMS - ECAM INTRODUCE NEW SGU SOFTWARE ALL
	033	6106		AIR CONDITIONING - MODIFY PACK DISCHARGE TEMPERATURE LOW LIMIT IN MAX COOL MODE ALL
	033	6120	- - - - -	PNEUMATIC - ENGINE BLEED AIR SUPPLY SYSTEM INCREASE MINIMUM ENGINE IDLE ALL

2.00 .02

09 JUL 2008

	GENERAL INFORMATION	2.00 .03	
		PAGE 1	
	LIST OF NORMAL REVISIONS	REV 36	SEO 001

Revision Number	Issue Date	Date Filed	Initials
01	JUL 82		
02	DEC 82		
03	MAR 83		
04	OCT 83		
05	FEB 84		
06	JUN 84		
07	NOV 84		
08	MAR 85		
09	MAY 85		
10	OCT 85		
11	APR 86		
12	AUG 86		
13	DEC 86		
14	FEB 87		
15	DEC 87		
16	JUL 88		
17	DEC 88		
18	AUG 89		
19	MAR 90		
20	JAN 91		
21	JAN 92		
22	JUN 93		

Revision Number	Issue Date	Date Filed	Initials
23	FEB 94		
24	NOV 95		
25	OCT 96		
26	SEP 97		
27	AUG 98		
28	DEC 98		
29	FEB 2000		
30	FEB 2001		
31	MAR 2002		
32	FEB 2003		
33	JAN 2005		
34	MAR 2006		
35	MAR 2007		
36	MAY 2008		

Note 1: This list of normal revisions also applies to the QRH.
Note 2: The next normal revision 37 is scheduled by the $\quad \mathrm{R}$ beginning of 2009.

	GENERAL INFORMATION	2.00.03	
		PAGE 2	
	LIST OF NORMAL REVISION	REV 33	SE0 001

INTENTIONALLY LEFT BLANK

This Temporary Revision has been issued after REV N${ }^{\circ} 35$
Remove this TR only when instructed to do so by the FILING INSTRUCTIONS TEMPORARY REVISIONS and the LIST OF EFFECTIVE TEMPORARY REVISIONS.

VALIDITY : All aircraft

SUBJECT : CROSSWIND TAKEOFF PROCEDURE

REASONS FOR ISSUE 1 : This TR publishes performance penalty to be considered in case of takeoff with crosswind greater than 20 knots.

REASONS FOR ISSUE 2 : - Issue 2 provides a revised crosswind takeoff procedure in order to reduce the associated crosswind takeoff performance penalties.

- This issue also cancels and replaces TR 536-1 for affected aircraft (fitted with MOD 12011).
- This new procedure which is common for PW and GE engines leads to similar performance penalties on both engines. Therefore this issue also cancels and replaces TR 537-1 and 538-1.

INSTRUCTIONS :

Insert the following pages in the FCOM Vol 2 and update the RECORD OF TEMPORARY REVISIONS.
TR $N^{\circ} 535-2$ page 1 of 6 after the LIST OF EFFECTIVE TEMPORARY REVISION (LETR) in 2.00 .04
TR $N^{\circ} 535-2$ page 2 of 6 facing 2.03 .07 page 1
TR $N^{\circ} 535-2$ page 3 of 6 facing 2.03 .12 page 1
TR $N^{\circ} 535-2$ page 4 of 6 facing 2.10 .00 page $1 / 2$
TR $N^{\circ} 535-2$ page 5 of 6 after 2.10 .30 page $7 / 8$
TR $N^{\circ} 535-2$ page 6 of 6 facing 2.10 .40 page 1

	TEMPORARY REVISION ${ }^{\circ}$ 565-1	2.00.04	
		PAGE 0	
			JUL 07

This Temporary Revision has been issued after REV N ${ }^{\circ} 35$
Remove this TR only when instructed to do so by the FILING INSTRUCTIONS TEMPORARY REVISIONS and the LIST OF EFFECTIVE TEMPORARY REVISIONS.

VALIDITY : Aircraft fitted with SPERRY FMS

SUBJECT : Procedures and Techniques
Use of Sperry FMS, FMS Performance Charts

REASONS FOR ISSUE : This TR is issued to add a note indicating that, in specific cases, FMS MAX FL can be higher than Flight level limitations given in FCOM 2.01.20 page 3.

INSTRUCTIONS :

Insert the following pages in the FCOM Vol. 2 and update the RECORD OF TEMPORARY REVISIONS.
TR N° 565-1 page 1 of 2 after the LIST OF EFFECTIVE TEMPORARY REVISION (LETR) in 2.00.04
TR N° 565-1 page 2 of 2 facing 2.02.29 page 6

	TEMPORARY REVISION ${ }^{\circ}$ 599-1	2.00 .04	
		PAGE 0	
			FEB 08

This Temporary Revision has been issued after REV N${ }^{\circ} 35$
Remove this TR only when instructed to do so by the FILING INSTRUCTIONS TEMPORARY REVISIONS and the LIST OF EFFECTIVE TEMPORARY REVISIONS.

VALIDITY : All aircraft

SUBJECT : SOP Landing

REASONS FOR ISSUE : This temporary revision is issued in order to emphasize the importance of applying the Landing Standard Operating Procedure.
As a result, procedure and comments are expanded to provide the flight crew with applicable information on the autothrust, the ground spoilers and the autobrake.

INSTRUCTIONS :

Insert the following pages in the FCOM Vol 2 and update the RECORD OF TEMPORARY REVISIONS.
TR N ${ }^{\circ}$ 599-1 page 1 of 2 after the LIST OF EFFECTIVE TEMPORARY REVISION (LETR) in 2.00.04
TR $\mathrm{N}^{\circ} 599-1$ page 2 of 2 facing 2.03 .22 page 5

	TEMPORARY REVISION ${ }^{\circ}$ 066-1	2.00.04	
		PAGE 0	
			JUN 08

This Temporary Revision has been issued after REV N ${ }^{\circ} 36$
Remove this TR only when instructed to do so by the FILING INSTRUCTIONS TEMPORARY REVISIONS and the LIST OF EFFECTIVE TEMPORARY REVISIONS.

VALIDITY: All aircraft

SUBJECT : Radio altimeter(s) fault - systems lost

REASONS FOR ISSUE : This TR is issued to correct a misprint

INSTRUCTIONS :

Insert the following pages in the FCOM Vol 2 and update the RECORD OF TEMPORARY REVISIONS.
TR N° 606-1 page 1 of 2 after the LIST OF EFFECTIVE TEMPORARY REVISION (LETR) in 2.00.04
TR $\mathrm{N}^{\circ} 606-1$ page 2 of 2 facing 2.05 .34 page 8

	GENERAL INFORMATION	2.00 .04	
		PAGE 1	
	LIST OF TEMPORARY REVISIONS	REV 33	SEC 001

R Refer to the "List of effective temporary revisions" listing for effective TR issued after the current normal revision. This $R \quad$ listing is automatically sent and updated with each new TR.

	GENERAL INFORMATION	2.00.04	
		PAGE 2	
	LIST OF TEMPORARY REVISIONS	REV 33	SEQ 001

INTENTIONALLY LEFT BLANK

CODE	DESIGNATION
0001	Mod : $4801+4863+5875+6920+7468$
0002	Mod : $4801+6644+6702+6874+6920+8131$
0003	Mod : $3703+5435+5616+7088+11103$
0004	Mod : $4801+4863+5875+6920+7468$
0005	Mod : $(3791+6662)$ or $(3791+6662 /$ PW 4D1/4E1) or $(3791+6662 /$ PW4000 $)$ or $(3791+6967 /$ PW $4152)$ or ($3791+6662 / \mathrm{GE} 80 \mathrm{~A} 3$) or ($3791+6662 / \mathrm{GE}$ 80C2)
0006	Mod : $(4801+10806)$ or (MP S7988 $+4801+10806)$ or $(4801+7259+10806)$ or (MP S7988 + $4801+7259+10806)$
0007	Mod : $(3791+6662)$ or $(3791+6967)$ or $(3791+6662+6967)$
0008	Mod : $(4672+4978)$ or $(4672+4978+5051+6415)$
0009	Mod : $4801+6644+6874+6920+7468+8131$
0010	Mod : $3703+5435+5616+7088+7218$
0011	Mod : $(4941+5757+11899)$ or $(4941+5757+11900)$
0012	Mod: $: \begin{gathered}(4801+6644+6874+6920+8131+8342) \\ 8131+8342)\end{gathered}$ or $(4801+6644+6874+6920+7468+$
0013	Mod : $(3791+6662)$ or $(3791+6967)$ or $(3791+4801+6662)$ or $(3791+4801+6967)$ or $(3791+$ $4801+6662+6967)$
0014	Mod : 8260 or $(6195+10393)$ or $(8260+10393)$ or $(5051+6195+10393)$
0015	Mod : 8260 or $(6195+10393)$ or $(5051+6195+10393)$ or $(6195+8260+10393)$
0016	Mod : 4628 or 5697 or 6234 or ($4628+5697)$ or $(5697+6234)$
0017	Mod : $(5051+6368)$ or $(5051+6368+8260)$
0018	Mod : $4184+4801+6644+6874+6920+7468+8131+8342$
0019	Mod : $\left.\quad \begin{array}{l}(11592+12454) \\ (12454) \text { or }(12248+12455)\end{array}+12455\right)$ or $(12016+12454)$ or $(12016+12455)$ or $(12248+$
0020	Mod : 4628 or 5697 or 6234 or ($4628+5697)$ or $(5697+6234)$
0021	Mod : $4801+4863+5875+6920+7468$
0022	Mod : $(5051+6368)$ or $(6368+8260+10393)$
0023	Mod : $(4801+5051+6368)$ or $(4801+5051+6368+10393)$
0024	Mod : $3881+4801+6920+7468+7576+10806$
0025	Mod: $4801+4863+6920+7468$
0026	Mod : $(3703+6527)$ or $(3703+6527+7290)$
0027	Mod : 8976 or 8977 or $(6789+8976)$ or $(6789+8977)$ or $(6789+8976+8977)$
0028	Mod : $(3721+5443)$ or $(3721+6233)$ or $(3721+6591)$ or $(5443+6645)$ or $(6233+6645)$
0029	Mod : $(3881+4801+10806)$ or $(3881+4801+7576+10806)$
0030	STD or Mod : 4863 or UK
0031	Mod : $3703+5435+5616+7218$
0032	Mod : $(3703+6527+7218+8130+8469)$ or $(3703+5435+5616+7088+7218+8469)$
0033	Mod : $(5875+11365)$ or ($5875+11697)$
0034	GE 80C2A2/A8 or PW 4000 or Mod : (6393/GE 80A3) or (6375/PW 7R4)
0035	Mod : 8976 or 8977 or $(6789+8976)$ or $(4801+6789+8976)$ or $(4801+6789+8977)$ or $(6789+$ $8976+8977)$ or $(4801+6789+8976+8977)$
0036	Mod : $4801+4863+5875+6920+7468$

CODE	DESIGNATION
0037	Mod: $(5051+6368+8260)$ or ($6368+8260+10393)$
0038	Mod : $(3881+8260)$ or $(3881+6195+10393)$ or $(3881+8260+10393)$ or $(3881+5051+6195$ $+10393)$
0039	Mod: $4863+5443+8244+10848$
0040	$\begin{aligned} & \text { Mod }:(3881+5051+6368) \text { or }(3881+5051+6368+8260) \text { or }(3881+5051+6368+10393) \text { or } \\ &(3881+5051+5846+6368+11123) \end{aligned}$
0041	Mod: $(7460+7885)$ or $(7177+7460+7885)$
0042	Mod: 8260 or (6195 + 10393) or (8260 + 10393) or (5051 + $6195+10393)$
0043	Mod : $(4863+5443)$ or $(4863+6233)$ or ($4863+5443+6591)$
0044	STD or Mod : $(4863+5443)$
0045	Mod : $3703+5435+5616+6527+7088+7218+7659$
0046	Mod: $3881+4801+5910+8648+12134$
0047	Mod : 12025 or 12034 or 12043 or 12094 or 12339 or 12354
0048	Mod : 4672 or $(4672+8287)$ or $(4672+8287+8524)$
0049	STD or GE 80A3 or Mod : 3219 or (3219/GE 80A3) or (4863/GE 80C2A2) or ($4863+5443$) or ($4863+$ $5443 / \mathrm{GE} \mathrm{80CA} 2 / \mathrm{A} 8)$ or ($4863+6233 / 80 \mathrm{C} 2 \mathrm{~A} 2)$
0050	STD or GE 80C2
0051	STD or GE 80C2A8
0052	STD or Mod : $(4863+5443)$ or (4863 + $5443+8244)$
0053	STD or Mod : $(4863+5443+8244)$
0054	STD or Mod : $(4863+5443)$ or ($4863+6233$) or ($4863+6233+8244$)
0055	STD or GE 80A3 or Mod : 3219 or (3219/GE 80A3) or (4863/GE 80C2A2) or ($4863+5443$) or ($4863+$ $5443 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2)$ or $(4863+5443+5973)$ or ($4863+5443+5973 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2)$
0056	STD or GE 80A3 or Mod : 3219 or ($3219 / \mathrm{GE}$ 80A3) or (4863/GE 80C2A2) or (3219 + 6591) or ($4863+$ 5443) or ($4863+5443 / \mathrm{GE} 80 \mathrm{C} 2$) or ($4863+5443+6591 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2$) or ($4863+5443 / \mathrm{GE}$ 80C2A2/UK)
0057	STD or GE 80A3 or Mod : 3219 or ($3219 / \mathrm{GE} \mathrm{80A3}$) or ($4863 / \mathrm{GE}$ 80C2A2) or $(3219+6591$) or ($4863+$ $5443)$ or $(4863+5443 / \mathrm{GE} 80 \mathrm{C} 2)$ or $(4863+5443+6591 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2)$
0058	Mod : $(3881+6368)$ or (3881 + $5051+6368+6415)$
0059	Mod : 3219 or 6591 or ($3219+6591$)
0060	Mod: $3881+4801+5911+6368+11319$
0061	STD or Mod : (5388/PW4000) or (5388 + 6792)
0062	Mod : $(4863+5443 / \mathrm{GE} \mathrm{80C2})$ or ($4863+6233 / \mathrm{GE} \mathrm{80C2A} 2)$ or ($4863+5443+6591 / \mathrm{GE} \mathrm{80C2A} 2)$
0063	STD or Mod : (3219/GE 80A3) or (4863 + 5443/GE 80A3/80C2A2)
0064	Mod : 5443 or 6233 or (3219 + 6591) or ($5443+6591$)
0065	Mod : $2254+3881+4801)$ or $(2254+3881+4801+7576)$
0066	Mod: $(2254+3881+4801+10806)$ or $(2254+3881+4801+7576+10806)$
0067	Mod: $2254+3881+4801+6920+7468+7576$
0068	Mod: $2254+3881+4801+5910+8648+12134$
0069	Mod: $2254+3881+4801+6920+7468+7576+10806$
0070	Mod : 5124 or $(3703+5124)$ or $(3703+4008+5124)$
0071	Mod: $(3703+5616)$ or $(3703+5435+5616)$
0072	Mod: 4863 or (4801 + 4863)

$\mathfrak{S}_{\text {mimem }}^{\text {a310 }}$	GENERAL INFORMATION	2.00 .25	
		PAGE 3	
	LISt of equivalence codes	REV 36	SEO 001

CODE	DESIGNATION
0073	STD or PW 7R4 or Mod : (4863/PW 4E1) or (4801 + 4863/PW 4E1)
0074	GE 80C2 or Mod : or (4801/PW 4000) or (4863/GE 80C2A2) or (4801 + 4863/GE 80C2/PW 4000)
0075	STD or PW 7R4 or Mod : 4863 or (4863/PW 4E1) or (4801 + 4863) or (4801 + 4863/PW 4E1/4152)
0076	PW 4E1 or Mod : $4801+4863)$ or (4801 + 4863/PW 4152)
0077	STD or PW All
0078	GE 80C2 or Mod : 4801 or (4801/PW 4000/GE 80C2)
0079	GE 80C2 or Mod : (4801/PW 4000/GE 80C2A2)
0080	NGA, SIA or Mod : 4801/PW 4152/SIA
0081	Mod : $(3703+5435+7088+7218)$ or $(3703+5435+5616+7088+7218)$
0082	Mod : $(3703+5435+7218+7614)$ or $(3703+5435+5616+7218+7614)$
0083	Mod : 4863 or (4801 + 4863/GE 80C2A8)
0084	Mod : $3703+5435+5616+6527+7088+7218+7659$
0085	STD or GE All
0086	CY1,CY2 or (GE 80A3/CY1) or Mod : (4863/GE 80C2A2/CY2)
0087	CY2 or Mod : 4863/CY2
0088	PW 7R4 or PW 7R4E1/L
0089	STD or L
0090	Mod : $2254+3881+4801+6920+7576+10806$
0091	STD or PW 7R4 or GE 80A3 or (PW 4E1/L) or (GE 80A3/L)
0092	Mod : $(4801+4863 / \mathrm{PW} 4000)$ or (4801 + 4863/PW 4152/L)
0093	Mod : $(4801+4863 / \mathrm{GE} 80 \mathrm{C} 2)$ or (4801 + 4863/GE 80C2A2/L)
0094	Mod : $(3791+6967)$ or $(3791+5124 / \mathrm{GE} \mathrm{80A3})$ or $(3791+5616 /$ PW 4000) or $(3791+6662 / \mathrm{GE} \mathrm{80A3}$ /80C2A2) or ($3791+6662 /$ PW 4D1) or $(3791+6662 /$ PW 4000$)$ or $(3791+5124+6662 / \mathrm{GE}$ 80A3) or ($3791+5124+6662 /$ PW 4E1) or ($3791+5616+6662 /$ GE 80C2A2/A8) or (3791 $+5616+6662 /$ PW 4E1) or $(3791+5616+6662 /$ PW 4000$)$ or $(3791+5616+6967 /$ PW 4152 $)$
0095	Mod : 4978 or (4978 + 5051 + 6415)
0096	Mod: $3703+5435+5616+7088+7218$
0097	Mod : $(3881+6428)$ or $(3881+5388+6428+6792)$
0098	Mod : $(4801+6920)$ or ($4801 / \mathrm{MSN} 421,422)$
0099	Mod : $(4801+5697+6041)$ or $(4801+6041+6352)$
0100	Mod : (MP S5063 + 12134+12144 + 12291) or (6523+12134+12144+12291)
0101	Mod : $(4803+5562+6865)$ or $(4803+5562+6865+7576)$
0102	Mod : $(4801+4803+5562+6920+7576)$ or $(4801+4803+5562+6865+6920+7576)$
0103	Mod : 3219 or 6591
0104	Mod : $(4863+5443)$ or $(4863+6233)$
0105	Mod : $\underset{6234)}{(4209}+5913)$ or $(4209+5913+6234)$ or $(4209+5913+6352)$ or $(4209+5697+5913+$
0106	Mod : $(5697+5913)$ or $(5697+5913+6234)$
0107	Mod : $(5697+8960)$ or $(5697+5913+8960)$ or $(5697+6234+8960)$ or FDX
0108	Mod : $(4801+4803+5562+6865)$ or $(4801+4803+5562+7576)$ or $(4801+4803+5562+$ $6865+7576)$
0109	Mod : $(5846+6195+10393)$ or $(5846+8260+10393)$ or $(5051+5846+6195+10393)$

CODE	DESIGNATION
0110	Mod : $(4863+5443 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 8)$ or ($4863+6233 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2)$ or ($4863+5443+6591 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2)$
0111	Mod : 3219 or 6591 or ($3219+6591$)
0112	Mod: $\left.\begin{array}{rl}(3881+5051+5846+6368) \\ & 5846+6368+10393)\end{array}\right)(3881+5051+5846+6368+8260)$ or $(3881+5051+$
0113	Mod: $(3881+5846+6195)$ or $(3881+5846+6195+10393)$ or $(3881+5846+8260+10393)$ or $(3881+5051+5846+6195+10393)$
0114	Mod : $(5051+5846+6368+8260)$ or $(5846+6368+8260+10393)$
0115	Mod : $(4863+5443)$ or $(4863+6233)$ or $(4863+5443+6591)$
0116	Mod : $(4863+5443+8244)$ or $(4863+5443+10848)$
0117	Mod : $(4863+5443+10848)$ or $(4863+5443+8244+10848)$
0118	Mod : $3881+4801+5910+6256+8648+12134$
0119	Mod : $(4801+6920+8342)$ or $(4801+6920+7468+8342)$
0120	Mod : $(5697+6041)$ or $(5697+6865)$ or $(6041+6234)$ or $(5697+6041+6865)$ or $(6041+6234+$ 6865) or $(6041+6352+6865)$
0121	Mod : $(5697+6041)$ or $(5697+6865)$ or $(6041+6234)$ or $(5697+6041+6234)$ or $(5697+6041+$ $6865)$ or $(6041+6234+6865)$ or $(6041+6352+6865)$ or $(5697+6041+6234+6865)$
0122	Mod : $(5124+6662)$ or $(5124+6967)$ or $(5616+6662)$ or $(5616+6967)$
0123	Mod: $(5616+6662+7421)$ or $(5616+6967+7421)$
0124	Mod : 10264 or 11318 or (10264+11318)
0125	Mod : $(11320+11592)$ or $(11320+12016)$ or $(11320+12248)$ or $(11364+11592)$ or $(11364+$ $12016)$ or $(11364+12248)$ or $(11592+12044)$ or $(11592+12045)$ or $(12016+12044)$ or $(12016+12045)$ or $(12044+12248)$ or $(12045+12248)$
0126	Mod : $(4803+6865)$ or $(4803+7576)$ or $(4803+6865+7576)$
0127	Mod : $(6403+7483)$ or $(4357+6403+7483)$
0128	Mod : $(4357+6439+7483)$ or $(4357+6445+7483)$ or $(4357+6439+6445+7483)$
0129	Mod: $(6403+6445+7483)$ or $(4357+6403+6439+7483)$ or $(4357+6403+6445+7483)$ or $(6403+6439+6445+7483)$ or $(4357+6403+6439+6445+7483)$
0130	Mod : $(4978+6267)$ or $(4978+5051+6267+6415)$
0131	Mod : 6702 or ($3482+3779$)
0132	Mod : $(4672+13355)$ or $(4672+12304+13355)$ or $(4672+8287+12304+13355)$
0133	Mod : $(4672+12304)$ or $(4672+8287+12304)$ or $(4672+8287+8524+12304)$
0134	MSN 316, 318, 331
0135	FDX or MSN 425434441444482484522523
0136	Mod : $(6439+7483+12134)$ or ($6445+7483+12134)$
0137	PW All or (GE All/CSA)
0138	Mod : $(4803+5562+6865+12134)$ or $(4803+5562+6865+7576+12134)$
0139	Mod : 6365 or (5917 + 5918 + 6365)
0140	Mod : $(5336+6365)$ or (5336 + $5917+5918)$ or ($5336+5918+6365)$
0141	Mod : $(5336+6365)$ or $(5336+5917+5918)$ or $(5336+5917+5918+6365)$
0142	Mod : 5917 or 6365 or $(5917+5918)$ or $(5918+6365)$ or $(5917+5918+6365)$
0143	Mod : $(3703+6527+7415)$ or $(3703+5124+6527+7415)$
0144	Mod : $(4292+5057+5757)$ or $(4293+5143+5757)$ or $(4294+5144+5757)$

CODE	DESIGNATION
0145	Mod : $4801+4803+5562+6865+6920+7576+12134$
0146	Mod : $(4803+6865+12134)$ or $(4803+7576+12134)$ or $(4803+6865+7576+12134)$
0147	Mod : $(6727+6865+12134)$ or $(6269+6727+6865+12134)$
0148	Mod : 4941 or ($4941+5757)$
0149	Mod : $(6789+8976+11320+12248)$ or $(6789+8977+11364+12248)$
0150	Mod : $(11319+11592+11702)$ or $(11319+11702+12248)$
0151	Mod : $(4863+5443+10925)$ or $(4863+6233+10925)$
0152	Mod : $4863+5443+8244+10848+10925$
0153	MSN 539, 542
0154	Mod : $(11320+11454)$ or ($11364+11454)$
0155	$\begin{aligned} \text { Mod }: & (5697+11894) \text { or }(5913+11894) \text { or }(5697+5913+11894) \text { or }(5697+8960+12523) \text { or } \\ & (5697+5913+8960+11894) \end{aligned}$
0156	Mod : $(6007+12134)$ or $(6007+6120+12134)$
0157	Mod : 10264 or 11318 or ($5725+10264$) or ($5725+11318$)
0158	Mod : $(4801+4803+5562+6865+12134)$ or $(4801+4803+5562+7576+12134)$ or $(4801+$ $4803+5562+6865+7576+12134)$
0159	Mod : $(4801+7259+10806+12134)$ or (MP S7988 $+4801+7259+10806+12134)$
0160	Mod : $(4978+6267)$ or $(4978+5051+6267+6415)$
0161	Mod : $(3791+4978)$ or $(3791+4978+5051+6415)$
0162	Mod : 3881 or (2254+3881) or (3881 + 7576) or $(2254+3881+7576)$
0163	$\begin{aligned} \text { Mod : }: & (3791+6662) \text { or }(3791+6967) \text { or }(3791+4801+6662) \text { or }(3791+4801+6967) \text { or }(3791+ \\ & 6662+6967) \text { or }(3791+4801+6662+6967) \end{aligned}$
0164	Mod : $(3791+6662)$ or $(3791+6967)$ or $(3791+6662+6967)$
0165	Mod : 11320 or 11364 or ($6789+11320)$ or $(6789+11364)$ or $(6789+11320+11364)$
0166	Mod : $(11319+11592+11702)$ or $(11319+11702+12248)$ or $(11651+11702+12248)$
0167	Mod : $(5757+12454)$ or $(5757+11320+12455)$ or $(5757+11364+12454)$
0168	Mod : $(4672+12304)$ or $(4672+13355)$ or $(4672+8287+12304)$ or $(4672+12304+13355)$ or $(4672+8287+8524+12304)$ or $(4672+8287+12304+13355)$
0169	STD or Mod : 4672 or $(4672+5477)$ or $(4672+6777)$ or $(4672+7087)$ or $(4672+8003)$ or $(4672+$ $5477+6058)$ or $(4672+5477+6777)$ or $(4672+6777+7087)$ or $(4672+5477+12688+12689)$ or $(4672+6058+6777+7087+8003)$ or $(4672+5477+6058+6777+7087+8003)$ or $(4672+$ $5477+6777+12687+12688+12689)$ or $(4672+6058+6777+7087+8003+10113)$ or $(4672$ $+6058+6777+7087+8003+10113+10595+11743)$
0170	Mod $:$ 5477 or $(5472+5477)$ or $(5477+6777)$ or $(5477+6777+8002+8003)$ or $(6777+8002+$ $8003+10509)$ or $(5477+6058+6777+7087+8003)$ or $(5477+6058+8002+8003+$ $10113)$ or $(5477+6777+8002+8003+10113)$ or $(5477+6777+8002+8003+10509)$ or $(5472+5477+7087+8002+8003+10113)$ or $(54777+6058+6777+7087+8003+$ $10113)$ or $(5477+6777+7087+8002+8003+10113)$ or $(5477+6777+8002+8003+$ $10113+10509)$ or $(6777+7087+8002+8003+10113+10509)$ or $(5477+6058+6777$ $+7087+802+8003+10113)$ or $(5477+6058+6777+7087+8003+10113+10595)$ or $(5477+6777+7087+8002+8003+10113+10509)$ or $(5472+5477+6058+6777+$ $7087+8002+8003+10113)$ or $(54777+6058+6777+7087+8002+8003+10113+$ $10509)$ or $(5477+6058+67777+7087+8003+10113+10595+11743)$
0171	Mod $:$ $(5477+6777+8002+8003+10113+12688)$ or $(5477+6058+6777+7087+8003+$ $10113+12688)$ or $(54777+6777+7087+8002+8003+10113+12688)$ or $(5477+6777$ $+8002+8003+10113+10509+12688)$ or $(5477+6058+6777+7087+8002+8003$ $+10113+12688)$ or $(5477+6058+6777+7087+8002+8003+10509+12687)$ or $(5477+6058+6777+7087+8003+10113+12687+12688)$ or $(5477+6058+6777+$ $7087+8002+8003+10113+10509+12688)$

	GENERAL INFORMATION	2.00 .25	
		PAGE 6	
	LIST OF EQUIVALENCE CODES	REV 36	SEQ 001

	CODE	DESIGNATION
	0174	STD or Mod : $5429+5502+5528)$ or ($5502+5528+5757)$ or ($5429+5502+5528+5757)$
	0175	Mod: 4801 or ($4801+5429+5502+5528+5757)$
	0176	Mod : 4941 or ($4941+5429)$ or ($4941+5429+5528)$ or $(4941+5429+5502+5528)$
	0177	Mod : $4941+5429+5502+5528+5757$
	0178	Mod : $4801+4941+5429+5502+5528+5757$
	0179	Mod : $(6395+6662)$ or ($6395+6967$)
	0180	Mod : $(4801+10806)$ or $(4801+6874+10806)$ or $(4801+8131+10806)$ or $(4801+6874+8131$ +10806)
	0181	```Mod: : (11364 + 12248) or (6789 + 11320 + 11592) or (6789 + 11320 + 12248) or (6789 + 11364 +```
	0182	Mod : $(4863+5443)$ or $(4863+6233)$ or $(4863+5443+6233)$ or $(4863+5443 / \mathrm{AIC})$
	0183	Mod : $(4863+5443)$ or $(4863+6233)$ or $(4863+5443+6233)$
	0184	Mod : $(4863+5443+8244)$ or (4863+5443+10848) or $(4863+5443+8244+10848)$
	0185	Mod: $4941+5429+5502+5528+5757$
	0188	Mod: $(3703+7218+8130)$ or $(3703+7088+7218+8130)$ or $(3703+5435+7088+7218+$ $8130)$ or $(3703+5616+7088+7218+8130)$ or $(3703+5435+5616+7088+7218+$ $8130)$ or $(3703+5435+5616+7088+7218+8130 /$ HLF $)$
	0189	Mod : $3703+8130)$ or $(3703+5435+8130)$ or $(3703+5435+5616+7088+8130)$
R	0190	Mod : 8144 or ($5616+7088+8144)$
	0191	Mod : $(3219+6365+6591)$ or $(5443+5917+5918)$ or $(5917+5918+6233)$ or $(5443+5917+$ $5918+6591)$
	0192	Mod : $(3219+5917)$ or $(3219+6365)$ or $(3219+5917+5918)$ or $(3219+5917+5918+6365)$
R	0193	Mod: 7088 or (5616 + 7088)
R	0194	Mod : 8002 or 8003 or 10113 or 10509 or 10595 or 11743
	0195	Mod : 6789 or (4801 + 6789)
R	0196	Mod : 12972 or (5697+12972) or (FDX + $5697+12972)$
R	0197	Mod : 7088 or ($5616+7088$) or ($5616+6527+7088)$
R	0198	Mod: 8130 or $(7088+8130)$ or $(5616+7088+8130)$
R	0199	Mod: 8144 or (5616 + 8144) or (5616 + $7088+8144)$
R	0200	Mod: 11103 or ($5616+7088+11103$)
R	0201	Mod : 12304 or 12687 or 12688 or 12689 or 13310 or 13355
R	0202	Mod : $2254+3881+4801+5910+12134+12691$
R	0203	Mod: $2254+3881+4801+5910+8648+12134+12691$
R	0204	Mod: $3881+4801+5910+6256+8648+10554+12134+12691$
R	0205	Mod : $4801+10806+12134+12144+12691$
R	0206	Mod: $: \begin{gathered}(3881+5051+6368+12691) \text { or }(3881+5051+6368+8260+12691) \text { or }(3881+5051+ \\ 6368+10393+12691) \text { or }(3881+5051+5846+6368+11123+12691)\end{gathered}$
R	0207	Mod: $3881+4801+5911+6368+12134+12691$
R	0208	Mod: $(4801+5051+6368+12691)$ or $(4801+5051+6368+10393+12691)$
R	0209	Mod: $3881+4801+5917+5918+6368+12691$
R	0210	Mod: $4801+4803+5562+6865+6920+7576+12134+12691$
R	0211	Mod: $4803+6865+7576+12134+12691$
R	0212	Mod : $4801+5336+5917+5918+11318+12691$

R

CODE	DESIGNATION
0213	Mod : $7177+7460+12134+12691$
0214	Mod : 5875 or ($5875+12011+13336)$ or (5875/US)
0215	Mod: $\begin{aligned}: & (11319+11592+11702+13271) \text { or }(11319+11702+12248+13271) \text { or }(11651+11702 \\ & +12248+13271)\end{aligned}$
0216	Mod : $(6365+6368)$ or $(5917+5918+6365+6368)$
0217	Mod : $\underset{6368)}{(3881}+6365+6368)$ or $(3881+5917+5918+6368)$ or $(3881+5917+5918+6365+$
0218	Mod : $3881+4801+5917+5918+6368$
0219	Mod : $4292+4939+5057+5757+12248+12454$
0220	Mod : $(4941+11899)$ or $(4941+11900)$ or $(4941+5757+11899)$ or $(4941+5757+11900)$ or $(4941+5757+11899+11900)$
0221	Mod : $(3881+4801)$ or $(3881+4801+7576)$
0222	Mod : $2254+3881+4801+5910+8629$
0223	Mod : $(3881+4801+5911+6368+12134)$ or $(3881+4801+5911+6368+11319+12134)$
0224	Mod : $(10610+13173)$ or (10610 + 13214) or $(12085+13173)$ or $(12085+13214)$
0225	Mod: (MP S8559 + $10610+13173$) or (MP S8559 + $10610+13214$) or (MP S8559 + $12085+$ 13173) or (MP S8559 + $12085+13214)$
0227	Mod : $4801+8911+10806+12134+12144+12691$
0229	Mod : $(3791+5443)$ or $(3791+6233)$ or $(3791+6591)$
0233	Mod : $(5051+6599+6644)$ or $(5051+6605+6644)$
0234	$\begin{aligned} \text { Mod : }:(5051+6599+6644) \text { or }(5051+6605+6644) \text { or }(5051+6605+6644+13203) \text { or }(5051+ \\ 6599+6644+12785+13203) \text { or }(5051+6605+6644+12785+13203) \end{aligned}$
0235	Mod : $(3703+5435+5616+7088+8130)$
0236	Mod : $(5697+6041+6865+12134)$ or $(5697+6041+6234+6865+12134)$
0237	Mod : $4801+4941+5429+5502+5528+5757$
0240	Mod : $(3881+4801+5213)$ or $(3881+4801+7288)$
0242	$\begin{aligned} \text { Mod }: & 11320 \text { or } 11364 \text { or }(6789+6929+11320) \text { or }(6789+6929+11364) \text { or }(6789+8976+897 \\ & 11320) \text { or }(6789+6929+8976+11320) \text { or }(6789+6929+8977+11364) \text { or }(6789+8976\end{aligned}$ $+8977+11320+11364)$ or $(6789+6929+8976+8977+11320+11364)$
0245	Mod : 5443 or 6233 or 6591 or ($3219+6591$) or ($5443+6591$)
0246	Mod : $(3721+5443)$ or $(3721+6591)$ or $(6233+6645)$
0247	GE 80A3 or Mod : (6548 or 7588/GE) or ($6548+7174 / \mathrm{GE}$) or ($6548+7588 / \mathrm{GE}$) or ($7174+7588 / \mathrm{GE}$) or $(6548+7174+7588 / \mathrm{GE})$ or $(6548+7174+8246 / \mathrm{GE})$ or $(7174+7588+8246 / \mathrm{GE})$ or $(6548+$ $7174+7588+8246 / G E)$
0256	Mod : 11320 or 11364 or ($6789+11320)$ or ($6789+11364$)
0260	Mod : 8976 or $(6789+6929)$ or $(6789+8976)$ or $(6789+8977)$ or $(6929+8976)$ or $(6789+6929+$ 8976) or $(6789+6929+8977)$
0261	$\begin{aligned} \text { Mod : } & (6789+8976+11320+11592) \text { or }(6789+8977+11364+11592) \text { or }(6789+6929+8976 \\ & +11320+12248) \text { or }(6789+6929+8977+11364+11592) \end{aligned}$
0262	Mod : 11454 or (5953 + 11454) or $(5953+10402+11454)$
0263	Mod : $(5124+6789)$ or $(5616+6789)$ or $(6528+6789)$ or $(6764+6789)$ or $(5124+6789 / F D X)$ or ($6764+6789 /$ FDX)
0264	Mod : 11320 or 11364 or ($6789+11320)$ or ($6789+11364$)
0265	Mod : $(10610+11320)$ or $(10610+11364)$ or $(6789+10610+11320)$ or $(6789+11320+11364)$
0266	Mod : 11320 or 11364 or ($6789+11320$) or ($6789+11364$)

CODE	DESIGNATION
0267	Mod : $(5562+6865)$ or $(5562+7576)$ or ($5562+6865+7576)$
0268	Mod : $(4628+5562)$ or $(5562+5697)$ or $(5562+6234)$ or $(5562+5697+6234)$
0269	Mod : $(5562+5697+11899)$ or $(5562+5697+11900)$ or $(5562+6234+11899)$ or $(5562+6234$ $+11900)$ or $(5562+5697+6234+11899)$ or $(5562+5697+6234+11900)$ or $(5562+$ $5697+11899+11900)$
0270	Mod : 5443 or 6233 or (3219 + 6591) or ($5443+6591$)
0271	Mod : 12480 or (3219+12480) or (6591+12480) or ($3219+6591+12480)$
0272	Mod : $(4801+5336+5917+5918+10264)$ or $(4801+5336+5917+5918+11318)$
0273	Mod : $4801+5336+5917+5918+10264$
0274	STD or Mod : 6269 or 6727 or 6865 or 7037 or ($6269+6865$)
0275	Mod : $\underset{7037}{(6269}+6727)$ or $(6727+6865)$ or $(6865+7037)$ or $(6269+6727+6865)$ or $(6727+6865+$
0276	Mod : $(5697+6041+12691)$ or $(6041+6352+12691)$
0293	Mod : (MP S5063 + 5910 + 5911) or (5910 + 5911 + 6523)
0294	Mod : $(4536+$ MP S5063 + 5910 + 5911) or ($4536+5910+5911+6523)$
0295	Mod : $(3881+6368)$ or $(3881+5388+6368+6792)$
0296	Mod : $(3881+5910+5911+6368)$ or (3881 + $4705+5388+5910+5911+6368+6792)$
0297	Mod : $3881+4801+5910+6368+6428$
0298	Mod : $3881+4801+5910+5911+6368$
0300	Mod : $3881+5910+5911+6368+6428$
0301	Mod : $(3881+5388+5910+5911+6368)$ or $(3881+4705+5388+5910+5911+6368)$
0302	Mod: $3881+4801+5910+5911+6368+6428$
0303	Mod: $3881+5910+5911+6368+6428+8648$
0304	Mod : $3881+4801+5388+6368+6428+6792$
0305	Mod: $\left.: \begin{array}{l}(3881+4801+5910+5911+6368+6428) \\ 6368+6428)\end{array}\right)(3881+4801+5388+5910+5911+$
0306	Mod : $3881+4801+5910+5911+6368+6428+8648$
0307	Mod: $\left.: \begin{array}{rl}(3881+4801+5910+5911+6368+6428+8648) \\ 5911+6368+6428+8648)\end{array}\right)(3881+4801+5388+5910+$
0308	Mod : $3881+4705+5388+5910+5911+6368+6792+8648$
0309	Mod : $3881+4801+5388+5910+5911+6368+6428+6792$
0310	Mod : $3881+4801+5388+5910+5911+6368+6428+6792+8648$
0311	Mod : $3881+4705+5388+5910+5911+6368+6428+6792+8648$
0312	Mod : 3219 or 6591 or ($3219+6591$)
0313	Mod : 3219 or 6591 or ($3219+6591$) or (3219/UK)
0316	Mod : $(4863+5443+10848)$ or $(4863+5443+8244+10848)$
0319	PW ALL or Mod : 4863 or (GE ALL/CSA)
0321	Mod : 4863 or (4801 + 4863)
0322	Mod : $(4863 / \mathrm{GE} \mathrm{80C2A} 2)$ or $(4801+4863)$ or ($4801+4863 / \mathrm{GE} \mathrm{80C2A2})$
0323	Mod : 5124 or 6395 or (5124+6395)
0324	Mod : 4863 or (4863 + 5124) or ($4863+5616$) or $(4863+6528)$ or $(4863+8130)$
0325	STD or Mod : 6269 or 6727 or 6865 or 7037 or ($6269+6865$)

CODE	DESIGNATION
0326	Mod : $(6269+6727)$ or $(6269+7037)$ or $(6727+6865)$ or $(6865+7037)$ or $(6269+6727+6865)$ or $(6727+6865+7037)$
0327	Mod : 4939 or (4939 + 5229) or (4939+5606)
0328	Mod : $(5562+11899)$ or $(5562+11900)$ or $(5562+11899+11900)$
0329	Mod : $(4628+11899)$ or $(4628+11900)$ or $(5697+11899)$ or $(5697+11900)$ or $(6234+11899)$ or $(6234+11900)$ or $(4628+11899+11900)$ or $(5697+11899+11900)$ or $(6234+11899+$ $11900)$
0330	Mod : $3881+4801+5911+6368+12134$
0331	Mod : $2254+3881+4801+5507+5910$
0332	Mod : $2254+3881+4801+5910+8648$
0333	Mod : $2254+3881+4801+5910+8629+8648$
0334	Mod : $2254+3881+4801+5507+5910+8648$
0335	Mod : $(6599+6702)$ or $(6605+6702)$ or $(3482+3779+6599)$ or $(3482+3779+6605)$
0336	Mod : 4628 or 5697 or 6234 or $(4628+5697)$ or $(5697+6234)$
0337	Mod : 6794 or 7019 or 7122 or 7402 or 7787 or MSN 425434441444482484522523
0338	Mod : $(4801+5562+6865+6920)$ or $(4801+5562+6920+7576)$
0339	Mod : $(7172+11899)$ or $(7172+11900)$ or $(7172+11899+11900)$
0340	Mod : PW4E1/(11320 or 11364 or 12044 or 12045)
0341	Mod : DLH/(11320 or 11364 or 12044 or 12045)
0342	FDX or MSN 162217224251260425434441444448482484522523550551672
0343	Mod : $(5697+6041)$ or $(5697+6865)$ or $(6041+6234)$ or $(5697+6041+6865)$ or $(6041+6234+$ $6865)$ or $(6041+6352+6865)$ or $(5697+6041+6234)$ or $(5697+6041+6234+6865)$
0344	Mod : $7032+$ MPS8559) or (8976 + MPS8559) or (8977 + MPS8559)
0345	Mod : 6365 or $(5917+5918)$ or $(5918+6365)$ or $(5917+5918+6365)$
0346	Mod : $(6365+12819)$ or $(5917+5918+12819)$ or $(5918+6365+12819)$ or $(5917+5918+6365$ + 12819)
0347	Mod : $4801+4863+5875+6920$
0348	Mod : $(5443+11974)$ or $(5443+11480+11974)$ or $(5443+6591+11480+11974)$
0349	Mod : $(5443+11480+11894)$ or $(6233+11480+11894)$
0350	Mod : $(5443+11894+11974)$ or $(5443+11480+11894+11974)$ or $(5443+6591+11480+$ $11894+11974)$
0351	Mod : $(4801+4863 /$ PW 4000) or ($4801+4863 / \mathrm{CSA} / \mathrm{PW4156A})$
0352	Mod : 4863 or $(4863+5124)$ or $(4863+5616)$ or $(4863+6528)$ or $(4863+8130)$ or $(4863+5124+$ 6528)
0353	Mod : 4863 or $(4863+5124)$ or $(4863+5616)$ or $(4863+6528)$ or $(4863+8130)$ or $(4863+5616+$ 8130)
0355	Mod : $(4863+5443)$ or $(4863+6233)$ or $(4863+5443 / \mathrm{AIC})$
0356	STD or GE 80A3 or Mod : 3219 or (3219/GE 80A3) or (4863/GE 80C2A2) or ($3219+6591$) or ($4863+$ 5443) or $(4863+5443 / \mathrm{GE} 80 \mathrm{C} 2)$ or $(4863+5443 / \mathrm{PW} 4152)$ or $(4863+5443+6591 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2)$ or (4863 + $5443 /$ AIC/PW 4152)
0357	STD or GE 80A3 or Mod : 3219 or (3219/GE 80A3) or (4863/GE 80C2A2) or ($3219+6591$) or ($4863+$ $5443)$ or ($4863+5443 / \mathrm{GE} 80 \mathrm{C} 2)$ or $(4863+5443 / \mathrm{PW} 4152)$ or $(4863+5443+6591 / \mathrm{GE} 80 \mathrm{C} 2 \mathrm{~A} 2)$ or ($4863+5443 / \mathrm{GE}$ 80C2A2/UK) or ($4863+5443 /$ AIC/PW 4152)
0358	STD or GE 80A3 or Mod : 3219 or (3219/GE 80A3) or (4863/GE 80C2A2) or ($4863+5443$) or ($4863+$ $5443 / \mathrm{GE} \mathrm{80C2A} 2)$ or $(4863+5443 / \mathrm{GE} \mathrm{80C2A8})$ or $(4863+5443+5973)$ or $(4863+5443+5973 / \mathrm{GE}$ 80C2A2)
0359	Mod : 4863 or (4863 + 5443)

CODE	DESIGNATION
0361	Mod : 4863 or (4863/AIC)
0362	Mod : (4863/GE 80C2) or (4863/AIC/GE 80C2A2)
0363	Mod : $(4863+6297)$ or $(4863+6297 /$ AIC $)$ or $(4863+6297 / \mathrm{RJA})$
0364	Mod : 4801 or (4801 + MSN 448)
0365	STD or MSN 267
0366	STD or Mod : $(4801+6920)$ or ($4801+6920+7468+8342)$
0367	Mod : $(4801+6920+8342)$ or $(4801+6920+7468+8342)$ or $(4801+6920+7468+8342 /$ ARG $)$
0368	Mod : $(4801+6920+7468)$ or $(4801+6920+7468 /$ AFL $)$
0369	Mod : $(4801+6920+8342)$ or $(4801+6920+7468+8342)$
0370	Mod : $(5757+11320+11454)$ or $(5757+11364+11454)$
0376	Mod : PW 4000 or (PW 4152/AIC)
0377	Mod : UAE or (GE 80C2A8/UAE)
0378	Mod : $(4863+5443)$ or $(4863+6233)$ or $(4863+5443 /$ PIA $)$
0379	Mod : $(4863+5443+10848)$ or $(4863+5443+10848 /$ PIA $)$ or $(4863+5443+8244+10848)$
0380	Mod : $(4863+5443+8244)$ or $(4863+5443+8244 /$ PIA $)$
0381	STD or GE 80A3 or Mod : 3219 or (3219/GE 80A3) or (4863/GE 80C2A2) or ($4863+5443$) or $(4863+$ $5443 / \mathrm{GE} \mathrm{80CA} 2 / \mathrm{A} 8)$ or $(4863+6233 / 80 \mathrm{C} 2 \mathrm{~A} 2)$ or $(4863+5443 / \mathrm{PIA})$
0382	Mod : $(4863+5443+10848)$ or ($4863+5443+8244+10848)$
0383	Mod : $(3219+5917)$ or $(3219+6365)$ or $(3219+5917+5918)$ or $(3219+5917+5918+6365)$ or $(3219+5918+6365)$
0384	Mod : 6599 or 6605 or $(6599+12557)$ or ($6599+12715$) or $(6605+12557)$ or $(6605+12715)$
0385	Mod : $(5051+6599)$ or $(5051+6605)$ or $(5051+6599+12557)$ or $(5051+6605+12557)$ or $(5051$ $+6599+12715)$ or $(5051+6605+12715)$
0386	Mod : $(5051+6599+6644+12557)$ or $(5051+6605+6644+12557)$ or $(5051+6599+6644+$ 12715) or $(5051+6605+6644+12715)$
0387	Mod : $(5051+6415+6599+6644+12557)$ or $(5051+6415+6599+6644+12715)$
0388	Mod : $(4705+5911+12557)$ or $(4705+5911+12715)$
0389	Mod : 6528 or 5616 or 7088 or ($7088+5616$)
0390	Mod : 7088 or 8144 or 8616 or 11103
0391	MSN 162217224251260
0392	Mod : $(5443+11894+12259)$ or $(6233+11894+12259)$
0393	Mod : $\left.\begin{array}{rl}(5443+11974+12259) \\ 11974+12259)\end{array}\right)$ or $(5443+11480+11974+12259)$ or $(5443+6591+11480+$
0394	Mod : $(5443+11480+11894+12259)$ or $(6233+11480+11894+12259)$
0395	Mod : $(5443+11480+11894+11974+12259)$ or $(5443+6591+11480+11894+11974+$ 12259)
0396	Mod : $(3703+5435+5616+7088+7218)$ or $(3703+5435+5616+7088+7218+7614)$
0397	Mod : $(3703+5435+5616+8144)$ or $(3703+5435+5616+7088+8144)$
0398	Mod : $(4801+4863)$ or $(4801+4863 / \mathrm{CSA})$
0399	Mod : $(5336+6365+11318)$ or $(5336+5917+5918+11318)$ or $(5336+5918+6365+11318)$
0400	Mod : $(5336+6365+11318)$ or $(5336+5917+5918+11318)$ or $(5336+5918+6365+11318)$ or $(5336+5917+5918+6365+11318)$
0401	Mod : $(3881+4801+5910+6256) /$ MSN 434484
0402	Mod : $(3881+4801+5910+6256+8648) /$ MSN 522523
0403	Mod : $(2254+3881+4801+5910$ + 8648)/MSN 425441444482

CODE	DESIGNATION
0404	Mod : $(5757+12248+12454)$ or ($4293+4939+5143+5757+12248+12454)$
0405	Mod : $(5757+11320)$ or $(5757+11364)$ or ($5757+11320+11364)$
0406	Mod : $(4292+5057+5757+11320)$ or $(4292+5057+5757+11320+11364)$
0407	Mod : 6528 or 5616 or 7088 or ($5616+7088)$ or ($6527+6528$) or ($5616+6527+7088)$
0408	Mod : 5616 or 7088 or 8144 or 11103 or ($5616+7088$) or $(5616+8144)$ or $(5616+7088+11103)$
0409	Mod : 5616 or 7088 or 8144 or 11103 or ($5616+7088$)
0410	Mod : 6365 or ($5918+6365$) or $(5917+5918)$ or $(5917+5918+6365)$
0411	Mod : 5917 or 6365 or ($5917+5918)$ or $(5918+6365)$ or $(5917+5918+6365)$
0412	Mod : 5124 or 5616 or $(5124+6527)$ or $(5124+6527+6528)$
0413	Mod : Std or 8130 or $(5616+7088+8130)$
0414	Mod : 5616 or 7088 or 8144 or 11103 or $(5616+7088)$ or $(5616+8144)$ or $(5616+7088+8144)$ or ($5616+7088+11103$)
0415	Mod : 7088 or 8130 or $(5616+7088)$ or $(7088+8130)$ or $(5616+7088+8130)$
0416	Mod : $(5875+11760)$ or ($5875+11760) / \mathrm{SS})$
0417	Mod : 11320 or 11364 or 12044 or 12045 or 12454 or 12455
0418	Mod : $(11592+12454)$ or (11592+12455) or ($12248+12454)$ or (12248+12455)
0419	Mod : 11592 or 12016 or 12248 or ($11320+11592$) or $(11320+12016)$ or $(11320+12248)$ or $(11364+11592)$ or $(11364+12016)$ or $(11364+12248)$ or $(11592+12044)$ or $(11592+$ $12045)$ or $(12016+12044)$ or $(12016+12045)$ or $(12044+12248)$ or $(12045+12248$
0420	Mod : $(5124+6789)$ or $(5616+6789)$ or $(6528+6789)$ or (6764+6789) or $(5124+6528+6789)$
0421	$\begin{aligned} \text { Mod : } & (3881+5846+6195) \text { or }(3881+5051+5846+6195) \text { or }(3881+5846+6195+10393) \text { or } \\ & (3881+5846+8260+10393) \text { or }(3881+5051+5846+6195+6415) \text { or }(3881+5051+ \\ & 5846+6195+10393)\end{aligned}$
0422	Mod : $(3881+6368)$ or $(3881+5051+6368+6415)$ or $(3881+5051+6368+6415+8260)$
0423	Mod : $(5697+11894)$ or $(5913+11894)$ or $(5697+5913+11894)$ or $(5697+8960+11894)$ or $(5697+8960+12523)$ or $(5697+5913+6234+11894)$ or $(5697+5913+8960+11894)$ or $(5697+6234+8960+11894)$ or $(4209+5697+5913+6234+11894)$
0424	Mod : $(3219+12480)$ or ($3219+6591+12480)$
0425	Mod : 8260 or $(5051+6195)$ or $(6195+10393)$ or $(5051+6195+10393)$ or $(6195+8260+10393)$
0426	Mod : $(5051+6368)$ or $(5051+6368+8260)$ or $(5051+6368+6415+8260)$
0427	Mod : 6195 or 8260 or $(6195+10393)$ or $(8260+10393)$ or $(5051+6195+6415)$ or $(5051+6195$ + 10393)
0428	Mod : $(3219+6591+11480+12259)$ or $(3219+6591+11480+12259+12480)$
0429	Mod : $(4863+11320)$ or $(4863+12044)$ or $(4863+11320+12044)$ or $(4863+11320+11364+$ 12044)
0430	Mod : $(4863+11320)$ or $(4863+12044)$ or $(4863+11320+12044)$
0431	Mod : 12785 or (5051 + 6415 + 12785) or ($5051+6605+12785)$
0432	Mod : $(6007+12134+12691)$ or $(6007+6120+12134+12691)$
0433	Mod : $6007+6120+7177+12134+12691$
0434	Mod : 11320 or 11364 or 12044 or 12045 or ($11320+12044$) or (11364+12045)
0435	$\begin{array}{\|l} \text { Mod }:(3703+5435+5616+7088) \text { or }(3703+7088+7218+13157) \text { or }(3703+5435+5616+ \\ 7088+7218) \text { or }(3703+5435+5616+7088+7218+7614) \end{array}$
0436	$\begin{aligned} & \text { Mod : } 12691 \text { or }(6269+12691) \text { or }(6727+12691) \text { or }(6865+12691) \text { or }(12134+12691) \text { or }(6727+ \\ &6865+12691) \text { or }(6865+7037+12691) \text { or }(6727+6865+7037+12691) \text { or }(6727+6865\end{aligned}$ $+12134+12691$)

CODE	DESIGNATION
0437	Mod : 12691 or $(6269+12691)$ or $(6727+12691)$ or $(6865+12691)$ or $(12134+12691)$ or $(6865+7$ $+6865+7037+12134+12691)$
0438	Mod : $(3219+12691)$ or $(3219+12134+12691)$
0439	Mod : $(5443+12691)$ or $(3219+6591+12691)$ or $(5443+12134+12691)$ or $(3219+6591+$ $12134+12691)$
0440	Mod : $(3219+6591+12480+12691)$ or $(3219+6591+12134+12480+12691)$
0441	Mod : $(3881+12691)$ or $(3881+12134+12691)$
0442	Mod : $(2254+12691)$ or $(2254+12134+12691)$
0443	Mod : $(5910+12691)$ or $(5910+12134+12691)$
0444	Mod : $2254+3881+5910+12691$
0445	Mod : $3881+4801+5910+12691$
0446	Mod: $7177+7460+7885+12134+12691$
0447	Mod : 5443 or 6233 or 6591 or $(3219+6591)$ or $(5443+6591)$ or $(3219+12480)$ or $(3219+6591$ + 12480)
0448	Mod : 11320 or 11364 or 12044 or 12045 or (11320 + 12044)
0449	Mod : $(4863+11320)$ or $(4863+11364)$ or $(4863+12044)$ or $(4863+12045)$ or $(4863+11320+$ $12044)$ or $(4863+11364+12045)$ or $(4863+11320+11364+12044)$
0450	Mod : $(4863+11320)$ or $(4863+12044)$ or $(4863+11320+12044)$ or $(4863+11364+12045)$
0451	Mod : $10800+11318+11695+12691$
0452	Mod : $4801+7259+10806+12134+12691$
0453	Mod : $(5443+12691)$ or $(3219+6591+12691)$
0454	Mod : 5917 or 6365 or $(5917+5918)$ or $(5918+6365)$ or $(5917+5918+6365)$
0455	Mod : $(6041+12691)$ or ($6041+6865+12691)$
0456	Mod : $(5697+6041+12691)$ or $(5697+6865+12691)$ or $(6041+6234+12691)$ or $(5697+6041$ $+6234+12691)$ or ($5697+6041+6865+12691$) or $(6041+6234+6865+12691)$ or $(6041+6352+6865+12691)$ or $(5697+6041+6234+6865+12691)$
0457	Mod : $(2254+3881+12691)$ or $(2254+3881+12134+12691)$
0458	Mod : $(3881+4801+5910+12691)$ or ($3881+4801+5910+12134+12691)$
0459	Mod : $(2254+3881+5910+12691)$ or $(2254+3881+5910+12134+12691)$
0460	Mod : $4357+5944+6041+6403+6445$
0461	Mod : $(5944+6041+6403+6445+7483)$ or $(4357+5944+6041+6403+6445+7483$
0462	Mod : $5944+6041+6403+6445+7483+12134$
0463	Mod : $4801+4803+5562+6865+7576+12134+12691$
0464	Mod : $(10264+12691)$ or (11318 + 12691)
0465	Mod : $(10264+12691)$ or $(11318+12691)$ or $(5725+10264+12691)$ or $(5725+11318+12691)$
0466	Mod : $(5876+12259)$ or $(5723+5876+12259)$
0467	Mod : $(5443+5723+5876+11480+12259)$ or $(5443+5723+5876+7899+11480+12259)$
0468	$\begin{aligned} \text { Mod }: & (3219+5723+11480+12259) \text { or }(3219+5876+11480+12259) \text { or }(3219+5723+5876 \\ & +11480+12259)\end{aligned}$
0469	Mod : $(5443+5723+5876+11894+12259)$ or $(5443+5723+5876+7899+11894+12259)$ or $(5723+5876+6233+7899+11894+12259)$
0470	Mod : $(5443+5723+5876+11974+12259)$ or $(5443+5723+5876+7899+11974+12259)$ or ($5443+5723+5876+11480+11974+12259)$ or $(5443+5723+5876+7899+11480$ $+11974+12259)$
0471	Mod : $(5443+12259+12972)$ or $(5443+5723+5876+7899+12259+12972)$

CODE	DESIGNATION
0472	Mod: $\left.\begin{array}{rl}(3219+5723+5876+6591+11480+12259) \\ 12259+12480)\end{array}\right)$ or $(3219+5723+5876+6591+11480+$
0473	Mod : $(3219+5723+5876+11480+11894+12259)$
0474	$\begin{aligned} \text { Mod }: & (5443+5723+5876+11480+11894+12259) \text { or }(5723+5876+6233+11480+11894 \\ & +12259) \text { or }(5443+5723+5876+7899+11480+11894+12259) \end{aligned}$
0475	Mod : $(3219+5723+5876+11480+12259+12480)$
0476	$\begin{aligned} \text { Mod }: & (5443+5723+5876+11894+11974+12259) \text { or }(5443+5723+5876+7899+11894+ \\ & 11974+12259) \end{aligned}$
0477	$\begin{aligned} \text { Mod : } & (5443+5723+5876+11480+11894+11974+12259) \text { or }(5443+5723+5876+6591+ \\ & 11480+11894+11974+12259) \text { or }(5443+5723+5876+7899+11480+11894+11974 \\ & +12259)\end{aligned}$
0478	Mod : $(5443+5723+5876)$ or $(5443+5723+5876+7899)$
0479	Mod : $(3219+5723+11480)$ or ($3219+5723+5876+11480)$
0480	Mod : $(5443+5723+5876+11480)$ or $(5443+5723+7899+11480)$ or $(5443+5723+5876+$ $7899+11480)$
0481	Mod : $(5443+5723+5876+11894)$ or $(5443+5723+5876+7899+11894)$
0482	Mod : $(5443+5723+5876+11480+11974)$ or $(5443+5723+5876+7899+11480+11974)$
0483	Mod : $(5443+5723+5876+11480+11894)$ or $(5443+5723+5876+7899+11480+11894)$
0484	Mod : $(5443+5723+5876+11480+11894+11974)$ or $(5443+5723+5876+7899+11480+$ $11894+11974)$
0485	Mod : $3881+4801+5910+6256+8648+10554+12134$
0486	Mod : $(3881+4801+5910+6256+10554) / \mathrm{MSN} 434484$
0487	Mod : $3881+4801+5910+6256+8648+10554) /$ MSN 522523
0488	Mod : $3881+4801+5910+6256+8648+10554$
0489	Mod : $2254+3881+4801+5507+5910+8648+10554$
0490	Mod : $(3791+4541)$ or $(3791+4801)$
0491	Mod : 3503 or 4541 or 4801 or ($4801+6536)$
0492	Mod : $(4801+12557)$ or $(4801+6536+12557)$
0493	Mod : $3881+5051+5846+6368+12691$
0494	Mod : $3881+4801+5911+6368+12134+12691$
0495	Mod : $3881+4801+5917+5918+6368+12691$
0496	Mod : $4801+5336+5917+5918+11318+12691$
0497	$\begin{aligned} \text { Mod }: & (4801+4803+5562+6865+6920) \text { or }(4801+4803+5562+6920+7576) \text { or }(4801+ \\ & 4803+5562+6865+6920+7576) \end{aligned}$
0498	Mod : $(5697+11894+13095+13174)$ or $(5913+11894+13095+13174)$ or $(5697+5913+$ $11894+13095+13174)$
0499	Mod : $3881+4801+5910+8648$
0500	Mod : $3881+4801+5910+8648+12134$
0501	Mod : $2254+3881+4801+5910+8629+8648$
0502	Mod : $2254+3881+4801+5910+8648+12134$
0503	Mod : $2254+3881+4801+5507+5910+8648+10554+12134$
0504	STD or Mod : $(5051+6415)$ or $(12785+13203)$ or $(5051+6415+12785+13203)$
0505	$\begin{aligned} \text { Mod : } & (5051+6599) \text { or }(5051+6605) \text { or }(5051+6599+12785+13203) \text { or }(5051+6605+12785 \\ & +13203) \end{aligned}$

CODE	DESIGNATION
0506	Mod : $(3703+5124+5435+7088)$ or $(3703+5435+5616+7088)$ or $(3703+7088+7218+$
0203B	STD or Mod : 5757
0203D	Mod : $(4293+5143)$ or $(4293+5143+5757)$ or $(4293+5143+5144+5757)$
0203G	Mod : $(4293+5143+5757)$ or $(4293+5143+5144+5757)$
0203H	Mod : 4294 or ($4294+5757$)
02031	STD or Mod : 5757 or (4294+5757+8415) or (4294+5144+5757+8415)
0203K	STD or Mod : 5757 or $(4294+5757)$ or $(5144+5757)$ or $(4294+5757+8415)$ or $(4294+5144+$ $5757+8415)$
0214B	Mod : 5443 or 6233 or 6591 or ($3219+6591$) or ($5443+6591$)
0214D	Mod : 5443 or ($3219+6591$) or ($5443+6591$)
0219B	Mod : 6789 or ($4672+6789$)
0219C	Mod : 6789 or ($4801+6789$)
0219E	Mod : 3791 or (3791 + 4801)
0219G	Mod : $(5124+6789)$ or $(5616+6789)$ or $(6528+6789)$ or $(6764+6789)$ or $(5124+6528+6789)$
02191	Mod : (PW 7R4D1/3791 + 6662) or (GE 80A3/3791 + 6662) or (GE 80C2A2/3791 + 4863 + 6662) or $(3791+5124+6662)$ or $(3791+6662+6827)$ or (GE 80A3/3791 $+5124+6662)$ or (PW $4000 / 3791+4863+6662$) or (PW 7R4E $1 / 3791+5124+6662$) or (PW 7R4E1/3791 $+4863+$ $5616+6662$) or (PW 4000/3791 + 4863 + 5616 + 6662) or (GE 80A3/3791 + 5124 + $6662+$ 6827) or (GE 80C2A2/3791 $+4863+5616+6662$) or (GE 80C2A8/3791 $+4863+5616+$ $6662)$ or $(3791+4863+5616+6967)$ or (PW 4152/3791 $+4863+5616+6967)$ or $(3791+$ $4863+6662+6967)$ or $(3791+4863+5916+6662+6967)$
0219M	STD or Mod : 4801
0219N	Mod : $(3791+6967)$ or $(3791+6662)$
0219P	Mod : $(3791+4801+6662)$ or $(3791+4801+6967)$
02190	Mod : $(3791+6662+7421)$ or $(3791+6967+7421)$
0219R	Mod : $(3791+6662)$ or $(3791+6967)$ or $(3791+5124+6662)$ or $(3791+5124+6967)$ or $(3791+$ $5616+6662)$ or $(3791+5616+6967)$
0219S	Mod : 6662 or 6967 or ($6662+6827$) or $(6827+6967)$
0219T	Mod : 6662 or 6967
0219 U	Mod : $(6662+7421)$ or $(6967+7421)$
0219V	Mod : $(5735+6662)$ or $(5735+6967)$
0219W	Mod : $(5124+6662)$ or $(5124+6967)$ or $(5616+6662)$ or $(5616+6967)$ or $(5616+6662+6967)$
0219X	Mod : $(5616+6662+7421)$ or $(5616+6967+7421)$
0219Y	Mod : $(5091+6662)$ or $(5091+6967)$
$0219 Z$	Mod : $(6395+6662)$ or $(6395+6967)$
0219AA	Mod : $(5124+6662)$ or $(5124+6967)$
0219AB	Mod : $(4863+6662)$ or $(4863+6967)$ or $(4863+6662+6967)$
0219AC	Mod : $(4863+5616+6662)$ or $(4863+5616+6967)$ or $(4863+5616+6662+6967)$
0219AD	Mod : $(4863+6662+7421)$ or $(4863+6967+7421)$
0219AE	Mod : $(3791+6662)$ or $(3791+6967)$ or $(3791+4672+6662)$ or $(3791+4672+6967)$ or $(3791+$ $4672+6662+6967)$
0219AF	Mod : $(3791+6662)$ or $(3791+6967)$ or $(3791+6662+6967)$
0219AH	Mod : 8976 or 8977 or $(6789+8976)$ or $(6789+8977)$ or $(6789+8976+8977)$
0306C	Mod : $(3881+5213)$ or (3881 + 7288)

	GENERAL INFORMATION	2.00 .25		
		PAGE 15		
	LIST OF EQUIVALENCE CODES	REV 36		001

CODE	
0311 B	Mod $:(3721+5443)$ or $(3721+6591)$ or $(6233+6645)$
1010 A	STD or $\operatorname{Mod}: 4863$
1010 B	STD or Mod $: 4863$ or UK
1040 A	Mod $:(4863+5443)$ or $(4863+6233)$
1040 B	Mod $: 3219$ or 6591 or $(3219+6591)$
1520 B	Mod $: 3219$ or 6591
1830 B	Mod $: 3219$ or 6591
1850 A	Mod $:(4863+5443)$ or $(4863+6233)$

	OPERATING LIMITATIONS	2.01.00	
		PAGE 1	
	CONTENTS	REV 35	SE0 001

Pages

2.01.00 CONTENTS 1
2.01.10 FOREWORD 1
2.01.20 AIRCRAFT GENERAL

Weights/center of gravity . . . $\quad 1$
Speeds 2
Miscellaneous 3
Buffet onset 4
Vs minimum 5
2.01.30 AUTO FLIGHT SYSTEM 1 to 2
2.01.40 SYSTEMS

Air Conditioning and
Pressurization 1
APU 1
Communications 1
Electrical 1
Emergency equipment 2
Fuel 3
Fuel - Max wing Fuel 4A
Hydraulics 4
Ice and rain protection 4
Landing Gear/Brakes 4
Navigation 4
Power Plant. 5

	OPERATING LIMITATIONS	2.01.10	
		PAGE 1	
	FOREWORD	REV 33	SEQ 001

1. GENERALITIES

Aircraft and system limitations in this section include the limitations required by the regulations and contained in the FLIGHT MANUAL.

IMPORTANT

ALL THE LIMITATIONS OF THE DGACAPPROVED FLIGHT MANUAL ARE REPRODUCED HERE IN BOXES.

- THEADDITIONALLIMITATIONS AREINDICATED AS A GUIDE IN ORDER TO HAVE AN OPTMIZED UTILIZATION OF THE AIRCRAFT.
- ALL REFERENCES TO AIRSPEED OR MACH RELATE TO INDICATED AIRSPEED OR INDICATED MACH UNLESS OTHERWISE NOTED.
- ALL REFERENCES TO ALTITUDE RELATE TO PRESSUREALTITUDEUNLESSOTHERWISENOTED.

2. KINDS OF OPERATIONS

This airplane is certificated in the transport category for the following kinds of operation when the appropriate instruments and equipment required by the airworthiness and/or operating regulations are approved, installed and in operable condition.

- Carriage of passengers (maximum number of passengers seats : 275)
- Carriage of cargo
- Icing conditions
- Extended over water flight and ditching
- Day and night VFR
- IFR
- For operation with AFS, limitations are given in the Auto Flight System section.

Note: The airworthiness regulations do not allow CAT II and CAT III operations unless the operator has received the agreement from his national appropriate authorities.

	OPERATING LIMITATIONS	2.01.10	
		PAGE 2	
	FOREWORD	REV 33	SEO 001

	OPERATING LIMITATIONS	2.01.20	
		PAGE 1	
	AIRCRAFT GENERAL	REV 34	SEO 228

1 - WEIGHTS/CENTER OF GRAVITY

A - CENTER OF GRAVITY LIMITS

The limits of the center of gravity are given in percentage of the mean aerodynamic chord, landing gear extended. The MAC is 5.8287 meters long (229.48 inches). Station 0 is located 6.3825 meters (251.28 inches) forward of fuselage nose.

Note : Aircraft Center of gravity must always be within presented limits regardless of fuel load.

B - WEIGHT LIMITATIONS

	KG	POUNDS
MAXIMUM TAXI WEIGHT	150900	332735
MAXIMUM TAKE-OFF WEIGHT (BRAKES RELEASE)	150000	330750
MAXIMUMLANDING WEIGHT	123000	271215
MAXIMUM ZERO FUEL WEIGHT	113000	249165
MINIMUM WEIGHT	80000	176400

Under exceptional conditions following a takeoff at any weight within max takeoff weight and max landing weight, an immediate landing is permitted provided overweight landing procedure is adhered to.

Exceptional conditions are :
emergencies
abnormalities wherein continuance of flight to destination is not possible.

Note : Autolandabove MLWhasnotbeen demonstrated.

2 - SPEEDS
A - VMCA-VMCG
VMCG 111 KT CAS (113 KT IAS)
VMCA 115 KT CAS (117 KT IAS)

B - MAXIMUM OPERATING SPEEDS (VMO)

The maximum operating limit speed Vmo may not be deliberately exceeded in any regime of flight (climb, cruise or descent).

C - MAXIMUM DESIGN MANEUVERING SPEED (VA)

Full application of rudder and aileron controls, as well as maneuvers that involve angles of attack near the stall, should be confined to speeds below VA.

CAUTION

Rapid and large alternating control intputs, especially in combination with large changes in pitch, roll, or yaw (e.g. large sideslip angles) may result in structural failures at any speed, even below VA.

D - MAXIMUM SLATS/FLAPS SPEEDS (VFE)
(1) Maximum slats/flaps extended speeds or operating speeds for takeoff, approach and landing :
Maximum operating altitude : 20000 ft

	SLATS	FLAPS	SPEED (IAS)
TAKEOFF	15	0	245 KT
TAKEOFF AND APPROACH	15	15	210 KT
TAKEOFF, APPROACH AND LANDING	20	20	195 KT
LANDING	20 30	20 40	195 KT 180 KT

(2) Maximum slats extended speed for holding and en route .

HOLDING AND « EN ROUTE »	15	0	$245 \mathrm{KT} / \mathrm{M} 0.54$

E - GEAR OPERATING SPEEDS

Maximum speed at which the landing gear may be extended or retracted :
VLO $=270$ KT or M 0.59
Maximum speed with landing gear locked down: VLE $=270$ KT or M 0.65

F - KRUGER
If Kruger cannot be retracted :
do not exceed
300 KT/M0.65

G - MANUAL PITCH TRIM

When operating with manual pitch trim only : do not exceed

285 KT/M0.78

	OPERATING LIMITATIONS	2.01.20	
		PAGE	
	AIRCRAFT GENERAL	REV 34	SEO 175

3 - MISCELLANEOUS

A - MINIMUM FLIGHT CREW

The minimum flight crew consists of 2 pilots.
B - DISPATCHIBILITY
For dispatch in the event of equipment failure or missing parts, refer to MEL/CDL.

C - FLIGHTMANEUVERING LOADACCELERATION LIMITS

Clean configuration: $\quad+2.5 \mathrm{~g}$ to -1 g
Slats extended configuration: +2 g to 0 g
D - OPERATING PERFORMANCE LIMITATIONS
(1) Environmental envelope

(2) Flight level limitations

In order to reduce the possibility of pitch over control in case of heavy turbulence, the following limitations of the flightenvelope mustbe ermanently applied, regardless of actual weather conditions.

	OPERATING LIMITATIONS	2.01.20	
		PAGE 4	
	AIRCRAFT GENERAL	REV 33	SEO 100

4. BUFFET ONSET

BUFFET ONSET clean configuration

Data : $\mathrm{M}=.80$
FL = 350
Weight = 110 tons
CG $=30$ \%

Results : Buffet onset at

- $\mathrm{M}=.80$ with 54° bank angle or at 1.7 g
- Low speed (1 g): $\mathrm{M}=.555$
- High speed : Above M. 84

	OPERATING LIMITATIONS	2.01.20	
		PAGE 5	
	AIRCRAFT GENERAL	REV 33	SEQ 104

5. VS MINIMUM

	OPERATING LIMITATIONS	2.01.20	
		PAGE 6	
	AIRCRAFT GENERAL	REV 33	SEQ 001

INTENTIONALLY LEFT BLANK

	OPERATING LIMITATIONS	2.01.30	
		PAGE 1	
	AUTO FLIGHT SYSTEM	REV 34	SEO 640

AUTOPILOT :

- Minimum altitude for use of the autopilot in a cruise mode : 500 ft .
- Minimum altitude for use of VERTICAL SPEED mode in approach : 200 ft .

AUTOLAND

AIRPLANE CONFIGURATION :

Certified configuration: slats $30^{\circ} /$ flaps 40°.

The approach speed (Vapp) is Vref + $5 \mathrm{kt}+\mathrm{CDU}$ WIND CORR.

ALTITUDE EFFECT :

The altitude effect on Autoland above 2500 ft has not been evaluated.
Therefore, for autoland operation above 2500 ft elevation, it is recommended that each operator assesses the autoland capability in good visibility conditions for each runway prior to performing CAT 2 or CAT 3 operation.
This should be done in the frame of each operator operational approval and does not preclude complying with other applicable local operational regulations.

AUTOLAND ON A CAT 1 ILS BEAM :

Automatic landing system performance has been demonstrated on CAT 2 and CAT 3 ILS runways. However automatic landing in CAT 1 or better weather conditions is possible on CAT 1 ground installations on CAT II/III ground installations when
R ILS sensitive areas are not protected, if the following precautions are taken :

- the airline has checked that the ILS beam quality and the effect of the terrain profile before the runway has no adverse effect on A.P. guidance. In particular the effect of terrain discontinuities within 300 m before runway threshold must be assessed.
- the crew is aware that LOC or GS beams fluctuations independent of the aircraft system may occur and the PF is prepared to immediately disconnect the AP and to take the appropriate action, should unsatisfactory guidance occur.
- at least CAT 2 capability is displayed on FMA and CAT $2 / 3$ procedures are used.
- visual references are obtained at aDA/DH appropriate for the CAT 1 approach being flown or a go-around is performed.

CATEGORY II APPROACH AND AUTOMATIC

 LANDINGMinimum decision height: 100 ft . AP in CMD at least.
Certified capability : CAT 2, CAT 3.
CATEGORY III APPROACH AND AUTOMATIC LANDING WITH DECISION HEIGHT

Minimum decision height : 15 ft .
2 AP in CMD and 1 autothrottle at least.
Certified capability : CAT 3.

CATEGORY III APPROACH AND AUTOMATIC LANDING WITH NO DECISION HEIGHT

2 AP in CMD and 1 autothrottle at least. Certified capability: CAT 3.
Minimum runway visual range : 75 m . Minimum height demonstrated for approach interruption: 15 ft .

	OPERATING LIMITATIONS	2.01.30	
		PAGE	
	AUTO FLIGHT SYSTEM	REV 33	SEC 204

MAXIMUM WIND CONDITIONS FOR AUTOMATIC LANDING AND ROLL OUT

$R$$R$$R$$R$$R$$R$$R$	- DEMONST
	Head wind
	Cross wind . 20
	Tail wind
	- Performance of ROLL OUT mode has
	Performance of ROLL OUT
	icy runway has notbe

FMS

The FMS can be used in the RADIO mode for advisory purpose only.
NAV + PROF modes may be used for non precision approaches only. PROF mode use in approach beyond FAF is not allowed. Respect of obstacle clearance and constraints remain normal crew responsability.
An approach procedure cannot be conducted if the associated navaids are unserviceable.

	OPERATING LIMITATIONS	2.01.30	
		PAGE 3	
	AUTO FLIGHT SYSTEM	REV 36	SEQ 001

INTENTIONALLY LEFT BLANK

(Northrop Grumman IRU not installed)

	OPERATING LIMITATIONS	2.01.30	
		PAGE 4	
	AUTO FLIGHT SYSTEM	REV 36	SEQ 001

INTENTIONALLY LEFT BLANK

(Northrop Grumman IRU not installed)

AUTOMATIC LANDING WITH HONEYWELL IRU

The following table provides the list of the affected airport. For each listed airport, the following limitations apply at the beginning of the associated year

- AUTOLAND is not allowed
- Automatic ROLL OUT is not allowed.

CAT II approaches without AUTOLAND are still allowed.

Airport Code	Airport Name	Year
BIKF	KEFLAVIK	as of 2007
CYHZ	HALIFAX	as of 2010
CYVR	VANCOUVER	as of 2007
CYWG	WINNIPEG	as of 2014
CYYT	ST JOHN'S NF	as of 2007
DAAG	ALGIERS	as of 2007
DAAT	TAMANRASSETAGUENAR	as of 2007
DABB	ANNABA EL MELLAH	as of 2008
DAOO	ORAN	as of 2007
DBBB	COTOUNDOUCADJEHOUN	as of 2007
DFFD	OUAGADOUGOU	as of 2007
DFOO	BOBO-DIOULASSO	as of 2007
DIAP	ABIDJAN	as of 2007
DIBK	BOUAKE	as of 2007
DNMM	LAGOS	as of 2007
DRRN	DIORI HAMANI NIAMEY	as of 2007
DTKA	TABARKA	as of 2009
DTMB	TUNIS HABIBBOURGUIBA	as of 2012
DTTA	TUNIS CARTHAGE	as of 2011
DTTJ	JERBA ZARZIS	as of 2012
DTTZ	TOZEUR NEFTA	as of 2008
DXNG	NIAMTOUGOU	as of 2007
DXXX	LOME TOKOIN	as of 2007
EBBR	BRUSSELS	as of 2007
EBLG	LIEGE BIERSET	as of 2007
EDDB	BERLIN SCHONEFELD	as of 2008
EDDC	DRESDEN	as of 2009
EDDE	ERFURT	as of 2007
EDDF	FRANKFURT/MAIN	as of 2007
EDDG	MUNSTER-OSNABRUCK	as of 2007
EDDH	HAMBURG	as of 2007
EDDK	COLOGNE-BONN	as of 2007
EDDL	DUSSELDORF	as of 2007
EDDM	MUNICH	as of 2009
EDDN	NURNBERG	as of 2008
EDDP	LEIPZIG HALLE	as of 2008
EDDS	STUTTGART	as of 2007
EDDT	BERLIN TEGEL	as of 2008
EDDV	HANNOVER	as of 2007
EDDW	BREMEN	as of 2007
EDFH	HAHN	as of 2007
EDLW	DORTMUND WICKEDE	as of 2007

Code : 0048

Airport Code	Airport Name	Year
EDNY	FRIEDRICHSHAFEN	as of 2007
EFHK	HELSINKI VANTAA	as of 2010
EFOU	OULU	as of 2007
EFRO	ROVANIEMI	as of 2007
EGAA	BELFAST	as of 2007
EGBB	BIRMINGHAM	as of 2007
EGCC	MANCHESTER	as of 2007
EGGD	BRISTOL	as of 2007
EGGP	LIVERPOOL	as of 2007
EGGW	LUTON	as of 2007
EGKK	GATWICK	as of 2007
EGLL	HEATHROW	as of 2007
EGNM	LEEDS	as of 2007
EGNT	NEWCASTLE	as of 2007
EGNX	EAST MIDLANDS	as of 2007
EGPF	GLASGOW	as of 2007
EGPH	EDINBURGH	as of 2007
EGSS	LONDON STANSTED	as of 2007
EHAM	AMSTERDAM	as of 2007
EICK	CORK	as of 2007
EIDW	DUBLIN	as of 2007
EINN	SHANNON	as of 2007
EKAH	AARHUS TIRSTRUP	as of 2007
EKBI	BILLUND	as of 2007
EKCH	COPENHAGENKASTRUP	as of 2007
EKKA	KARUP	as of 2007
EKYT	AALBORG	as of 2007
ELLX	LUXEMBOURG	as of 2007
ENGM	OSLO GARDERMOEN	as of 2007
EPWA	WARSAW	as of 2014
ESGG	GOTEBORGLANDVETTER	as of 2007
ESMS	MALMO STURUP	as of 2007
ESSA	STOCKHOLM ARLANDA	as of 2007
FACT	CAPETOWN	as of 2007
FAEL	EAST LONDON	as of 2007
FAJS	JOHANNESBURG	as of 2007
FCBB	BRAZZAVILLE	as of 2007
FEFF	BANGUI M'POKO	as of 2010
FKKD	DOUALA	as of 2007
FKKR	GAROUA	as of 2010
FKYS	YAOUNDE	as of 2007

Airport Code	Airport Name	Year
FOOL	LIBREVILLE	as of 2007
FOON	FRANCEVILLE	as of 2007
FQBR	BEIRA	as of 2010
FTTJ	N'DJAMENA	as of 2012
FZAA	KINSHASA	as of 2007
FZIC	KISANGANI BANGOKA	as of 2011
GABS	BAMAKO	as of 2007
GBYD	BANJUL	as of 2007
GGOV	BISSAU	as of 2007
GLRB	MONROVIA	as of 2007
GMAD	AGADIR	as of 2007
GMMN	CASABLANCA	as of 2007
GMMZ	OUARZAZATE	as of 2007
GOOY	DAKAR YOFF	as of 2007
GQNN	NOUAKCHOTT	as of 2007
GOPP	NOUADHIBOU	as of 2007
GVAC	SAL AMILCAR CABRAL	as of 2007
HLLT	TRIPOLI	as of 2014
KATL	HARTSFIELD ATLANTA	as of 2013
KBHM	BIRMINGHAM ALA	as of 2012
KBNA	NASHVILLE	as of 2013
KCHA	CHATANOOGA LOVELL	as of 2013
KEUG	EUGENE MAHLONSWEET	as of 2011
KGEG	SPOKANE	as of 2010
KHSV	HUNSTVILLE	as of 2013
KJAN	JACKSON	as of 2011
KJAX	JACKSONVILLE	as of 2011
KLIT	LITTLE ROCK	as of 2014
KMCO	ORLANDO	as of 2008
KMEM	MEMPHIS	as of 2012
KMSY	NEW ORLEANS	as of 2010
KPDX	PORTLAND	as of 2010
KSEA	SEATTLE-TACOMA	as of 2008
KSHV	SHREVEPORT	as of 2015
KSTL	ST LOUIS LAMBERT	as of 2014
KTCM	TACOMA	as of 2008
KTLH	TALLAHASSEE	as of 2010
KTPA	TAMPA	as of 2008
KTYS	KNOXVILLE	as of 2015
LDZA	ZAGREB	as of 2012
LEBL	BARCELONA	as of 2007
LEMD	MADRID BARAJAS	as of 2007
LEST	SANTIAGO	as of 2007
LEVT	VITORIA	as of 2007
LFBD	BORDEAUX MERIGNAC	as of 2007
LFBL	BELLEGARDE	as of 2007

Airport Code	Airport Name	Year
LFBM	MONT-DE-MARSAN	as of 2007
LFBO	TOULOUSE BLAGNAC	as of 2007
LFBP	PAU/PYRENEES	as of 2007
LFJL	METZ NANCY LORRAINE	as of 2007
LFLC	CLERMONT-FERRAND	as of 2007
LFLL	LYON SATOLAS	as of 2007
LFLY	LYON BRON	as of 2007
LFML	MARSEILLE/PROVENCE	as of 2007
LFMY	SALON	as of 2007
LFOE	EVREUX	as of 2007
LFOK	CHALONS VATRY	as of 2007
LFPG	PARIS CDG	as of 2007
LFPO	PARIS ORLY	as of 2007
LFPV	VILLACOUBLAY	as of 2007
LFOQ	LILLE	as of 2007
LFRB	BREST	as of 2007
LFRH	LORIENT	as of 2007
LFRS	NANTES	as of 2007
LFSB	BASLE-MULHOUSE	as of 2007
LFST	STRASBOURG ENTZHEIM	as of 2007
LHBP	BUDAPEST	as of 2014
LIMC	MILAN MALPENSA	as of 2007
LIME	BERGAMO	as of 2007
LIMF	TORINO CASELLE	as of 2007
LIML	MILAN LINATE	as of 2007
LIPE	BOLOGNA	as of 2010
LIPQ	RONCHI DEI LEGIONARI	as of 2010
LIPZ	VENICE TESSERA	as of 2010
LIRF	ROME	as of 2012
LJLJ	LJUBLJANA	as of 2011
LKPR	RUZYNE	as of 2010
LOWG	GRAZ	as of 2011
LOWL	LINZ	as of 2010
LOWS	SALSBURG	as of 2009
LOWW	VIENNA SCHWECHAT	as of 2012
LPPR	PORTO	as of 2007
LPPT	LISBON	as of 2007
LSGG	GENEVA	as of 2007
LSZH	ZURICH	as of 2007
LZIB	BRATISLAVA IVANKA	as of 2012
PAFA	FAIRBANKS	as of 2007
PANC	ANCHORAGE	as of 2007
SAEZ	BUENOS AIRES	as of 2007
SBGR	SAO PAULO	as of 2010
SCEL	SANTIAGO	as of 2007
ULLI	ST-PETERSBURG	as of 2012

1 - AIR CONDITIONING AND PRESSURIZATION

A - AIR CONDITIONING WITH LP GROUND UNIT

When aircraft is supplied by external LP air, air conditioning supply from the packs should not be used simultaneously.

B - RAM AIR INLET.
OPEN ONLY IF DIFFERENTIAL PRESSURE IS LOWER THAN 1 PSI.

C - MAXIMUM CABIN DIFFERENTIAL PRESSURE

- Positive differential pressure limitation . 8.40 PSI

	MAXIMUM NEGATIVE DIFFERENTIAL PRESSURE MINUS 1 PSI
	SAFETY RELIEF MAXIMUM DIFFEREN PRESSURE

- Maximum cabin differential pressure for landing

1 PSI

- Cabin signs « ON » 11,300 $\pm 500 \mathrm{ft}$
- Passengers oxygen mask drop . 14,000\{ $\left\{\begin{array}{r}+ \\ -500 \mathrm{ft}\end{array}\right.$

D - WARNINGS

- Maximum cabin altitude (CAB ALT) . 9,550 $\pm 350 \mathrm{ft}$

2 - APU

A - STARTING

- In flight APU starting is allowed up to :
- 41000 ft within the whole flight envelope when electric supply is by engine generator(s).
- 20000 ft when electric supply is by batteries only.
- Minimum oil quantity indication before start . $1 / 4$
- Minimum oil quantity indication when APU operates at $100 \% \mathrm{~N}$ (stabilized conditions) MIN
- Minimum cooling intervals between start cycles 1 min

Notes : 1 - These minimum oil indication requirements allow a normal APU operation for further 60 hours.

2 - On ground:
After 3 start attempts separated by 1 min cool down a 60 min cooling period must be allowed for.
3 - In flight:
Within any one hour period

- 3 start attempts are permitted below 37,000 ft
- 5 start attempts are permitted above 37,000 ft
Best starting capability is ensured up to 37,000 ft
4 - Use of JET B may impair APU capability to perform high altitude air start.

B - OPERATIONS

- AIR BLEED EXTRACTION :

Allowed for AIR COND or/and WING ANTI ICE or ENG START up to
Note : APU air bleed allows to supply either :

- 2 air conditioning packs or
- 1 air conditioning pack + wing anti ice system
- ELEC POWER EXTRACTION :
- At or below 35000 ft 1 (90 kVA)
- Above 35000 ft up to 41000 ft : ISA and below 1 (90 kVA) ISA + 20 0.83 (75 kVA) ISA + 35 0.44 (40 kVA)

C - ROTOR SPEED
Maximum N 109 \%

D - EGT
Maximum EGT . $585^{\circ} \mathrm{C}$

3 - COMMUNICATIONS

No limitations.

4 - ELECTRICAL

A - AC POWER
NOMINAL LOAD PER GENERATOR :
(CONTINUOUS) $\ldots \ldots \ldots \ldots \ldots 1(90 \mathrm{KVA})$

B - DC POWER
NOMINALLOAD PER T.R. (CONTINUOUS) . 150 AMP

A310 GTMUJIATOR FLIGHT CREW OPERATING MANUAL	OPERATING LIMITATIONS	2.01.40	
		PAGE 2	
	SYSTEMS	REV 34	SEQ 100

5 - EMERGENCY EQUIPMENT

CREW OXYGEN

Minimum flight crew oxygen pressure.

Reference temperature (${ }^{\circ} \mathrm{C}$) :
$=\frac{\mathrm{OAT}+\text { Cabin temp (on ground) }}{2}$
$=$ Cabin temp $-10^{\circ} \mathrm{C}$ (in flight)

Minimum bottle pressure required to provide :

. Crew protection after loss of cabin pressure (100% O_{2} during emergency descent + diluted O_{2} during cruise at FL between 100 and 150)

Provision is made to cover :
. unusable quantity
. normal system leakage
. reference temp. errors
. pre-flight checks
. usage of 0_{2} when only 1 pilot is in cockpit.

Minimum required oxygen for dispatch depends on the local Airworthiness Authorities.

6 - FUEL

A - FUEL AND FUEL ADDITIVES (ENGINES AND APU)

Refer to : - P and W Service Bulletin n 2016

- A310 Flight Manual chapter 2-04

B - USABLE FUEL TANK CAPACITY

TANK	LITER	US GAL
OUTER TKS	7400	1955
INNER TKS	27900	7371
CTR	19640	5189
TRIM	6150	1625
Total	61090	16140

C - FUEL QUANTITY INDICATIONS

Tank fuel remaining when the respective quantity indicator reads zero, cannot be safely used in flight.

D - FUEL LOADING
Maximum refueling pressure . . . 50 psi (3.5 bar) Maximum defueling pressure . . 11 psi (0.75 bar)

Dispatch with fuel in CTR TK and wing tanks not full is allowed provided the sum of ZFW plus fuel in CTR TK does not exceed MAX ZFW (fuel in CTR TK usable).

R MAXIMUM ALLOWED WING FUEL IMBALANCE
$R \quad$ (Please refer to 2.01 .40 page 4A).

E - FUEL TEMPERATURE IN TANKS

- Do not take-off with a fuel tank temperature lower than :
- the actual fuel freezing point $+2^{\circ} \mathrm{C}$ if an appropriate anti-icing additive is used as per PW SB 2016.
or
- the highest of the fuel freezing point $+2^{\circ} \mathrm{C}$ or $-47^{\circ} \mathrm{C}$, if an appropriate anti-icing additive is not used,
- Do not fly with a tank fuel temperature lower than the :
- Actual fuel freezing point $-1^{\circ} \mathrm{C}$ when fuel is fed from INR or CTR tanks.
- Actual fuel freezing point $+2^{\circ} \mathrm{C}$ when fuel is fed from OUTR tanks.
- If the actual fuel freezing point of the fuel being used for the flight is unknown, the minimum fuel specification values provided hereafter must be used :

JETA	JP 5	JETA1	JP 8	JET B	RT	JP 4	TS-1
$-40^{\circ} \mathrm{C}$	$-46^{\circ} \mathrm{C}$	$-47^{\circ} \mathrm{C}$	$-47^{\circ} \mathrm{C}$	$-50^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}$	$-58^{\circ} \mathrm{C}$	$-60^{\circ} \mathrm{C}$

F - FUEL MANAGEMENT

- Operations with outer tank empty are not allowed.

G - TAKE-OFF RESTRICTIONS

1 - Take-off on center tank is prohibited.
2 - Take-off with inner tanks and center tank and trim tank empty is prohibited when the fuel quantity in each outer tank is below 700 kg (1545 lb).

H - LANDING RESTRICTIONS

- Except under abnormal conditions, landing with more than 2000 kg (4400 lb) in trim tank is not allowed.

	OPERATING LIMITATIONS	2.01.40	
		PAGE 4	
	SYSTEMS	REV 33	SEO 220

7 - HYDRAULICS

A - APPROVED FLUIDS

Approved hydraulic fluids are according to specification NSA 307110:

TYPE IV
HYJET IV and IV-A
SKYDROL 500 B4
SKYDROL LD4

Note : The intermixing of these fluids is permitted.
B - PWR TRANSF OPERATION IN FLIGHT
PWR TRANSF operation is possible if green system is powered by 2 engine driven pumps or by 1 engine driven pump and the electric pumps.

C - SYSTEM PRESSURE
Normal pressure range : 2800 to 3300 psi
Note : When PTU is in use, 3500 psi may be reached.

R D - RAT

R RAT maximum operating speed : 320 kt

8 - ICE AND RAIN PROTECTION

A - ANTI-ICE
It is recommended that extended flight in icing conditions with slats extended should be avoided.

B - RAIN REPELLENT

Approved rain repellent is type 3 repellent RAIN BOE. Rain repellent must be applied only on wet windshields.

Note : Windshield wipers must not be used if rain repellent has been applied to a dry windshield.

9 - LANDING GEAR/BRAKES

A - LANDING GEAR

Towbarless operations on nose landing gear (towing and pushback) are allowed using towbarless towing vehicles that are specifically accepted for Airbus aircraft and are listed in Airbus SIL 09-002.

B - BRAKES
Maximum brake temperature allowed for take-off (with brake fans off - if installed) $300^{\circ} \mathrm{C}$

10 - NAVIGATION

Operation above latitudes of $72^{\circ} 30^{\prime} \mathrm{N}$ and beyond $60^{\circ} \mathrm{S}$ is not permitted.

A - EGPWS

- Aircraft navigation is not to be predicated upon the use of the terrain display.
- The Terrain Display is intended to serve as a situation awareness tool only, and may not provide the accuracy on which to solely base terrain avoidance maneuvering.
- The EGPWS database, display and alerting algorithms currently do not account for man made obstructions.
- The EGPWS enhanced function should be inhibited (TERR MODE pushbutton switched to OFF on the Captain's switching panel) for operations from/to runways not incorporated into the EGPWS database when the aircraft position is less than 15 NM from the airfield.
- The EGPWS enhanced function should be inhibited (TERR MODE pushbutton switched to OFF on the Captain's switching panel) when QFE Procedures are used.

	OPERATING LIMITATIONS	2.01 .40	
		PAGE 4A	
	SYSTEMS	REV 35	SEQ 001

6 - FUEL (Cont'd)
MAXIMUM ALLOWED WING FUEL IMBALANCE
AT TAKEOFF AND IN FLIGHT

- INNER TANKS (OUTER BALANCED)

Tank fuel quantity (Heavier tank)		Maximum Asymmetry
Full $11180 \mathrm{~kg} \mathrm{(24647lb)}$	$2200 \mathrm{~kg}(4850 \mathrm{lb})$	
Half	$5590 \mathrm{~kg}(12323 \mathrm{lb})$	$2100 \mathrm{~kg}(4630 \mathrm{lb})$
	$2400 \mathrm{~kg}(5291 \mathrm{lb})$	$2400 \mathrm{~kg} \mathrm{(5291} \mathrm{lb)}$

With linear variation between these values
No limitation below 2400 kg (5291 lb)

- OUTER TANKS (INNER BALANCED)

R Maximum allowed imbalance in the outer tanks :
R $\quad 700 \mathrm{~kg}(1543 \mathrm{lb})$
AT LANDING (from TOP of Descent)

- INNER TANKS (OUTER BALANCED)

Tank fuel quantity (Heavier tank)		Maximum Asymmetry
Full	$11180 \mathrm{~kg} \mathrm{(24647lb)}$	$1700 \mathrm{~kg}(3748 \mathrm{lb})$
Half	$5590 \mathrm{~kg}(12232 \mathrm{lb})$	$1600 \mathrm{~kg}(3527 \mathrm{lb})$
	$1900 \mathrm{~kg} \mathrm{(4189lb)}$	$1900 \mathrm{~kg} \mathrm{(4} 189 \mathrm{lb})$

With linear variation between these values
No limitation below $1900 \mathrm{~kg}(4189 \mathrm{lb})$

- OUTER TANKS (INNER BALANCED)

R Maximum allowed imbalance in the outer tanks :
R $650 \mathrm{~kg}(1433 \mathrm{lb})$

11 - POWER PLANT

A. THRUST SETTING/EGT LIMITS

CONDITION	TIME (min) LIMITATION	EGT ${ }^{\circ} \mathrm{C}$) LIMITATION	NOTE
MAKE TAKE OFF AND GO AROUND	5	625	
	10	625	Only in case of engine failure
MAX CONTINUOUS	Unlimited	600	
ACCELERATION	$*$	625	
MAX CLIMB	Unlimited	600	
MAX CRUISE	Unlimited	600	
STARTING		535	On ground
	$* *$	625	In flight

* Stabilized EGT must be at or below the operating limit for the applicable operating condition within 2 minutes of advancing the throttle.
** For in flight starts that result in exceedance of the ground start limit, the maximum temperature and duration must be recorded for maintenance action.
B. RPM

| N1 MAX . 111.4% |
| :--- | :--- |
| N2 MAX 104% |

C. OIL TYPE

Following type II oils are fully approved for use in PW 4000 engines

ESSO TURBO OIL 2380/EXXON TURBO OIL 2380
AERO SHELL TURBO OIL 500
AERO SHELL TURBO OIL 555
CASTROL 205/STAUFFER JET II
MOBIL JET OIL II
CASTROL 5000
MOBIL JET OIL 254
Note : Different brands or types of oils should not be mixed except where the same oilformulation is marketed under separate brand names which have been approved by Pratt and Whitney Aircraft.

Note : For possible use other brands of oils, refer to:

D. OIL TEMPERATURE

MAX TRANSIENT (20 MINUTES) $177^{\circ} \mathrm{C}$
MAX CONTINUOUS $163^{\circ} \mathrm{C}$

MIN FOR STARTING

E. OIL PRESSURE

MIN 70 psi

NORM . 90-400 psi

E. STARTER

- Duty cycle limits
- 2 consecutive aborted start attempts may be conducted.

Note : Engine motoring for 30 seconds is required following an aborted start.

- After 2 aborted start attempts, a 30 minutes starter cooling down period must be observed prior to further starter operation.
- Re-engagement speed limit :
- Maximum re-engagement speed : 30 \% N2.

G. REVERSE THRUST

THE SELECTION OF THE THRUST REVERSERS IN FLIGHT OR THEIR PRESELECTION BEFORE TOUCHDOWN IS PROHIBITED

BACKING THE AIRCRAFTWITH USE OF REVERSE THRUST IS NOT PERMITTED

Max reverse thrust should not be used below 80 Kt IAS or IAS fluctuations, whichever occurs first.

- If reverse unlocked or reverse stowed is selected do not reselect the opposite position before light indication shows end of transit.

	OPERATING LIMITATIONS	2.01.40	
		PAGE 6	
	SYSTEMS	REV 33	SEQ 001

INTENTIONALLY LEFT BLANK

	PROCEDURES AND TECHNIQUES	2.02 .00	
		PAGE 1	
	CONTENTS	REV 35	SEQ 020

Pages

Pages

02.00 TABLE OF CONTENTS 1

02.01 GENERAL

Operating speeds 1 to 2
Data card 3 to 4
One engine taxi. 5
180° turn on runway 6
Recommendations for take-off and landing

7 to 10
Operation from/to high altitude airports

11 to 12

02.02 AIR CONDITIONING 1 to 2

02.03 AFS

Use of AFS 1 to 21
Use of FPV 22 to 26
Use of DFA 27 to 29
Use of WGD 30 to 32
02.06 ELECTRICAL
External electrical power supply 1
Electrical supply for maintenance and cleaning. 1
C/B use 1
System reset table 2 to 4
02.09 FLIGHT CONTROLS
Aircraft trimming 1
Recovery from stall warning

- stick shaker 1
Recovery techniques from upset situations 2 to 4
02.11 FUEL
Trim tank system(if applicable)1 to 2
02.13 INCLEMENT WEATHER OPERATION Flight in severe turbulence . . 1 to 2
Vмо/Ммо exceedance 3
Mach number buffet onset 4
Operation in or near to heavyrain, hail or sleet5 to 6
Operation in icing conditions.. 7 to 8A/C preparation for coldweather operation9 to 12
Operation in windshear/downburst conditions13 to 14

1. SPEED SYMBOLS AND DEFINITIONS

- Vs : Minimum stalling speed for a specified configuration. It is a function of the aircraft weight and altitude.
- Vmcg : Minimum control speed on ground at which the aircraft can be controlled by use of the primary flight controls only, in case of a sudden failure of the critical engine (the other engine remaining at takeoff power).
- V_{1} : Speed at which the pilot can make the decision, following failure of critical engine :
- either to continue takeoff,
- or to stop the aircraft.

Represented by « 1 " on airspeed scale (or V1 value when out of range).

- VR : Speed at which rotation is initiated to reach V2 at an altitude of 35 feet.
- V2 : Takeoff safety speed reached before the altitude 35 feet with one engine failed. Represented by the SPEED SELECT symbol on airspeed scale as any speed selected on FCU.
- VmCA : Minimum control speed in flight at which aircraft can be controlled with 5° max bank, in case of failure of the critical engine, the other engine remaining at takeoff power (takeoff flaps setting and gear retracted).
- F : Equal to 1.25 VS Slats 15 /Flaps 0 . It is the minimum speed at which the flaps may be retracted to 0°.
Represented by " F " on airspeed scale, when the SLAT/FLAP handle is in the $15 / 15$ or 20/20 configuration.
- S : Equal to 1.25 VS Slats $0 /$ Flaps 0 . It is the minimum speed at which the slats may be retracted to 0°.
Represented by " S " on airspeed scale, when the SLAT/FLAP handle is in the 15/0 configuration.
- O («GREEN DOT ») : ENGINE OUT OPERATING speed (BEST LIFT TO DRAG RATIO speed or DRIFT DOWN speed) in clean configuration. It corresponds also to the FINAL TAKE OFF speed. It is equal to 220 kts at $120 \mathrm{t} \pm 1 \mathrm{kt}$ per ton + 2 kt per 1000 ft above 20000 ft .
Represented by a " O » (green dot) on airspeed scale, when the SLAT/FLAP handle is in the 0/0 configuration.

Note: O, F and S speed displayed are only valid, as manoeuvring speeds, when the SLATS/FLAPS are in the commanded position.

- VFE : Maximum speed for each slats/flaps configuration
- VREF : Reference speed used for a normal final approach, it is equal to 1.3 VS Slats 30 /Flaps 40 configuration.
- VLS : Lowest Selectable speed. It is represented by an amber strip along the airspeed scale whichappears 5 seconds after lift-off.

In the T.O schedule VLS $=1.2 \mathrm{Vs}$ of the actual T.O configuration.

In the LANDING Schedule VLS $=1.3 \mathrm{Vs}$ of the actual landing configuration.

Change from T.O to landing schedule is triggered by SLATS/FLAPS handle displacement (either retraction or extention).

Change from landing to T.O schedule is triggered by LDG GEAR SHOCK absorber compression (A / C on ground).

Above 25000 ft VLS is calculated so that there is 0.3 g margin with respect to BUFFETING.

In case of SLATS or/and FLAPS JAMMING, VLS represents 1.3 Vs of the actual (ABNORMAL) configuration.

- Vss : Stick shaker speed : The speed at which the stick shaker is activated. It is represented by ared and black strip along the airspeed scale.
- VAPP : Final approach speed,
- Vapp can be computed based on Vref or Vls :
- Vapp $=$ Vref + Vref CORRECTION + WIND CORR,
- VAPP $=$ VLS + VLS INCREMENT + WIND CORR .

In S30/F40 configuration, VLS $=$ VREF,
Vref corrections are considered in case of failures affecting the maneuverability or the stall margin,

VLS increments are considered whenever the failure is not accounted in the VLs computation (i.e. kruger retracted or roll spoilers inoperative).

- VA : Maximum design maneuvering speed. This corresponds to the maximum structural speed permitted for full control deflection.

PROCEDURES AND TECHNIQUES
GENERAL
OPERATING SPEEDS

	2.02 .01	
PAGE 2		
REV 34	SEO 200	

2. VAPP DETERMINATION

Example:

Landing configuration	$: 20 / 20$	Flight condition	$:$ Autothrust
Landing weight	$: 120 \mathrm{t}$	Tower average wind	$: 20 \mathrm{kt}$
Failure	$:$ No failure	Gust	$: 25 \mathrm{kt}$

VREF determinated from the landing weight :

$$
\begin{aligned}
\text { VREF }= & 137 \mathrm{kt} \\
& +10 \mathrm{kt}
\end{aligned}
$$

VREF CORRECTION due to the landing configuration :
Vref CORRECTION $=10 \leqslant 20$
As Vref CORRECTION is less than 20 kt , a wind correction should be applied :
$(1 / 3$ of tower average wind) or (gust increment, if higher) $=(1 / 3$ of 20$)$ or $(25-20$, if higher) $=(7)$ or (5 , if higher)
WIND CORR $=7 \mathrm{kt}(<15)$
A/THR used, but WIND CORR > 5 kt , no additional correction
VREF CORRECTION + WIND CORR $=10+7=17 \mathrm{kt}<20$, the total correction of 17 kt must be applied.

```
VAPP = 137 + 17 = 154 kt
```

Note : 1. The tower wind is the wind speed value reported by the ATIS or tower, irrespective of its direction.
2. The gust increment is the difference between the maximum wind speed and the average wind speed, e.g. for a wind of $20 \mathrm{kt} / \mathrm{gusting} 25 \mathrm{kt}$, the average wind speed is 20 kt and the gust increment is $(25-20)=5 \mathrm{kt}$.
3. FMS VAPP (on APPROACH page) is defined as : VAPP $=$ VREF $+(10 k t$, if landing in 20/20) $+5 k t+(C D U$ WIND CORR).
The FMS VAPP is limited to 120 kt minimum.

	PROCEDURES AND TECHNIQUES GENERAL DATA CARD	2.02.01	
		PAGE 3	
		REV 30	SEO 001

DESTINATION : \quad ALTERNATE : _________

WEIGHT:	VREF:	ATIS CODE : \qquad RWY : \qquad WIND : \qquad 1 \qquad Kt VISIBILITY/ CEILING:
FLAPS:	VAPP:	
REMARKS :	F :	CEILING: $\text { TEMP : ___ } /$
	S :	QNH/QFE :
	0 :	TRANS LEVEL

(2) TAKE OFF		$\begin{aligned} & \text { OCT. } 83 \\ & \text { AI } / \mathrm{V}-\mathrm{F} 1000 \end{aligned}$
CO RTE/FLT No		- DATE
TOW:	V1:	ATIS CODE : \qquad RWY : \qquad WIND : \qquad \qquad Kt VISIBILITY/ CEILING : \qquad
	VR:	
FLAPS:	V2:	
FLEX TEMP :	F:	TEMP : ___ $/$ ___ ${ }^{\circ} \mathrm{C}$
CG :__ \% PITCH:__	S :	ONH/OFE
ACCEL ALT :	0 :	trans alt :

	PROCEDURES AND TECHNIQUES GENERAL DATA CARD	2.02.01	
		PAGE 4	
		REV 27	SEC 001

This procedure provides information for one engine taxi.
In some operational environments, such as an uphill slope, slippery taxiways or very high gross weight, it may be advisable to taxi on both engines.

Caution must be exercised when taxiing on one engine to avoid excessive jet blast.

DEPARTURE

- START ENGINE 2
- AIR BLEED X FEED MAN/IN LINE
to supply both packs from engine 2
- Apply "AFTER START" normal procedures except :
- It is recommended to keep APU running to avoid additional electrical transients and to allow galley operation. If APU is not running, all three batteries must be operative to avoid a degraded EMER ELEC situation in case of IDG failure of the operating engine.
- ENG ANTI-ICE and ECAM status check.

Note : . APU BLEED should be switched OFF to prevent ingestion of engine exhaust gases in the air conditioning system.
Engine anti-ice should be OFF for non running engine.

- Apply "TAXI" normal procedures except :
- FLIGHT CONTROLS checks
- Before engine 1 start :
- APU BLEED ON
- START ENGINE 1

CAUTION

- If engine has been shut down for two hours or more, refer to "AFTER START" normal procedures for warm-up recommendations.
- If engine has been shut down for less than two hours, no warm-up is necessary.
- APU . AS RQRD
- AIR BLEED X FEED AUTO
- Proceed with "AFTERSTART" checklist (engine anti-ice and ECAM status)
- FLIGHT CONTROLS checks

ARRIVAL

- After landing, start APU
- Shut down ENG 1 after operating at, or near idle for at least a 5 minute cooling period after landing.
Note :
If the taxi time to the parking gate is less than 5 minutes, the engine may be shutdown at gate arrival.

	PROCEDURES AND TECHNIOUES GENERAL 180。TURN ON RUNWAY	2．02．01	
		PAGE 6	
		REV 29	SEQ 001

A standard runway is 45 meters wide．Considering the turn radius of the aircraft，AIRBUS INDUSTRIE recommends a procedure to make that turn in the most efficient way．

Note ：Frequent tight 180 。turns on the runway have an influence only in fatigue of the landing gear which is subject to high pivoting couples during these turns． For these calculations of fatigue，it has been assumed that three tight turns would be made at each flight．

PROCEDURE

－FOR THE CAPTAIN
－Taxi on the right hand side of the runway up to about 150 m from the end of the runway．
－Turn left，maintaining 25 。 divergence with runway axis．
－When the captain is physically over the runway edge， he applies full deflection as quick as possible on the nose wheel and set about 50% to 55 \％N1 for GE engines or 1.05 EPR for PW engines．
The nose wheel will stay about 2 m from the runway edge and the main gear 3 m from the runway edge． The aircraft will turn around his axis of rotation，with a nose gear track radius of 19 m ，leaving a 7 m clearance to the other edge of a 45 m wide runway．

．FOR THE COPILOT

The procedure is symmetrical．
The copilot taxies on the left hand side of the runway， turns right（ 25 o with regard of axis）and begins the 180 －turn when he is physically over the runway edge．

Note：To avoid the skidding of the nose wheel on a wet runway it is recommended to perform the turn at very low speed，using asymmetrical thrust and differential braking as necessary．

REJECTED TAKEOFF

DECISION TO REJECT THE TAKEOFF

General

The decision to reject the takeoff and the stop action shall be made by the captain.
It is therefore recommended that the captain keeps his hand on the thrust levers until V1 is reached whether he (she) is PF or PNF.

As soon as he (she) decides to abort, he (she) calls "stop", takes over and performs the stop actions.
It is not possible to list all the factors which could lead to the decision to reject the takeoff, but in order to help in the decision process, the ECAM inhibits the to 400 ft (or 1 minute after lift-off, whichever occurs first).

Decision management

Below 100 kt

The decision to reject the takeoff may be taken at the discretion of the captain, according to the circumstances.
Discontinuing the takeoff should be serioulsy considered

Note : The speed of 100 kt is not critical and was chosen in order to help the captain make his decision and avoid unnecessary stops from high speed.

Above 100 kt and below V1

Rejecting the takeoff is a more serious matter, particularly on slippery runways and could lead to a hazardous situation when speed is close to V 1 .

The decision to reject the takeoff should only be taken for a very few causes the main ones being:

- Fire warning or severe damage
- Sudden loss of engine thrust
- Conditions of malfunctions where there are unambiguous indications the aircraft will not fly safely.
- ECAM warnings/cautions (which are not inhibited above 70 kt) :
- Engine or APU fire,
- Engine failure,
- T.O. configuration warning,
- Engine reverse unlock.

Note 1: Nose gear vibration should not lead to an RTO above 100 kt .

Note 2: Case of a tyre failure in the V1 minus 20 to V1 range:
Unless debris from the tyres has caused serious engine anomalies, it is far better to get airborne, reduce the fuel load and land with a full runway length available.

Note 3: The call V1 has precedence over any other call. Above V1

Takeoff must be continued as it might be impossible to stop the aircraft on the remaining runway length.
No action shall be taken (apart from audio warning cancel) until :

- The appropriate flight path is stabilized,
- The normal procedures are applied,
- At least 400 ft AGL, in case of failure during takeoff, approach or go-around.
- A height of 400 ft is recommended as a good compromise between :
* the time required for flight path stabilization,
* the initiation of the procedure without excessive delay.
- In some emergency conditions, provided the appropriate flight path is established, the PF may initiate actions before reaching 400 ft AGL.

TAKEOFF DECISION SPEED V1

Experience has evidenced that rejected takeoffs were sometimes hazardous even though the performance was correctly calculated, based on flight tests.
This may be due to the following factors:

- Delay in intiating stopping procedure is increased,
- Tyres are damaged,
- Brakes worn or not working correctly, initial temperature higher than normal,
- Brakes not fully applied,
- Runway friction coefficient is lower,
- Error in gross weight determination,
- Runway line up not considered.

Since above 100 kt , rejecting the takeoff becomes a serious action which may lead to a hazardous situation in particular as speed approaches V1, be "Go-minded" if none of the main failures quoted above has occurred.

TASKS SHARING DURING A REJECTED TAKEOFF

Note 1: No attempt should be made to clear the runway until it is absolutely certain that an evacuation is not necessary and that it is safe to do so.

Note 2: In the event of an unserviceable autobrake, the captain will simultaneously reduce the thrust and fully depress both pedals.
Minimum stopping distance can only be achieved if the brake pedals are kept fully depressed until the aircraft comes to a stop.

ATS

R

A/THR function is disengaged (ATS levers remain armed) by pressing A/THR DISCONNECT p.b. or as soon as throttles are at idle position 5°.
Note : Cycle TRP from FLEX (or TOGA) to either CL, MCT or CR to reset the $A / T H R$ declutch. This will recover A/THR for a secondtakeoff.

REVERSERS

The aircraft may be stopped using full reverse. If sufficient runway length is still available at the end of the deceleration it is preferable to reduce reverse thrust - passing 80 kt - (Refer to STANDARD OPERATING PROCEDURES chapter LANDING).

FLAPS/SLATS RETRACTION

BOTH ENGINES OPERATIVE

During the climb out at $\mathrm{V} 2+10 \mathrm{Kt}$, a normal bank of 30° can be applied (stick shaker would be reached with a 40° bank angle in level flight in the most limiting case of $\mathrm{V} 2=1.2 \mathrm{Vs}$)

The change to $15 \% 0^{\circ}$ configuration can be done at « F » speed minimum for all takeoff configurations.
The change to clean configuration can be done at « S " speed minimum. During the acceleration phase from $\mathrm{V} 2+10$ to " green dot » speed a normal bank of 30° can be applied.

ONE ENGINE INOPERATIVE

With one engine out during climb out at V 2 a normal bank of 15° can be applied (in the case of $\mathrm{V} 2=1.2 \mathrm{Vs}$, stick shaker would be reached with 30° of bank in level flight).
The change to $15 \% 0^{\circ}$ configuration can be done at «F» speed and change to clean configuration can be done at " S » speed.
During the acceleration phase from V2 to «green dot" speed a normal bank of 15° can be applied.
If $15 \% 15^{\circ}$ configuration is maintained, to apply a bank of 30° requires to accelerate (at least) to «F " speed (stick shaker would be reached with a 45° bank in level flight).
If $15^{\circ} / 0^{\circ}$ configuration is maintained, to apply a bank of 30° requires to accelerate (at least) to «S" speed (at this speed stick shaker would be reached with a 55° bank in level flight).
In clean configuration, the recommended speed one engine out is " green dot» (engine out operating speed) since it corresponds to the final takeoff speed or best lift to drag ratio. It allows a normal bank of 30° (stick shaker would be reached with a 55° bank in level flight).

	PROCEDURES AND TECHNIQUES GENERAL RECOMMENDATIONS FOR TAKE-OFF AND LANDING	2.02.01	
		PAGE 9	
		REV 36	SEO 001

APPROACH AND LANDING

The standard approach is the decelerated approach which can be performed in manual flying as well as with the autopilot engaged using an ILS guidance.
The advantages of such a procedure are :

- autothrottle excursions minimized,
- a better compatibility with ATC constraints (keep high speed as long as possible),
- fuel and time saving,
- decrease of aircraft noise during the approach.

The minimum speed (VLS) displayed on the speed scale of the PFD being 1.3 Vs of the actual configuration allows a normal bank of 30° (stick shaker would be reached with a 40° bank in level flight).

BOUNCING AT LANDING

In case of a light bounce (5 ft or less), maintain pitch attitude and complete the landing. Use power as required to soften the touchdown. Do not increase pitch attitude, as this could lead to a tailstrike.
In case of a high bounce (more than 5 ft) maintain pitch attitude and configuration, and initiate a go-around by advancing throttle levers while triggering the go-levers. This will soften the second touchdown that will most probably occur and prevent damage to the aircraft.
Retract flaps one step and landing gear only when safely established in the go-around and no risk of further touchdown exists.
A landing should not be attempted after a high bounce, as the remaining runway length might not be enough to stop the aircraft.

REJECTED LANDING

A rejected landing is defined as a go-around manoeuvre initiated below the minima.

Once the decision is made to reject the landing, the flight crew must be committed to proceed with the go-around manoeuvre and not be tempted to retard the thrust levers in a late decision to complete the landing.
If the aircraft is on the runway when thrust is applied, a TO CONFIG warning will be generated if flaps are in conf full and/or trim is out of takeoff range.

In addition to thrust setting adjustments made by the PNF during take off and landing phases a special attention must be exercised by the PNF to the monitoring of engine parameters (N1/EPR, N2, EGT) in particular during the take off and go around phases.

Variation of reverse thrust versus speed at sea level, ISA conditions.

NOSE WHEEL STEERING INOPERATIVE

Request for a tow truck should be made preferably to taxi with differential braking, if no experience with such a specific technique. The request of the tow truck should be made early in approach, to minimize the runway occupation time.

ENGINE PARAMETERS MONITORING

	PROCEDURES AND TECHNIQUES GENERAL RECOMMENDATIONS FOR TAKE-OFF AND LANDING	2.02 .01	
		PAGE 10	
		REV 29	SEQ 001

LEFT BLANK INTENTIONALLY

	PROCEDURES AND TECHNIQUES OPERATIONS FROM/TO HIGH ALTITUDE AIRPORTS	2.02.01	
		PAGE 11	
		REV 29	SEQ 001

1. GENERAL

- The following material provides operational recommendations and procedures for aircraft operation from/to airports with elevation above 8500 ft pressure altitude.
- The FLIGHT MANUAL, Section 2, LIMITATIONS, should be refered to, so as to confirm the certified T/O and LANDING environmental envelope applicable to the operator's aircraft model.

2. PRESSURIZATION AND PASSENGER OXYGEN

OPERATION ABOVE 8000 ft
The aircraft pressurization system will regulate the CAB ALT to the selected landing elevation, or theoretical cabin altitude whichever is higher.
At take-off the take-off CAB ALT is memorized and maintained until either, the theoretical cabin altitude is above the take-off cabin altitude, or the aircraft V/S is less than $750 \mathrm{ft} / \mathrm{min}$ for more than 1 min . Until this time any change of landing elevation selection will have no effect on the CAB ALT.
The following procedure is recommended if take-off is performed from an airport above 8000 ft .

- Before take-off, select departure field elevation as per Standard Operating Procedures.
- At Top of climb, select destination field elevation.
- During descent preparation, or in case of turn back, select destination field elevation before commencing descent.
Note : This procedure may be used when taking-off from airports at lower elevation and not cruising at max cruise altitude, in order to regulate at the theoretical cabin altitude and improve passenger comfort.

OPERATION ABOVE 9200 FT

The "EXCESS CAB ALT" warning is activated when cabin altitude is above $9550 \mathrm{ft} \pm 350 \mathrm{ft}$, in this case :

- Check CAB ALT is not above departure/landing field elevation
- Disregard ECAM message,
- Cancel aural warning by pressing AUDIO CANCEL pushbutton on center pedestal.

OPERATIONS ABOVE 13500 ft

Passenger oxygen masks will drop automatically when cabin altitude exceeds $14000 \mathrm{ft}(+0,-500 \mathrm{ft})$.
Toavoidautomaticrelease ofoxygenmaskswhenlanding/taking-off to/from an airport above 13500 ft , the circuit breaker "PASSENGER OXYGEN CTL AND WARN" must be pulled during descent before cabin altitude reaches 13500 ft and must remain pulled until CAB ALT is less than 13000 ft after take off.

Note : The passenger oxygen manual control remains operative when the MAN OVRD push-button is pressed.

	PROCEDURES AND TECHNIQUES OPERATIONS FROM/TO HIGH ALTITUDE AIRPORTS	2.02.01	
		PAGE 12	
		REV 29	SEO 001

LEFT BLANK INTENTIONALLY

	PROCEDURES and TECHNIQUES	2.02.02	
		PAGE 1	
	AIR CONDITIONING	REV 30	SEQ 001

AVIONICS VENTILATION ON GROUND WITH AIR CONDITIONING PACKS SHUT DOWN

On ground with air conditioning packs shut down ambient air of the avionics compartment is used for equipment ventilation. Consequently the permitted operating time may be limited as a function of :

- OAT,
- Avionics compartment door open or closed,
- GND COOL installed and operating or not.

Refer to respective EQUIPMENT OPERATING TIME graphs.
The graphs show the time that the avionics equipment may remain powered, following aircraft arrival, once the air conditioning is OFF.
For an aircraft that has been parked with all equipment switched OFF, after powering the aircraft, the avionics equipment may be left powered for the times shown on the graph provided the OAT is above $-15^{\circ} \mathrm{C}$. The avionics compartment door should be closed with OAT below $\mathrm{O}^{\circ} \mathrm{C}$. If the OAT is below $-15^{\circ} \mathrm{C}$, it is recommended to pre-heat the avionics bay to maintain at least $-15^{\circ} \mathrm{C}$, prior to powering any equipment.
Note : With OAT $+15^{\circ} \mathrm{C}$ or higher, without GND COOL unit, the avionics compartment door should be opened to improve equipment cooling.

PRE CONDITIONING WITH LP EXTERNAL

 SUPPLYExternal LP bleed air supply \qquad CONNECT

CAUTION

When aircraft is supplied by external LP air, air conditioning supply from the packs should not be used simultaneously.

Note

1. It is recommended not to use external HP air for conditioning due to possible refrigeration pack contamination.
2. With external LP air supply it is not possible to control cabin temperature from the cockpit.
3. For hot day conditions, in order to quickly cool down the cabin temperature, the aircraft can be pre-conditioned via the LP external supply with the cabin fans OFF, provided there are no passengers into the cabin. Switch back cabin fans ON for boarding.

EQUIPMENT OPERATING TIME

(ON GROUND, WITHOUT AIR CONDITIONING)

AVIONICS COMPARTMENT DOOR OPEN

ECON FLOW CONTROL

- When selected on, the pack valves are controlled to provide 68% of normal flow. (active only in flight).
- ECON FLOW may be selected ON, if required, for flight with less than 160 pax.
- ECON FLOW must be selected OFF when in flight air conditioning is supplied by APU.

MAX COOL CONTROL

- MAX COOL should be selected OFF for normal air conditioning operations.
- When selected ON, the pack discharge temperature limit is decreased from $+4^{\circ} \mathrm{C}$ to $-7^{\circ} \mathrm{C}$, to provide additional cooling.
- With MAX COOL on, in High humidity conditions adjust temperature to a comfortable level rather than selecting a low temperature in order to cool the cockpit quickly. This will avoid water condensation on overhead circuit breakers panel by water vapour coming out from air conditioning outlets.

OPTIMUM USE OF THE AIR CONDITIONING SYSTEM IN HOT AND HUMID ENVIRONMENT

1. GENERAL

The following provides operational recommendations and procedures for aircraft ground operations in hot and humid environment.
The optimum use of the air conditioning system PACK TEMP and COMPT TEMP controls during transits, particularly when operating in hot and humid environment, is essential in order to prevent :

- APU auto-shutdown,
- water condensation in the cockpit (and cabin).

2. OPERATING PROCEDURES

A. APU auto-shutdown :

APU auto-shutdown on ground usually results from high temperature and/or high air conditioning demand.

The following operational recommendations minimize the total demand on the APU and minimize the potential for an APU auto-shutdown during transit or during engine start.

- Reduce electrical loads to the required minimum,
- Reduce air conditioning demand by using the COMPT TEMP control in :
- AUTO mode with a limited cooling demand or
- MAN mode for all compartments.
- At high OAT (above $40^{\circ} \mathrm{C}$) and high relative humidity (typically above 80%), the use of a LP ground pneumatic power unit is recommended.

Note : The installation ofoperator's-developed door curtains is an effective means for managing the cabin temperature during transits, while limiting the packs and APU demand.
B. Water condensation in the cockpit (and cabin) :

The following operational recommendations minimize water condensation in the cockpit (and cabin) under extreme hot and humid conditions :

- Control COMPT TEMP in AUTO mode, with MAX COOL OFF and a limited cooling demand (typically not lower than the 11 o'clock position).
or,
- Control the air conditioning packs in PACK TEMP MAN CTL mode, and
- Increase the pack discharge temperature up to, typically, $+15^{\circ} \mathrm{C}$.
Note : Increasing the pack discharge temperature limits the cooling capability.

Note : The PACK TEMP MODE SEL pushbutton switch is returned to AUTO at the end of the transit stop.

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF AFS	2.02.03	
		PAGE 1	
		REV 36	SEQ 110

1. GENERAL

A. PRELIMINARY NOTE

In this section, the following is described :

- USE OF AFS described without taking into account the possible coupling to the FMS.
Coupling of the AFS to the FMS, will be described in USE OF FMS section
- USE OF FPV.
- USE OF DFA AND WGD if these systems are installed.

B. INTRODUCTION

The A310 is equipped with a high performance digital Automatic Flight System (AFS). The use of this system is highly recommended to the crew because it :

- reduces crew work load
- maintains a high level of safety
- increases the precision in guidance and tracking of the airplane in all weather conditions down to landing.
The AFS can be used from TAKEOFF, through all phases of flight and down to landing, including roll out.

C. AUTOPILOT/FLIGHT DIRECTOR (AP/FD)

The AP/FD shall normally be used throughout the whole flight either with both FD's* engaged (Manual control of the A/C through the FD BARS on PFD's) or with an AP engaged in CMD** (automatic control of the A / C).

* An AP can also be engaged in CWS (semi-automatic control of the PITCH ATTITUDE and BANK ANGLE).
** Two AP's can be engaged in CMD with LAND or GO AROUND mode.
The FMA (Flight Mode Annunciator) is the normal reference for the actual state of the AP/FD. A FMA is integrated in the upper part of each PFD (PRIMARY FLIGHT DISPLAY).

MAIN RULES OF USE

1 - NO PUSHBUTTON EXISTS TO ENGAGE OR DISENGAGE THE FD's.
Their engagement is automatic as soon as electrical power is supplied to the computers (FCC 's).
2 - HOWEVER ONE FD CAN BE DISENGAGED BY SETTING THE CORRESPONDING "FD/FPV» SWITCH TO OFF or FPV, if no AP is engaged in CMD. (The corresponding FD BARS are out of view).
If an AP is in CMD the FD BARS are out of view when the switch is in OFF or FPV position, but the FD remains engaged.
3 - If no AP is engaged in CMD, FMA and FD BARS ON PFD 1 are associated with FD1, FMA and FD BARS on PFD2 are associated with FD2.

If an AP is engaged in CMD BOTH FMA's ARE ASSOCIATED WITH THIS AP, but the FD BARS ON THE PFD's REMAIN ASSOCIATED WITH THE CORRESPONDING FD.
4 - A mode is engaged by pressing the corresponding pushbutton on FCU or by pressing either GO-LEVER (for TAKEOFF or GO AROUND mode only).

5 - A mode is disengaged by pressing a second time the corresponding pushbutton or by pressing another pushbutton (of an incompatible mode).

6 - Each AP is engaged in CMD (in flight) or in CWS (on ground) by means of an AP lever on FCU. In flight, switching from CMD to CWS or CWS to CMD is made by pressing the CWS/CMD pushbutton.

7 - It is possible to switch over from one AP to the other. The first AP disconnects when the second is engaged (except in LAND or GO AROUND mode where both AP's can be engaged in CMD).

Note : In P.ALT mode, AP changeoveror engagement of one AP while the other is OFF should be avoided as it may lead to altitude overshoot. However, AP changeover or engagement of one $A P$ while the other is OFF can be done out of PROFILE mode. Then PROFILE mode can be re-engaged after the AP has engaged.

8 - Each AP can be disconnected by setting the corresponding AP lever to OFF. Both AP's are disconnected by pressing either AP instinctive disconnect p / b on the control wheels or when a force above a threshold is applied on the stick in pitch.

9 - In case of failure, overriding the action of the AP, by exceeding a pre-set force on the flight controls, is possible when AP is in CMD or CWS.
But working against the AP, is definitely not a normal procedure and should be avoided.
mulator
FLIGHT CREW OPERATING MANUAL

10 - CWS, PARTICULAR USE AT TAKE OFF AND GO AROUND
The function of an AP engaged in CWS is to maintain the A/C attitudes (PITCH and ROLL) when the pilot releases the control wheel, provided no force is applied on the control wheel.
When an attitude is set by the pilot, the force applied on the control wheel is automatically cancelled by the AUTOTRIM, but in certain dynamic phases (rotation at TAKE OFF or GO AROUND) this force cancellation is not immediate.

Consequently one of the following two procedures must be applied to avoid a non desired increase in PITCH

- either holding the control wheel until there is no longer opposite force on it.
- or using ELECTRIC PITCH TRIM to obtain a faster force cancellation.
Note: Refer to FCOM 1-03-60 for full description of $A P / F D$.

TASK SHARING

1 - With only the FD's (and with or without an AP in CWS), the pilot flying shall call for the modes to be selected by the non flying pilot.
2 - With an AP in CMD, the pilot flying will select the references and engage the modes necessary to achieve the desired task.
3 - The use of either of the two AP's or FD's is possible from either crew seat ; however it is recommended to use the AP or FD associated to the side of the pilot flying because the reference parameters for guidance, altitude, heading course, are directly related to the respective AP or FD.

D. AUTOTHROTTLE SYSTEM (ATS)

The ATS shall normally be used throughout the whole flight in conjunction with the AP/FD.
The FMA (Flight Mode Annunciator) is the normal reference for the actual state of the ATS.

MAIN RULES OF USE

1 - ATS is armed by setting the ATS lever (on overhead panel) to on.
2 - Full automatic control of the ATS by the AP/FD is assured when $A / T H R$ function is engaged (by pressing A/THR p.b. on FCU or, at TAKE OFF or GO AROUND, by pressing either GO LEVER).
3 - If no AP and no FD is available, engaging A/THR function also engages SPD/MACH mode in the ATS. In this case SPD/MACH is the only mode available with A/THR function.

4 - Action on either GO LEVER engages THR L (THRUST LATCH mode) at each time this action does not cause THR (THRUST mode) engagement by the AP/FD.
(This is the case for example in APPROACH if SLATS are not extended. In this case GO-AROUND mode does not engage in AP/FD and so THR mode cannot be engaged).
5 - A/THR function (and the corresponding active mode) is disengaged by a second action on A/THR p.b. or by pressing either ATS instinctive disconnect, p.b.
THR L is disengaged by pressing either ATS instinctive disconnect, p.b.
6 - ATS is disarmed by setting ATS lever to OFF.

CAUTION

With a throttle lever stuck, whenever the ATS commands a thrust change, the free throttle lever can move to an unexpected position leading to a thrust asymmetry and a possible flight path deviation. Therefore :

- When a thrust reduction is commanded, the ATS will command the free throttle lever to retard, until the idle position (in the worst case),
- When a thrust increase is commanded, the ATS will command the free throttle lever to advance until the new target position is reached.

2 - PREPARATION BEFORE TAKE OFF

A. DURING COCKPIT PREPARATION

\qquad
\qquad
YAW DAMPER/ATS LEVERS (if required) ARM

B. BEFORE PUSHBACK OR START

SPD/MACH setting knob.TURN TO SELECT V2
SPD/MACH setting knob.PUSH TO ACTIVATE
SPD/MACH setting knob.TURN TO PRESELECT INITIAL CLIMB SPEED
TRP. .SELECT TO or FLEX TO
C. DURING TAXIING

ALT knob.SELECT FIRST CLEARED
ALTITUDE
HDG SEL knob.SELECT INITIAL DEPARTURE HEADING

3 - TAKE OFF, CLIMB, CRUISE

A Typical vertical profile which includes the majority of in flight cases from TAKE OFF to CRUISE is presented.
The lateral modes are described later.
This profile is based upon the use of :

- the autothrottle and both FD's at take off.
- the engagement of one AP in CMD after take off (gear up and stabilized flight path).
But this profile is equally valid for the use of the FD only in manually controlled flight (with or without the use of an AP in CWS).
RECOMMENDATION : For any altitude change (after TAKE OFF) use LVL/CH mode, except for small altitude changes (less than 2000 ft) where use of V/S mode is more advisable.

A. WHEN READY FOR TAKE OFF

GO-LEVERS.
.PRESS

- At the same time :

The FD's engage in SRS mode.
A/THR function is engaged (A/THR p.b. illuminates on FCU).
THRUST mode is engaged in ATS (green THR on both FMA's).

- The FD PITCH BAR on each ADI will move up to indicate A/C acceleration.
- The FD ROLL BAR, remains centered on each ADI.

HDG mode becomes active only at 30 ft (A / C heading at 30 ft will be maintained).
Note : If a localizer signal is received, (RWY FREQUENCY and HDG selected), depressing GO-LEVERS will engage RWY mode and the YAW BAR will indicate the commands to be executed to maintain the localizer center line ($R O L L B A R$ disappears when YAW BAR appears).
At 30 ft RWY mode disengages and HDG re-engages, YAW BAR disappears and ROLL BAR appears (A/C heading at 30 FT will be maintained).
If the take off is performed using the localizer backbeam (or for aircraft heading more than 40° different from ILS selected course) RWY mode is not engaged.

- As soon as the throttles are at the desired thrust or at 100 KT maximum the A/THR is declutched (blue THR on FMA's).
- At $\mathrm{VR}_{\text {r }}$ initiate the rotation with a positive control column input to achieve a continuous rotation rate of about $3^{\circ} / \mathrm{sec}$, towards a pitch attitude of 15° (12.5° if one engine is failed).
- After lift off, follow the SRS pitch command bar.

B. INITIAL CLIMB

When the landing gear is selected up :
A/THR is reclutched, THR mode reengages.
Note : A/THR will be rec/utched 5 sec at minimum after lift off when LANDING GEAR is selected up or when another mode than TO or FLEX TO is selected on TRP.
THR or SPD mode cannot be engaged before one of these 2 conditions is satisfied.

- AP lever 1 (or 2).
.SET TO ON
Notes:1. If $A P$ is already engaged in CWS, press CWS/CMD pushbutton to switch to CMD.

2. $A P$ will take into account the engaged modes.

- In case of ENGINE FAILURE :
- If the AP is engaged in CMD, it will compensate the engine failure.
The AP will maintain V2 or the existing speed if greater than V 2 .
- If the AP is not yet engaged in CMD it is preferable to first stabilize the A / C on its climb trajectory before engaging the $A P$ in CMD.
- When initial turn is desired :

HDG SEL knob.PULL TO SELECT HDG/S MODE

C. AT ACCELERATION ALTITUDE

- With two engines :

LVL/CH p.b. .PRESS
TRP.
\qquad .PRESS The AP will acquire and maintain the PRESET speed. The ATS will acquire and maintain the thrust as selected on the TRP.

- With one engine out :
- At acceleration altitude :

ALT HLD p.b.
.PRESS
ATS will acquire and maintain the PRESET speed.

- At « GREEN DOT » speed

LVL/CH p.b. .PRESS
SPD/MACH setting knob. . .SELECT «GREEN DOT» TRP. .SELECT MCT

	PROCEDURES and TECHNIQUESAFS / FPV / DFA / WGD	2.02 .03	
		PAGE 4	
		REV 18	SEC 001

D. WHEN ALTITUDE CAPTURE CONDITIONS ARE MET

ALT * mode automatically engages (green ALT * on both FMA's).
ATS automatically engages in SPD mode (green SPD on both FMA's) and will maintain the selected SPD (here 250 KT).
When reaching the selected level (here FL50), AP automatically engages in ALT mode (green ALT on both FMA's).
Note : SPD/MACH mode will not engage if A/THR is still dec/utched (Gear not retracted and TO or FLEX TO still selected on TRP).

E. CLIMB FROM FL50 TO FL60 AT 250 KT (typical path)

In this case a $1000 \mathrm{ft} / \mathrm{min}$. climb is sufficient. Use V/S mode.
ALT SEL knob.TURN TO SELECT 6000 FT
V/S knob.PULL TO SELECT V/S MODE
ATS remains in SPD mode.
V/S display window synchronizes on A / C actual V / S (here $0 \mathrm{ft} / \mathrm{min}$.).
V/S knob.
. SELECT + 10
The AP will acquire and maintain this V/S.
As in §3.D when ALT * illuminates.
F. CLIMB FROM FL60 TO FL100 AT 250 KT (typical path)
ALT SEL knob.TURN TO SELECT 10000 FT
ALT SEL knob.PULL TO SELECT LVL/CH MODE
The ATS automatically engages in THRUST mode and will acquire and maintain the thrust as selected on the TRP.
The AP maintains 250 KT.
Note: LVL/CH mode can also be engaged by pressing LVL/CH p.b.
As in 3.D when ALT * illuminates.

G. RECLEARED TO FL310. COMMENCING CLIMB WHILE INCREASING SPEED TO 300 KT (typical path)

ALT SEL knob
.TURN TO SELECT 31000 FT
ALT SEL knob.PULL TO SELECT LVL/CH MODE
SPD/MACH setting knob. . . .TURN TO SELECT 300 KT
The ATS automatically engages in THRUST mode. The AP will acquire and maintain 300 KT .
H. PRESET OF MACH 0.79 (to be done only when cleared for a high level, above FL300 - here FL310)
SPD/MACH setting knob. PUSH TO ACTIVATE
PRESET
SPD/MACH selecting knob. PRESS TO SELECT MACH DISPLAY
SPD/MACH setting knob. TURN TO SELECT 0.79

Be sure that PRESET is activated before
PRESELECTING the MACH

At the transition IAS/MACH (FL300 for the typical path), MACH mode engages in ATS. Preselected MACH becomes the active MACH.
Note: Switching from SPD to MACH can also be done by pressing SPD/ MACH selecting knob when desired MACH is reached.
As in 3.D when ALT * illuminates. Except that MACH mode engages in ATS instead of SPD mode.

I. CRUISE

The AP maintains FL310 and the ATS maintains MACH 0.79
TRP.
SELECT CR

	PROCEDURES and TECHNIOUES AFS / FPV / DFA / WGD USE OF AFS	2.02 .03	
		PAGE 5	
		REV 18	SEC 001

TAKE - OFF, CLIMB, CRUISE

4 - LATERAL MODES

The following modes are available with both FD's only (with or without an AP in CWS) or with both FD's and an AP in CMD. Described procedures assume that at least both FD's are engaged which is the case in normal operation.

A. HDG mode

There is no specific HDG pushbutton.
HDG mode is engaged when another lateral mode is disengaged by pressing a second time the corresponding p.b.

B. HDG SEL mode

HDG SEL knob.TURN TO SELECT THE HDG
Max bank angle selector Set as required
. NORM $\left(25^{\circ}\right)$ if close to OPT ALT
$15\left(15^{\circ}\right)$ if close to MAX ALT
SELECT HDG SEL MODE :
. HDG SEL knob
or
. HDG SEL pb
HEADING ACQUISITION LOGIC :

- Before HDG SEL engagement : whatever the difference is between A/C HDG and selected HDG, the A/C will acquire the selected HDG in such a way that the minimum turn will be done.
- When HDG SEL mode is engaged :

When the HDG is modified, whatever the new selected value is, the A / C will turn towards the left if the HDG SEL knob has been rotated towards the left (and towards the right if the HDG SEL knob has been rotated towards the right), to acquire the new HDG.

C. VOR mode

The convergence of the A / C towards the selected VOR radial must be manually selected.
VOR/NAV/ILS switch.
.SELECT VOR
VOR CONTROL PANEL.
.SELECT VOR frequency and VOR CRS

V/L p.b
.PRESS TO SELECT VOR MODE

- Intercept at an angle lower than 90°. If the distance to the station is smaller than 30 NM , use smaller (30° or less) intercept angle.
- To capture the desired radial, bank angle is limited to 25° or 15° depending on the position of the HDG SEL outer knob.
- When passing over the station, selected VOR course can be changed by as much as 30° on the VOR control panel.
- With slats extended, VOR mode is not recommended, if the distance to the station is less than 30 NM .
- The VOR mode comprises 3 phases: ARM PHASE

D. LOC mode

The convergence of the A / C towards the LOC beam must be manually selected.

VOR/NAV/ILS switch.SELECT ILS
ILS CONTROL PANEL.SELECT ILS frequency and RWY CRS
V/L p.b. . .PRESS TO SELECT LOC MODE

- Intercept at an angle lower than 115°.
- It is recommended to use this mode to track a localizer when no glide slope is available or when the glide is of poor quality. In this case the proper descent will be established with the V/S mode.
- SUPERVISORY OVERRIDE is possible during CAPTURE phase when AP is in CMD.
- To capture the LOC beam, bank angle is limited to 30°.
- The LOC mode comprises 3 phases:

5 - DESCENT - HOLDING

A typical descent flight path which includes most of the in-flight cases is presented with the same objective as for the climb.

This profile is based upon the use of :

- an AP engaged in CMD with ALT HLD mode.
- the ATS, since we are at a high level, engaged in MACH mode.
But this profile is equally valid for the use of the FD only in manually controlled flight (with or without the use of an AP in CWS).

RECOMMENDATION :

For any altitude change use LVL/CH mode. The only exception is for small altitude changes (less than 2000ft) or when a given vertical speed is requested by ATC. In this case use V/S mode.

A. DESCENT FROM FL350 AT MACH 0.79 (typical path)

The descent is initiated at a constant Mach number (the same as in cruise).
ALT SEL knob
SELECT THE CLEARED FL
(FL200 in typical path)
ALT SEL knob PULL TO SELECT LVL/CH MODE
Note: LVL/CH mode can also be engaged by pressing LVL/CH p.b.

The AP maintains M 0.79
Since the selected level is lower than the present one, ATS automatically engages in RETARD MODE (green RTAR on both PFD's). The throttles are automatically reduced towards the idle position.
THROTTLES
FULLY IDLE
When throttles are stopped automatically at idle position, RETARD is disengaged and ATS is only armed (blue A/THR on PFD's).

APPROACH BRIEFING. Decision height
SELECT
Note: In case of engine failure, the throttle linked to the inoperative engine must be reduced to idle before HP valve shut off.
Then this throttle must be aligned with the other one. Otherwise the already reduced throttle will come to the mechanical stop at throttle retraction when RETARD MODE engages and both throttles will be declutched.
B. PRESET OF 300 KT SPEED

SPD/MACH setting knob $\ldots \ldots$. . . .	PUSH TO ACTIVATE
PRESET	

CAUTION

Be sure that PRESET is activated before PRESELECTING the SPEED

At the MACH/IAS transition (FL300 for typical path), SPD mode engages in ATS. Preselected SPEED becomes the active SPEED.

C. WHEN ALTITUDE CAPTURE CONDITIONS ARE MET

ALT * mode automatically engages (green ALT * on both FMA's).
The ATS automatically engages in SPD mode (green SPD on both FMA's) and will maintain the selected SPD (here 300 KT).
When reaching the selected level (here FL200), ALT HLD mode automatically engages (green ALT on both FMA's).

D. DESCENT FROM FL200 TO FL100 AT 300 KT AND 2500 FT/MIN

ALT SEL knob
SELECT 10000
V/S knob
PULL TO SELECT V/S MODE
ATS remains in SPD mode
V/S display window synchronizes on A / C actual V/S (here $0 \mathrm{ft} / \mathrm{min}$.).
V/S knob SELECT - 25

The AP will acquire and maintain this V/S
Use speed brakes if necessary to maintain the desired speed.

As in §5.C when ALT* illuminates.

E. DESCENT FROM FL100 TO 4000 FT AND SPEED REDUCTION T0 250 KT

ALT SEL knob

SELECT 4000
ALT SEL knob PULL TO SELECT LVL/CH MODE SPD/MACH setting knob . . . TURN TO SELECT 250 KT The ATS automatically engages in RETARD mode (then is only armed - blue A/THR)
The AP will acquire and maintain 250 KT
As in 5.C when ALT * illuminates.

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF AFS	2.02.03	
		PAGE 8	
		REV 29	SEQ 001

F. DESCENT FROM 4000 ft TO 3000 ft

In this case a $1000 \mathrm{ft} / \mathrm{min}$. descent is sufficient. This can be achieved by using V/S mode.
ALT SEL knob.SELECT 3000
V/S knob.PULL TO SELECT V/S MODE
ATS remains in SPD mode
V/S display window synchronizes on A/C actual V/S (here $0 \mathrm{ft} / \mathrm{min}$.).
V/S knob. .SELECT - 10
The AP will acquire and maintain this V/S
As in 5.C when ALT * illuminates.
$R \quad$ The USE of AP and FD in LVL/CH mode is not permitted
R in FINAL APPROACH.
G. HOLDING AT 3000 ft AND SPEED REDUCTION TO ALLOW SLATS EXTENSION
SPD/MACH setting knob. SELECT THE APPROPRIATE SPEED
The ATS will acquire and maintain this speed.

SIMU S4 for training only 1PM AI / V-F 1000

6 - APPROACH AND LANDING

A. GENERAL

An approach and/or automatic landing in low visibility conditions is possible providing the aircraft is equipped with :

- a qualified flight crew,
- an AFS with relevant capability,
- a suitably equipped runway.

The most penalizing of the three following parameters defines the capability :
flight crew - aircraft system - runway facilities
and this capability defines the applicable weather minima. The weather conditions in which approaches and/or automatic landings may be made are classified by category according to :

- decision height (DH)
- runway visual range (RVR)

Decision height : is the height of the landing gear wheels above the ground at which the pilot must initiate a missed approach if the required visual references, to continue the approach to land, are not established.
Runway visual range: is the horizontal visibility measured along runway.
CAT I: Operations down to a decision height of not less than 200 ft and runway visual range not less than 2400 ft ($\mathrm{RVR}=1800 \mathrm{ft}$ if touchdown zone and runway center line are provided with a lighting system).
CAT II : Operations down to minima of less than DH $200 \mathrm{ft} / \mathrm{RVR} 2400 \mathrm{ft}$ to as low as DH $100 \mathrm{ft} /$ RVR 1200 ft.
CAT III :

- US definition :

CAT IIIA - A precision instrument approach and landing with no decision height, or a decision height below 100 feet, and controlling runway visual range not less than 700 ft (200 meters).
CAT IIIB - A precision instrument approach and landing with no decision height, or a decision height below 50 ft , and controlling runway visual range less than 700 ft (200 meters), but not less than 150 ft (50 meters).

- JAR CAT III definition: Operations with a decision height between 100 ft and 0 ft or with no decision height and with a RVR which assures a high probability of successful approaches.
RVR should be in the region of 200 to 150 m if neither an automatic ground roll control nor a ground roll guidance display system is used.
RVR should be in the region of 100 m if one of the above mentionned system is fitted on the A/C.
Note: The autopilot installed on the Airbus is «fail operational" capable of performing automatic approaches, landings and roll out's in category I, II, III weather conditions.
Following procedures do not constitute approval to conduct CAT II or CAT III operations. Such authorization and associated minima must be obtained by the operator from appropriate operational authorities.

B. MINIMUM EQUIPMENT REQUIRED (BY AIRWORTHINESS AUTHORITIES) TO BE OPERATIONAL TO MEET CAT 2 or CAT 3 APPROACH AND LANDING CRITERIA

CAPABILITY \rightarrow	CAT 2	CAT 3
EQUIPMENT \downarrow		
AP/FD	1 AP IN CMD (with LAND mode engaged)	$\begin{array}{\|c\|} \hline 2 \mathrm{AP} \text { in CMD } \\ +1 \mathrm{FD} \\ \text { (with LAND mode } \\ \text { engaged) } \end{array}$
AP DISCONNECT P.B.	2	2
AUTOTHROTTLE	-*	IN SPEED MODE
AFS FLIGHT MODE ANNUNCIATOR (FMA)	1	2
ILS RECEIVER	2	2
BEAM EXCESSIVE DEVIATIONWARNING	2	2
HORIZON	$\begin{gathered} \mathrm{N}^{\circ} 1+\mathrm{N}^{\circ} 2 \\ + \text { STANDBY } \end{gathered}$	$\begin{gathered} N^{\circ} 1+\mathrm{N}^{\circ} 2 \\ + \text { STANDBY } \end{gathered}$
EFIS CRT's	3	4
RADIO ALTIMETER	(But two displays)	2
AUTO CALL OUT RADIO ALTIMETER	0	1**
DH INDICATION	1 ***	1***
FWC	1	2
«AP OFF » warning	1	2
«AUTOLAND» light	1	2
« ATS » warning	0	1
WINDSHIELD WIPERS OR RAIN REPELLENT (if activated)	1 ****	$1 * * *$
WINDOW HEAT	1	1
ANTI-SKID SYSTEM	0	$1^{* * * * *}$

* ATS is mandatory in CAT 3 only but is recommended even in CAT 1 or CAT 2.
** AUTO CALL OUT Radio altimeter setting must be in accordance with approved airline procedures.
*** One unit required for the CM2.
**** One unit required for CM1.
***** One unit required in CAT 3 with no DH.
Note: Compliance with CAT 2 (respectively CAT 3) approach and landing criteria has been demonstrated with CAT 2 and CAT 3 (respectively CAT 3) performance quality ILS beams only.

C．EQUIPMENTS REQUIRED TO BE OPERATIONAL FOR LAND MODE ENGAGEMENT

（In addition of AP or FD engagement conditions）

CAPABILITY＊\rightarrow	CAT 1	CAT 2	CAT 3
EQUIPMENTS \downarrow			
AP／FD	$\begin{aligned} & 1 \mathrm{FD} \mathrm{~B}^{* *} \\ & \text { or 1AP in } \\ & \text { CMD } \end{aligned}$	1AP IN CMD	2AP IN CMD AND 1 FD
AUTOTHROTTLE	－	－	ENGAGED IN SPEED MODE
ILS receiver	$\begin{aligned} & N \circ 1 \text { if FD } 1 \\ & N \circ 2 \text { if FD } 2 \end{aligned}$	$\begin{gathered} N \circ 1 \\ \text { and } N \circ 2 \end{gathered}$	$\begin{gathered} N \circ 1 \\ \text { and } N \circ 2 \end{gathered}$
PFD（PRIMARY FLIGHT DISPLAY）	$\begin{array}{\|l\|lll\|} \hline N \circ 1 \text { if FD } & 1 \\ N \circ 2 \text { if } F D & 2 \end{array}$	$\begin{gathered} N \circ 1 \\ \text { and } N \circ 2 \end{gathered}$	$\begin{gathered} N \circ 1 \\ \text { and } N \circ 2 \end{gathered}$
IRS （INERTIAL REFERENCE SYSTEM）	产关关 $\mathrm{N} \circ 1$ and one of the two others if FD1． $\mathrm{N} \circ 2$ and one of the two others if FD2．	米 $\mathrm{N} \circ 1$ and one of the two others if AP1． $\mathrm{N} \circ 2$ and one of the two others if AP2	$\mathrm{N} \circ 1$ and $N \circ 2$ and $N \circ 3$
RADIO ALTIMETER	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline N \circ 1 \text { if FD } \\ N \circ 2 \text { if } & \\ \hline \end{array}$	$\begin{aligned} & N \circ 1 \text { if AP1 } \\ & N \circ 2 \text { if AP2 } \end{aligned}$	$\begin{gathered} N \circ 1 \\ \text { and } N \circ 2 \end{gathered}$
HYDRAULIC SYSTEMS	－	G and B （or G and Y ） if AP1． Y if AP2	G and B and Y
ELECTRIC POWER	GEN1 or GEN2 or APU GEN	GEN1 or GEN2 or APU GEN	Two among GEN1， GEN2 and APU GEN
YAW DAMPER	－	$\mathrm{N} \cdot 1$ orN C 2	$\begin{gathered} N \circ 1 \text { and } \\ N \circ 2 \end{gathered}$
PITCH TRIM	－	$\mathrm{N} \cdot 1$ orN 02	$\begin{aligned} & \mathrm{N} \circ 1 \text { and } \\ & \mathrm{N} \circ 2 \end{aligned}$
Flight Warning Computer	－	$\begin{aligned} & \mathrm{N} \circ 1 \text { if AP1 } \\ & \mathrm{N} \circ 2 \text { if AP2 } \end{aligned}$	$\begin{gathered} \mathrm{N} \circ 1 \text { and } \\ \mathrm{N} \circ 2 \end{gathered}$

＊Capability is indicated on FMA＇s（Flight Mode Annunciator）
＊＊Engagement of an AP in CWS together with the FD is possible．This does not change the capability．
＊＊＊If 2 IRS are in ATT mode the AP／FD may desengage in case of cross wind during approach．

D．APPROACH AND LANDING PERFORMANCE ENVELOPE

LOC beam capture ：the following graph gives the angle of interception of the beam function of speed and distance to the threshold．
The LOC beam capture starts only at 2 dots deviation． It is performed with a first overshoot and a minor second one．Within the following envelope，the first overshoot is limited to 1.3 dot．

GLIDE beam capture ：
GLIDE interception between 1000 ft and 5000 ft ．
Vertical speed should be between +500 ft and － 1250 ft ．
Maximum speed should be 200 kt IAS．

A310

E. ILS APPROACH (DECELERATED APPROACH ALONG THE GLIDE SLOPE)

OBJECTIVE : Landing configuration (FLAPS $40^{\circ} / \mathrm{VAPP}$) established at a height depending on the airline policy (Minimum 500 ft above ground level). This height is further named : STABILIZATION HEIGHT

ADVANTAGES : - a better compatibility with ATC constraints (keep high speed as long as possible).

- Fuel and time savings (100 kg and 2 minutes in average).
- Decrease of A / C noise in approach.

APPLICABILITY : - In CAT 1 or better and CAT 2 or CAT 3 weather conditions.

- For any glide slope angle.
- with one FD, two FD's, one AP in CMD or two AP's in CMD engaged with LAND mode.
Note: One FD at least is required to obain CAT 1 capability. One $A P$ in CMD at least is required to obtain CAT 2 capability. Two AP's in CMD are required to obtain CAT 3 capability.

APPR	- PF (Pilot Flying) controls the flight path through the FD (or AP if engaged), the SPEED through the ATS (or manually if necessary) asks PNF for FLAPS SETTING, GEAR EXTENSION and selects speeds on FCU. - PNF (Pilot Non Flying) monitors A/C position and flight parameters. He announces mode changes on FMA.	- CM1 is Pilot Flying (PF) He controls the flight path through the AP, and the SPEED through the ATS (or manually, necessary). He asks CM2 for FLAPS SETTING, GEAR EXTENSION and selects speeds on FCU. - CM2 is Pilot Non Flying (PNF) He monitors A / C position and parameters. He announces mode changes on FMA.
	HDG SEL knob \qquad . SELECT INTERCEPT HDG LAND p.b. SELECT LAND MODE IF MAP MODE used for ND's . SELECT RANGE 15 on both sides - AUTOLAND lights TEST* * This also tests the LOC and GLIDE EXCESSIVE DEVIATION WARNINGS on the PFDs. - CHECK LOC and GS illuminate blue on both FMA's. - CHECK desired CAPABILITY is obtained (Violet CAT 1, CAT 2 or CAT 3 on both FMA's). - LAND mode must be selected before interception of the LOC beam, but not too early to avoid false LOC capture. The AP/FD will start LOC capture at about 2 dot from LOC axis (when within the linear range of the beam). Note : 1) It is always possible to get out of $\angle A N D$ mode by pressing a second time LAND p.b., except if LAND mode is in LAND TRACK phase (green LAND on PFD's). In this case the only way to get out of LAND mode is to press the GO-LEVERS (this engages GO-AROUND mode). 2) In LAND MODE, dot not start APU when both autopilot are engaged.	
BASE		
,		
CLEAR TO		
INTERCEPT		

PROCEDURES and TECHNIQUES

	CAT 1 OR BETTER WEATHER CONDITIONS				CAT 2 AND CAT 3 WEATHER CONDITIONS
LOC*	HDG SEL knob . SELECT RWY HDG				
FINAL DECEL SEOUENCE					
	No	GLIDE SLOPE INTERCEPTION AT OR ABOVE 2000 Ft GLIDE SLOPE INTERCEPTION BELOW 2000 Ft (1500 Ft MIN) 1. Deceleration 2000 FT and FT). 2. FLAPS $40^{\circ} / V$ initiation, and	SLATS/FLAPS $15^{\circ} / 0^{\circ}$ Speed: S SLATS/FLAPS $15^{\circ} / 0^{\circ}$ Speed: S ONE DOT BELOW uence is initiated at DOT BELOW the GL will normally be ob ust be obtained at the	HE GLIDE 00 FT if INT ned 1000 latest	START DECELERATION SEQUENCE Stabilization height : FLAPS $40^{\circ} / V_{\text {APP }} 0$ BTAINED. L if G/S INTERCEPTION is AT or ABOVE CEPTION is BELOW 2000 FT (MIN 1500 FT below DECELERATION SEQUENCE 1000 FT AGL in IMC (500 ft in VMC).
FLAPS 40° SELECTED	FINAL CHECK LIST . .PERFORM PNF reads the CHECKLIST : CM2 reads the CHECKLIST :				
	LANDING			LANDING	
	ALL ALL ALL ALL	LANDING GEAR . ANTI SKID . . . SLATS/FLAPS SPOILERS . . .		ALL ALL ALL ALL ALL	ANDING GEAR DOWN NTHECK SLATS/FLAPS. SET SOILERS. TESTED AUTOLAND
1000 FT AGL	PNF announces « ONE THOUSAND »			CM2 announces «ONE THOUSAND » CM1 puts his hand on the THROTTLE levers, controls or monitors the SPEED (as appropriate) and looks for external visual references	

PROCEDURES and TECHNIQUES
AFS / FPV / DFA / WGD USE OF AFS

Note: A call out (indicating that a flight parameter is exceeded) must be done by the PNF if :

- During GLIDE beam capture.
- pitch attitude becomes lower than 0° or greater than 10° nose up.
- vertical speed exceeds $+500 \mathrm{ft} / \mathrm{min}$ or $-1250 \mathrm{tt} / \mathrm{min}$.
- During the final approach.
- speed becomes lower than VAPP - 5 KTS or greater than VAPP + 10 KTS.
- pitch attitude becomes lower than O° or greater than 10° nose up.
- bank angle becomes greater than 7°.
- descent rate becomes greater than $1000 \mathrm{ft} / \mathrm{min}$.
- excessive LOC or GLIDE deviation occurs :

1/4 dot LOC excess dev
1 dot GS excess dev

- any significant changes in ground speed that might indicate windshear.

Anyway, if the pilot has any doubt on autopilot guidance, the autopilot should be disconnected using the instinctive disconnect pushbutton or an automatic go around must be initiated during the approach.

Mod. : 4941

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF AFS	2.02.03	
		PAGE 14A	
		REV 31	SEO 210

	CAT 3 WEATHER CONDITIONS WITH NO DECISION HEIGHT
$\begin{gathered} \hline 700 \mathrm{FT} \\ \text { QFE } \end{gathered}$	- Each pilot checks the selected CRS on his ND CM2 announces «COURSE SET»
500 FT OFE	- CM2 announces «LAND GREEN » at 400 FT above ground (altimeter). - CM2 monitors AUTO CALL OUT (or announces «HUNDRED ABOVE» at 100 FT radio altimeter). - At 30 FT, CM2 announces "RETARD", CM1 monitors or controls (as appropriate) throttle reduction and maintains throttles on idle position until end of ROLL OUT phase. Note : AUTO CALL OUT R/A is mandatory for a CAT 3 with two men crew.
$\begin{aligned} & \text { TOUCH } \\ & \text { DOWN } \end{aligned}$	- CM1 announces « LANDING » and monitors lateral guidance. CM1 controls THROTTLE position. Note: When landing on snow covered or icy runway, disconnect the AP at nosewheel touchdown. - CM2 announces « ROLL OUT » - CM2 monitors engine parameters and announces speeds. If ROLL OUT mode is engaged, disconnect both AP/FD before exiting the runway.

Note : A call out (indicating that a flight parameter is exceeded) must be done by the PNF if :

- During GLIDE beam capture.
- pitch attitude becomes lower than 0° or greater than 10° nose up.
- vertical speed exceeds $+500 \mathrm{ft} / \mathrm{min}$ or $-1250 \mathrm{ft} / \mathrm{min}$.
- During the final approach.
- speed becomes lower than VAPP - 5 KTS or greater than VAPP + 10 KTS.
- pitch attitude becomes lower than O° or greater than 10° nose up.
- bank angle becomes greater than 7°.
- descent rate becomes greater than $1000 \mathrm{ft} / \mathrm{min}$.
- excessive LOC or GLIDE deviation occurs.

R - any significant changes in ground speed that might indicate windshear.
R
Anyway, if the pilot has any doubt on autopilot guidance, the autopilot should be disconnected using the instinctive disconnect pushbutton or an automatic go around must be initiated during the approach.
ALERLS training

2.02 .03		
PAGE 14B		
REV 35		SEO 001

E. 1 PROCEDURE FOR LOC BACK-COURSE APPROACH

- tune frequency and set front-course on ILS control panel.
- check approx. approach slope ($300 \mathrm{ft} / \mathrm{mile}$ is 3°).
- select ND to ROSE or ARC, and VOR/NAV/ILS switch to ILS
- refer to localiser deviation indicated by ND to intercept and maintain localiser back-beam.

| | | |
| :--- | :--- | :--- | :--- |
| R | Disregard localiser deviation on PFD, this is | |
| R | reversed. | |
| R | Disregard glide slope indications. | |
| | | |

- Leave final approach fix stabilised in landing configuration at Vapp
- Do not use FD in LAND or V/L mode ; it is recommended to select FPV to assist in maintaining the required glide slope. The « FLIGHT PATH TARGET » is not usable since it is referenced to the front-course.

Note: If desired the approach may be flown with AP in CMD using H/SEL to maintain the localizerback-course and V/S to maintain the FPV at the required angle (normally -3°) on the pitch scale. In this case the AP should be disengaged by 200 ft (see AFS limitations). Another technique is to use $A P$ in CWS in conjunction with FPV. In either case it is advantageous to have auto-throttle engaged.

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF AFS	2.02.03	
		PAGE 15	
		REV 30	SEQ 100

STANDARD ILS APPROACH

described here with :
use of one AP
a glide interception altitude of a gide interception altitude
3000 ft above ground level a stabilization height of 500 ft

FCU:
selact INTERCEPT HDG
seleet LAND [LAND is ARMED

VOR/NAV/LLS selector

R

Mod. : 5757

SIMU S4 for training only 1PM AI / V-F 1000

F. GO AROUND

	CAT 1 OR BETTER WEATHER CONDITIONS	CAT 2 WEATHER CONDITIONS	$\begin{aligned} & \text { CAT 3 WEA7 } \\ & \text { WITH DH } \end{aligned}$	RCONDITIONS WITH NO DH
DH	- PNF announces «NO CONTACT". - PF announces «GO-AROUND, FLAPS », presses the GO-LEVERS, monitors THROTTLE advancement and controls or monitors (as appropriate) the FLIGHT PATH. Note: If ATS is not armed, PF pushes throttles full forward. - PNF retracts FLAPS one step and monitors engine parameters. - As soon as rate of climb is positive : PNF announces «POSITIVE CLIMB ». PF asks for GEAR retraction PNF retracts the gear and confirms «GEAR UP ».	- CM1 announces « GO-AROUND, FLAPS », presses the GO-LEVERS, monitors THROTTLE advancement, checks PITCH ATTITUDE with STANDBY HORIZON, monitors flight path and makes the necessary selections on FCU. Note : If ATS is not armed, CM1 pushes throttles to adjust go-around power. - CM2 retracts FLAPS one step and monitors engine parameters. - As soon as rate of climb is positive : CM2 announces «POSITIVE CLIMB ». CM1 asks for GEAR RETRACTION CM2 retracts the gear and confirms «GEAR UP ». - CM2 announces 200 FT, 300 FT. Note : IF AT DH, NO CALL FROM CM1, CM2 PERFORMS A GO-AROUND.		
	CAUTION At each time a GO AROUND is initiated, even if manually done, PRESS THE GO LEVERS IN ORDER TO GET OUT OF LAND MODE			
$\begin{gathered} \text { ACCEL } \\ \text { ALT } \end{gathered}$	See also Patterns in following pages. - With TWO ENGINES At acceleration altitude : SPD/MACH setting knob . SELECT 250 KT LVL/CH p.b. SELECT LVL/CH MODE TRP..... SELECT CL OR CR THRUST			
	- With ONE ENGINE OUT At acceleration altitude : SPD/MACH setting knob ALT HLD p.b. At " GREEN DOT » speed LVL/CH p.b. TRP SPD/MACH setting knob			SELECT 250 KT ECT ALT MODE LVL/CH MODE T MCT THRUST «GREEN DOT »

WARNING

1) During a GO AROUND, an ENGINE FAILURE may lead to the disconnection of one or both AP : - If 1 AP remains engaged, go on in automatic control.

- If no AP remains engaged, CM1 manually takes over and refers to the MAIN and STANDBY HORIZONS and to the FD BARS (if they are available).

2) In the case of a manual GO AROUND the pitch trim should be adjusted as soon as possible to counteract the strong nose up tendency.

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF AFS	2.02 .03	
		PAGE 17	
		REV 18	SEC 001

TWO ENGINE GO AROUND

ENGINE FAILURE DURING GO AROUND

	2.02 .03	
PAGE 19		
REV 33		SEO 060

G. PROCEDURES FOLLOWING FAILURES (LAND MODE ENGAGED)
 ENGINE FAILURE DURING THE APPROACH

1 AP IN CMD	2 AP's IN CMD (CAT 3 WEATHER CONDITIONS)	
(CAT 1 OR CAT 2 WEATHER CONDITIONS)	WITH DH	WITH NO DH

- The ATS mode remains engaged.

- In case of RIGHT ENGINE FAILURE :	- In case of RIGHT ENGINE FAILURE :
YAW DAMPER 2 disconnects.	YAW DAMPER 2 disconnects.
AP 2 may disconnect if engaged (preferably use AP 1)	- In case LEFT ENGINE FAILURE :
- In case of LEFT ENGINE FAILURE :	YAW DAMPER 1 disconnects.
YAW DAMPER 1 disconnects	
AP does not disconnect provided at least 1 YAW	- AP does not disconnect provided at least 1
DAMPER remains engaged.	

Above 1000 ft : the approach can be continued down to CAT 2* minima.
Approach speed is VLs $+5 K T+$ WIND CORRECTION in AUTOMATIC approach and VLs + WIND CORRECTION in MANUAL approach.

Below 1000 ft and above 100 ft

IF EXTERNAL VISUAL REFERENCES ARE NOT SUFFICIENT execute a GO AROUND.
Make a new approach (single engine approach) down to CAT 2* minima with the A/C correctly trimmed.
It is preferable to engage 1 AP in CMD. (if available). Keep autothrottle.
Approach speed is as described above.

* This procedure (single engine approach) has not been demonstrated for a CAT 2 approach. However for safety reasons, if an AP is still available, it can be continued down to CAT 2 minima rather than to divert to another airport.

Below 100 ft
Continue the approach. Keep the autothrottle if engaged.

At landing

Continue the automatic langing if the single engine automatic approach is continued.	Continue the automatic landing

FAILURE OF HYDRAULIC SYSTEM WITHOUT HYDRAULIC FLUID LOSS

ABOVE 1000 FT :

By means of transfer units and electropumps if necessary, it is possible to restore the operational capability of the failed hydraulic system and recover all AFS capability.

BELOW 1000 FT :

No transfer will be done - A GO-AROUND will be initiated if the desired capability is lost and the EXTERNAL VISUAL REFERENCES ARE NOT SUFFICIENT.

FAILURES AND ASSOCIATED ACTIONS DURING A CAT 2 APPROACH

(1) If external visual references sufficient

FAILURES AND ASSOCIATED ACTIONS DURING A CAT 3 WITH DH APPROACH

R

(1) If external visual references sufficient.

R (2) In case of diagonal line on one PFD and ND due to SGU failure, a CAT 3 is still possible after SGU switching If warning does not disappear then revert to CAT 1 .

Mod. : $4941+5757$

SIMU S4 for training only 1PM AI / V-F 1000

FAILURES AND ASSOCIATED ACTIONS DURING A CAT 3 WITHOUT DH APPROACH

R

(1) If external visual references sufficient.
R
R (2) In case of diagonal line on one PFD and ND due to SGU failure, a CAT 3 is still possible after SGU switching,
warning does not disappear, then revert to CAT 1.

Mod : $4941+5757$

SIMU S4 for training only 1PM AI / V-F 1000

$\underbrace{3}$	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF FPV	2.02 .03	
		PAGE 22	
		REV 22	SEO 001

1 - GENERAL

The FPV (Flight Path Vector) system provides to the crew a complementary way of flying the A / C.

FPV use is basically different from FD (FLIGHT DIRECTOR) use.

The FPV can be used in two different ways which correspond to two different operational conditions :
R - With the FLIGHT PATH VECTOR (FPV) only. In this case the FPV allows the crew to know the actual A / C slope and lateral drift.
R

The «FPV» provides a precise and immediate reference for either controlling or monitoring the flight path. Because it displays the inertial trajectory (relative to ground), there is no need to compensate for the effect of wind.

- The vertical displacement from the horizon, read against the pitch scale, is the slope of climb or descent relative to the ground. (γ)
- The lateral displacement from the centre of the fixed aircraft symbol is the drift. (D)
But this doesn't give the crew any reference to fly
- With the FLIGHT PATH VECTOR + the FLIGHT PATH TARGET.
In this case the FPV allows the crew, at the same time to :
- still know its actual slope and lateral drift,
- and fly the references (SLOPE and COURSE) selected through the FLIGHT PATH TARGET.

Use of the FPV is primarily recommended for approaches without precise glide-slope guidance, i.e. non-precision and visual approaches. (For other phases of flight, the Flight Director should in general be used. The FD is the optimum « tool» to fly a precision approach or a take-off climb profile).

PRIMARY INFORMATION GIVEN BY THE FPV (« BIRD »)

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF FPV	2.02.03	
		PAGE 23	
		REV 22	SEQ 001

R $\quad \underline{2}$ - VISUAL APPROACH (USE OF THE FPV ALONE)

APPLICABILITY :

In VISUAL conditions, when no ILS exists, to know the A/C slope and drift. The FPV, in this case, helps in maintaining a stabilized descent path.

R The FLIGHT PATH TARGET ("FPT") cannot be used, since usually in the case of a VISUAL APPROACH there is not any FIX from which the target slope and course can be referenced.

COMPARISON WITH THE FD :

Allows to get information on the A / C path without the need of selecting references (vertical speed, heading).

OPERATION (FOR A STANDARD CIRCUIT PATTERN)

	FD/FPV switch LIFT TO SELECT FPV The FLIGHT PATH VECTOR symbol appears on the PFD. It indicates to the crew the
present A/C slope and drif.	
A HDG BUG also appears against the HDG	
scale of the PFD. It indicates the HEADING	
selected on FCU.	

Note : The information provided by the FPV is particularly valuable for visual approaches when the visual cues are degraded (e.g. in heavy rain or into sun) or misleading (sloping terrain or runway, or abnormal length/width ratio) or at night with no approach or foreground lights (the «black hole» approach).

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF FPV	2.02.03	
		PAGE 24	
		REV 22	SEQ 001

VISUAL APPROACH WITH THE FPV (" BIRD " ONLY)

AI / V-F 1000 SIVU S4 for training only IPM

3 - NON PRECISION APPROACH (USE OF THE FPV COMBINED WITH THE FPT)

APPLICABILITY

For a NON PRECISION APPROACH, e.g. NDB, VOR LOCALIZER ONLY approach. It allows to have a continuous indication of the flight path being achieved.

COMPARISON WITH THE FD :

For a NON PRECISION APPROACH allows a better accuracy of the track (in slope).

$\begin{aligned} & \text { START } \\ & \text { OFF } \\ & \text { APPR } \end{aligned}$	FD/FPV switch . LIFT TO SELECT FPV The FLIGHT PATH VECTOR symbol appears on the PFD - It indicates to the crew the present A/C slope and drift. A HDG BUG also appears against the HDG scale of the PFD. It indicates the heading selected on FCU. Note : 1-A second action (lift) on the FD/FPV switch will clear the FPV symbol and the HDG BUG and bring back the FD BARS. 2-If no $A P$ is engaged in CMD, the $A P / F D$ mode indication on the FMA disappears on the side where the FPV is on. FPA p.b. PRESS TO LIGHT THE p.b. The FLIGHT PATH TARGET symbol appears. It indicates : - The last selected SLOPE on the EFIS CONTROL PANEL - The VOR course selected on VOR C.P., if VOR/NAV/LLS switch is on VOR. The LOC course selected on ILS C.P., if VOR/NAV/ILS switch is on ILS. The FLIGHT PATH TARGET symbol is not displayed if VOR/NAV/ILS switch is on NAV. The FLIGHT PATH TARGET symbol is cleared by a second press on the FPA p.b. or a press on the DH p.b.
$\begin{gathered} \text { PRIOR } \\ \text { TO } \\ \text { FIX } \end{gathered}$	SET knob. ROTATE TO SELECT RWY COURSE \qquad SELECT ON VOR or ILS C.P. as appropriate.
PASSING	PITCH DOWN The A/C to bring the FPV into the FPT. Maintaining FPV vertically centered in FPT will ensure that the required slope is maintained with respect to ground. Maintaining FPV laterally centered in the «FPT », provided A/C was on the RWY axis when overflying the FIX, will ensure that the required COURSE (RWY axis) is maintained.
FIX	CAUTION The SLOPE selected through the FLIGHT PATH TARGET is not linked to the ground as a GLIDE SLOPE. This means that this SLOPE TARGET must be carefully followed, otherwise a parallel slope may be flown. Same thing for the selected COURSE, a parallel course may be flown.
MDA	EXTERNAL VISUAL CONDITIONS SUFFICIENT CONTINUE THE APPROACH EXTERNAL VISUAL CONDITIONS INSUFFICIENT EXECUTE A GO AROUND. BY PRESSING GO LEVERS FD BARS ARE RECOVERED.

4 - OTHER POSSIBLE USES OF THE FPV

- Monitoring automatic precision approach, in conjunction with raw ILS data ;
- It allows, particularly, an immediate and direct indication of flight path deviation due to wind-shear or other abnormality. Note that the GS index indicates position, whereas the FPV indicates rate of change of position, i.e. is predictive and therefore provides an earlier indication than the deviation of the GS.
- Cross-check of the achieved climb gradient when obstacle clearance is critical.
- In case of unreliable or failed airspeed indication, in which case the angle of attack (given on the pitch scale of the PFD by the displacement between the centre-dot and the FPV) can be used as relative pitch altitude. Refer to 2.05.80.

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF FPV	2.02.03		
		PAGE 26		
		REV 22		001

NON PRECISION APPROACH WITH THE FPV

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF DFA	2.02.03		
		PAGE 27		
		REV 22		001

DFA is not installed.
R Pages 27 to 29 are intentionally left blank.

$\int_{\text {smпимme }}^{\text {a310 }}$	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF DFA	2.02.03	
		PAGE 28	
		REV 18	SEQ 001

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF WGD	2.02.03	
		PAGE 30	
		REV 20	SEQ 001

WGD is not installed.
pages 30 and 31 are intentionally left blank.

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF WGD	2.02.03	
		PAGE 31	
		REV 20	SEQ 001

PAGE INTENTIONALLY LEFT BLANK

	PROCEDURES and TECHNIQUES AFS / FPV / DFA / WGD USE OF WGD	2.02.03	
		PAGE 32	
		REV 20	SEQ 001

PAGE INTENTIONALLY LEFT BLANK

EXTERNAL ELECTRICAL POWER SUPPLY

PROCEDURE

EXT PWR AVAIL It
 CHECK ON

EXT PWR parameters
. CHECK
(When external power parameters are out of tolerance, the EXT PWR AVAIL light will not illuminate and the aircraft cannot be supplied).
EXT PWR
. ON
. ON light illuminates.
ELECTRICAL PWR distribution CHECK
(When APU GEN and EXT PWR supplies are both available, the external power has priority. The ENG driven GENs always have priority.

> Before disconnecting the EXT ELECT PWR unit from the aircraft, check : EXT PWR sw. A AVA light extinguished and illuminated. . ON light

ELECTRICAL SUPPLY FOR MAINTENANCE AND CLEANING

To avoid supplying unnecessary electrical equipment during maintenance and cleaning activities, a limited number of circuits may be supplied from the external power unit via the maintenance bus.

PROCEDURE

EXTERNAL POWER UNIT
 \qquad
 CONNECTED

EXT PWR AVAIL light CHECK ON
MAINT BUS sw . ON
Note: Check that the batteries are OFF, otherwise, they will discharge.
The following equipment will be supplied :

- Refuelling system - Pressure water system
- Cargo loading system
- Toilet flush
- Cargo lighting
- Vacuum cleaner plugs
- Cabin lighting
- Cockpit DOME lights
- Maintenance lighting

CIRCUIT BREAKER USE

- CIRCUIT BREAKER TRIPPING :

Due to the systems redundancy the safety of the aircraft is not affected by the loss of one system caused by tripped C/B's. Consequently there is no requirement to reset an open C/B.

IN FLIGHT

Do not re-engage a tripped C/B, unless the Captain (using his emergency authority) judges it necessary for the safe continuation of the flight. This procedure should be adopted only as a last resort, and only one re-engagement should be attempted.

ON GROUND

If the flight crew coordinates the action with maintenance, he may re-engage a tripped C / B, provided the cause of the tripped C / B is identified.
On the ground, if the pilot coordinates the action with maintenance, he/she may reengage a tripped C / B provided the cause of the tripped C / B is identified.

- SYSTEM RESET :

Digital computers and systems abnormal behaviour, as a result of an electrical transient for example, may be stopped in some cases by interrupting the power supply of its processing part for a short time.
Generally, this may be achieved with the normal cockpit controls (engagement levers, pushbuttons) by selecting the related control OFF then ON.

However for some systems the cockpit normal controls do not cut off electrical power supply. The only way to reinitialize such a system is to pull and reset the corresponding circuit breaker.

PROCEDURE

To perform a system reset :

- Select the related normal cockpit control OFF, or pull the corresponding reset button or circuit breaker.
- Wait at least 3 seconds if a normal cockpit control is used, or 5 seconds if a circuit breaker is used (unless a different time is indicated).
- Select the related normal cockpit control ON, or push the corresponding reset button or circuit breaker.

CAUTION

Do not reset more than one computer at the same time, unless instructed to do so.

SYSTEM RESET TABLE

The following table indicates which C/B may be used for this purpose, with the associated reset procedure or FCOM reference, when applicable.
In flight, as a general rule, before taking any action, the flight crew must considerandfully understand the consequences.

SYSTEM RESET TABLE (CONT'D)

SYSTEM RESET TABLE (CONT'D)

	PROCEDURES and TECHNIQUES	2.02.06	
		PAGE 4	
	ELECTRICAL	REV 34	SEO 001

SYSTEM RESET TABLE (CONT'D)

ATA	Affected system	Reset
34 NAVIGATION (cont'd)	RAD ALTM	On ground or in flight : - Reset the C/B C05 on 21VU for RAD ALTM 1. - Reset the C/B C10 on 21VU for RAD ALTM 2.
	GPWS	On ground or in flight : - GPWS FAULT may be cleared by resetting associated radio altimeter C/B C05 on 21VU.
	VSI	On ground only: - Reset the C/B F18 on 22VU for CAPT VSI. - Reset the C/B E11 on 21VU for F/O VSI.
	TCAS (if installed)	On ground or in flight : - Reset the C/B F07 on 21VU.

AIRCRAFT LATERAL TRIMMING

The minimum drag is obtained when the ailerons and control wheel are in the neutral position. This condition is obtained by the following procedure, provided slats are retracted :

- Ensure symmetric fuel loading,
- Disconnect A/THR (using instinctive disconnect pushbutton)
- Ensure accurate symmetric thrust,
- Engage the autopilot in CMD, if not already engaged, in HDG SEL mode and in ALT HLD mode,
- Adjust the rudder trim in order to obtain a zero control wheel position (aileron deflection scale on the wheel), If the required rudder trim deflection exceeds 1.5°, a log book entry should be performed for maintenance action.
- Check bank angle, if bank angle is estimated to exceed 2°, a log book entry should be performed for maintenance action,
- Check again the lateral trimming conditions and retrim if necessary when ever there is a noticeable change in flight conditions (e.g. step climb).

RECOVERY FROM STALL WARNING (STICK SHAKER)

Whenever a stall warning (i. e. Stick Shaker activation) is experienced at low altitude, this should be considered as an immediate threat to maintaining a safe flight path.

■ At lift off :

THRUST LEVERS . TOGA
PITCH ATTITUDE . 12.5º

Note : When a safe flight path and speed are achieved and maintained, if stall warning is still activated, consider a spurious stall warning and refer to the procedure INADVERTENT STICK SHAKER (ORH 6.04).

■ During any other flight phases after lift off :
THRUST LEVERS . TOGA
PITCH ATTITUDE REDUCE
CAUTION
If a risk of ground contact exists, do not reduce the pitch attitude more than necessary to allow airspeed to increase.

- After initial recovery :

Maintain the speed close to the stick shaker speed until it is safe to accelerate (closely monitor both the speed and the speed trend arrow)

BANK ANGLE WINGS LEVEL
SPEED BRAKES
CHECK RETRACTED

- If in clean configuration and below 20000 ft :

SLATS
EXTEND

- When out of stall and if no threat of ground contact :

LANDING GEAR (If DOWN) UP
Recover normal speed and select flaps as required

- If one engine inoperative :

POWER AND RUDDER USE WITH CARE

RECOVERY TECHNIQUES FROM UPSET SITUATIONS

FOREWORD

Theinformation contained inthischapter providesrecommended piloting techniques, maneuvers and guidelines for recovery from upset situations.

These are basic airmanship techniques already developed in various training materials that are recommended to be endorsed by operators in their overall pilot training program for this type of aircraft.
Although these techniques are considered as basic piloting skills for trained flight crews, they are summarized in this chapter for reference purposes.

INTRODUCTION

An upset can generally be defined as unintentionally exceeding the following conditions :

- Pitch attitude more than 25° nose up, or
- Pitch attitude more than 10° nose down, or
- Bank angle more than 45°, or
- Within the above parameters, but flying at airspeeds inappropriate for these conditions.

AERODYNAMIC FUNDAMENTALS

Pitch control :

When an airplane is at a balanced "in-trim" angle of attack, it will seek to return to the trimmed angle of attack if upset by external forces or momentary pilot inputs. This is due to the longitudinal stability of the airplane.
Changes of airplane configuration affect pitch attitude :

- Flap extension usually generates a nose-down pitching moment.
- Flap retraction usually generates a nose-up pitching moment.
- When extended, speedbrakes usually produce a nose-up pitching moment
Pitch attitude is also affected by thrust variation. Reducing thrust generates a nose-down pitching moment, and conversely, increasing thrust generates a nose-up pitching moment.

Lateral and directional control :

Unusually large amounts of aileron and spoiler input may be required to recover from an upset.

If during this upset, the angle of attack increases beyond a certain value (stick shaker and buffeting), then the airflow over the wing separates and the efficiency of ailerons and spoilers decreases. The angle of attack must be decreased to regain aileron and spoiler effectiveness. Since the rudder is rarely aerodynamically stalled, it is still possible to generate induced roll rate using the rudder.

CAUTION

At high angle of attack, pilots must be extremely careful when using the rudder for assisting lateral control. Excessive rudder can cause excessive sideslip, which could lead to departure from controlled flight.

RECOVERY TECHNIQUES

The techniques assume that the airplane is not stalled. If it is, recovery from the stall must be accomplished first.

Stall recovery :

To recover from the stall, angle of attack must be reduced.
Nose down pitch control must be applied and maintained until wings are unstalled. Under certain conditions, it may be necessary to reduce thrust in order to increase the nose-down pitching moment necessary to reduce the angle of attack.
Once unstalled, upset recovery actions may be taken and thrust reapplied as needed.

Recovery from a nose high, wings level upset :

- Pitch attitude is unintentionally more than 25 degrees nose-up and increasing,
- the airspeed is decreasing rapidly.

As airspeed decreases, the pilot's ability to maneuver the airplane also decreases. If the pitch trim setting is nose-up, as for low speed flight, it partially reduces the nose-down authority of the elevator. As the airspeed decreases, the pilot could intuitively make a large thrust increase; this will cause an additional pitch up effect further complicating the situation. At full thrust setting and very low airspeed and with pitch trim set for low speed, the elevator may have only very limited ability to reduce pitch attitude.
In this situation the pilot should trade altitude for airspeed. This is accomplished by an input of up to full nose-down elevator accompanied by some nose-down pitch trim.
Note: Pilots should not fly the airplane using pitch trim only.
If altitude permits, reducing thrust may help to achieve a nose-down pitch rate

If normal pitch control inputs do not stop an increasing pitch rate, it may be necessary to roll the aircraft to a bank angle sufficient to bring the nose down. A bank angle of between 45 and 60 degrees could be needed.
Finally, if normal control is ineffective, careful rudder input in the direction of the desired roll may be required to induce a rolling maneuver recovery.

CAUTION

Only a small amount of rudder is needed. Too much rudder applied too quickly or held too long may result in loss of lateral and directional control. Because of the low energy condition, pilots should exercise caution when applying rudder.

Recovery from a nose low, wings level upset :

- Pitch attitude is unintentionally more than 10 degrees nose down and going lower,
- the airspeed is increasing rapidly.

At moderate pitch attitude, applying nose-up elevator-reducing thrust and extending speedbrakes, if necessary - will recover the aircraft to a normal attitude.
At extremely low pitch attitude and high airspeed (well above VMO/MMO), the ability to command a nose-up pitch rate with elevator alone may be reduced because of extreme aerodynamic loads on the elevator. Nose-up elevator and nose-up pitch trim may be required to establish a nose-up pitch rate.

Recovery from high bank angle :

- Though the bank angle for an upset has been defined as unintentionally more than 45 degrees, it is possible to experience bank angles greater than 90 degrees.
A smooth application of up to full lateral control should provide enough roll control to establish a very positive recovery roll rate. If full roll control application is not satisfactory, it may then be necessary to apply some rudder in the direction of the desired roll.

CAUTION

Only a small amount of rudder is needed. Too much rudder applied too quickly or held too long may result in loss of lateral and directional control or structural failure.

Recovery from nose high, high bank angle

Pilots must apply nose down elevator but maintain bank angle in order to quickly reduce pitch attitude. As the nose approaches the horizon, bank angle should be reduced to zero and pitch attitude adjusted to recover normal airspeed.

Recovery from nose low, high bank angle

The nose-down, high bank angle upset requires prompt action from the pilot since altitude is rapidly exchanged for airspeed. Airspeed in that situation can rapidly increase beyond airplane design limits.
It is important to roll the aircraft to wings level before applying nose-up elevator, especially if bank angle exceeds 90 degrees.
Simultaneous application of roll control and thrust reduction may be necessary.
The pilot should also extend the speedbrakes as necessary.

SUMMARY

- The techniques assume that the airplane is not stalled. If it is, recovery from the stall must be accomplished first.
- It is possible to consolidate and incorporate recovery techniques into the two basic scenarios described on page 4 of this chapter:

	PROCEDURES and TECHNIQUES	2.02.09	
		PAGE 4	
	FLIGHT CONTROLS	REV 31	SEQ 001

- Nose-high recovery :

PF	PNF
Recognize and confirm the situation	
AP DISCONNECT OFF	CALL OUT ATTITUDE, AIRSPEED and ALTITUDE throughout the recovery
APPLY Nose-down elevator up to FULL deflection APPLY Nose-down trim as appropriate REDUCE Thrust ROLL to obtain a nose down pitch rate	Verify all required actions have been completed and call out any omissions.
COMPLETE the recovery : - When approaching the nearest horizon, roll to wings level - CHECK airspeed and adjust thrust - ESTABLISH pitch attitude.	

CAUTION
Excessive use of PITCH TRIM or RUDDER may aggravate an upset situation or may result in loss of control and/or structural failure.

- Nose-low recovery :

PF	PNF
Recognize and confirm the situation	
AP . IISCONF	
	CALL OUT ATTITUDE, AIRSPEED and ALTITUDE throughout the recovery
ROLL in the shortest direction to wings level (unload and roll if bank angle is more than 90 degrees) REDUCE Thrust	Verify all required actions have been completed and call out any omissions.
RECOVER to level flight : - APPLY Nose-up elevator - APPLY Nose-up trim, if required - ADJUST thrust and drag, as required	

CAUTION

Excessive use of PITCH TRIM or RUDDER may aggravate an upset situation or may result in loss of control and/or structural failure.

	PROCEDURES and TECHNIQUES	2.02.11	
		PAGE 1	
	FUEL SYSTEM	REV 34	SEQ 001

OPERATIONS WITH HOT JP4

In case of use of hot JP4, temporary OUTR TK feeding while fuel being available in CTR TK might be experienced. The following procedure has to be applied when OUTR TK fuel quantity is below 2500 kg while CTR TK is not empty. OUTR TK FUEL QTY . MONITOR

- If OUTR TK FUEL QTY decreases below 2000 kg :

CTR TK PUMPS CHECK ON OUTR TK PUMPS . OFF INR TK PUMPS . OFF CTR TK FUEL QTY MONITOR

Avoid negative load factors

- When CTR TK FUEL QTY below 1000 kg :

OUTR TK PUMPS . ON
INR TK PUMPS . ON

	PROCEDURES and TECHNIQUES	2.02.11	
		PAGE 2	
	FUEL SYSTEM	REV 29	SEC 200

CGCC ABNORMAL OPERATION ON GROUND

a) Checks during refueling

During the refueling, the CGCC checks the validity of the FQI fuel weight data depending on signals from the calibration sensors in trim tank, inner tanks and center tank. As soon as the calibration sensors in the inner tanks, center tank and trim tank are wet, the corresponding fuel weight is computed by the CGCC (taking into account aircraft attitude) and a comparison is made with the FQl fuel weight data. The CGCC monitors also abnormal steps in the fuel weight data received from FQI. In case of unsuccessful checks the CGCC goes to Alternate mode (refer to page 6)

Note : When refueling with aircraft supplied by batteries only, the CGCC may go to alternate mode in case of low battery voltage . Reset through maintenance panel (after BITE reading) is possible.
Recommendation: When refueling is completed, the flight crew should check the status of the CGCC on the left ECAM CRT. If CGCC has gone to Alternate mode following message is displayed on left ECAM CRT :

FUEL
 TRIM TK AFT XFR NOT AVAIL.

This check allows to inform ground crew, as soon as possible, if a reset of the CGCC is necessary.
b) ZFW or ZFCG disagree

On ground a message is sent by the CGCC to the FWC in case of problem detected during initialization of ZFW and ZFCG.
The CGCC compares ZFW and ZFCG values received from both FMS.
The CGCC triggers the ZFW or ZFCG DISAGREE message in the following conditions:

- If the difference between values received from FMS 1 and FMS 2 exceeds a certain tolerance in case of dual FMS operation (independent operation).
- If only one FMS in operative, the CGCC accepts the first insertion of ZFW but the next change in ZFW or ZFCG leads to the ZFW or ZFCG DISAGREE message (as there is no possibility of cross check with other FMS).
The following information is provided to the crew :
- MASTER CAUTION lights
- Message on left ECAM CRT :

FUEL
ZFW OR ZFCG DISAGREE
PROC: TRIM TK SYST INIT
associated with the STATUS message :
PROC : TRIM TK SYS INIT.

The flight crew procedure requests to compare TOGW and TOCG computed by the CGCC (and displayed on ECAM FUEL page) with the load and trim sheet data. If the differences are within tolerances (1.5% for TOCG and 1000 kg (2200 lbs) for TOGW) no further action is required. If the differences are out of tolerance, a new insertion of ZFW and ZFCG is requested. A new comparison between CGCC computation and load and trim sheet data is made. If the differences are within tolerances, no further action is required. The ECAM message is inhibited at slats retraction. If the differences are still out of tolerances, the trim tank system must not be used and both TRIM TK PUMP p/b switches must be selected OFF to deactivate the CGCC.

1. GENERAL

- A severe/extreme turbulence is identified as turbulence that causes large, abrupt changes in altitude and/or attitude. It usually causes large variations in airspeed. Passengers and crew are moved violently against their seat belts and loose objects will move around the aircraft.
Note: Operational recommendations are the same for severe and extreme turbulence.
- Moderate to severe turbulence may be expected under the following weather conditions :
- inside and close to thunderstorm cells,
- close to frontal surfaces,
- in mountain wave or dynamic gravity waves (even in the absence of lenticular clouds),
- on the polar side of a jet-stream (particularly if the jet stream core velocity exceeds 100 kt).
- Clear Air Turbulence (CAT) may be experienced in any of the following conditions :
- vertical wind gradient (rate of change or shear rate) greater than $5 \mathrm{kt} / 1000 \mathrm{ft}$,
- horizontal wind gradient (rate of change) greater than $40 \mathrm{kt} / 100 \mathrm{~nm}$,
- horizontal temperature gradient (OAT/SAT rate of change) greater than $4^{\circ} \mathrm{C} / 100 \mathrm{~nm}$,
- route is close to the polar side of a jet stream exceeding 100 kt ,
- route is close to an altitude trough of low pressure.
- The following information can be used, together with the above guidance, to assess the potential for experiencing severe turbulence:
- significant weather charts (surface and altitude),
- upper winds forecast (winds aloft),
- AIRMET (report) or SIGMET (forecast) messages.

2. PLANNING THE FLIGHT

- Whenever possible, the flight should be planned to avoid areas of forecast severe turbulence.
- If avoiding areas of severe turbulence is not practical, the cruise altitude and MN should be selected at or below the optimum altitude to provide sufficient buffet margin (FCOM FLIGHT PLANNING chapter - CRUISE LEVEL CHART).

3. PREPARATION FOR SEVERE TURBULENCE

Whenever experiencing or anticipating moderate or severe turbulence, the following readiness actions should be performed :
SEAT BELT SIGN . ON
NO SMOKING SIGN . ON
\qquad
\qquad

- If in PROFILE mode :

SPD/MACH setting knob PULL/ADJUST

- Pulling the SPD/MACH setting knob results in a manual reversion from PROFILE to LVL/CH (if in climb or descent) or to ALT HLD (if in cruise) and provides more auto-pilot authority to cope with turbulence.

- In all AP modes :

- Do not resist or override AP orders ; this would result in an unintended AP disconnection and possibly further upset of the aircraft attitude and flight path.
- If AP disconnection is desired or required, use the AP instinctive-disconnect push-button on the control wheel.
- Be aware that large g-load variations are the result of the turbulence vertical gusts but not of the AP inputs.
- Do not use CWS mode, this mode is designed to provide a sensitive pitch response and is not recommended for flight in turbulence.

A/THR

KEEP ENGAGED
TARGET SPEED AND THRUST . READ AND NOTE SPD/MACH SET TARGET SPEED
ALTITUDE CONSIDER DESCENT AT OR BELOW OPTIMUM ALTITUDE

- When flying in severe turbulence at the turbulence penetration target speed, consider flying at or below optimum altitude to provide sufficient margin buffet.
TRIM TK MODE (if applicable) FWD
- Selecting the TRIM TK MODE FWD will move the CG forward at a rate of approximately $1 \% \mathrm{CG} /$ minute, thus increasing the aircraft stability and response to the turbulence.

LOOSE EQUIPMENT IN FLIGHT DECK SECURE SEAT BELT/SHOULDER HARNESS .. FASTEN/TIGHTEN

TARGET SPEED AND THRUST SETTING

Refer to the TARGET SPEED AND TARGET N1 table in QRH 13.04 .

4. WHEN IN SEVERE TURBULENCE

In addition to the preparation actions, perform the following :
A/THR . DISCONNECT
THRUST SET TARGET THRUST

- Minimize thrust changes and allow airspeed excursions as long as within operating and buffet margin limits. CAUTION
At the turbulence penetration target speed, the altitude must provide sufficient margin to buffet to face severe turbulence. Flying at or below optimum altitude ensures at least 1.4 g buffet margin
- If AP does not perform as desired :

AP . DISCONNECT
PITCH ATTITUDE/WINGS LEVEL MAINTAIN

- Use moderate pitch control inputs.
- Do not change pitch trim setting once established.
- Do not chase altitude, give priority to maintaining pitch attitude rather than altitude.
- When the turbulence is over or the upset has been recovered :

AP
CONSIDER RE-ENGAGEMENT IN CMD (ALT HLD or LVL/CH)

5. WHEN OUT OF TURBULENCE

A/THR . RE-ENGAGE
TRIM TK MODE (if applicable) AUTO
IGNITION . OFF
SIGNS . AS RORD

6. REPORTING

A turbulence encounter must be reported at pilot's discretion or if load factor is suspected to have reached + $2.5 /-1.0 \mathrm{~g}$ in clean configuration or $+2.0 / 0.0 \mathrm{~g}$ with slats and/or flaps extended.

- If SPD BRK are used :

SPD BRK
USE WITH CARE/KEEP HAND

	PROCEDURES AND TECHNIQUES INCLEMENT WEATHER OPERATION VMO/MMO EXCEEDANCE	2.02.13	
		PAGE 3	
		REV 25	SEC 001

1. GENERAL

- In severe turbulence, exceeding VMO or MMO may be experienced before or despite following the turbulence penetration target speed. Speed excursions are the result of sudden and significant horizontal gusts.
- In FMS PROFILE mode, exceeding VMO/MMO may be observed (particularly during climb and descent) in case of high and increasing head-wind component. A high Cost Index increases the FMS target speed and, therefore, the potential for a VMO/MMO exceedance.

2. PREVENTING VMO/MMO EXCEEDANCE

- In all flight conditions, monitor the airspeed and the speed trend arrow on the PFD.
- If in PROFILE Climb or Descent and speed is close to VMO/MMO with an increasing speed trend, select a lower target speed on the FCU and pull the SPD/MACH setting knob to revert to LVL/CH mode.
- If in PROFILE Cruise and speed is close to MMO with an increasing speed trend, select a lower Mach number target on the FCU and pull the SPD/MACH setting knob to revert to ALT HLD mode.
- VMO/MMO exceedance in descent can be prevented by using either one or a combination of the following techniques:
- In PROFILE mode :
- by reducing the Cost Index prior to the top-of-descent point in order to reduce the FMS target speed (refer to the DESCENT SPEED graph provided in FCOM PROCEDURE and TECHNIQUES chapter USE OF FMS),
or
by selecting the TACT mode with the desired MN or IAS as selected speed.
- In LVL/CH mode, by selecting on the FCU a Mach number value offering a margin relative to MMO and by using the PRESET function to preset a speed value offering a margin relative to VMO. This will prevent exceeding VMO when the target speed switches over from MACH (MN) to SPD (IAS).

3. RECOVERY FROM VMO/MMO EXCEEDANCE

- If in PROFILE mode, select a lower Mach number or speed target on the FCU and pull the SPD/MACH setting knob to revert from PROFILE to ALT HLD (cruise) or LVL/CH (climb or descent).
- If in ALT HLD or LVL/CH, reduce the Mach number or speed target on the FCU.
- If necessary, disconnect the A/THR (using the instinctive disconnect push-button) and set thrust manually, as required.

CAUTION
NEVER OVERRIDE THE AUTOPILOT BY APPLYING FORCE ON THE CONTROL COLUMN

- Do not use the CWS mode, this mode features a sensitive pitch response and is not recommended for flight in severe turbulence or for recovery from a turbulence or overspeed upset.
- If deemed necessary, disconnect the Auto-pilot (using the AP instinctive disconnect push-button on the control wheel) and fly the aircraft manually with small control inputs.
- If SPD BRK are used, use with care and keep hand on handle.

4. REPORTING

- Any overspeed reaching or exceeding VMO + 20 kt or MMO + 0.02 must be reported for maintenance action.
- Exceedances, not reaching VMO + 20 kt or MMO + 0.02 , must be reported only if the load factor is suspected to have reached 1.2 g or more.

1. GENERAL

- Mach number buffet (buffet onset) may be experienced at high speed (typically above MN 0.6) and high altitude.
- Mach number buffet may be experienced at both ends of the cruise speed operating range.
- At the low speed end, VLs provides a 0.3 g margin relative to the Mach number buffet onset.
- At the high speed end, the margin relative to the Mach number buffet onset must be managed by selecting the cruise altitude or Mach number, as a function of the gross-weight, in order to maintain a 0.3 g buffet margin (refer to the CRUISE LEVEL CHART and BUFFET MARGIN graph provided in the FCOM FLIGHT PLANNING chapter).
- Mach number buffet onset may be experienced whenever:
- flying below VLS at high altitude,
- flying above the MN value providing 0.3 g buffet margin (for the prevailing gross weight and altitude),
- increasing the load factor (turn or pull-up maneuver), at any speed, thus decreasing the available buffet margin.

2. PREVENTING MACH NUMBER BUFFET

- Preventing Mach number buffet involves a careful planning and management of the buffet margin (margin relative to the Mach number buffet onset).
- The following FCOM references are available in order to assess and manage the buffet margin :
- LIMITATIONS : BUFFET ONSET graph,
- FLIGHT PLANNING : CRUISE LEVEL CHART and BUFFET MARGIN graph.
- Whenever flying above the Optimum Altitude, the Maximum Bank Angle Selector should be set to 15° (as recommended in the FCOM PROCEDURES and TECHNIQUES - USE OF AFS), in readiness for a possible manual reversion from NAV to HDG SEL.

3. RECOVERY FROM MACH NUMBER BUFFET

- Keep AP engaged in CMD, unless otherwise required.
- Should Mach number buffet onset be experienced as the result of flying below VLS, check the FMS target speed or the FCU target speed and set a target speed providing adequate margin relative to VLs (e.g. Green Dot or turbulence penetration speed).
- Should Mach number buffet onset be experienced as the result of flying at high MN (e.g. high Cost Index, high headwind component or high selected MN), reduce the selected or target MN (Refer to Recovery from VMO/MMO exceedance).
- Should Mach number buffet onset be experienced during a turn, reduce slowly the bank angle demand using small roll inputs (large roll inputs would result in roll spoilers deflection and would, thus, further increase the buffeting level). Should the pitch attitude have decreased during the turn, apply small pitch inputs (large pull-up inputs would further increase the load factor and, therefore, the buffeting level).
- Consider reducing the altitude to correspondingly increase the buffet margin.

	PROCEDURES and TECHNIQUES INCLEMENT WEATHER OPERATION OPERATION IN OR NEAR TO HEAVY RAIN, HAIL OR SLEET	2.02.13	
		PAGE 5	
		REV 25	SEO 040

1 - GENERAL

- Moderate to heavy rain, hail or sleet precipitations may be encountered in thunderstorm cells, in a broad region ahead of warm fronts, in the vicinity of cold fronts as well as in squall lines which can form ahead of a fast moving cold front.
- Hail may be also encountered in clear sky on the downwind side of a thunderstorm.

2 - AVOIDANCE

- Flights should be conducted to avoid thunderstorm activity and - to the maximum extent possible - any area of anticipated moderate to heavy precipitation, by overflight or circumnavigation.
- Ground based weather radar reports, on board weather radar (enhancing gain, tilt and range management), other pilot reports and direct observation may be used by the flight crew to determine when moderate to heavy rain, hail or sleet precipitation is anticipated.

3 - EFFECT OF WATER INGESTION ON HIGH BY-PASS TURBOFAN ENGINES OPERATION

- Considering given weather conditions, the water/air ratio ingested by the engine is in direct relation with the engine power level and the aircraft airspeed.
- The ingested water/air ratio is significantly increased when operating at the minimum thrust level and high airspeed (typical idle descent conditions).
- During idle descent through heavy rain, hail or sleet, massive water ingestion may result in engine surge, roll-back or flame-out.
- Adhering to the following operational recommendations, will provide the necessary level of protection against engine instability, thrust loss and/or flame-out.

4- OPERATION IN OR NEAR MODERATE TO HEAVY PRECIPITATION

- Should flight in or near moderate to heavy rain, hail or sleet be encountered or anticipated, the following preventive crew actions should be carried out :

IGNITION CONT RELIGHT

- Selecting the continuous ignition will enhance the flame-out protection and maximize the rapid relight capability in the event of a roll-back or flame-out.
ENG ANTI ICE AS REQD R
- ENG ANTI ICE should be selected ON only if icingconditions exist.
WING ANTI ICE AS REQUIRED
- WING ANTI ICE should be selected ON only if icingconditions exist.
A/THR DISCONNECT
- Rapid throttle levers movement should be avoided,unless excessive airspeed variations occur.- Ifthrustchanges are required, throttle levers movementsshould be performed smoothly.
- Changing throttle levers position should be avoided until the engines have stabilized at a selected setting.
- The engines may exhibit a slow throttle response, the engine response will return to normal upon leaving the area of heavy precipitation. No crew action is required unless abnormal engine parameters and/or engine behaviour is observed.

ENGINE PARAMETERS
 MONITOR

- Engine parameters fluctuations may occur but will subside immediately upon leaving the area of heavy precipitations. No throttle levers action should be made to correct these fluctuations.
THRUST (conditions permitting) INCREASE
- Although maintaining a minimum N 1 is not required, flight profile permitting, engine operation above the idle level will significantly increase the engine tolerance to water ingestion and consequently its protection level against surge, roll-back or flame-out.
APU
. START
- If available, the APU may be started in readiness for a starter assisted relight in the event of an engine flame-out.
AIRSPEED (conditions permitting) DECREASE
- Conditions permitting, decreasing the aircraft airspeed results in a corresponding decrease in the ingested water/air ratio, thus providing additional surge and flame-out protection

5 - RAPID RELIGHT ATTEMPT IN CASE OF ENGINE

ROLL-BACK OR FLAME-OUT

- The potential for engine roll-back or flame out, when operating in moderate to severe rain or hail, is mainly associated with idle descent and approach or any phase of operation at minimum thrust.
- When operating under the above conditions, flight crews should be alert to recognize any indication of thrust loss, surge, roll-back or flame-out.
- Engine roll-back or flame-out will be indicated by the activation of the ENGINE FAIL message and procedure.
- If a single or double engine power loss (roll-back or flame-out) is experienced :

ENGINE FAIL procedure APPLY

- Should the immediate relight attempt be unsuccessful, the engine should be shutdown and a normal windmilling or starter assisted in flight restart attempted :

ENG RESTART IN FLIGHT procedure APPLY

> | R | IMPORTANT |
| :--- | :---: |
| R | . |
| R | . Water ingestion has been shown to degrade engine |
| R | starting characteristics, repeated inflight start attempts |
| R | may be necessary to restore engine power. Start |
| R | attempts should be initiated immediately. |
| R | . A successful engine restart may not be possible |
| R | until the aircraft has exited the area of moderate to |
| R | unteay rain, hail or sleet. |
| R | heav |
| R | . Upon restart, the engine acceleration up to stabilized |
| R | idle may be very low and should not be misinterpreted |
| R | as a failure to start or an engine malfunction. |

1 - ICING CONDITIONS

Icing conditions may be expected when the OAT (on the ground and for take-off) or the TAT (in flight) is below $8^{\circ} \mathrm{C}$ and there is visible moisture in the air (such as clouds, fog with low visibility, rain, snow, sleet, ice cristals) or standing water, slush, ice or snow is present on the taxiways or runways.
In addition to the above conditions, be alerted by ice buildup on unheated portions of the airplane visible from the cockpit.
An ECAM MEMO: TAT IN ICING RANGE appears when the TAT is between $+5^{\circ} \mathrm{C}$ and $-15^{\circ} \mathrm{C}$.

2 - PROCEDURES

Extended flight in icing conditions with slats

 extended should be avoided.
2.1. ENGINE ANTI-ICE

A. Use of ENG ANTI ICE

WARNING

Use the criteria of temperature and visible moisture as the primary means for selecting on the anti ice system without waiting for ice build up.

The ENG ANTI ICE system must be selected ON during all ground and flight operations when icing conditions exist or are anticipated, except during climb and cruise when SAT is below $-40^{\circ} \mathrm{C}$.
R ENG ANTIICE must be selected ON when icing conditions R exist or are anticipated, prior to the top-of-descent and during descent, even if SAT is below $-40^{\circ} \mathrm{C}$.
IGNITION must be set to CONT RELIGHT before selecting the ENG ANTI ICE to ON. After engine parameters have stabilized, ignition may be set to OFF.

WARNING

If ice accretion is suspected to have built-up on the engine air inlet, retard throttle lever on one engine at a time, select CONT RELIGHT and set ENG ANTI ICE ON, readvance throttle lever to desired thrust level.
Retarding the throttle lever will reduce the engine $\mathrm{N} 1 / \mathrm{N} 2$ speeds and will minimize the risk of internal damage to the engine should the ice build-up break loose and be ingested by the engine.
Selecting ignition to CONT RELIGHT will minimize the potential for engine flame out due to ice ingestion.

If the engine is at ground idle when ENG ANTI ICE is selected during descent, it will advance to flight idle.

Notes

: 1. Electrical power supply failure will cause the nose cowl anti-ice valve to open when air pressure is available, independently of control switch position.
2. Unnecessary use of the engine anti-ice system should be avoided as performance is adversely affected.

B. Ice shedding on ground

During ground operation when engine anti-ice is required, periodic engine run-ups should be performed to shed ice from the spinner, fan blades and low pressure compressor stators. Run-ups must be to a minimum of 50% N1. There is no requirement to maintain the high N1.
Run-ups should be performed at intervals no greater than 15 minutes, and are equally important during taxi-out, ground holding, and taxi-in.
The first run-up during taxi-out should be done as soon as practical, but not more than 15 minutes after engine start.
All takeoffs when anti-ice is required must be preceded by a static run-up to a minimum of 50% N1 with observation of all primary engine parameters to ensure normal operation.

C. Ice shedding in flight

If during flight in icing conditions, ice build up on fan spinner and fan blades is suspected (as evidenced by increasing or high engine vibration level), the following ice shedding procedure should be carried out :

```
IGNITION
CONT RELIGHT
```

THROTTLE (affected engine) SET 70 \% N1

NOTE: Flight profile permitting, more than 70% N1 may be set for more complete ice shedding.
ENGINE PARAMETERS
MONITOR
ENGINE VIB LEVEL MONITOR
NOTE : ENGINE VIB level may peak up to full scale, during shedding, before it decreases and stabilizes.
■ When vibration level decreases and stabilizes :
RESUME NORMAL ENGINE OPERATION
IGNITION
AS REQUIRED
The above ice shedding procedure may be carried out on a preventive basis, on one engine at a time, by spooling up the engine at 70% N1 or above (flight profile permitting) for 10 to 30 seconds every 10 to 15 minutes.

2.2. WING ANTI-ICE

- WING ANTI-ICE may be used either to prevent ice formation or to remove an ice accumulation from the wing leading edges.
WING ANTI-ICE supply should be selected ON whenever there is an indication that airframe icing exists. This can be evidenced by ice accumulation around the cockpit windows or on the windshield wipers.
- Wing anti-ice supply by the APU is possible up to 20000 ft , providing one air conditioning pack only is used.

CAUTION

- Extended flight in icing conditions with slats extended should be avoided.
- If there is evidence of significant ice accretion and to take into account ice information on non heated structure, the minimum speed should be:
- in clean configuration, VLS + 15 kt
- in other configurations, VLS + 5 kt
- for landing, multiply landing distance by 1.1

Notes : 1. Electrical power supply failure will cause the wing anti-ice valves to close, independently of control selector position.
2. THR LIMIT corrections and performance penalties are applicable only when wing anti-ice system is supplied by engine bleed air.

CAUTION

- If WING ANTI-ICE is inoperative and ice
accumulation is detected, the minimum
speed should be :
. In clean configuration, VLS +15 kt ,
. In other configurations, VLS +10 kt ,
. for landing, multiply landing distance by 1.2.
accumulation is detected, the minimum should be :

In other configurations, VLS +10 kt , for landing, multiply landing distance by 1.2.

2.3 USE OF ICE DETECTION SYSTEM (IF INSTALLED)

Ice detection system does not anticipate ice conditions and therefore it should not be considered as a primary device for detecting icing conditions. The use of ice detection system leads to DE-ICE and not to ANTI ICE protection.
As the engine anti-ice system has been certified as an anti-ice protection, the criteria of temperature and visible moisture must be used as the primary means for selecting ENG ANTI-ICE without waiting for illumination of the «ICE » light on the overhead panel.
Wing anti-ice protection has been certified as a DE-ICING system, and therefore the selection of WING ANTI-ICE system can be based on the illumination of the «ICE » light on overhead panel.

PROCEDURES AND TECHNIQUES
INCLEMENT WEATHER OPERATION
AIRCRAFT PREPARATION FOR COLD WEATHER OPERATION

	2.02 .13	
PAGE 9		
REV 25	SE0 001	

1. GENERAL

- The following material provides operational recommendations and procedures concerning aircraft preparation for cold weather operation.
- Cold weather operation is understood to cover the following operating conditions:
- aircraft cold-soaked after stop-over in very low outside air temperature (typically below minus $15^{\circ} \mathrm{C}$ / plus $5^{\circ} \mathrm{F}$),
- accumulation of frost, ice or snow on airplane surfaces.
- The following recommendations and procedures are to be used in conjunction with the applicable company policy or national operational requirements.
- The various procedural steps are presented hereafter in a typical sequence. This sequence may be adapted so as to suit specific operating requirements.
- For operations with OAT below $-40^{\circ} \mathrm{C}$, it should be ensured that the specific cold weather maintenance procedures before and after cold soak have been applied in accordance with the Aircraft Maintenance Manual (AMM) chapter 12.31.

2. APU START

- Check that the APU air intake and air conditioning packs deflect doors and modulating flaps are free from snow and ice ; de-ice as necessary.
- Remove all protective covers.
- Complete PRELIMINARY COCKPIT PREPARATION in accordance with normal procedures.
- Start-up APU.

Note : After cold soak in very low temperatures (below minus $15^{\circ} \mathrm{C}$ it is recommended to start APU using External Ground Power Unit electrical supply.

Note

For APU start :
If 30 sec after MASTER SW ON the APU FLAP FAULT indication appears on ECAM :

- Wait for 30 sec
- If APU FLAP FAULT disappears : APU START depressed

3. CABIN WARM-UP AND WINDOW/PROBE PRE-HEATING

- Set air conditioning (COMP TEMP Selectors) as required.
- Select PROBE HEAT and WINDOW HEAT (white lights extinguished).

4. EXTERIOR WALKAROUND SAFETY INSPECTION

- Check that ALL SURFACES of the airplane (wings including slats/flaps and all control surfaces, horizontal stabilizer and elevators, fin and rudder) are FREE OF FROST, ICE AND SNOW.
- As required, FROST, ICE AND SNOW MUSTBE CLEARED FROM ALL ABOVE SURFACES BEFORE TAKE-OFF (refer to §5 hereafter, GROUND DE-ICING/ANTI-ICING).
- A thin layer of rime (thin hoar-frost) or a light coating of powdery (loose) snow is acceptable on the upper surface of the fuselage.
Note: Thin hoarfrost is a typical white cristalline deposit which usually develops uniformally on exposed surfaces during cold and cloudless nights; which is thin enough to distinguish surfaces features underneath (lines ormarkings).
- Frost on the underside surface of the wing, in the area of fuel tanks, is acceptable, if due to cold fuel (low fuel temperature, OAT above freezing and high humidity).
- A frost layer not exceeding $3 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)$ is acceptable without effect on take-off performance.
- Check that the following AREAS or EOUIPMENT are FREE OF FROST, ICE AND SNOW :
- Radome
- Probes (Pitot tubes, TAT sensor, Angle-of-Attack sensors, static ports),
- Engine inlets (nose cowl lip, fan spinner, fan free rotation, engine probes and sensors)
- Engine cowlings and reverser assemblies,
- Landing gear assemblies (tires, wheels and brakes, actuating and locking mechanisms, doors),
- Outflow valves, Water drains,
- Fuel tank vents,
- Commercial water equipment : the potable water tank should be drained and refill in accordance with the following requirements :

Configuration			Exposuretime	Water tank drain
air cond.	Cabin temp.	OAT		
ON	Above $10^{\circ} \mathrm{C}$	Between 0 and $-15^{\circ} \mathrm{C}$	Any	Notrequired
		Below - $15^{\circ} \mathrm{C}$	1h15 min	Required
OFF		Between 0 and $-7^{\circ} \mathrm{C}$	1 h 30 min	
		Between - 7 and - $15^{\circ} \mathrm{C}$	0h45 min	
		Below - $15^{\circ} \mathrm{C}$	any	
After required draining, refilling shall be performed 30 minutes before engine start with warm water $\left(30^{\circ} \mathrm{C}\right)$				

	PROCEDURES AND TECHNIQUES INCLEMENT WEATHER OPERATION AIRCRAFT PREPARATION FOR COLD WEATHER OPERATION	2.02.13	
		PAGE 10	
		REV 29	SEQ 001

R 5. GROUND DE-ICING/ANTI-ICING DE-/ANTI-ICING FLUIDS/HOLDOVER TIMES
R All information related to de-/anti-icing fluids and holdover
R times are published by the Association of European
R Airlines (AEA) in the brochure : "RECOMMENDATIONS
R FORDE-ICING/ANTI-ICING OF AIRCRAFTON THE GROUND".

PROCEDURE

Under all circumstances, it is the Captain's responsibility to decide on the need to de-/anti-ice the aircraft, or to order a repeated treatment.

CAUTION

If repeated anti-icing is necessary, the surfaces must first be de-iced with a hot fluid mix before a further application of anti-icing fluid is made.

De-/anti-icing fluids should be used in accordance with applicable company requirements and Aircraft Maintenance Manual Instructions.
Good communication with the ground personnel, responsible for de-/anti-icing should be established before commencing the procedure.
Aircraft de-icing may be performed with engines and APU stopped, with APU running or with engines running. However, Engines or APU should not started while de-/anti-icing fluid is being sprayed on the aircraft.

CAUTION

- Indiscreminate usage or ingestion of de-icing fluid into the engine or APU air intake should be avoided.
- Do not move flaps/slats, flight control surfaces and trims if they are not free of ice
- The aircraft must always be treated symmetrically : the left and right hand side must receive the same and complete treatment.

The following table summarizes the crew actions associated with each de-icing option :

CAUTION

With passengers on board it is not recommended to exceed 20 minutes without air conditioning supply.

The lack of fresh air supply will reduce cabin air quality significantly.

- After de-icing is completed, request ground crew to confirm that the aircraft is cleared from any ground equipment.
- Perform TAXI Check-List, while taxying out after de-icing.
- Ground equipment REMOVE
- DE-ICING/ANTI-ICING REPORT RECEIVED
The information from ground personnel who carried out de-icing and post application check must include (ANTI-ICING CODE):
. What Type of fluid used
. What the mix ratio of fluid to water was (e.g. 75/25)
. When the holdover time began
. Result of post application check : aircraft critical parts are clean.
- NORMAL PROCEDURE

RESUME
Apply appropriate normalprocedures; specialattention should be paid to flight controls check.

When freezing precipitation exists, considerthe appropriate checks to assess the aircraft contamination.

Decision on whether to take-off or to re-protect the aircraft should be based on the actual contamination of the critical surfaces which is judged by checks from inside or outside the aircraft prior to exceeding the holdover time or just prior to take -off.
Note : If the fuselage has been sprayed, there is a risk of ingestion of de-icing fluid into the APU air intake, resulting in specific odors and/or smoke warnings (e.g. : upper deck cargo smoke,...). Thus, consider APU bleed off during takeoff.

	PROCEDURES AND TECHNIQUES INCLEMENT WEATHER OPERATION AIRCRAFT PREPARATION FOR COLD WEATHER OPERATION	2.02.13	
		PAGE 12	
		REV 29	SEO 001

LEFT INTENTIONALLY BLANK

1. GENERAL

- The following material provides operational recommendations and procedures for aircraft operation in forecasted or suspected windshear / down burst condition.
- Flight crew awareness and alertness are key factors in the successful application of the following precautionnary recommendations and recovery techniques.

2. PRECAUTIONS INTO SUSPECTED WINDSHEAR

- Before TAKE-OFF :
- DELAY TAKE OFF until conditions improve.
- ASSESS CONDITIONS for SAFE TAKE-OFF based on :
* visual observations,
* most recent weather reports, and forecast,
* crew experience with the airport environment and the prevailing weather conditions.
- SELECT the MOST FAVOURABLE RUNWAY (considering the location of the likely windshear/ downburst condition).
- SELECT the LOWEST POSSIBLE FLAPS SETTING compatible with takeoffrequirements, to maximize the climb-gradient capability.
- USE the WEATHER RADAR before the take-off run to ensure the flight path is clear of potential hazard.
- SELECT MAXIMUM TAKE-OFF POWER (TOGA).
- CLOSELY MONITOR AIRSPEED during the take-off RUN to detect any early evidence of windshear.
- After triggering the go Levers, SELECT FPV on PFD of PNF
- During APPROACH :
- DELAY LANDING until conditions are more favourable or DIVERT to another suitable airport.
- ASSESS CONDITIONS for SAFE LANDING based on :
* outside observations,
* most recent weather reports,
* crew experience.
- SELECT the MOST FAVOURABLE RUNWAY in conjunction with an appropriate approach aid.
- SELECT FPV on PFD of PNF.
- USE the WEATHER RADAR before the APPROACH to ensure the flight path is clear of potential clues.

R

- SELECT FLAPS 20° FOR LANDING.
- ENGAGE AUTO PILOT in CMD, for more accurate approach and earlier information of BEAM deviation, when ILS is available.
- SELECT VAPP (WIND CORR based on reported surface wind).
- MONITOR GROUND SPEED :
* If GROUND SPEED reaches VAPP - 10 Kts , advance throttles to maintain GS \geqslant VAPP- 10 Kts (IAS will increase accordingly).
- MONITOR INDICATED AIRSPEED :
* Maintain IAS > VApP.

3. RECOVERY TECHNIQUE AND PROCEDURES

- TAKE-OFF
- Before V_{1} :
* Thetake-off should berejected only if unacceptable airspeed variations occur (not exceeding target V_{1}) and pilot decides there is sufficient runway remaining to stop the airplane.
- After V_{1} :
* Disconnect Autothrottle and set or maintain throttle levers to MAXIMUM TAKE-OFF thrust.
* Rotate normally at VR.
* Follow SRS commands. If FD pitch bar not available maintain pitch attitude close to (but not exceeding) 17.5°.
- During initial climb :
* Disconnect Autothrottle and set or maintain throttle levers to MAXIMUM TAKE-OFF thrust.
* If $A P$ is engaged in CMD, keep AP engaged.
* If $A P$ is not engaged, do not engage AP. Follow SRS commands. If FD pitch bar is not available, maintain pitch attitude close to 17.5°.
* CLOSELY MONITOR the FLIGHT PATH (using FPV on PFD of PNF) and the AIRSPEED,
* ALLOW AIRSPEED to DECREASE to INTERMITENT STICK-SHAKER activation, while checking SPEED MARGIN on PFD.
* DO NOT CHANGE CONFIGURATION (gear, flaps) until OUT OF SHEAR condition.
* RECOVER SMOOTHLY to NORMAL CLIMB when OUT OF SHEAR condition.
* INCREASE AIRSPEED when POSITIVE CLIMB confirmed.
- LANDING :
* TRIGGER «GO» LEVERS, set and maintain MAXIMUM GO-AROUND THRUST.
* If $A P$ is engaged in CMD, keep AP engaged.
* If $A P$ is not engaged, do not engage $A P$. Follow SRS commands. If FD pitch bar is not available, maintain pitch attitude close to 17.5°.
* DO NOT CHANGE CONFIGURATION (gear, flaps) until OUT OF SHEAR condition.

	PROCEDURES AND TECHNIQUES INCLEMENT WEATHER OPERATION OPERATION IN WINDSHEAR/DOWNBURST CONDITIONS	2.02.13	
		PAGE 14	
		REV 25	SEO 001

* ALLOW AIRSPEED toDECREASE to INTERMITTENT STICK-SHAKER activation, while checking SPEED MARGIN and SPEED TREND on PFD.
* CLOSELY MONITOR the FLIGHT PATH (using FPV on PFD of PNF) and AIRSPEED.
* RECOVER SMOOTHLY to NORMAL CLIMB when OUT OF SHEAR condition.
* INCREASE AIRSPEED when POSITIVE CLIMB confirmed.

	PROCEDURES and TECHNIQUES OPERATION FROM/TO AIRPORTS CONTAMINATED WITH LOOSE / ABRASIVE PARTICLES	2.02.13	
		PAGE 15	
		REV 25	SEQ 001

1. GENERAL

Following recommendations should be applied when operating from/to airports contaminated with loose/abrasive particles.
Possibility of loose (abrasive) particles ingestion should be considered when operating from sandy and dusty desert airports, coastal airports or from airports where sand is used to improve braking efficiency during (e.g) winter operation (Airport de-icing chemicals may also be erosive).
Recommended procedure would allow to minimize vortices which generate beneath the engine inlets and cause the ingestion of loose (abrasive) particles that blast fan and compressor blades, resulting in degrated engine performance and increase in fuel consumption.
Note: Vortices and foreing object ingestion commonly occur during :

- Throttle advance during cross-bleed starts
- Taxi break away thrust
- Initiation of take-off roll
- Reverse thrust at low airspeed

2. OPERATING TECHNIQUES

A. General considerations

- Minimize operation in particle contaminated air (when operational maneuvers of another aircraft that cause debris and fine particles to become airborne, all jeasable precautions should be taken to avoid ingestion of such contaminant).
- Start engines on clean surfaces where possible.
- Campaign for good airport housekeeping.
B. Taxi
- Following brakes release, advance the throttles in a smooth, deliberate manner to the minimum required for breakaway
- Return the throttles to ground idle when rolling.
- On airports areas where drifting contaminant is present, avoid sharp or high speed turns.
- Avoid engine overhang.
- Following a backtrack on the runway, wait for dust to clear before beginning the take-off.
- Judgement also suggests that reverse thrust not be used during taxi unless aircraft safety is endangered.
C. Take-off
- Make optimum use of the rolling take-off technique.
- Enter runway while rolling and slowly but without hesitation advance the throttles to take-off power setting.
Note : If ATS is used for take-off, slightly delay triggering GO levers to prevent engine spool-up while aircraft is still at low speed.

D. Landing

- Limit reverse thrust use as much as possible.
- If use of max reverse thrust is anticipated, then apply reverse thrust upon main gear touchdown.
- At 80 kt IAS or IAS fluctuations, return reverse levers to reverse idle position.
- Set reverse levers to the stowed position when engines reach idle (approximately 60 kt IAS), unless use of reverse down to low speed is required for safe aircraft braking.
- For taxi, limit engine operation to ground idle as much as praticable.

E. Parking

- When an aircraft stays over at any airport where blowing loose (abrasive) particles are in evidence, engine inlet covers should be inslalled.

1. GENERAL

. The following material provides operational recommendations and procedures for aircraft operation into areas of known or potential volcanic activity.
Considering the potential adverse effects, operation from or to airports contaminated with volcanic ash should be avoided, if possible.
Should volcanic ash exposure be unadvoidable, the following recommendations and procedures should be applied.

2. GROUND OPERATION

Parking
Aircraft exposed surfaces should be cleared of the ash layer which may contaminate the lubricated parts, penetrate the seals or enter the engines gas path, air conditioning system and other aircraft orifices.
. During preflight, insure that the inlet and exhaust areas have been cleared of volcanic ash as much as possible. This ash may be removed by using brooms and vacuum cleaners.
Inspect and clean away (as far as practical) any volcanic ash within 25 feet of the engine inlets.
. Prior to starting, dry motor the engine at maximum motoring speed for two minutes prior to turning the fuel on. This will help to blow out any ash that may have entered the booster area.
. Do not use windshied wipers for ash dust removal.
. Do not use APU for air conditioning and electrical power supply. Restrict ground use of APU to engine starts, as required.

Taxi

. Following brakes release, advance the throttles in a smooth, deliberate manner to the minimum thrust level required for breakaway.
. Return the throttles to ground idle when rolling.
. Maintain the BLEED VALVES closed.
. On airports areas where drifting contaminant is present, avoid sharp or high speed turns.
Following a backtrack on the runway, allow ash and dust to settle prior to initiating the take-off roll.
. Avoid taxiing aircraft in contaminated areas wherever possible by the use of tugs to tow to clean or cleaner areas for engine start and preparation for TAKEOFF. On LANDING, again limit taxi to an area where tugs can be used to move around the airport.
Take-off
. Make optimum use of the rolling take-off technique.
. Enter runway while rolling and slowly but without hesitation, advance the throttles to take-off power setting.
Note : If ATS is used for take-off, slightly delay triggering GO levers to prevent engine spool-up while the aircraft is still at low speed.

3. FLIGHT OPERATION

Flight into areas of known volcanic activity must be avoided. This is particularly important during hours of darkness or in meteorological conditions when volcanic dust may not be visible.
Avoidance is the only effective protection. Active NOTAM's, SIGMET's and recent information from meteorological broadcasting stations or ATC should be carefully considered by flight crews.
Note : Volcanic ash is composed of very small and dry particles and therefore do not provide any weather radar return.
If a volcanic eruption is reported while in flight, the flight should remain well clear of the affected area and, if possible stay on the upwind side of the volcanic dust (typically 20NM upwind of the erupting volcano).
Volcanic ash cloud encounter may be suspected, should one or several of the following indications be observed :

- Smoke or dust appearing in the cockpit,
- Acrid odor similar to electrical smoke,
- At night, St. Elmo fire/static discharges appearing around the windshield,
- Bright white/orange glow appearing in the engine inlets,
- Landing lights casting sharp, distinct, shadows,
- Multiple engine malfunctions, such as increasing EGT, power loss, stall or flame out.
Should a volcanic ash cloud be encountered accomplish the following while initiating a 180° turn (so as to exit the volcanic ash cloud in the supposely shortest time) :

```
ATC . . . . . . . . . . . . . . . . . . . . . . . . NOTIFY
```

CREW OXYGEN MASKS
ON / 100 \%

- As smoke, dust or acrid odor similar to electrical smoke may be present/appear in the cockpit.

PASSENGERS OXYGEN
 AS RQRD

- Depending on contamination.

A/THR . DISCONNECT

- This will prevent the autothrottle from generating throttles activity.

THRUST (conditions permitting) . DECREASE TO IDLE

- So as to reduce ash ingestion, limit the EGT rise and, thus, limit the build-up of molten ash on turbine vanes. This will assist in maintaining the engine surge margin. Damage to rotating parts, due to erosion, will be also minimized.

IGNITION CONT RELIGHT

- Selecting the continuous ignition will enhance the flame-out protection and maximize the rapid relight capability in the event of a roll-back or flame-out.

	PROCEDURES AND TECHNIQUES INCLEMENT WEATHER OPERATION OPERATION IN AREAS CONTAMINATED BY VOLCANIC ASH	2.02.13	
		PAGE 17	
		REV 29	SEQ 001

ENG ANTI ICE
ON

WING ANTI ICE ON

AIR CONDITIONING
NORM FLOW

- Increasing the bleed air extraction significantly increases the engine surge margin but also slightly decreases the engine acceleration capability.

APU
START

- If available, the APU may be started in readiness for a starter assisted relight in the event of an engine flame-out and to provide electrical power in case of main engine power loss.

ENGINE PARAMETERS
MONITOR

- EGT should be particularly monitored for any exceedance tendency.
- To prevent exceeding EGT limits it may become necessary to consider a precautionary engine shut-down and ENG RESTART IN-FLIGHT.
R
R
R
R
Notes : . For engine restart, switch off ENG ANTI /CE and WING ANTI/CE to optimize engine starting capability.
. Iffirst engine restart attempt is unsuccessful, repeated successive attempt should be made immediately.
A successful engine restart may not be possible until the aircraft has exited the volcanic ashcloud.
. Upon restart, the engine acceleration may be verylowandshould not be misinterpreted as a failure to start or an engine malfunction.
When clear of the volcanic ash cloud, and if engines have been restarted, avoid rapid thrust lever movement if possible. If compressor and or turbine blades have been eroded, an increase in fuel flow and EGT may be noticed.

AIRSPEED INDICATIONS
MONITOR

- If unreliable or loss of airspeed indication is observed, establish the appropriate pitch attitude (and/or angle of attack) and thrust level (as required), as per the abnormal procedure for SPEED CONTROL WITH UNRELIABLE AIRSPEED INDICATION.

4. REPORTING

Whenever operating in areas affected by volcanic activity, flight crews should be aware of volcanic activity reporting procedures and familiar with the use of the ICAO Special Air-Report of Volcanic Activity (Model VAR).
Should a volcanic ash cloud be encountered, flight conditions and crew duties permitting, the ATC should be notified, providing information concerning the location, altitude and drift direction of the ash cloud.

5. APPROACH AND LANDING

. Communication difficulties may be experienced due to electrostatic conditions.
. Because of the abrasive effect of the volcanic ash on windshields and landing lights, the visibility for approach and landing may be significantly reduced.
. During landing, limit the use of reverse thrust as much as possible, as reverse flow may impair visibility.
. If use of maximum reverse thrust is anticipated, then apply reverse thrust upon main landing gear touchdown.
. At 80 Kts IAS or IAS fluctuations, return reverse levers to the reverse idle position.
. Set reverse levers to the stowed position when engines reach idle level (approximately at 60 kts IAS), unless use of reverse thrust down to low speed is required for safe aircraft braking.

PERFORMANCE PENALTY

Braking efficiency may be degraded by the layer of ash on the runway.
Landing performance data for wet runway (dry ash) or slush (wet ash) should be considered.

6. TAXI AND PARKING

For taxi, limit engine operation to ground idle level, as much as practicle.
Whenever an aircraft is planned to stay over at an airport contaminated with volcanic ash, engine inlet covers as well as other protective covers and plugs shoud be installed.

1-WIPERS

The wipers may be selected to SLOW, FAST or OFF. When selected to OFF the wipers will automatically park.
Note: The WIPERS must not be operated on a dry windshield.

LIMITATION : MAX OPERATING SPEED $230 \mathrm{kt} / A S$

2 - RAIN REPELLENT

When the pushbutton is pressed, a timer applies a measured quantity of rain repellent fluid to the windshield. To repeat the cycle the pb must be released and pressed again.

- The Rain Repellent system performance,
. are diminished by the simultaneous operation of the windshield wipers
are better at higher holding speeds than at slow approach speeds.
Rain repellent is normally used to aid visibility during heavy rain when the wipers are no longer effective. It should be applied with the wipers OFF, the nozzle system giving an even coverage over the windshield area.
Note : It should not be used on a dry or semi dry windscreen as the fluid will congeal and impare visibility. As a precautionary measure, the rain repellent should be applied only to one windshield at a time, preferably the CM2 first.

CAUTION
RAIN REPELLENT MUST NOT BE USED AS WINDSHIELD WASHER, AND NEVER BE APPLIED TO A DRY WINDSHIELD.

3-ICE ACCRETION ON UPPER WING SURFACE LIMITED AT OUTER TANKS SURFACE

It may happen that following prolonged flight and passing through moisture during descent, an ice accretion appears on the upper surface of wing limited on the outer tanks surface.

If noticed during the flight, it may be helpful to burn fuel from the outer tanks up to 1500 kg per tank, which will provide an air gap between the cold soaked fuel and wing upper skin and thus allow it to warm up quicker when the ambient temperature increases. In this case reduce the VMO by 5 kt .
Note: For aircraft with a trim tank system, this may cause an alternate mode.

If noticed during the turn around, the area must be de-iced prior to the next takeoff.
If the turn around time is sufficient and ambient temperature above zero, it is recommended to transfer the outer tank fuel to the inner or center tanks prior to refuelling. Removal of the cold soaked fuel and refuelling with fuel at ambient temperature may increase the temperature enough to melt the ice.

4-OPERATION FROM FLUID CONTAMINED RUNWAY
 Refer to chapter 18, SPECIAL OPERATIONS

5-CROSSWIND

- In order to optimize directional control during the low speed phase of the takeoff and landing roll and according to the reported braking action given by the control tower it is not recommended to takeoff or to land with a crosswind component higher than :

MAX CROSSWIND	REPORTED BRAKING ACTION	REPORTED FRICTION COEFFICIENT	EQUIVALENT RUNWAY CONDITION **
37 kt	GOOD	0,40 and above	1
30 kt	GOOD/MEDIUM	0,39 to 0,36	1
25 kt	MEDIUM	0,35 to 0,30	$2 / 3$
20 kt	MEDIUM/POOR	0,29 to 0,26	$2 / 3$
15 kt	POOR	0,25 and below	$3 / 4$
5 kt	UNRELIABLE		$4 / 5$

* : This is the maximum computed crosswind capability on dry and wet runway.
** : Equivalent runway condition (only valid for maximum crosswind determination).
1 : Dry, damp or wet runway (less than 3 mm water depth) without risk of hydroplaning.
2 : Runway covered with slush
3 : Runway covered with dry snow.
4 : Runway covered with standing water with risk of hydroplaning or wet snow.
5 : lcy runway or high risk of hydroplaning.
Note: For landing with one engine inoperative, max crosswind capability must be reduced by 2 kt .
Note: For landing with one thrust reverser inop, the remaining thrust reverser should not be used above idle when the crosswind component is higher than 20 kt .
Note: The maximum computed crosswind is greater than the maximum demonstrated crosswind (28 kt). This is due to the fact that no crosswind higher than the maximum demonstrated, was encountered during the flight test period. The maximum demonstrated crosswind should not be considered as a limitation.
- During crosswind landing, a wings-level / crabbed approach is recommended. Just prior to touchdown, a normal cross control smooth action on the rudder and on the yoke is recommended in order to achieve the following operational objectives:
- On the rudder, in order to zeroe the crab angle (or significantly reduce the crab angle in case of high crosswind)
- Laterally on the yoke, in order to keep wings level (and if needed prevent the aircraft to drift away from runway centerline with slight into-wind wing down).

	PROCEDURES AND TECHNIQUES INCLEMENT WEATHER OPERATION WEATHER AVOIDANCE - OPTIMUM USE OF WEATHER RADAR	2.02.13	
		PAGE 19	
		REV 25	SEO 001

1 - GENERAL

For many forms of inclement weather, such as heavy rain, hail or sleet usually associated with thunderstorm activity, AVOIDANCE is the most effective protection.

Active SIGMET'S, ground based weather radar data, advisory information issued by ATC or other aircraft should be carefully considered by flight crews in addition to direct observation and/or on-board weather radar information.

The on-board weather radar system should be used and managed to maximize weather detection, with view of assuring a timely planning of avoidance or diversion maneuvers.

The on-board weather radar should be considered as an effective tool for in-flight weather detection and avoidance.

By no means, it should be considered as an incentive to penetrate thurderstorms or any other area of identified high weather activity.

The following material will provide flight crews with summarized information regarding the optimum use of on-board weather radars.

2 - DETECTION CAPABILITY

Only weather condition featuring reflective (wet) particles can be detected by means of the on-board weather radar.
As a consequence, the following conditions will be typically detected by the on-board weather radar :

- rain fall,
- wet hail
- wet snow or sleet,
- turbulence associated with rainfall shear.

Conversely the following conditions will provide little or no radar return :

- clouds and fog (droplets being too small),
- ice crystals, dry hail and dry snow,
- clear air turbulence (absence of precipitations)
- windshear (unless associated with precipitations, like in microbursts),
- volcanic ash (small and dry particles).

3 - TILT, RANGE AND GAIN MANAGEMENT

Because of the narrower beam and smaller side lobes featured by modern X-band/flat antenna weather radars, careful management of the system in term of tilt, range and gain is paramount to prevent overscanning or underscanning the weather cells and, thus assure the desired weather detection.

The center of the radar beam is referenced to the horizon, whatever the aircraft attitude, by the aircraft vertical reference system, the radar antenna tilt control should be, therefore, adjusted (as a function of the flight phase and/or selected range) so as to adequately scan for weather along the flight path.
As required the range and tilt should be periodically adjusted so as to keep track of detected weather cells as the flight progresses, and aim the radar beam at or below the weather cell maximum rainfall areas (typically below the feezing level).
The gain control should always be left in the automatic mode, unless specific display enhancement is deemed necessary.

4 - READING AND INTERPRETING WEATHER RADAR IMAGERY

The weather returns are displayed in different colors depending on the intensity of the detected precipitations, as follows :

- black : absence of or low precipitations,
- green : light rain,
- yellow : moderate rain fall,
- red : heavy rain,
- magenta : very severe rain fall and/or turbulence.

Hail may be expected in red and magenta areas.
Turbulence may be expected primarily in magenta areas but also in any area where high gradients in display intensity (e.g. close thin bands of different colors) are observed.

Independently of display color, high weather activity can be expected in areas exhibiting the following characteristics:

- weather contours featuring U-shapes, hooks, fingers or spirals,
- fast changing display (developing storm).

As indicated earlier, the radar energy is attenuated when penetrating weather cells with high levels of precipitations. In case of very high rain fall, the radar energy may be completely attenuated and, thus, be enable to detect the weather conditions behind the heavy rain fall area.
The undetected weather will therefore appears as a black (clear sky) bowed area surrounded by a red shoreline. Although painted black, such a weather display should never be approached or penetrated as it may in fact be an area of extreme weather activity and precipitations.
Should a weather cell be avoided by circumnavigation, the weather cell should be cleared by approximately 20 NM, avoiding the downwind side of the storm as hail may be present even in clear sky.

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE 1	
	LANDING GEAR	REV 30	SEQ 002

TIRES - GENERAL OPERATING PROCEDURES

An in-service surveillance of the tires, including pressure and wear checks, is strongly recommended to increase tire longevity and reliability. Avoid short turn manoeuvers which can cause bead separation from the wheel flanges, resulting in partial or complete loss of tire pressure. Large radius turns at low speed help preventing tire shoulder scrubbing and overdeflection.

R If tire damage is suspected after landing, an inspection of
$R \quad$ the tires is required before taxi.
R If tires are deflated but not damaged, the aircraft can be R taxied at low speed with the following limitations:
R
R - Maximum of 2 deflated tires on each main gear (one per axle) and/or 1 deflated tire on the nose landing gear :

- Nose gear steering angle less than 20° :
- Speed limited to 20 kt .
- Nose gear steering angle of 20° or more :
- Speed limited to 10 kt .
- 3 deflated tires on the same main gear :
- Nose gear steering angle limited to $\pm 50^{\circ}$
- Speed limited to 10 kt .
- 4 deflated tires on the same main gear :
- Nose wheel steering is not permitted.

	PROCEDURES AND TECHNIQUES	2.02.14	
		PAGE 2	
		REV 35	SEQ 200

USE OF BRAKE FANS

GENERAL

Brake fans are installed to improve heat dissipation and brake cooling. By reducing the time for cool-down they may prevent on short turn-around a takeoff delay caused by high residual brake temperature.
There are no limitations for brake fan operation.
Note : Indicated brake temperature on ECAM is significantly lower than actual brake temperature, when brake fans are activated.
The difference ranges from approx. $50^{\circ} \mathrm{C}$ at $100^{\circ} \mathrm{C}$ actual brake temperature up to approx. $150^{\circ} \mathrm{C}$ at $300^{\circ} \mathrm{C}$ actual brake temperature. Consequently an increase of indicated brake temperature will occur when selecting brake fans OFF.
With $L D G$ GEAR retracted, brake fan operation is inhibited.

RECOMMENDED OPERATION

Preliminary Cockpit preparation

When AC BUS 1 and DC NORM BUS are powered (EXT PWR ON or APU operating-GEN on-line), select WHEEL page on ECAM SYS display and check brake temperature. If above $200^{\circ} \mathrm{C}$ without brake fan operating, select BRK FAN to ON.

Taxi

$R \quad$ If residual brake temperature is indicated (arc displayed R around the wheel) or if extended taxiing is expected, select BRK FAN to ON.

Before Take-off

Check brake temperature on SYS display.

- If BRK FAN is ON, indicated temperature must be below $150^{\circ} \mathrm{C}$ to ascertain actual brake temperature below $300^{\circ} \mathrm{C}$.
- If above $150^{\circ} \mathrm{C}$ with BRK FAN is ON, delay takeoff and continue brake fan operation until indication drops below $150^{\circ} \mathrm{C}$.

Note : $300^{\circ} \mathrm{C}$ actual brake temperature constitutes the BRAKE TEMP HI threshold. Takeoff is only permitted with temperatures below. BRK FAN select OFF.

Parking

Check brake temperature on SYS display.

- If below $100^{\circ} \mathrm{C}$ with brake fan operating, BRK FAN select OFF.
- If above $100^{\circ} \mathrm{C}$ leave brake fan ON.

Leaving the Aircraft

Select BRK FAN OFF regardless of temperature, if time delay to next takeoff is 2 hrs or more.

CAUTION

In case of brake/wheel fire, brake fans have to be selected OFF.
R

R | In case of brake/wheel fire, brake fans have to be |
| :--- |
| selected OFF. |

CARBON BRAKES WEAR

- Steel brakes are such that wear is directly proportional to the energy applied - the stronger the brake demand, the greater the wear.
This no longer applies for Carbon brakes where friction and wear characteristics are affected by a number of environmental parameters, such as temperature. Some of them must be underlined due to their great contribution to brakes wear :
- Around 50% of Carbon brakes wear appears when taxiing with cold brakes prior to takeoff.
- Cold Carbon brakes are very touchy to numerous sollicitations.
- Wear is proportional to the number of brake applications and not to the energy applied.
- This is why, when taxiing before takeoff, brakes should not be sollicited too often and nosewheel steering must be done with the appropriate cockpit command and not through the brake pedals.

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE	
	LANDING GEAR	REV 33	SEO 001

UTILIZATION OF THE AUTOBRAKE SYSTEM

1. GENERAL

The autobrake system permits to maintain a constant deceleration rate during landing roll or to apply maximum braking to cover the case of an aborted takeoff.
Main advantages given by the autobrake system are:

- Reduction of pilot action during landing.
- Obtention of optimized deceleration rate fonction of runway length available.
- Smooth deceleration during landing roll.
- Performance improvement at takeoff due to the reduction of the delay of brake application in case of aborted takeoff.
- Brakes and tyre saving : the brakes only supply the torques necessary to maintain the selected deceleration.

2. OPERATION

The system is initiated by ground spoilers extension order (at throttles reduction if ground spoilers are armed). The pilot can take over at any moment by depressing one or both brake pedals (with different load threshold). Autobrake system is operative with GREEN hydraulic braking system only.
Selection of the deceleration rate is by the autobrake panel.

MODE	DECELERATION RATE	TIME DELAY
MAX	Max pressure is applied	none
MED	$3.0 \mathrm{~m} / \mathrm{s}^{2}$	none
LO	$1.7 \mathrm{~m} / \mathrm{s}^{2}$	8 sec.

- BEFORE TAKEOFF

Selection of MAX mode before takeoff will improve safety in the event of an aborted takeoff.
When takeoff must be aborted, the autobrake system will apply the maximum braking as soon as the throttles are closed which represents a single action done without delay (refer to graph below).

SEQUENCE OF EVENTS IN CASE OF ABORTED TAKEOFF

Note : $\Delta t=1.2 \mathrm{~s}$: this time splits up into

LANDING GEAR DETECTORS MALFUNCTIONS IN-FLIGHT

1. SHOCK ABSORBER PROXIMITY SENSOR (S) FAILED IN COMPRESSED (ON GROUND) CONDITION

AFFECTED SYS/ DETECTOR		SYS 1			SYS 2		
		LH	FWD	RH	LH	FWD	RH
L/G	RETRACTION	$\begin{aligned} & \text { Inop } \\ & \text { on } \\ & \text { SYS } \end{aligned}$	$\begin{gathered} \text { Inop } \\ \text { on } \\ \text { SYS } \end{gathered}$	$\begin{aligned} & \text { Inop } \\ & \text { on } \\ & \text { SYS } \end{aligned}$	$\begin{aligned} & \text { Inop } \\ & \text { on } \\ & \text { SYS } 2 \end{aligned}$	$\begin{aligned} & \text { Inop } \\ & \text { on } \\ & \text { SYS } 2 \end{aligned}$	$\begin{aligned} & \text { Inop } \\ & \text { on } \\ & \text { SYS } 2 \end{aligned}$
	ANTI SKID				Release Symbols on ECAM		
ICE AND RAIN	PROBES HEAT	CPT PITOT Light on heating low	STBY PITOT Light on heating low	F/O PITOT Light on heating high	CPT PITOT Light on heating high	STBY PITOT Light on heating high	F/O PITOT Light on heating low
		CAPT TAT light on No heating		F/O TAT Light Inop	CPT TAT Light Inop		F/O TAT light on No heating
	WINDOW HEAT				L PWR/FAULT Light on Low heating		R PWR/FAULT Light on Low heating
	WING ANTI ICE	FAULT Light on when set to ON		FAULT Light on set to ON			
FLT	SLATS			Retraction inhibition (α - Lock) inop	Retraction inhibition $(\alpha-$ Lock $)$ inop		
CTL	SPOILERS	Ground spoilers $\underset{\text { inhibited }}{\substack{\text { non } \\ \hline}}$		Ground spoilers non inhibited	Ground spoilers non inhibited		Ground spoilers non inhibited

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE 5	
	LANDING GEAR	REV 36	SEO 001

LANDING GEAR DETECTORS MALFUNCTIONS IN-FLIGHT

1. SHOCK ABSORBER PROXIMITY SENSOR (S) FAILED IN COMPRESSED (ON GROUND) CONDITION

סD סד

AFFECTED SYS/ DETECTOR		SYS 1			SYS 2		
		LH	FWD	RH	LH	FWD	RH
AFS	PITCH TRIM	PITCH TRIM 1 disengages	$\begin{gathered} \text { PITCH TRIM } \\ 1 \\ \text { disengages } \end{gathered}$	PITCH TRIM 1 disengages	PITCH TRIM 2 disengages	$\begin{gathered} \text { PITCH TRIM } \\ 2 \\ \text { disengages } \end{gathered}$	$\begin{gathered} \text { PITCH TRIM } \\ 2 \\ \text { disengages } \end{gathered}$
	AP/FD	AP/FD 1 trips	AP/FD 1 trips	AP/FD 1 trips	$\begin{gathered} \text { AP/FD } 2 \\ \text { trips } \end{gathered}$	AP/FD 2 trips	$\text { AP/FD } 2$ trips
	ATS	ATS 1 trips	ATS 2 (if installed) trips	ATS 1 trips	ATS 2 (if installed) trips	ATS 1 trips	ATS 2 (if installed) trips
AIR	PRESSU- RIZATION	REG 1/ FAULT		REG 1/ FAULT	REG 2/ FAULT		REG 2/ FAULT
	$\begin{gathered} \text { AIR } \\ \text { COND. } \end{gathered}$	ECON FLOW PACK 1 Inop although ON light On		ECON FLOW PACK 2 Inop although ON light On			
	VENTILATION				If EOT COOL FLOW warning ground horn sounds		
NAV	ATC	ATC will only operate in mode S		ATC will only operate in mode S			
FUEL	F/U				Reset if shutdown and restart		
	FOI						$\begin{aligned} & 1 \text { to } 2 \text { \% } \\ & \text { error } \end{aligned}$

	2.02 .14	
PAGE 6		
REV 35	SEO 001	

LANDING GEAR DETECTORS MALFUNCTIONS IN-FLIGHT

1. SHOCK ABSORBER PROXIMITY SENSOR (S) FAILED IN COMPRESSED (ON GROUND) CONDITION

AFFECTED SYS/ DETECTOR			SYS 1			SYS 2		
			LH	FWD	RH	LH	FWD	RH
ENGINE	IDLE	JT 9D and CF6	$\begin{gathered} \text { MIN (GND) } \\ \text { Idle } \\ \text { enge } 1 \text { and } 2 \\ \text { inop } \end{gathered}$					
		W4000					APP Idle inop at slats out	
	THRUST REVERSER					T/R 1 deployment inhibition inop (1)		T/R 2 deployment inhibition inop (1)
LIGHTS								STROBE Lights inop in AUTO mode
GPWS				GPWS FAULT if failure condition >60 s and speed >290 kts				
M4801	TRIM TANK		ECAM STATUS «AFT XFR NOT AVAILABLE " as normal FWD XFR valve inop		ECAM STATUS «AFT XFR NOT AVAILABLE " as normal FWD XFR valve inop			
M6920	ACT							

(1). Single detector failure sufficient with CF6-80,

Double detector failure required on JT9D and PW4000.

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE	
	LANDING GEAR	REV 19	SEQ 001

LANDING GEAR DETECTORS MALFUNCTIONS IN-FLIGHT

1. SHOCK ABSORBER PROXIMITY SENSOR (S) FAILED IN COMPRESSED (ON GROUND) CONDITION

AFFECTED SYS/ DETECTOR		SYS 1			SYS 2		
		LH	FWD	RH	LH	FWD	RH
M5911	STAND BY generator		STBY GEN inop in both and OVRD modes «DC ESS ON BAT " and «AC EMERG ON INV» Lights would stay on				

	2.02 .14	
PAGE 8		
REV 24	SEO 001	

LANDING GEAR DETECTORS MALFUNCTIONS IN-FLIGHT

2. DOWN - LOCK PROXIMITY SENSOR (S) FAILED IN « NOT DOWN - LOCKED » CONDITION

AFFECTED SYS/SENSOR	SYS 1			SYS 2		
	LH	FWD	RH	LH	FWD	RH
LANDING GEAR	Green ∇ out, on CTR panel UNLK light on, on CTR panel L/G ECAM warning if SYS 1 selected	Green ∇ out, on CTR panel UNLK light on, on CTR panel L/G ECAM warning if SYS 1 selected	Green ∇ out, on CTR panel UNLK light on, on CTR panel L/G ECAM warning if SYS 1 selected	Green ∇ out, on OVHD panel UNLK light on, on OVHD panel L/G ECAM warning if SYS 2 selected	Green ∇ out, on OVHD panel UNLK light on, on OVHD panel L/G ECAM warning if SYS 2 selected	Green ∇ out, on OVHD panel UNLK light on, on OVHD panel L/G ECAM warning if SYS 2 selected
BRAKES			MLG wheels braking during retraction inop	BRK FANS inop (If installed)		
EFIS	No VLE data on PFD 1			No VLE data on PFD 2		
PASSENGER NOTICES			NO SMOKING inop			
GPWS					GPWS warning "TOOLOWGEAR" will be activated on approach	
LIGHTS					$\begin{gathered} \text { NLG } \\ \text { TAXI/TAKE-OFF } \\ \text { LIGHTS INOP } \end{gathered}$	

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE 9	
	LANDING GEAR	REV 36	SEO 001

LANDING GEAR DETECTORS MALFUNCTIONS IN-FLIGHT

3. DOWN - LOCK PROXIMITY SENSOR (S) FAILED IN « DOWN - LOCKED » CONDITION

	2.02 .14	
PAGE 10		
REV 35	SEO 001	

LANDING GEAR DETECTORS MALFUNCTIONS ON GROUND

1. SHOCK ABSORBER PROXIMITY SENSOR (S) FAILED IN UN-COMPRESSED (IN-FLIGHT) CONDITION

$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{R} \end{aligned}$	AFFECTED SYS/ DETECTOR		SYS 1			SYS 2		
			LH	FWD	RH	LH	FWD	RH
	L/G	STEERING	Nose wheel steering Inop	Nose wheel steering Inop	Nose wheel steering Inop			
	$\begin{aligned} & \text { ICE } \\ & \text { AND } \end{aligned}$RAIN	PROBES HEAT	CPT PITOT Light on heating high	STBY PITOT Light on heating high	F/O PITOT Light on heating low	CPT PITOT Light on heating low	STBY PITOT Light on heating low	F/O PITOT Light on heating high
			CAPT TAT heating on light off		F/O TAT light on No heating	CPT TAT light on No heating		F/O TAT heating on light off
		WINDOW heat				NO FAULT LH window heating high		NO FAULT RH window heating high
		WING ANTI ICE	FAULT light on set to ON		FAULT light on if set to ON			
$\begin{aligned} & \mathrm{R} \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & \text { FLT } \\ & \text { CTL } \end{aligned}$	SPOILERS	Ground spoiler inhibited		Ground spoiler inhibited	Ground spoiler inhibited		Ground spoiler inhibited

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE 11	
	LANDING GEAR	REV 36	SEQ 001

LANDING GEAR DETECTORS MALFUNCTIONS ON-GROUND

1. SHOCK ABSORBER PROXIMITY SENSOR (S) FAILED IN UN-COMPRESSED (IN-FLIGHT) CONDITION

R
R
R

AFFECTED SYS/ DETECTOR		SYS 1			SYS 2		
		LH	FWD	RH	LH	FWD	RH
AFS	PITCH TRIM	$\begin{gathered} \text { PITCH TRIM } \\ 1 \\ \text { disengages } \end{gathered}$	$\begin{gathered} \text { PITCH TRIM } \\ 1 \\ \text { disengages } \end{gathered}$	$\begin{gathered} \text { PITCH TRIM } \\ 1 \\ \text { disengages } \end{gathered}$	PITCH TRIM 2 disengages	$\begin{gathered} \text { PITCH TRIM } \\ \text { 2 } \\ \text { disengages } \end{gathered}$	$\begin{gathered} \text { PITCH TRIM } \\ 2 \\ \text { disengages } \end{gathered}$
	AP/FD	AP/FD 1 trips	$\underset{\text { trips }}{\mathrm{AP} / \mathrm{FD} 1}$	$\begin{gathered} \text { AP/FD } 1 \\ \text { trips } \end{gathered}$	$\begin{gathered} \text { AP/FD } 2 \\ \text { trips } \end{gathered}$	AP/FD 2 trips	AP/FD 2 trips
	ATS	ATS 1 trips	$\begin{gathered} \text { ATS 2 } \\ \text { (if installed) } \\ \text { trips } \end{gathered}$	ATS 1 trips	$\begin{gathered} \text { ATS } 2 \\ \text { (if installed) } \\ \text { trips } \end{gathered}$	ATS 1 trips	$\begin{gathered} \text { ATS 2 } \\ \text { (if installed) } \\ \text { trips } \end{gathered}$
AIR	PRESSURI- ZATION	REG 1 FAULT but depressuri- zation operative		REG 1 FAULT but depressuri- zation operative	REG 2 FAULT but depressurioperative		REG 2 FAULT but depressurization operative
	$\begin{gathered} \text { AIR } \\ \text { COND. } \end{gathered}$	Pack 1 flap stay open ECON FLOW pack 1 non inhibited		Pack 2 flap stay open ECON FLOW pack 1 non inhibited			
	VENTILATION	Stay at low speed after shutdown		$\begin{aligned} & \text { No horn } \\ & \text { if } \\ & \text { Low FLOW } \end{aligned}$			
NAV	IRS	No IRS 1 and 3 alignment		No IRS 2 alignment			
	ATC	Non inhibited		Non inhibited			

	2.02 .14	
PAGE 12		
REV 35	SEO 001	

LANDING GEAR DETECTORS MALFUNCTIONS ON GROUND

1. SHOCK ABSORBER PROXIMITY SENSOR (S) FAILED IN UN-COMPRESSED (IN-FLIGHT) CONDITION

AFFECTED SYS/ DETECTOR			SYS 1			SYS 2		
			LH	FWD	RH	LH	FWD	RH
FUEL	F/U					No F/U reset at start-up		
	FOI							$\begin{aligned} & 1 \text { to } 2 \% \% \\ & \text { error } \end{aligned}$
ENGINE	IDLE	JT 9D and CF6	$\begin{gathered} \text { APP (FLT) } \\ \text { Idfe } \\ \text { on } \\ \text { both engines } \end{gathered}$	$\begin{gathered} \text { APP (FLT) } \\ \text { Idle } \\ \text { on } \\ \text { both engines } \end{gathered}$				
		PW4000						
	T/R	GE				$\begin{aligned} & \text { T/R1 } \\ & \text { Inop } \end{aligned}$		$\begin{aligned} & \text { T/R2 } \\ & \text { Inop } \end{aligned}$
		P and W				$\begin{aligned} & \text { T/R } 1 \text { and } 2 \\ & \text { Inop } \end{aligned}$		$\begin{gathered} \text { T/R } 1 \text { and } 2 \\ \text { Inop } \end{gathered}$
APU			Auto S/D inop if fire		Possible undue auto S / D or deativated auto S / D			
APU FIRE PROTECTION			Auto Fire Exting Sys Inop if Fire		Fire external Horn Warning and APU Fire Light on Interphone box 3WC Inop if fire			
RECORDERS						CVR/ ERASE inop		CVR/ ERASE inop
EFIS			Flag on PFD 1 Speed scale when < 30 Kts		Flag on PFD 2 Speed scale when <30 Kts			
MISCELLANEOUS				GPWS FAULT if $\mathrm{RA}<100 \mathrm{ft}$	MECH CALL inop	Main Galley Shed		STROBES stay on in AUTO mode

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE	
	LANDING GEAR	REV 27	SEQ 001

MINIMUM TURN AROUND TIME

1. GENERAL

The following material is given as a guidance only. The chart allows to determine as a function of next take off conditions and actual brake temperature, the minimum turn around time ensuring that the brakes will have the capability to absorb the energy built up during a potential rejected take-off.

Since during a rejected take-off the energy is partially absorbed by the reversers, the turn around time is shortened when both reversers are operative.

If brake fans are installed and operative, the minimum turn around time is reduced.
Note: The temperature of the brakes depends on the way the applications are done. In particular, during taxi, in order to keep the aircraft at low speed, it is recommended to slow down the aircraft by short firm inputs on the brakes rather than applying a continuous pressure on the brakes.

2. HOW TO PROCEED

Read the temperature of the hotest brake on the ECAM
Depending of the availability of the fan thrust reversers, enter the graph with the indicated temperature in the cockpit.

Then, enter with aircraft weight and associated V1 speed and apply corrections due to airport pressure altitude, $\triangle I S A$, and wind data to determine the minimum turn around time.
These corrections take into account the effect of runway slope within the certified limits of (-2% to $+2 \%$).

	PROCEDURES and TECHNIQUES	2.02.14	
		PAGE 14	
	LANDING GEAR	REV 20	SEC 120

BOFC-02-0214-014-A120AA

Code: 0214 D

	PROCEDURES and TECHNIQUES	2.02.15	
		PAGE 1	
	NAV / FLT INST	REV 30	SEQ 205

FLIGHT INSTRUMENTS : INDICATIONS AND TOLERANCES

The values given below apply to an aircraft in symmetrical flight (no side slip), in clean configuration, in straight and level flight.
A. Altimeters tolerances :

- ALT 1 or ALT 2 at ground check $\pm 30 \mathrm{ft}$
- STBY ALT at ground check ± 25 m
- Maximum differences between altimeters :

Note : For aircraft with STBYALT vibrator not supplied on ground NIB flag displayed on ground), STBY ALT tolerance at ground check is $\pm 300 \mathrm{ft}$ and STBY ALT should not be compared to ALT 1 or ALT 2 at ground check.

FL	SPEED	ALT 1 and ALT 2	STBY ALT to any ALT 1 or ALT 2
at ground check	-	50 ft	100 ft
FL 50	250	55 ft	125 ft
FL 100	250	65 ft	170 ft
FL 200	300	90 ft	250 ft
FL 300	0.78 ± 0.02	150 ft	310 ft
FL 400	0.78 ± 0.02	180 ft	390 ft

B. ASI tolerances

- Maximum differences between ASI :

IAS/Mach		PFD 1 and PFD 2	STBY ASI to any PFD 1 or PFD 2
IAS	130 to VMO	4 kt	8 kt
Mach	0.4 to 0.5	0.02	-
	0.5 to MMO	0.01	-

C. Heading tolerances

- Maximum differences between ND magnetic heading indications

IRS . ATT mode

- ATT mode should be used in case of :
- Temporary loss of electrical supply
- Partial failure within the IRS (indicated by «IRS WARN » amber annunciator flashing)
- Following procedure should be applied :
- Related MSU mode rotary selector . ATT
- Indicated headings

Check

- If heading appears incorrect
- ISDU SYS rotary selector . . . select related SYS

With wings level for at least 30 seconds :

- ISDU DSPL rotary selector

HDG STS

- Enter H then enter 4 digits for magnetic heading (in degrees and tenths of degrees) on the ISDU keyboard with reference to another IRS in NAV mode, or STD BY compass if there is not IRS in NAV mode.

- Press ENTER

Repeat heading entry every 15 minutes to keep heading accuracy within $\pm 3^{\circ}$.

LOSS OF ONE OR BOTH FMS

A. GENERAL

In most cases, when one or both FMS are lost, navigation can be conducted with the remaining FMS (if available) and/or with conventional radionavigation (VOR, ADF, ILS MARKERS, DME).

B. LOSS OF ONE FMS

The remaining FMS is used. Crosscheck position by navaids if available. In the event of a significant discrepancy, disregard the FMS information and apply the procedure recommended in case of loss of both FMS.

C. LOSS OF BOTH FMS

VOR-NAV-ILS switch
VOR

- If the aircraft is heading straight towards a VOR :

On VOR/DME panel :
VOR frequency . SET
COURSE . SET
Even if the aircraft is too far away from the VOR to capture it, this procedure allows to get FPV on PFD and to conduct the flight by maintaining the Flight Path Vector on the Flight Path Target up to VOR reception.

- If the aircraft route includes one or several turns before heading straight towards a VOR :
VOR/DME panel :
COURSE Set required TRACK

This track will be followed by maintaining the Flight Path Vector centered in the Flight Path Target.
At each turning point, set the next track as course on VOR/DME panel.
Notes : 1. The geographic position should be checked on ISDU, as each waypoint is approached.
2. AP modes can be used. MAP display cannot be used. ARC or ROSE displays must be used.

	PROCEDURES and TECHNIQUES	2.02.15	
		PAGE 2	
	NAV / FLT INST	REV 33	SEQ 002

TCAS II

A. Conflict resolution principles

- Traffic Advisory (TA)

If an intruder is detected within the outer protection volume, a visual and aural TRAFFIC ADVISORY is issued. This advisory aids the crew to visually acquire the intruder. Also it prepares the crew for a possible RESOLUTION ADVISORY. However a RA can occur without any preceding TA.

- Resolution Advisory (RA)

If the intruder gets within the inner protection volume, it is considered as a threat and an aural and visual Resolution Advisory is issued.
The TCAS determines the optimum vertical maneuver which ensures effective separation with the minimum change of the vertical speed.
Depending on each situation, the TCAS will generate :

- preventive advisory i.e. the actual vertical speed may be maintained.
A range of vertical speed to avoid is displayed.
- corrective advisory i.e. the actual vertical speed is within the range to be avoided and a range of recommended vertical speed (fly to) is displayed.
- modified corrective advisories which are issued to change an already displayed RA (for example if the intruder changes its vertical speed).

B. Operational recommendations

- Avoidance generalities :

Always follow the RA orders, even if they lead to cross the altitude of the intruders, as they ensure the best global separation.

CAUTION

Once an RA has been issued, safe separation could be compromised if current vertical speed is changed, except as necessary to comply with the RA.
This is because TCASII-to-TCASII coordination may be in progress with the intruder airplane, and any change in vertical speed that does not comply with the RA may negate the effectiveness of the other aircraft's compliance with the RA.

Pilots should comply with the vertical speed limitations during the last 2000 ft of a climb or descent. In particular, pilots should limit vertical speeds to 1500 $\mathrm{ft} / \mathrm{min}$ during the last 2000 ft of a climb or descent, especially when they are aware of traffic that is converging in altitude and intending to level off 1000 ft above or below the pilot's assigned altitude.

- Select TA ONLY mode in the following cases :
- engine failure
- dispatch with landing gear down (if applicable)
- in case of known nearby traffic which is in visual contact
- at particular airports and during particular procedures identified by an operator as having a significant potential for unwanted or inappropriate RAs (closely spaced parallel runways, converging runways ...)

C. Indications - Aural messages - Typical scenarios

R

	AURAL WARNING AND TYPICAL DISPLAY	SCENARIO	CREW RESPONSE		AURAL WARNING AND TYPICAL DISPLAY	SCENARIO	CREW RESPONSE		AURAL WARNING AND TYPICAL DISPLAY	SCENARIO	CREW RESPONSE	
	traffic, Traffic	One intruder is ahead at 12:00 o'clock, beyond 5 miles, 200 feet below you.	Do not maneuver on the Traffic Advisory symbol. Attempt to see the intruder. Be prepared to maneuver if the TA changes to an RA.		MONitor VERTICAL SPEED	The intruder is ahead at 12:00 o'clock 400 feet above you and you are already climbing at 2000 feet per minute.	Maintain climb at recommended rate	\|ras		The intruder ahead has stopped climbing. It is now 100 ft below you.	Immediately and smoothly increase your descent rate to 2500 feet per minute.	
		One intruder is ahead at 12:00 o'clock beyond 4 miles 600 feet below you.	Do not descend.	\|cor		The intruder is ahead at 12 : 00 o'clock 200 ft below you.	Promptly and smoothly establish a climb rate of 1500 ft per minute within 5 seconds.	\|r		The intruder ahead and above changes from level flight to a rapid descent. TheTCAS now changes from a descent RA to a climb RA.	Initiate a change from a descent to a climb maneuver within 2.5 seconds.	
		One intruder is ahead at 12:00 o'clock, 500 ft above you. Another intruder is ahead at 12 : 00 o'clock 500 ft below you.	Remain in level flight Do not climb or descend.	\|c	c		The intruder is ahead at 12:00 o'clock 400 ft above you. You are already climbing at 2000 feet per minute.	Adjust vertical speed to reach the green arc on the VSI by reducing climb vertical speed as appropriate.	¢		Theintruder has passed behind and is now 600 feet below you. It is no longer a threat	Return promptly to the previous ATC clearance.

[^0]- (red) RA

R
R
When below $2500 \mathrm{ft} \mathrm{AGL}$,exercise caution before
following "Increase descent" and "descent" RAs.

Code : 004

	PROCEDURES and TECHNIQUESNAV / FLT INST	2.02.15	
		PAGE 5	
		REV 31	SEQ 001

IRS MONITORING

It is recommended that each IRS is monitored to ensure that the position error (or drift rate) and/or residual ground speed is not excessive. Specific IRS removal criteria have been developed for this purpose.

A. IRS RADIAL POSITION ERROR MONITORING

The following graph shows the removal criteria for radial position error, dependent on the NAV time (the time in which the IRS operated in NAV mode since being aligned).

HOW TO FIND THE RADIAL POSITION ERROR

a. : On the overhead Inertial System Display Unit (ISDU), record the LAT/LONG of the 3 IRS.
b. : Press the CDU key "PROG".
c. : Enter the coordinates of the gate (LAT/LONG) in the CDU scratchpad.
d. : Press LSK $<4 \mathrm{~L}$ to insert position.
e. : Check that "UPDATE*" appears next to LSK 4R.
f. : Press LSK 4R > to update the FMS position to the entered LAT/LONG.
g. : Enter IRS\#1 (\#2, \#3) coordinates in the CDU scratchpad.
h. : Press LSK 3R > next to BRG/DIST to insert IRS\#1 coordinates.
i. : Read the Radial Position Error (DIST) on line \#3.
j. : Compare the Radial Position Error with the IRU removal criteria.

B. IRS DRIFT RATE MONITORING

Alternatively the IRS Drift Rate may be used as a removal criteria if the IRS MONITOR option is available on the FMS. In this case the IRS Drift Rate from the FMS for each IRS can be checked directly on the following graph.

IRU DRIFT RATE REMOVAL CRITERIA

C. IRS RESIDUAL GROUND SPEED MONITORING

The residual Ground Speed removal criteria is :
a) If the residual Ground Speed is $\geqslant 21 \mathrm{Kts}$ after any one flight.
or
b) If the residual Ground Speed is $\geqslant 15 \mathrm{Kts}$ on two consecutive flights.
Check of the residual GS can be made :

- On the upper left hand corner of the CAPT (IRS\#1) and F/O (IRS\#2) Navigation Displays (ND).
The residual GS of IRS\#3 can be read on the CAPT ND by pressing the - ATT HDG CAPT "SYS 3 " pushbutton switch.
- On the ISDU :
. Rotate the Display Selector Switch to "TK/GS".
. Rotate the System Display Switch to 1-2-3.
. Read the respective GS in the ISDU right window.
- On the FMS : (if IRS MONITOR option available)
. Read the respective GS directly on the IRS MONITOR page.

	PROCEDURES and TECHNIQUES	2.02.15	
		PAGE	
	NAV / FLT INST	REV 31	SEO 110

USE OF ISDU

The following procedures provide operational recommendations for the use of the ISDU.
A. COCKPIT PREPARATION - IRS ALIGNMENT.
. After normal usage of ISDU SYS selector, select a position to be kept during the whole flight (OFF or IRS 3 are recommended positions)
. Check IRS's validity by selecting SENSOR STATUS page on CDU
B. IN FLIGHT - IRS MONITORING
. Do not move ISDU SYS selector unless required by abnormal procedures or circumstances.
. If IRS monitoring has to be performed :

- select SENSOR STATUS page on one FMS-CDU,
- select IRS1 and POS on ISDU,
- wait 4 seconds,
- Check IRS 1 on SENSOR STATUS page.
- If IRS 1 FAIL is displayed :
. Do not move any more the ISDU SYS selector.
- If IRS 1 FAIL is not displayed :

Perform IRS 1 reading for IRS monitoring, as appropriate.
Repeat procedure for IRS 2 and IRS 3

C. ISDU FAULT CODE 08

The display of a fault code 08 requires the removal of the ISDU. To prevent undue removals, the following check must be performed further to a fault code 08 :

- perform a normal power down of all IRS by setting the SYS DSPL selector on the ISDU to OFF,
- wait more than 30 seconds,
- align the IRS that reported the fault code 08 and enter PPOS using the ISDU.

If the IRS enters NAV mode correctly, the check is conclusive and the ISDU should remain on the aircraft.

LONG RANGE NAVIGATION MONITORING - GENERAL

The extensive development of ETOPS and oceanic flights with the A310 revealed the need to publish some recommendations with regard to long range navigation monitoring.
This chapter is proposed as one means amongst others to ensure accurate and reliable navigation.
The A310 systems have the capability to perform the navigation function almost automatically but this must not prevent the crew from doing periodic navigation monitoring. Such monitoring is necessary for any kind of flight but needs to be increased for long range flights where the aircraft is for a long period of time in IRS ONLY navigation.

A. RECOMMENDED NAVIGATION DOCUMENTATION

Standard navigation documents such as enroute navigation and approach charts will not be discussed here. Only the documentation related to long range navigation is addressed in this paragraph.

Reference flight log

A reference (computer) flight log (RFL) must be available as for any flight.
The RFL must provide the following data :
. Outbound and Inbound MT (mag. track) between waypoints (1)
. Distance between waypoints

- Waypoint coordinates
- Fuel data for normal F-PLN
. Equitime points (ETP) for enroute alternates and in case of ETOPS :
. ETOPS entry point
. Critical Point (CP) for ETOPS critical fuel scenario
. Fuel data for ETOPS scenario.
(1) The inbound MT between waypoints is a valuable information to check FMS F-PLN versus RFL. Indication of magnetic variation at each waypoint can be useful as well.

Navigation plotting chart
A navigation plotting chart of reasonable scale should be available to the crew.
Small scales below 1 per 10 millions should be avoided.
The navigation plotting chart should be implemented with :
. The planned route (including NAT-OTS clearance if applicable).
. ETP's no wind with a method to apply wind corrections.
. ETOPS circles 60', $90^{\prime}, 120^{\prime}$ as applicable at the approved one engine inoperative speed (ISA, no wind) around enroute alternates.
. ETOPS entry point (if applicable)
Course and distance between waypoints on NAT-OTS
On NAT-OTS the oceanic clearance obtained in flight may be different from the planned route. In that case crew might have to compute distances and tracks between these new waypoints. For that purpose, tables to compute TT (true track) and distances between waypoints should be available. Magnetic variation as indicated on navigation chart can be used to convert TT in MT.

PROCEDURES and TECHNIQUES

B. FLIGHT PROCEDURES

The majority of long range navigation errors are the consequence of a single cause which is a wrong entry into the navigation system. Therefore the airlines are highly encouraged to develop procedures and discipline to check and crosscheck any input to the navigation system.
Full navigation System available
Cockpit preparation

IRS alignments

Do a full alignment (all three IRS to OFF for more than 5 (7) seconds) before every take-off.
One pilot checks coordinates given by FMS data base for the departure airport with the airport chart. If published gates coordinates are available, the airport reference coordinates can be adjusted to gate coordinates. This is not mandatory, however it will be easier to evaluate IRS drift if alignment is done according to the current a / c position.
. The other pilot independently crosschecks on ISDU the position received by the three IRS when alignment is achieved. All ALIGN lights must be extinguished with all MSU rotating selectors in NAV before any aircraft movement.
Flight plan cross check :
The FMS F-PLN must be checked, one pilot reading the distances between waypoints of the RFL, the other pilot checking corresponding data on FMS F-PLN. (Discrepancies up to 2 NM are acceptable). An overall check comparing total distance FMS F-PLN and RFL must be done.
. For all waypoints which are not identified by a code or a name given by the official documentation, check the coordinates by performing a LAT REV at these waypoints.
. If waypoints have to be manually inserted, then it is recommended to use the DEFINED WAYPOINT function so that each waypoint can be unambiguously identified on ND. For example waypoint at N 50 00.0/W 3000.0 can be identified as 5030 N . Coordinates of stored waypoints must be checked by both pilots on LAT REV page.

- When F-PLN is checked :
- SEC F-PLN, copy ACTIVE F-PLN.

Before take-off

. Check that take-off update occurs when depressing go levers.

In flight

. If a significant F-PLN modification is required, the new route must be carefully crosschecked by both pilots. Coordinates of waypoints manually inserted with the DEFINED WAYPOINT function must be checked on the LAT REV page at these waypoints.

Before leaving radio-navaid coverage

- Validate FMS position using navaid raw data.

When more than one DME is still available select "on track" and "cross track" stations to compare DME readings with PROG page indications using the BRG / DIST function. When only one VOR / DME or one VOR or one ADF indication remains usable, take benefit from it to check FMS position as long as possible.
However it should be reminded that in this case the FMS position, even in IRS ONLY, may be more accurate than a distant VOR or ADF bearing.

IRS monitoring

During the flight, a periodic overall check of IRS performance (1 check per hour) can be done by reading and comparing TT and GS of IRS 1, 2 and 3 on the ISDU.
. If differences are greater than :

```
TT > 2
\(\triangle \mathrm{GS}>15 \mathrm{kt}\)
```

perform a full IRS monitoring which consists in checking the position (or the distance) of each IRS relative to the position of the validated FMS.

The three IRS positions relative to the FMS position can be read on line 5 of the POSITION MONITOR page if the IRSs are in NAV mode.

	PROCEDURES and TECHNIQUES	2.02.15	
		PAGE 9	
	NAV / FLT INST	REV 32	SEQ 115

Outside radio-navaid coverage

The following applies in case of IRS ONLY navigation for a significant period of time.
. Use NAV mode, check cross track error $=0$ on ND
. Keep FD bars displayed on both FD to quickly visualize any discrepancy between both FMS. In case of discrepancy, check XTK error on ND.
Before passing a waypoint

- Read outbound MT and distance to next waypoint on the reference (computerized) flight log. (RFL)
- Set "HDG" BUG on outbound MT
- Compare distance to next waypoint of RFL with the distance given on FMS F-PLN page B.
. Passing a waypoint :
- Verify that the correct outbound MT is steered using MT indications on ND ("HDG" bug on green diamond)
- After passing a waypoint :
- Check cross track error $=0$

Nota 1 : In areas with large meridian convergence and / or large magnetic variation rate of change, the great circle route (east-west) will require significantly variable MT between waypoints. Therefore, monitor MT so that it progressively moves from outbound MT to inbound MT.

Nota 2 : To comply with recommendations for operations within MNPS area, the FMS position can be plotted on a nav chart. However this is not required from a system point of view in normal operation.

When coming back in radio-navaid coverage

Whenever in line of sight of any navaid (NDB, VOR, DME), cross check position by comparing BRG and DME distance with BRG / DIST function of FMS.

Nota : Use remote tuning capability when VOR stations are distant ($\sim 250 \mathrm{NM}$). Automatic tuning is often limited by the figure of merit criteria associated to a navaid in the FMS data base.
. When possible resume normal navigation monitoring Remain aware that at long distances, VOR or NDB may be less accurate than the FMS position, even after several hours in IRS ONLY.

The FMS will resume VOR / DME updating only if the calculated radio position error is better than the FMS estimated error in IRS only.

- If a VOR / DME is reported as unreliable or known to be wrong, DESELECT it, so that it does not affect FMS radio updating.

After the flight

It is recommended (required for MNPS operations) to check the overall accuracy performance of each IRS after the flight. Several methods can be proposed.

1. Operations outside MNPS or ETOPS area

- Check residual GS of each IRS when at the gate and record it in the technical book, as per company policy.

2. Operations within MNPS or ETOPS area
a) A / C with Mod 7558 or 7032 (SB 34-2047)

- On CDU select and read the IRS MONITOR page indicating the overall drift rate of each IRS.
b) If the above mentioned option is not available, the drift of each IRS can be determined in the following way:
Perform a manual update of FMS position at the gate coordinates. Enter IRS coordinates on FMS PROG page in the field for BRG / DIST TO. The distance between FMS position and IRS position divided by the time from the end of IRS alignment to reading gives the drift rate.
c) Since the method given in (b) is time consuming, the IRS drift rate can also be calculated by ground staff provided that the crew records IRS and gate coordinates in the technical book.
Some figures on IRS drift rate for information :
- IRS removal criteria :
. Total drift $>3+3 \mathrm{~T}$ in NM in 2 consecutives occurrences
T is time in hours as defined above
. Residual GS $>20 \mathrm{kt}$
- IRS guarantee (95% probability)
. drift rate < 2 NM / h
. GS error $<8 \mathrm{kt}$
Degraded configuration
Failure of one IRS

. If IRS1 or IRS2 failed :

- Select the best remaining IRS,
- If IRS3 is the best remaining IRS and the other IRS is significantly distant from it :
. engage the remaining AP in HDG mode. Nota: AP associated to the failed IRS is inoperative. select MH (mag. heading) to keep XTK = 0 on the FMS associated to the best remaining IRS.

. If IRS3 failed :

- Select the best remaining IRS,
- Use A.P in NAV mode associated to the FMS using the best remaining IRS,
- Select the failed IRS in ATT mode. If operative in ATT, enter current HDG on ISDU. Use this IRS as a free gyro in back-up. Repeat HDG entry approximately every 20 minutes.

Failure of 2 IRS

Both FMS work on the remaining IRS.
Both AP and FD are lost.
F-PLN on ND and XTK indication is still available.
R - Steer the A/C manually to maintain $X T K=0$,

- Use the FPV in the cage technique to assist steering and apply small MT corrections when necessary.
. Select FPV with the FD/FPV selector,
. Select MT on ILS CRS selector of ILS control panel,
. Select ILS position of the VOR/NAV/ILS switch,
. Select FPA $=0$ degree on EFIS control panel.

Failure of one FMS

Failure of one FMS does not affect normal navigation. Nevertheless, be prepared to conduct navigation without FMS should the second FMS fail. The following precautions are recommended for the crew with onside FMS failed.

- select FPV with the FD/FPV selector,
- select average MT on ILS CRS selector to be ready to use the FPV "in the cage",
- select ILS position of the VOR / NAV / ILS switch,
- select FPA $=0$ degree on EFIS control panel.

The crew with operative FMS keeps FD on and MAP mode.
If the FMS failure occurs before ETOPS entry point or before entering MNPS area, consider rerouting or turn back. If flight within MNPS area is intended, compliance with MNPS requirements must be observed.

Failure of both FMS

- Select HDG mode on current HDG to restore AP in CMD.
Note: If AP was in NAV mode and 2nd FMS has failed, the AP will trip out.
- Steer the a/c using the FPV "in the cage" technique, as described above, selecting on VOR or ILS CRS selector the average MT between two waypoints.
- Use GS indication from ISDU to compute ETA to next waypoint.
Note that the procedure to fly at constant MT will bring the a / c some NM off the great circle route. However in most parts of the world, the maximum lateral deviation midway between two waypoint will not exceed 5 NM .

Navigation without FMS requires navigation monitoring by periodically plotting the selected IRS position on a navigation chart after reading ISDU. The selected IRS should be the best IRS as determined by previous IRS monitoring (see above).
R Example: For a west-east route as shown on figure 2 below.

Figure 2

R For example, for a west-east route the position plotting should be performed when crossing the longitude of each waypoint and at a longitude midway between each waypoint.

If a significant crosstrack error is confirmed (> 10 NM), a MT correction should be made so as to be back on track at the next waypoint.

It is recommended to apply only small corrections in order to avoid over corrections.

The track correction can be estimated by the simple formula :

Correction
$($ deg $)=\frac{\text { XTK error (NM) }}{\text { Distance to next WPT (NM) }} \times 60$

Failure of ISDU

If at least one FMS is operative, the ISDU failure does not change the procedures except that IRS monitoring cannot be performed.

In the extremely unlikely situation of both FMS + ISDU failure, the IRS position is no longer accessible, however the bird and track information are still available on ND.

Summary of procedures with navigation system failures before entering or within MNPS area

FAILURE	Before entering MNPS	Within MNPS
1 FMS	do not enter	continueasperF-PLN
2 FMS	do not enter	continueasperF-PLN advise ATC
1 IRS Remaining IRS pos. diff $<20 \mathrm{~nm}$	continue	continue
1 IRS Remaining IRS pos. diff $>20 ~ n m ~$	do not enter	Operationaldecision advise ATC
2 IRS	do not enter	Operationaldecision advise ATC

C. LIMITATIONS OF THE NAVIGATION SYSTEM

It is reminded that the navigation system is limited to operations between latitudes of $72^{\circ} 30^{\prime}$ North and 60° South.
Above $73^{\circ} \mathrm{N}$ of latitude the MT indications, will be either lost (Honneywell IRS) or become inaccurate (Litton IRS).

D. FMS MESSAGES

Some messages are relevant when talking about navigation monitoring and are mentioned hereafter.
a) VERIFY A / C POSITION

This message is triggered when distance between MIX IRS position and FMS position is $>12 \mathrm{NM}$.
This message is most likely to appear while radio updating is being done by the FMS. In order to determine the potential cause of the error:

- validate FMS position : using VOR / DME raw data. If FMS position is accurate, the error is on the MIX IRS side.
The faulty IRS may be determined using the method described hereabove.
. If FMS position is not satisfactory, the radio updating is causing the error.
* Check which navaids are used for radio updating,
* Select them for display and determine the wrong navaid,
* Deselect the wrong navaid.

PROCEDURES and TECHNIQUES

	2.02 .15	
PAGE 12		
REV 26	SEO 001	

b) FMC POSITION MISMATCH

This message is triggered when the distance between FMS1 and FMS2 is $>5 \mathrm{~nm}$.

It may appear most probably in 2 cases :

1) 2 IRS only are operating in NAV mode.

Consequently each FMS operates with its own IRS in case of IRS ONLY navigation.
. Use FMS data linked to the best IRS,
. Engage corresponding AP in NAV mode.
2) FMS's are radio-updated

If both FMS do not use the same navaids for radio updating.

- Validate FMS positions and determine the accurate one,
- Check the selected navaid on the inaccurate FMS,
- Deselect the wrong navaid.
E. BEARING / TRACK DEFINITIONS AND MAP DISPLAY ON ND

Indications FMS CDU
Track between the "TO" and the "NEXT" waypoint on F-PLN page B is an inbound magnetic track (MT). Fig. 3.

Figure 3

Bearing indicated by the BRG / DIST function on PROG page is a magnetic bearing to a waypoint measured at the a/c present position (Fig 4).

Bearing indication on ND
The bearing indication to the "TO" waypoint in the upper right corner of ND is calculated as follows :
CRS on ND = T.Brg + MVto (Refer to figure 5)
where : $\mathrm{T} . \mathrm{Brg}=$ True bearing
MVp.pos $=$ Magnetic variation at present position
MVto $=$ Magnetic variation at TO waypoint
Figure 5

Therefore the bearing information on ND should be used only in areas where magnetic variation does not significantly change between present position and the "TO" waypoint ($\triangle \mathrm{MV}<2^{\circ}$)
Outside these areas, and for long distances, it is recommended to use the BRG / DIST function.

	PROCEDURES and TECHNIQUES	2.02.15	
		PAGE 13	
	NAV / FLT INST	REV 26	SEO 001

Magnetic variation

As magnetic variations are given from different sources (FMS, IRS, nav charts, RFL...) some discrepencies of 1 or 2 degrees can be expected. These sources may have stored magnetic variations which refer to different reference dates.

MAP display on ND

The AP in NAV mode will steer the a/c on a great circle line between two waypoints (XTK error = 0).

The MAP display on ND is a kind of "Mercator" projection where a straight line between two waypoints is a pseudo rhumb line. F-PLN route is drawn as straight lines between waypoints on ND.

Therefore it is quite normal to see the a c c symbole on ND leaving the displayed F-PLN route while maintaining XTK $=0$. See figure 6 below.

This effect is greatest at high latitude where meridian convergence is large and on east-west or west-east routes.

Figure 6

F. REMINDER ON FMS POSITION COMPUTATION

When inputs of three IRS's are available, each FMS computes the mixed IRS position provided the IRS position validity test is satisfactory.

If tests are completed successfully, each FMS computes a new mixed IRS position.
The mixed IRS position is a weighted average. See Figure 7.

If any of the IRSs fails the comparison test, each FMS will use a single IRS for position inputs.

However, as long as the out-of range IRS remains in NAV mode, its position is included in further comparison tests.

Figure 7

great circle line
\qquad rhumb line

	PROCEDURES AND TECHNIQUESDOORS	2.02 .16	
		PAGE 1	
		REV 31	SEQ 001

LEAVING THE AIRCRAFT VIA AVIONICS

COMPARTMENT ACCESS DOOR (STANDARD

 CONFIGURATION).- Open the floor hatch to get access to the avionics compartment.
- Descend into the avionics compartment and take a position right side of the avionics compartment access door.

Note : Do not try to open the access door while standing on it.

- Open the floor panel (1) which covers the avionics compartment access door handle (2), located at the aft, center part of the access door (coin may be needed to open the lock).
- To open the access door (3) lift the handle (2) and pull the door completely into the bay until it is latched in its upper stop (LH).
- Remove the strap which fixes the ladder assembly against motion.
- Lift the lever (4), located on the right side aft of the lower rung of the aft ladder element, to unlock the ladder assembly and swing it simultaneously towards the opening.
- Release the lower locking device on the right inner side of the first ladder element (5) by pulling the orange handle forward (indicated on a placard next to the locking device). Lower the element until it latches.
- Repeat with the second ladder element (locking device (6) is at the left inner side).
- If the ladder does not touch the ground yet the last element is lowered by pulling forward its orange handle at the lower end on the left outer side.
- If the ladder touches the ground leave the aircraft via the extended ladder.

If local Airworthiness Authorities require that the cockpit door remains closed throughout the entire flight, these procedures must be applied after engine start.

COCKPIT PROCEDURE

ROUTINE ACCESS (requested from the cabin)

The buzzer sounds in the cockpit for 1 to 9 seconds (3 seconds by default).
Prior to unlocking the door, the flight crew should identify the crew member requesting entry through the door spy hole, or using the video cameras (if installed).

- If entry is NOT authorized by the flight crew :

COCKPIT DOOR toggle switch
LOCK Emergency access, buzzer and keypad are inhibited for a preselected time between 5 to 20 minutes.

- If entry is authorized by the flight crew :

COCKPIT DOOR toggle switch
h UNLOCK The flight crew set and maintain the toggle switch in the UNLOCK position until the cabin crew pushes the door fully open.
Before closing the door, the toggle switch has to be released to NORM position.
COCKPIT DOOR FAULT light. CHECK EXTINGUISHED
Note: If flight crew does not take any action after routine cabin request, cabin crew can open the door using the emergency access procedure.

EMERGENCY ACCESS (initiated from the cabin)

The buzzer sounds continuously in the cockpit and the OPEN light flashes on the cockpit door panel.
COCKPIT DOOR toggle switch LOCK
Emergency access, buzzer and keypad are inhibited for a preselected time between 5 to 20 minutes.
Note : One flight crew member must immediately respond to the emergency access request by locking the cockpit door. If the flight crew does not take any action, the door unlocks after a preselected time from 15 to 120 seconds.

Then, when the situation in the cockpit permits and prior to unlocking the door, the flight crew must identify the crew member requesting entry through the door spy hole, or using the video cameras (if installed).

- If entry is authorized by the flight crew :

COCKPIT DOOR toggle switch UNLOCK The flight crew set and maintain the toggle switch in the UNLOCK position until the cabin crew pushes the door fully open.
Before closing the door, the toggle switch has to be released to NORM position.
COCKPIT DOOR FAULT light . CHECK EXTINGUISHED

CABIN PROCEDURE

ROUTINE ACCESS

CABIN CREW PRESS \#, OR Number + \# Number represents an Operator-defined figure between 0 and 7 digits.
CABIN CREW STAND IN COCKPIT DOOR AXIS
The cabin crew must stand in the axis of the cockpit door to be identified.

- If entry is NOT authorized by the flight crew : The keypad's red light comes on steady, and indicates that the door is locked. Emergency access, buzzer and keypad are inhibited for a preselected time between 5 and 20 minutes.
- If entry is authorized by the flight crew :

The keypad's green light comes on steady, and indicates that the door is unlocked.
CABIN CREW \qquad PUSH DOOR TO OPEN

- If there is no reaction from the flight crew after first ROUTINE ACCESS request :

CABIN CREW
PRESS \#, OR Number + \#

- If there is no reaction from the flight crew after the second request :
CABIN CREW CALL THE COCKPIT Establish contact with the flight crew and request access to the cockpit.
- If there is no reaction from the flight crew after a cabin crew interphone call :
EMERGENCY ACCESS PROCEDURE. APPLY

EMERGENCY ACCESS PROCEDURE

EMERGENCY ENTRY CODE . . . ENTER AND PRESS \#

The emergency entry code is an Operator-defined figure between 2 and 7 digits. A buzzer will sound continuously in the cockpit and the keypad's green light flashes. If there is no reaction from the cockpit, the keypad's green light comes on steady after a preselected time between 15 and 120 seconds.
Then, the buzzer stops indicating that the door is unlocked for 5 seconds and cabin crew can push the door to open.

CABIN CREW PUSH DOOR TO OPEN

ENGINE START WITH EXTERNAL PNEUMATIC POWER

APU GEN OR EXT PWR

ESTABLISH

- Before connecting external pneumatic power :

PACK VALVES 1 and 2 OFF
(to prevent packs contamination)

- Before start :

ENG BLEED VALVES 1 and 2 OFF
AIR X FEED
MAN/IN LINE

- Closure of both the engines bleed valves eliminate reverse flow leakage.
- Cleared to start :

For MIN. RECOMMENDED STARTER AIR SUPPLY PRESSURE refer to table below.

- Two external pneumatic power units may be used in parallel if the pressure/ flow relation is expected to be marginal.
- Proceed as for normal engine start procedure.
- After first engine start :
- If CROSSBLEED ENGINE START is considered :
- Request removal of external pneumatic power unit(s)
- PACK VALVES 1 and 2 \qquad ON
- Apply CROSSBLEED ENGINE START procedure as described further in this chapter.
- If both engines are started on external pneumatic power:
- Proceed as for normal engine start procedure
- After second engine start :
- Request removal of external pneumatic power unit(s)
R X-FEED ENG 1 and 2 BLEED VALVE AUTO/CROSS-LINE AUTO PACK VALVES 1 and 2 ON

MINIMUM RECOMMENDED STARTER AIR SUPPLY PRESSURE

| $\begin{array}{c}\text { AMBIENT CONDITIONS } \\ \text { ALTITUDE } \\ \text { (FT) }\end{array}$ | | $\begin{array}{c}\text { TEMPERATURE } \\ \left({ }^{\circ} \mathrm{C}\right)\end{array}$ |
| :---: | :---: | :---: | \(\left.\begin{array}{c}STARTER AIR

PRESSURE

(PSI G)\end{array}\right]\)

Note : Pressures are valid with start valve closed. During engine start pressure may drop by 10%.

BATTERY ENGINE START

CAUTION

- Ensure chocks are in place
- Alert ground staff before engine start

- Before start

GEN 1 . ON

- CLEARED TO START

APU BLEED OR EXTERNAL PNEUMATIC POWER

ESTABLISH
IGNITION START B

- ENG 1 START :

ENG 1 START button
PRESS AND HOLD

- Confirm starter operation by observing the control column movement.
Start clock.
Announce « 20 SECONDS » when elapsed.
Note : 20 seconds represents the minimum for fuel lever on.
ENG 1 FUEL lever
ON

An EGT rise may occur overtemperature.

- When GEN 1 FAULT light extinguishes :

ENG 1 START pushbutton RELEASE

- After eng 1 start :

Complete the cockpit preparation.
ENG 2
START

CROSSBLEED ENGINE START

CAUTION

Engine bleed supply and external pneumatic power supply must not be used simultaneously.

APU BLEED VALVE . OFF
BLEED VALVE (receiving engine) OFF
AIR \times FEED
MAN/IN LINE
BLEED VALVE (supplying engine) AUTO

- Continue the normal engine start procedure

Note: To increase airbleed pressure of supplying engine throttle may be advanced, if required. It is recommended not to exceed flight idle N2 (max. 9% above ground idle). This should normally provide sufficient starter air pressure.
If min. recommended starter air supply pressure is not obtained at flight idle, before further N2 increase ascertain with ground crew that intake and exhaust areas of supplying engine are clear for the augmenting jet wake.

- After engine start :

X-FEED AUTO/CROSS-LINE
BLEED VALVE (receiving engine) AUTO

	PROCEDURES and TECHNIQUES	2.02.17	
		PAGE	
	POWER PLANT	REV 19	SEQ 020

ENGINE VIBRATION

Monitoring

Actual or impending engine problems may be detected by use of vibration monitoring. Since vibration characteristics are different for each engine, a single reading is not very meaningful, except if a sudden significant increase is encoutered.

Vibration trend values are more important provided the readings are taken over a period of time in comparable, stabilized conditions.
Indicated vibration levels (N1 and N2) under stabilized cruise conditions should be recorded at least once a day.

High Vibration Level

Specific limits to define an abnormal, high vibration level are not established, generally a rapid increase is more serious than a steady high value.
The VIB ADVISORY on ECAM (N1 above 3 units, N2 above 5 units) constitutes only a guideline to induce the flight crew to closer parameters monitoring and crosscheck.

Validation

High VIB level indication can be considered valid when any of the following conditions co-exist with high vibration on the affected engine :

- VIB level increases and decreases with corresponding throttle lever movement.
- High fan (N1) vibration perceptible on throttle levers and/or aircraft structure. Abnormal engine noise (rumble) accompanies increase of VIB level.
- High N2 vibration accompanied by changes in other engine parameters (e.g. EGT, N1/N2 relationship, OIL PRESS, OIL TEMP, OIL QUÁNTITY, and/or NACELLE TEMP).
Any abnormal VIB indication should be recorded for maintenance action.

Sudden Increase during Takeoff or Climb

Higher N1 VIB levels with takeoff or climb thrust settings may be experienced since N 1 rotor imbalance will increase as engine speed increases. High N2 VIB indications are usually more apparent during low engine speed operation (ground/flight idle).
VIB transients, even in excess of one unit, can be considered normal during high thrust operation prior to thermal stabilization and during power changes.
However, if a sudden significant increase is accompanied by increased airframe vibration or change in engine noise:

- Check VIB indication and other engine parameters, as soon as circumstances permit.
- If abnormal VIB validated : Consider engine shutdown, flight conditions permitting.

Sudden Increase During Cruise

If a sudden increase in vibration in excess of one unit is encountered with stabilized cruise setting and the reading is considered valid :

- Operate throttle lever to reduce VIB level within one unit of the original indication.
- If successful and all other engine parameters normal, continue engine operation not exceeding that thrust setting.
- If unsuccessful, consider engine shutdown, flight conditions permitting.

Increase during Descent

If a significant increase in vibration is encountered when thrust is reduced to IDLE :

- Advancing throttle levers may reduce N2 vibration level.

CAUTION

When throttle levers had to be adjusted to reduce vibration, it is recommended NOT to use reverse thrust on the concerned engine.

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS TABLE OF CONTENTS	2.02.19	
		PAGE 1	
		REV 36	SEO 100

2.02.19 TABLE OF CONTENTS

2.02.20 GENERAL
A. Preliminary notes
B. Introduction
C. Main rules of use
D. Task sharing
E. General recommendations

2.02.21 PREPARATION BEFORE TAKEOFF

A. During cockpit preparation
B. When the load sheet is available
C. Before pushback or start
D. Taxi

2.02.22 TAKEOFF

A. When ready for takeoff
B. At 30 ft
C. At thrust reduction altitude
D. At ACCEL ALT

2.02.23 CLIMB

A. When initial climb speed is reached
B. At FCU ALT
C. Climb to FL 200
D. Climb from FL200 to FL290
E. Use of PD (place distance) points
F. CRZ FL change during climb
G. Turbulence
H. Transition IAS/MACH altitude

2.02.24 CRUISE

A. Reaching CRZ FL
B. Step climb/descent
C. Use or DIR TO function and AIRWAY page
D. Selection of another mode (strategic or tactical)
E. Insertion of a lateral offset
F. Insertion oftime, speed or level constraint

2.02.25 PREPARATIONBEFOREDESCENT\&DESCENT

A. Descent wind profile insertion
B. STAR/Approach insertion
C. If descent clearance is not yet given by ATC at top of descent

DESCENT

A. When descent clearance is given by ATC
B. When reaching the top of descent
C. P.THR descent
D. P.SPD descent
E. P.SPD/P.THR reversion in IMM DES

F At FCU ALT
G. Speed constraint ($250 \mathrm{kt} / 10000 \mathrm{ft}$)
H. ALT constraint
I. Maximum descent

2.02.26 HOLDING \& APPROACH

A. Holding manual
B. Hold page accessing
C. Holding parameters
D. Holding insertion
E. 3 minutes before reaching the fix
F. To leave the holding
G. Holding fix

APPROACH
A. ILS approach
B. Non-precision approach

2.02.27 GO-AROUND \& ENABLE ALTERNATE

A. Go-around
B. Enable alternate

2.02.28 FMS ABNORMAL OPERATION

A. FMC independent operation
A. FMC failures
B. FMC failures
C. Loss of one FMS R
D. Both FMS latched R
E. Loss of both FMC R
F. Other failure modes R
2.02.29 PERFORMANCE CHARTS

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS TABLE OF CONTENTS	2.02.19	
		PAGE 2	
		REV 33	SEQ 001

INTENTIONALLY LEFT BLANK

A. PRELIMINARY NOTES

- In this section, the use of FMS and its coupling to the AFS (PROFILE and NAV modes engagement...) are described.
Other AFS modes are described in the « USE of AFS n section 2.02.03.
General SOPs are not specified, only FMS actions are described.
The FlightManagement System specific vocabulary and acronyms are detailed in chapter 1.20.
- A flight from TOULOUSE (LFBO) to LONDON HEATHROW (EGLL) with AMSTERDAM (EHAM) as alternate airport is taken as example.
- Reminder : the database must be loaded and updated to render the system operational.
The depicted examples may only be reproduced with the same database.
Finally it is recalled that the airline is solely responsible for the definition, acquisition, updating, loading and use of its own database.

B. INTRODUCTION

- The FMS shall normally be coupled to the AFS (through PROFILE and NAV modes) whenever possible.
- When this coupling is active, vertical navigation via PROFILE mode and horizontal navigation via NAV mode are fully controlled by the FMS which sends its orders to the AFS.
- NAV mode can be engaged from 30 ft (at takeoff) to LOC capture (case of an ILS approach) or to a minimum authorized altitude (case of a non-precision approach).
- PROFILE mode can be engaged from THRUST REDUCTION ALTITUDE (value stored into the FMC database or 1500 ft AGL by default) to GLIDE capture (case of an ILS approach) or to a minimum authorized altitude (case of a non-precision approach).

C. MAIN RULES OF USE

- Data entry into the FMS can be made on either of the CDUs. It will be taken into account by both FMCs.
- Any data entry must be checked.
- PROFILE andNAV modes areengaged or disengaged, as any other AFS mode, by means of dedicated pushbuttons located on the FCU.
- When PROFILE is active, a flight level cannot be left without at least two positive actions of the crew :
- turning ALT knob to select a new level
- pulling this knob to initiate the level change.
- In certain cases (e.g. pilot entry on the CDU not accepted, or format error), a message is displayed in the scratchpad.

D. TASK SHARING

- AP in CMD : PF makes the FMS revisions.
- AP NOT in CMD : PNF makes the FMS revisions.

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS GENERAL	2.02.20	
		PAGE 2	
		REV 33	SEQ 100

E. GENERAL RECOMMENDATIONS

PROFILE disengagement

It is recommended to disengage PROFILE by pulling the speed/mach knob on the FCU. The speed window is automatically synchronized and the AFS reverts to LEVEL CHANGE mode.

PROFILE must be disengaged before G / S interception during ILS approaches.

NAV disengagement

It is recommended to disengage NAV by pushing then pulling the HDG SEL knob on the FCU. Pushing the HDG SEL knob will synchronize the FCU heading on actual heading. Pulling the HDG SEL knob causes the AFS to revert to HDG SEL mode.

Leaving the lateral flight plan

It is not recommended to keep PROFILE if NAV is disengaged to leave the lateral F-PLN, especially during climb, approach and go-around. This is because altitude constraints, generally linked to waypoints, will be matched in the corresponding leg even if these waypoints are not overflown.

F-PLN discontinuities

Always check that there are no forecoming discontinuities in the F-PLN. AP disengages as soon as the aircraft enters a discontinuity. Especially for go-around, NAV and PROF should not be reengaged without a F-PLN checking.
A special case is made for a discontinuity following a manual terminated leg. This discontinuity can be cleared only by making a DIRECT TO any waypoint following the leg.
Before performing a F-PLN lateral revision causing aF-PLNDISCONTINUITY,PROFILE should be disengaged in order to avoid the computation of a wrong vertical F-PLN. PROFILE can be reengaged after the F-PLN DISCONTINUITY is cleared.

Reverting to a default value

When a default value has been manually changed, it may be recovered by clearing the manual entry (press the CLR key and the corresponding LS key).

Mod : 6789

USE OF « SPERRY » FMS

Speed tactical mode

Whenever a specific speed is required, it is better to use the SPD TACT mode, rather than leaving PROFILE mode and using FCU. Thus the FMS vertical guidance is kept. This recommendation is not valid for descent where TACT SPD use would induce a misleading descent path recomputation.
If a specific speed has to be used, it must be done through AP.
The cost index should not be changed during flight to change the speed.

Altitude constraints

Altitude constraints are coded in the database and linked to waypoints only. They are provided for advisory and for an optimal flight path construction only.

CAUTION

There are no minimum en route altitude and no safe altitude codes in the database. They remain pilot responsibility.

On ground, raising the FCU altitude above the altitude constraints has no effect on them.
When the aircraft is airborne in descent phase and FCU altitude is lowered below the altitude constraints, they remain valid.
When the aircraft is airborne in climb phase and FCU altitude is raised above the altitude constraints, they are cancelled and replaced by altitude predictions on the CDU.

SID and STAR

NAV mode must not be used to fly a SID or STAR which has been manually built. Furthermore, it is not recommended to build a SID/STAR manually. SIDs and STARs use specific legs such as DME arcs, VOR radial interceptions, conditional altitude legs which cannot be manually constructed. Only DIRECT TO legs may be manually constructed. Therefore if NAV is engaged to fly a manually constructed SID or STAR, the aircraft will be controlled on DIRECT TO legs instead of the legs to be flown.

According to the specific SPERRY vocabulary :
SID : Common part with other SIDs (same RWY) + TRANS (independent part)
STAR : Common part with other STARs (same RWY) + TRANS (independent part)

So it may be necessary to select a TRANS after a SID/STAR even if no TRANS is mentioned in navigation documents.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS GENERAL	2.02.20	
		PAGE 4	
		REV 33	SEQ 001

INTENTIONALLY LEFT BLANK

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS PREPARATION BEFORE TAKEOFF	2.02.21	
		PAGE 1	
		REV 33	SEQ 100

Mod : 6789

	2.02 .21	
PAGE 2		
REV 33	SEO 100	

A. DURING COCKPIT PREPARATION

A/C STATUS page is automatically displayed at power on.
DATABASE VALIDITY Check
If second database is valid, select it.
PERF FACTOR
Check
This value must not be changed by the crew.
Cross-check this value with the computerized F-PLN.

Navaid deselection

If NOTAMs warn of any unreliable DME or VOR/DME, they must be deselected on the REF INDEX page:
REF key . Press
Navaid identifier . Write
DESELECT . Press

INIT A : FMC initialization

INIT key .Press to display INIT A

- If a company route code is stored in the database :

Company route initialization

CO RTE
Write/Insert
Cost Index and CRZ FL are normally stored with CO RTE in database and thus are automatically displayed. If not they should be inserted.
FLT NUMBER
Write/lnsert

- If no company route code is stored in the database :

Airport pair initialization

ORIGIN/DESTINATION (1R)
Write/lnsert
As soon as the origin/destination is inserted the RTE SELECTION page is displayed.
First case : there is one or several routes stored in the database between the given airport pair. The first one is displayed on the RTE SELECTION page. Others may be displayed by pressing NEXT key.

* INSERT prompt . . . Press to select the route displayed on RTE SELECTION page

Second case : there is no route (NONE is displayed) on RTE SELECTION page or none of the proposed routes are convenient.

RETURN prompt . Press
It will be necessary to construct the route using AIRWAY page.
In this case cost index and CRZ FL are not given with origin/destination and thus should be inserted.
FLT NUMBER
Write/Insert

Alternate

ALTERNATE (2R) \qquad Check or Write/Insert or, if a route exists from DES to ALTN :
ALTN RTE (2L) . . . Press to display the ALTN RTE on RTE SELECTION page
If there is no route between DEST and ALTN, NONE is displayed. It should be constructed using the AIRWAY page. Else :

* INSERT prompt . . Press to select the ALTN RTE displayed

Departure coordinates

LAT/LONG (3L, 3R)
 Check

If the aircraft is at a gate with published coordinates, these must be used to update the airfield coordinates provided automatically on INIT page A. If the gate coordinates are not published, airfield coordinates will be used.
To change coordinates, use the slew keys to increase or decrease the displayed value, or write/insert a new value.

Check that lat/long values match airport reference coordinates given by airport chart.
COST INDEX (4L) \qquad Check or Write/Insert
If there is a cost index stored in the database with the CO RTE, it should not be changed as it defines the airline cost policy for this route.

If no cost index is stored in the database, use the one given by the airline.
If no cost index is inserted, no predictions for the ECON strategic mode will be computed and a message will be displayed at engine start.

	2.02 .21	
PAGE 3		
REV 33	SEO 100	

IRS alignment

When entering the cockpit, IRS must be aligned.
ALIGN IRS prompt is displayed only if lat/long is filled, one MSU is set to NAV and IRS are not aligned.
ALIGN IRS prompt (4R) Press
Lat/long are sent to IRS.
ISDU
Check that valid coordinates have been sent
VOR/NAV/LS switch Set to NAV

Autotune functions are activated.

Cruise data

CRZ FL Check or Insert and Change
In our example : FL340.
Normally it is given with CO RTE. CRZ FL is not limited by MAX ALT computed at weight entry.

Modify it if necessary taking into account ATC constraints or gross weight.
CRZ TEMP/TROPOPAUSE ALT Change if necessary
Defaulted to ISA at CRZ FL, and 36090 ft .
CRZ WIND DIRECTION/VELOCITY . . . Write/lnsert
In our example : 190 $/ 75 \mathrm{kt}$.
Wind at departure will be inserted on F-PLN page B.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY» FMS PREPARATION BEFORE TAKEOFF	2.02 .21	
		PAGE 4	
		REV 33	SEC 300

RWY AND SID INSERTION

F-PLN : revision and checking

F-PLN
Press to display F-PLN page A
RWY/SID is normally stored in the database with the CO RTE and thus is automatically inserted in the F-PLN. This is indicated by the first waypoint being the runway, and not the airport ICAO identifier.
If this is not the case, and a F-PLN DISCONTINUITY is displayed, then a runway and a SID must be entered:

RWY/SID insertion

LFBO key (1L) Press to display LATERAL REVISION page
SID prompt Press to display SID page
RWY to be selected \qquad Press to select 14R

Only SIDs corresponding to the selected RWY are now displayed.
SID to be selected Press to select FISTO 5A
TRANS (if any) \qquad
TRANS has not the same meaning for SPERRY as for navigation documents. Therefore it may be necessary to select a TRANS even if documents do not mention any transition.
A TRANS may be necessary only if no SID has been chosen. In our example, NONE is displayed under TRANS as no TRANS exists associated to this departure.

EOSID (if any) automatically selected NONE is displayed in our example, as no EOSID exists for this departure.

$$
\begin{aligned}
\text { * INSERT prompt Press to insert } \\
\text { RWY/SID/TRANS in the F-PLN } \\
\text { Notes : - RWY/SID insertion may be delayed until } \\
\text { departure clearance is given. } \\
\text { - RWY or SID may be changed by pressing } \\
\text { the adjacent LS key or cleared by using } \\
\text { the CLR key. } \\
\text { - If a new RWY is selected which is not } \\
\text { compatible with the selected SID, this } \\
\text { SID and the corresponding TRANS are } \\
\text { automatically cleared. }
\end{aligned}
$$

CAUTION

- RWY entry is mandatory for the FMS to update its navigation references on RWY threshold at takeoff when the go-levers are pressed.
- NAV mode must not be engaged to fly a SID manually constructed as it uses specific legs which cannot be manually defined (e.g. VOR radial or altitude interceptions or DME arc)

IRS alignment check for FMS data confirmation

On the POSITION MONITOR page, check that the IRS are in NAV mode, and check that the distance between each IRS and the FMS position is lower than 5 NM.

Select ND in ROSE-NAV or ARC mode, and confirm that the aircraft position is consistent with the position of the airport, the SID and the surrounding NAVAIDs.

	PROCEDURES AND TECHNIQUES USE OF « SPERRY » FMS PREPARATION BEFORE TAKEOFF	2.02.21	
		PAGE 6	
		REV 33	SEQ 001

TEMPERATURE AND WIND INSERTION

AT LFBO: WIND $160^{\circ} / 23 \mathrm{KT}$. TEMPERATURE IS TAKEN FROM SENSORS

TEMP/WIND AT DESTINATION INSERTION

PROCEDURES and TECHNIOUES
USE OF « SPERRY » FMS PREPARATION BEFORE TAKEOFF

	2.02 .21	
PAGE 7		
REV 33		SEO 001

F-PLN PAGE A checking

ND PLAN MODE
Select
SLEW keys (\uparrow) (\downarrow) Press
The F-PLN is slewed on F-PLN page A and on ND PLAN mode

Check speed and altitude constraints if any.
Distance and course are displayed only between the FROM and TO waypoints of the screen. The TO waypoint of the screen corresponds to the center of the ND display, in PLAN mode. Check there are no discontinuities in the F-PLN.

Final approach outer marker and destination runway are constrained by dummy altitude constraints. These constraints are inserted in the database in order to prevent the aircraft from descending below them if PROFILE is not disengaged.
PROC T (if any) Write/Insert a speed constraint at the first waypoint of a procedure turn

HOLDING (if any) Delete if not necessary

If it is not deleted, insert a speed constaint as for PROC T.

F-PLN PAGE B checking

NEXT PAGE key . . Press to display F-PLN page B
SLEW keys (\uparrow) (\downarrow) . Press
Check waypoints, course, airways, and distance for each leg versus compagny flight log or navigation chart.

WIND DIR/VELOCITY at waypoint Write

Insert wind at each waypoint where wind change is significant.

This concerns in particular wind direction and velocity at origin and at destination.

Temperature may also be inserted in the same way. Temperature at departure airport is automatically inserted coming from aircraft sensors.

Specific speed to be flown after takeoff

The usual target speed after takeoff is 250 kt (speed limit). It is possible to change it.

TACT MODE key . Press
The current mode is displayed in capitals.
If, for example, the speed to be flown after takeoff is 240 kts :

240
Write/Insert in 4L
SPEED LS key (4L) Press to activate
TACT SPD mode
This procedure will allow the use of PROFILE mode at the beginning of climb rather than using the FCU speed knob.

Secondary flight plan

This is routinely a copy of the active flight plan. However, consideration may be given to the following:
a) Copy the active F-PLN but modify it at a suitable WPT for an immediate return to the departure airfield in the event of, for example, engine failure.
b) If weather is below landing minimum at the departure airfield the secondary flight plan should be that required for an immediate diversion after takeoff.
c) If there is the possibility of a runway and/or SID change during taxi, this can be prepared for by copying the active and making the necessary modifications.

SEC F-PLN key Select

Check the content of the secondary flight plan. If not satisfactory, it can be cleared :

CLR SEC key
Select
If a copy of the active flight plan is needed :
COPY ACTIVE prompt Select
Else any F-PLN can be entered into the secondary F-PLN in the same way as the active F-PLN.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS PREPARATION BEFORE TAKEOFF	2.02.21	
		PAGE 8	
		REV 33	SEQ 110

WEIGHT ENTRIES AND FUEL PLANNING

Mod : $4801+6789$
AIEBEs TRAINING

	2.02 .21		
PAGE 9			
REV 33	SEO 110		

B. WHEN THE LOAD SHEET IS AVAILABLE

INIT B : weight entries

INIT key Press to display INIT page A
NEXT PAGE key . . . Press to display INIT page B
ZFW or TOGW Write/Insert
ZFWCG . Write/Insert
Taxi fuel is defaulted according to the airline policy. It may be changed.

- If CG and ZFW are inserted, the FMS will provide the minimum fuel required for the trip according to fuel policy (Route Reserves, ALTN, FINAL)
- If CG, ZFW and BLOCK FUEL are inserted, the FMS will provide all predictions, as well as the EXTRA fuel if any.

Fuel planning on INIT B

BLOCK is block fuel weight :
BLOCK
Write/lnsert
TOGW is deduced from ZFW, BLOCK and TAXI.
BLOCK is automatically replaced by FOB (fuel on board) at engine start and thus is needed only for fuel computations before engine start.
MAX FL and OPT FL
Check
They are displayed after BLOCK is inserted.
Dashes are displayed while computations are on going.
CRZ FL May be changed

F-PLN predictions checking

All fields are now available in F-PLN pages and predictions can therefore be revised :

F-PLN key
Select
SLEW keys Use as necessary

Estimates of en-route times between waypoints are now given.

	2.02 .21	
PAGE 10		
REV 33	SE0 001	

C. BEFORE PUSHBACK OR START

Takeoff data

TO/APP key Press to display TAKEOFF page
F, S, O speeds . Check
V_{1}
Write/Insert
VR
Write/Insert
V2 Select on FCU knob

SPD/Mach knob Push to activate Preset
V_{2} is copied from FCU to TAKEOFF page.
Preset speed
Select
Select first speed to be flown after takeoff.
THR RED
Check/may be changed
Not lower than 1500 ft AGL
ACCEL altitude \qquad Check/may be changed
Not lower than THR RED altitude
TO SHIFT LS KEY Press SELECT prompt if takeoff is initiated beyond the runway threshold : pressing this key inserts a $0.5 \mathrm{NM} / 970 \mathrm{~m}$ shift from runway threshold: ACTIVE is then displayed.
D. TAXI

First clearance is given for 7000 ft (for example).
ALT KNOB (FCU) Select first cleared altitude

Page selection on CDU

PF . TAKEOFF page
PNF F-PLN page A

NAV/PROFILE mode arming
PROFILE mode Arm on FCU
P. CLB blue (armed) Check on FMA

NAV mode Arm on FCU
NAV blue (armed) Check on FMA

NAV should not be used at takeoff if the SID to be flown is not defined in the database.

Thrust selection on TRP

FLX TO TEMP Select on TRP
If a high temperature leads to FLX TO thrust lower than the CL thrust the FMS will gradually increase thrust from the FLX TO thrust to reach the CL thrust before 20000 ft .
So FLX TO and PROFILE mode are recommended at takeoff.

TAKEOFF DATA INSERTION

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS TAKEOFF	2.02 .22	
		PAGE 1	
		REV 33	SEQ 001

SIMU S4 for training only 1PM AI / V-F 1000

	PROCEDURES and TECHNIQUESUSE OF «SPERRY \%MSa	2.02.22	
		PAGE	2
		REV 33	SEQ 001

A. WHEN READY FOR TAKEOFF

ND MAP MODE. Select
GO LEVERS . Trigger
The FMS updates its navigational reference (aircraft position) on runway threshold coordinates : the aircraft symbol is now displayed on the runway.
FMS NAV UPDATING
. Check A/C symbol on RWY threshold
If go levers have been pressed before runway threshold, press go levers again on runway threshold ; the FMS will resynchronize its position on RWY threshold coordinates.

AP/FD
Use it as described in
chapter 2.02.03

B. AT 30 FT

FMA
Check NAV engagement
From this moment the lateral navigation is guided by the FMS through AP/FD.

C. AT THRUST REDUCTION ALTITUDE

PROFILE is automatically engaged. From this moment vertical navigation and thrust are controlled by the FMS through AP/FD and ATS. Speed window is dashed.
Target speed is actual speed : usually V2 + 10 kt .
FMA \qquad Check P. THR/P. CLB engagement

TRP Check AUTO engagement

D. AT ACCEL ALT

TGT SPD (blue on PFD) Check
It is either 250 kt or the tactical speed entered.
If a TACTICAL SPD has been activated and is greater than the SPD LIM, the message
"SPD LIM EXCEEDED"
will be displayed, when the aircraft speed overshoots the SPD LIM. It is possible to change the SPD LIM and the corresponding altitude on VERT REV page A (see chapter 1.20.73).
At transition altitude :
ALTIMETERS
Set to standard Check that the highest ALT constraint of the SID has been passed.
The FMS controls the aircraft altitude at the value given by the altimeter and displayed on the PFD. If the baro setting is standard when passing an altitude constraint which is 7000 ft QNH for instance, it will be passed at FL 70 and not at 7000 ft QNH.

CONSTRAINTS Monitor the FMS guidance

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS CLIMB	2.02 .23	
		PAGE 1	
		REV 33	SEQ 001

SIMU S4 for training only 1PM AI / V-F 1000

A typical vertical path including most of the events which may be encountered is presented.
FMS use according to usual ATC clearances is also presented.
The SPD TACT mode may be used throughout the climb to control the aircraft speed.

A. WHEN INITIAL CLIMB SPEED IS REACHED

- F-PLN page for PF
- PROGRESS page for PNF, or as required. For climb, modes on FMA are P.THR/P.CLB.

B. AT FCU ALT

Aircraft levels off.

P.SPD/P.ALT are engaged. Predictions are made assuming an immediate return to climb.

C. CLIMB TO FL 200

Clearance for FL 200 is given by ATC. Two positive actions are required to leave FCU ALT.
FCU ALT KNOB \qquad Turn to select 20000 ft

FCU ALT KNOB \qquad Pull to initiate climb P. SPD/P. ALT revert to P. THR/P. CLB.

MAX CLIMB TACT mode

Expedite climb to FL 200 is requested by ATC.
TACT MODE key . Press
This displays the TACT MODE page.
MAX CLB
Press
This activates max climb mode.

- Max climb is a max angle of climb mode.
- It is performed at green dot. FMS green dot (target speed on PFD) and FAC green dot (green circle on SPD scale on PFD) may be slightly different. Aircraft will climb at the highest of these two speeds. Predictions are made with FMS target speed.
- Max climb mode is active until next level off.
- Max climb is replaced by the selected strategic mode when the level off is reached.

Predictions (time, distance) to FL 200 for MAX CLB mode are displayed after a delay.

D. CLIMB FROM FL 200 TO FL 290

Clearance to FL 290 is given before reaching FL 200.
FCU ALT KNOB \qquad . Turn to select 29000 ft Here pulling the knob is not needed as aircraft has not reached FCU ALT.

E. USE OF PD (PLACE DISTANCE) POINTS

During climb, you are requested to be above FL 300 10 NM before PERIG. A PD (Place Distance) point may be inserted then constrained as follows :

PERIG/- 10 Write on F-PLN page
PERIG key Press to insert PD
PD 01 waypoint is created and displayed before PERIG.
LS key right in line of PD01 Press
This displays the VERT REV AT PD01 page.
300 Write/lnsert in AT OR ABOVE field PD 01 is now constrained by an AT OR ABOVE FL 300 constraint.

Note : This can also be done by writing/inserting /+300 in right LS key in line of PD01.

If this constraint cannot be matched in the present active mode, the message ALT ERROR AT PD 01 -XXX will be displayed, -XXX meaning that A / C will be at $30000-\mathrm{XXX} \mathrm{ft} \mathrm{at} \mathrm{PD} \mathrm{01}$. amber FCU level off symbol is displayed on the NDs. MAX CLB tactical mode should be selected in this case.
Dashes are displayed while the FMS recomputes new predictions.

F. CRZ FL CHANGE DURING CLIMB

Increasing CRZ FL:

FCU ALT KNOB Turn
The CRZ ALT is automatically changed in the F-PLN. Check it on PROGRESS page. The message NEW CRZ ALT is displayed.

Decreasing CRZ FL:
CRZ FL Change on PROGRESS page
FCU ALT KNOB
Turn

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS CLIMB	2.02.23	
		PAGE 3	
		REV 35	SEO 100

R G. TURBULENCE
R
$R \quad$ The SPD TACT MODE should be used with a double
R speed/mach entry.
R Example :
R 285/.78(4L) WRITE/INSERT
R LS KEY 4L PRESS to activate
R
R H. TRANSITION IAS/MACH ALTITUDE
R
$R \quad$ The optimum mach according to the active mode is
R targeted then held.

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS CLIMB	2.02.23	
		PAGE 4	
		REV 35	SEQ 100

INTENTIONALLY LEFT BLANK

Mod : 6789

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS CRUISE	2.02.24	
		PAGE 1	
		REV 33	SEO 100

STEP CLIMB INSERTION

Mod : 6789

A. REACHING CRZ FL

Aircraft levels off. P. SPD/P. ALT are engaged.
Aircraft CRZ ALT is held by FMS within a $\pm 50 \mathrm{ft}$ margin in order to avoid throttle activity. It is cost efficient, so PROFILE should be used whenever it is possible.

- F-PLN page for PF
- PROGRESS page for PNF, or as required.

B. STEP CLIMB/DESCENT

STEP prediction at optimum FL

Assuming that optimum flight level (given on PROGRESS page) is different than present CRZ FL, step predictions (time, distance to the step point) can be displayed on STEP PRED page, in order to make a step climb or step descent request to ATC.
On F-PLN page:
LS KEY 1R (FROM WPT) Press to display VERT REV page at FROM WPT
STEP PRED prompt Press to display STEP PRED page at OPTIMUM POINT

STEP FL, for example OPT FL Write/Insert
WIND AT STEP FL Write/Insert
If no wind is inserted, the FMS will use its own computed wind.
An optimum step point is computed.
TIME/DISTANCE TO STEP POINT
Read
A delay is necessary while the FMS recomputes all the predictions.
FUEL/TIME/COST SAVINGS/LOSSES
Read
These predictions are given for an optimum step climb or descent point since STEP PRED page was accessed from the FROM WPT.

Step climb insertion

If the predictions lead to confirm the step climb, for example.
*INSERT prompt on STEP page Press
FCU ALT KNOB Turn to select new altitude
FCU ALT KNOB Pull
P. CLB ARMED Check on FMA

IMM CLB prompt on CDU Check available
The aircraft will stay at present CRZ FL until step point is reached.
At step point, a climb will be initiated without any pilot action.
P. CLB blue on FMA will flash 30 sec before reaching the step point to advise that an altitude change will be initiated without any pilot action.
If the crew does not want to wait until the step point for climbing, IMM CLB prompt should be pressed : an immediate climb is initiated.
If the FCU is not dialed at the step point the step is removed.
If the FCU ALT is below the STEP FL, the step will be performed at the FCU ALT.

A step leading to a level flight less than 5 min cannot be inserted.

Step climb at a given waypoint

If clearance for FL 340 is given by ATC only after passing MANAK, a step can be inserted at this point.
MANAK RIGHT LS KEY Press to display VERT REV page at MANAK
STEP PRED prompt Press to display STEP PRED page AT MANAK
STEP FL
Write/Insert
Other actions and informations are similar to STEP AT OPTIMUM POINT.

STEP descent

Same operations as for step climb. STEP FL must be higher than the highest altitude constraint.

Immediate STEP climb

It is also possible to perform a step in the following way, (without accessing STEP PRED page) and without previewing predictions.
FCU ALT KNOB
Turn/Pull
CRZ ALT is automatically changed. A message NEW CRZALT is displayed. Flight predictions are restarted.

Mod : 6789

	PROCEDURES AND TECHNIQUES USE OF « SPERRY » FMS CRUISE	2.02.24	
		PAGE 3	
		REV 33	SEQ 100

DIR TO WAYPOINT INSERTION

Mod : 6789

	PROCEDURES AND TECHNIQUES USE OF « SPERRY » FMS CRUISE	2.02.24	
		PAGE 4	
		REV 33	SEC 300

AIRWAY INSERTION

Mod : 11320 or 11364 or 12044 or 12045

C. USE OF DIR TO FUNCTION AND AIRWAY PAGE

To fly directly to a waypoint, a lateral revision can be done using the «DIR TO » page.

DIR TO waypoint insertion :
DIR key Press

Waypoint identifier Write/Insert in line 1L
The display then returns to the F-PLN page with the DIR TO waypoint inserted and a discontinuity between the DIR TO waypoint and the " TO » waypoint of the original F-PLN.

This discontinuity can be cleared by selecting the CLR key then the LS key in line of the discontinuity.
If the DIR TO waypoint is a waypoint belonging to the original F-PLN, it can also be entered by simply pressing the left LS key beside the desired DIR TO waypoint (on the DIR TO page).
In this case no F-PLN DISCONTINUITY will be inserted into the F-PLN.
All waypoints of the F-PLN can be viewed on the DIR TO page by using slewing.

As soon as the DIR TO waypoint is inserted, an immediate turn manoeuver is initiated.

AIRWAY insertion

Access AIRWAY page via LATERAL REVISION page at FOUCO :

FOUCO Press to display LAT REV FROM FOUCO page
AIRWAY Press to display AIRWAY page
UN874 Press to view the UN874 airway
UN874 AIRWAY is displayed with all the waypoints which belong to this airway.
Since we want to introduce the portion between FOUCO and BOKNO we have to :
BOKNO
Press
The display returns to F -PLN page A with the portion of airway (from FOUCO to BOKNO) inserted into the F-PLN, followed by a F-PLN DISCONTINUITY which can be cleared.
This new route will be followed by the aircraft through NAV mode.

D. SELECTION OF ANOTHER MODE (STRATEGIC OR TACTICAL)

For example, if a segment with MAX END mode appears necessary to fulfill the required fuel reserve :
TACT MODE KEY ON CDU Press
MAX END Press to activate MAX END mode

Note: This mode being a TACTICAL mode, it will be active only for this phase of flight.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS CRUISE	2.02.24	
		PAGE 6	
		REV 33	SEQ 200

INSERTING A LATERAL OFFSET

Mod : 11320 or 11364 or 12044 or 12045

	PROCEDURES AND TECHNIQUES USE OF « SPERRY » FMS CRUISE	2.02.24	
		PAGE 7	
		REV 36	SEQ 200

E. INSERTION OF A LATERAL OFFSET

If ATC requires to fly 5 NM right of the route until further notice :

On LAT REV page from PPOS :
5R or R5 Write/Insert in line 5L.
In map mode on the ND, the parallel track 5 NM right of the flight plan now displayed in a solid line, and the original flight plan is displayed with a dashed line. The aircraft turns to join the new course 5 NM right of the original flight plan.
The OFST illuminator on the CDU illuminates.
The OFFSET can be cancelled :

- either by pressing the CLR key then 5L on LAT REV page
- either by inserting a DIR TO leg in the F-PLN from the PPOS.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS	2.02.24	
		PAGE	
	CRUISE	REV 33	SEQ 100

INSERTING A CONSTRAINT THROUGH VERT REV PAGE

(1) F-PLN PAGE A SLEWED
(1) DISPLAY DURING CLB PHASE
\qquad

DELETION OF THE SPD CSTR IS POSSIBLE
INSERT ALSO
FL330 AS AT OR BELOW
CONSTRAINT

Mod : 6789

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS CRUISE	2.02.24	
		PAGE 9	
		REV 33	SEQ 100

INSERTING A CONSTRAINT DIRECTLY THROUGH F-PLN PAGE A
F-PLN PAGE A
INSERTION OF AN AT OR BELOW

F-PLN PAGE A
DISPLAY WITH AN AT OR BELOW
ALT CSTR IN THE DES PHASE

	2.02 .24	
PAGE 10		
	REV 33	SEO 100

F. INSERTION OF TIME, SPEED OR LEVEL

CONSTRAINT

If ATC requires that, at a given waypoint, the aircraft must be :

- at or above a level (e.g. + FL 250)
- at or below a level (e.g. - FL 250)
- at a level (e.g. FL 250)
- at a given speed (e.g. 280)
- at a given time (e.g. 1249).

This may be done :

- either by inserting a vertical revision at this point. On F-PLN page A :
- Right LS key besides waypoint Press to display VERT REV AT waypoint page
- Constraint \qquad Write/lnsert The constraint can be displayed on the ND in map mode by selecting CSTR pushbutton.

Constraints can be cancelled by pressing CLR and the LS key corresponding to the constraint to be erased.

- or by inserting directly the revision on F-PLN page A.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS PREPARATION BEFORE DESCENT \& DESCENT	2.02.25	
		PAGE 1	
		REV 33	SEO 200

PREPARATION BEFORE DESCENT

TO/APPR key
Select
This displays the APPROACH page.
Landing config
Check (or insert correct config).

A. DESCENT WIND PROFILE INSERTION

This should be made early enough to be sure that the recomputed T/D according to descent wind insertion will still be ahead of the present position. This is especially true in case of an increasing tail wind or decreasing head wind insertion where the recomputed T/D will be moved backwards.
Descent wind direction and speed may be updated manually by CDU entry.

Manual entry of descent forecast winds

On MODE page :
DES FORECAST prompt . . . Press to display DES FORECAST page
Forecasts are for instance

- at FL 290 190ㅇ/75 KT
- at FL $150240^{\circ} / 50 \mathrm{KT}$
- at FL $80240^{\circ} / 35 \mathrm{KT}$
- at destination $240^{\circ} / 24$ KT

They may be entered as follows:
290/190/75 Write/Insert in 2L
150/240/50 Write/Insert in 3L
80/240/35 Write/Insert in 4L
240/24 Wrert in 5L

If no wind is inserted, wind is computed by an interpolation between CRZ wind and no wind at destination according to FMS wind models.
Temperature at destination has no influence on T/D computation and therefore is not requested.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS PREPARATION BEFORE DESCENT \& DESCENT	2.02.25	
		PAGE 2	
		REV 33	SEO 300

STAR INSERTION

B. STAR/APPROACH INSERTION

It may be automatically inserted in the F-PLN when it is stored with CO RTE in the database. On the F-PLN page, from the last en-route waypoint to the destination, the following legs can be displayed:

- en-route transition called TRANS (if any)
- STAR
- approach transition called APPR TRANS
- approach (ILS, VOR, RNAV) which includes the RWY.

En route transitions stored in the database do not have the same meaning as those of official documentation. The common part of several STARs defined in official documents is called STAR by SPERRY, the independent part of the STAR being the TRANS. Therefore it may be necessary to select a TRANS to build completely a STAR while there is no TRANS actually defined in official documents.

If a point of the STAR to be flown belongs to the flight plan, the STAR should be built from this point. In this case it will be strung without any discontinuity. Here this common point is OCK as OCK 1C will be the selected STAR.

If OCK is not the last en-route waypoint all the waypoints after OCK in the F-PLN are deleted.
OCK left LS key Press to display LAT REV FROM OCK

On LAT REV page :
STAR prompt Press to display STAR page
APPROACH \qquad Press to select here ILS 27 L

Only STARs being compatible with the selected approach are listed. Slew if necessary.

STAR Press to select here OCK 1C.
It is possible to select first the STAR then one of the compatible approaches. Yet, it is less efficient as it will not be certain that the approach given by ATC will be compatible to the STAR first selected.
If the number of STARs for an airport exceeds 44, select the STAR before the APPROACH to avoid any possible FMS reset.
TRANS (en route) compatible with the selected STAR are listed.

TRANS (if any) Press to select
NONE is displayed when there is no TRANS.

* INSERT prompt

Press
When there is only one APPR TRANS compatible with the selected approach, it is automatically selected and the whole TRANS/STAR/APPR is inserted in the F-PLN.
Otherwise the APPR TRANS page is displayed with a menu of APPR TRANS :
APPR TRANS (if any) Press to select
If no STAR has been inserted in the F-PLN, the defaulted approach computed by the FMS consists of a level off at 1500 ft followed by a $1,7^{\circ}$ path angle descent to the runway.

C. IF DESCENT CLEARANCE IS NOT YET GIVEN BY ATC AT TOP OF DESCENT

When passing the altitude the aircraft holds the CRZ ALT as the FCU altitude has not yet been lowered : DECEL prompt is displayed in line 1 R. Pressing this prompt reduces speed to green dot (highest value between FAC and FMS if they are different).

When descent clearance is given by ATC after T/D :
FCU ALT KNOBSelect clearance altitude
and PULL
PFD display Speed check R
Descent in PROFILE will be up to MMO -0.02.

If PFD displays VAPP, it is an erroneous target sent
by FMC.

The display can be rectified by selecting LVL/CH, then, after about 10 seconds, re-select PROFILE mode on FCU.

R

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS PREPARATION BEFORE DESCENT \& DESCENT	2.02.25	
		PAGE 4	
		REV 33	SEQ 100

CLEARANCE IS GIVEN BEFORE THE TOP OFDESCENT

Mod : 6789

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS PREPARATION BEFORE DESCENT \& DESCENT	2.02.25	
		PAGE 5	
		REV 33	SEQ 100

Mod : 6789

DESCENT

A. WHEN DESCENT CLEARANCE IS GIVEN BY ATC

Clearance is given for 2000 ft .
FCU ALT KNOB \qquad Turn to select 2000 ft

FCU ALT KNOB Pull
FMA . Check P.THR/P.DES armed
IMM DES prompt on CDU (1R) .. Check displayed
Any F/PLN altitude constraint must be considered before setting the altitude as cleared by ATC. If the next altitude constraint is higher than the ATC cleared altitude, it should be checked with ATC that this constraint applies.
If confirmed, select FCU altitude to a safe altitude.
The FMS will hold the CRZ FL until the top of descent. 30 sec before reaching the T/D, P. DES will flash to indicate that the descent will be initiated without any further pilot action.
The descent may be initiated immediately (before reaching T/D) by pressing IMM DES prompt on CDU (F-PLN page line 1R) :
IMM DES prompt on CDU (1R) Press
P. DES ENGAGEMENT Check on FMA

Descent is initiated at $1000 \mathrm{ft} / \mathrm{min}$ (this value may be changed manually on CDU Line 1R).
Computations are restarted. An Intercept Point (I/P) is computed where the A / C will interceptthe precomputed descent path and is displayed in the F-PLN on CDU.
An overspeed protection avoids exceeding VMO :
If A / C speed is above VMO-5kts :

- throttles are retarded to idle
- A/C speed is controlled at cruise Mach
- V/Sisnotcontrolled anymore.Nevertheless-1000 ft/min or pilot entered vertical speed remains displayed on CDU F-PLN page.

B. WHEN REACHING THE TOP OF DESCENT

The descent path is initiated without any pilot action.
FMA Check P.THR/P.DES engaged
When full idle position is reached by throttles :
FMA
Check RETARD engaged

A vertical deviation scale is displayed on ND (in place of G/S scale, in MAP mode with VOR/NAV/LLS switch in NAV or VOR position) and the VDEV value is displayed on PROGRESS page in line 1R. It indicates the eventual vertical distance between A/C position and the computed descent path.
On PROGRESS page and ND VDEV Monitor IF ANTI-ICE ON Extend half airbrakes
Monitor F-PLN and make any revisions if necessary. All constraints of the F-PLN will be taken into account by the FMS.

C. P.THR DESCENT

- RETARD is indicated on the FMA.
- The computed descent path is earth referenced.
- The A / C is controlled on the path with the elevator.
- The path has been computed in order to obtain a glide speed in accordance with the selected strategic mode. However, the speed is monitored by the FMS and if for any reason (unpredicted winds for instance) this speed does not stay in a margin, there will be the following FMS response :
- A/C speed : targetspeed + 20 kt , or VmAX -2 kt ,
- MORE DRAG message flashes on PFD asking the pilot to extend airbrakes.
- If MORE DRAG flashes :

AIRBRAKES. . . . Extend half (full if anti-ice on)
If the speed returns to target speed MORE DRAG disappears at target speed +5 kt

- If MORE DRAG disappears : AIRBRAKES Retract (half if anti-ice on)

It may be necessary to keep airbrakes extended to prevent the speed to increase again.

- A / C speed $=$ target speed -20 kt or green dot-10 kt, whichever is the highest.
- ATS reverts to P. SPD to increase thrust. If airbrakes have been extended, the LESS DRAG message is displayed on CDU (not on PFD) instead of P. SPD reversion. If it is not sufficient, a P. SPD reversion occurs.

D. P. SPD DESCENT

There is a P. SPD reversion each time the following conditions occurs :

- A/C speed falls below target - 20 kt or green dot - 10 kt.
- A constraint (speed or altitude) is encountered. Usually it is the SPD LIM ($250 \mathrm{kt} / 10000 \mathrm{ft}$).
- During any F-PLN recomputation. After they are made, RETARD is recovered.
- Another performance mode is selected.
P.SPD is indicated on the FMA

Usually there is a 10 degrees throttles forward motion and the speed is controlled around this thrust value. In P. SPD, MORE DRAG appears when A / C speed is target speed +15 kt and it disappears when A / C speed returns below target +2 kt .

E. P. SPD/P. THR REVERSIONS IN IMM DES

With IMM DES initiated, when the A/C speed becomes greater than VMO - 5 kt there is an automatic reversion from P. SPD to P. THR (FMA display changing from P. SPD/P. DES to P. THR/P. DES). There is a new automatic reversion to P. SPD when the aircraft speed becomes lower than VMO - 6 kt .

F. AT FCU ALT

As ALT * engages, a DECEL prompt is displayed on the F-PLN page. It must be pressed immediately in order to decrease the A / C speed to green dot : the A / C then deviates slower from the FMS descent path.

The reference path has been computed to meet the constraint. If this speed constraint is lower than the initial target speed (usually it is the SPD LIM), a decel point is computed (at about 12000 ft for the SPD LIM) and the deceleration is performed at - $1000 \mathrm{ft} / \mathrm{min}$. Monitor the target speed on the F-PLN page A.
TGT SPEED \qquad . Check it shifts to speed constraint

H. ALT CONSTRAINT

If the altitude of the constraint is reached before the constrained waypoint, the FMS orders a level off.
P.SPD/P. ALT ENGAGEMENT Check

If the constraint will not be matched an amber FCU level off symbol is displayed on the ND.

I. MAXIMUM DESCENT

If ATC asks to make a quick descent down to 7000 ft for instance :

MAX DES MODE . . . Select on TACT MODE page

In this case the descent path is not followed anymore.
At 7000 ft :
PREVIOUS MODE Reselect

The A / C levels off to return back to the precomputed path.

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS PREPARATION BEFORE DESCENT \& DESCENT	2.02.25	
		PAGE 8	
		REV 33	SEQ 001

INTENTIONALLY LEFT BLANK

	PROCEDURES AND TECHNIQUES USE OF « SPERRY » FMS HOLDING \& APPROACH	2.02.26	
		PAGE 1	
		REV 33	SEQ 100

HOLDING INSERTION

Mod : 6789

HOLDING

A. HOLDING MANUAL

The HOLD is terminated manually whenever the IMM EXIT prompt is pressed. When the IMM EXIT function is active, the aircraft flies direct to the holding fix, regardless of the heading at the time of activation, and exits the hold along the flight plan route.

- It may be coded in the database with all its parameters. In this case DATABASE HOLD is displayed on the HOLD page title line.
- If it is not coded in the database it may be inserted manually. In this case all its parameters are defaulted and COMPUTED HOLD is displayed in title line. The defaulted parameters are present course, right turn, one minute, ICAO speed.
- In both cases, parameters may be manually changed on the HOLD page, except speed which may be inserted on F-PLN.
- A manual hold may be done at any waypoint, except the TO waypoint, including PPOS, and are always followed by a F-PLN DISCONTINUITY. It is manually entered by a lateral flight plan change.

B. HOLD PAGE ACCESSING

From F-PLN page :
OCK left LS key . . Press to display LAT REV page from OCK
HOLD prompt Press to display HOLD page
DATABASE HOLD AT OCK is displayed and the parameters are defaulted.

C. HOLDING PARAMETERS

INB CRS, TIME/DIST, TURN
Check
They may be changed.

D. HOLDING INSERTION

> INSERT prompt . Press

There is no F-PLN recomputation as the manual HOLDING is considered to be in the F-PLN only 3 min before reaching the holding fix.

E. 3 MINUTES BEFORE REACHING THE FIX

The A / C decelerates to match the ICAO speed limit. If it was in descent it reverts to a $1000 \mathrm{ft} / \mathrm{min}$ rate of descent (P. SPD engages if RETARD was engaged). At the same time IMM EXIT command is available on F-PLN page 1R in line. Pressing this command makes the A / C revert to its previous descent path.
A/C SPD
Monitor
AIRBRAKES
Extend if necessary

F. TO LEAVE THE HOLDING

On F-PLN page
IMM EXIT * prompt (1R) Press
A DIRECT TO FIX is initiated and the A/C returns to the descent path.
IMM EXIT is replaced by RESUME HOLD.
Pressing RESUME HOLD, re-initiates the same holding pattern.
When a holding is entered, VERT DEV from the path is not displayed anymore on the NDs. VERT DEV indication reappears as the A / C leaves the holding pattern and overflies the fix.

G. HOLDING FIX

A fixed waypoint hold terminates when the aircraft first sequences the holding fix after the hold becomes active. The aircraft must make one circuit in the hold, and then exit automatically along the route of flight.

It should be deleted if it is not needed depending on the arrival course.
As for manual holding :
A/C SPD Monitor

AIRBRAKES Extend if necessary

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS HOLDING \& APPROACH	2.02.26	
		PAGE 3	
		REV 33	SEQ 100

FMS GUIDANCE DOWN TO ILS CAPTURE

SIMU S4 for training only 1PM AI / V-F 1000

APPROACH

Approaches can be performed using the FMS guidance, with (NAV and V/S) or (NAV and PROFILE) modes, providing HIGH accuracy is displayed on the PROGRESS page.

ILS approaches

- PROFILE mode may be used up to glide capture.
- NAV mode can be used to fly the initial approach until the capture of a LOC for a LOC-only or an ILS approach.

Non-precision approaches

- (NAV and V/S) or (NAV and PROFILE) modes are used for VOR, VOR/DME, NDB, NDB/DME or RNAV approaches only.
- For non-precision approaches, the PROFILE mode must be deselected no later than the final descent point.

Limitations

- The navigation accuracy check must be positive throughout the approach.
- The modification of a published approach procedure or a STAR which is in the FMS database is allowed, only if it is in accordance with an approved flight crew procedure. In this case it cannot be flown with NAV or PROFILE mode.
- Approval of theFMS use is based on the assumption that the content of the navigation database has been validated for the intended use.

On PROGRESS page :

NAV ACCURACY CLASS.Check
The navigation accuracy check must be positive to continue using NAV or PROFILE mode.

At the transition level

Altimeters.
Set to QNH
From this moment, the aircraft is guided by the FMS on a path based on QNH altitudes.
The vertical deviation will slowly go up or down upon QNH value, then will return slowly to zero as the aircraft catches the QNH path.

TO/APPR key (PF). . . .Press to display APPROACH
page
LANDING CONFIG.Select (defaulted to 30/40)
WIND CORR. .Write/Insert
MDA (if RNAV approach).Write/lnsert
The VAPP, and the point where the aircraft should decelerate, are computed. VAPP will be reached during the final descent if the slats/flaps are extended as follows.

From the deceleration point

TARGET SPEED ON PFD.Check it decreases to VAPP

The deceleration is performed at - $1000 \mathrm{ft} / \mathrm{min}$ or if it is not enough at $-500 \mathrm{ft} / \mathrm{min}$. The aircraft levels off at FCU ALT and continues to decelerate.

USE OF «SPERRY » FMS
HOLDING \& APPROACH

	2.02 .26		
PAGE 5			
REV 33	SEO 100		

A. ILS APPROACH
PF ND MODE MAP
PNF ND MODE MAP may be kept
ND RANGE Select 15
F-PLN page Select
STAR, RWY and approach data Insert
VOR/NAV/LLS SWITCH Set to ILS
ILS FREQSelect on ILS Control Panel
APPROACH page Select
WIND CORR Write/Insert
In NAV mode, the LOC beam will be captured withan intercept angle of 20°. Thus, if there is a crosstrack error, the aircraft will fly a leg parallel to the LOCbeam making the interception impossible.
At LOC capture, NAV mode is automatically disengaged, and the FMS updates its navigation so as to cancel its cross track error.
VAPP Select on FCU
FCU SPD/MACH selector knob Pull
This disengages PROFILE mode.
From this moment, there is no more FMS guidance and the remaining flight is controlled only by AFS until it is disengaged (refer to 2.02.03).

B. NON-PRECISION APPROACH

For a non-precision approach, PF ND must be used in ROSE or ARC.

- After landing data have been obtained :

F-PLN page . Select
STAR, RWY and approach data Insert
APPROACH page Select
WIND CORR Write/Insert

- Before starting the initial approach :

F-PLN on ND . Check
TO WAYPOINT on ND Check
NAV mode on FMA Check
RADIO navaid Tune and monitor
Note : In case of excessive deviation from raw data, revert to HDG SEL-V/S mode using radio navaid indications for navigation.

PF ND mode selector
ROSE or ARC
PNF ND mode selector MAP may be kept
ND RANGE
Select 15

- Deceleration :

Plan deceleration, so that VAPP and landing configuration are obtained before the final descent point (FAF).

- When cleared for final approach :

Do not select the FINAL APPR prompt on the APPROACH page of the CDU.
USE of PROFILE mode is not approved in final approach and must be deselected no later than the final descent point.
VOR/NAV/LLS switch ILS
ILS is selected to clear the V / DEV display from the ND.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS HOLDING \& APPROACH	2.02.26	
		PAGE 6	
		REV 33	SEQ 001

	PROCEDURES AND TECHNIQUES USE OF «SPERRY» FMS GO-AROUND \& ENABLE ALTERNATE	2.02.27	
		PAGE 1	
		REV 33	SEQ 100

A. GO-AROUND

When the decision to initiate a go-around is taken, the go-around mode is engaged via the go levers:

GO LEVERS
Trigger
Check the mode engagement by the following indications:

FMA : THR, GO AROUND.
TRP : TOGA.
FCU : PROF and NAV lights extinguished.
FMS : GO AROUND page appears.
The FMS continues to output steering orders to be followed by pilot or autopilot.

ND MODE MAP

Check carefully the go-around routing on the ND.

- If it is correct :

NAV pushbutton Press
The NAV mode is re-engaged. PROFILE mode reengagement is not recommended in this flight phase. In any case, before re-engaging PROFILE, check FMS assumptions : SPD, ALT, THR, FLT PATH and only if satisfactory, when crossing ACCEL ALT, press PROFILE pushbutton.
If deciding not to re-engage NAV, continue with AFS modes, manually set on FCU panel, to comply with ATC instructions or with the routing.

AND ON ND

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS GO-AROUND \& ENABLE ALTERNATE	2.02.27	
		PAGE 2	
		REV 33	SEQ 001

ENABLE ALTERNATE

	PROCEDURES AND TECHNIQUES USE OF «SPERRY» FMS GO-AROUND \& ENABLE ALTERNATE	2.02.27	
		PAGE 3	
		REV 33	SEO 001

B. ENABLE ALTERNATE

To divert to the alternate destination as entered during the preflight, make a LATERAL REVISION at the point where the current routing is left.
LAT REV page at diversion point. .Select
In our example, ALTERNATE is enabled in the go around, the diversion point is waypoint " 3000 ".
ENABLE ALTN (6L).
Press
The alternate flight plan is strung into the primary flight plan with a discontinuity between the diversion point and the first waypoint in the alternate route.
DISCONTINUITY . Clear
or
DIR TO waypoint in the ALTERNATE F-PLN.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS GO-AROUND \& ENABLE ALTERNATE	2.02.27	
		PAGE 4	
		REV 33	SEQ 001

INTENTIONALLY LEFT BLANK

A. FMC INDEPENDENT OPERATION

Conditions

- Whenever the FMCs encounter a situation such as :
- the NAV data bases are different (identified by the message A/C STATUS MISMATCH displayed on the CDU scratchpad),
- the respective aircraft positions differ by more than 10 nm for over 9 s (identified by a previous message FMC POSITION MISMATCH displayed on the CDU scratchpad),
- five successive automatic resynchronizations are performed without success,
then, the FMCs declare themselves in independent mode of operation.
This condition is identified by the INDEPENDENT OPERATION message displayed on both CDU scratchpads.
- Crosstalk between the two FMCs is interrupted and each FMC assures its own responsibility as the master. Pilots input on the CDU are not transfered from one FMC to the other. Consequently, flight plan, flight phase, modes, guidance targets, waypoint sequencing, etc, are no more synchronized.

Corrective actions

- The corrective actions to the various situations are :
- NAV data base difference :
- Load, on the ground, the same NAV data base into both FMCs,
- aircraft position difference :
- cross-check the FMCs position with raw data to determine which FMC is responsible for the position discrepancy.
- perform a position update on the incorrect FMC by selecting the PROG mode key (progress page),
- reset manually the FMC not coupled to the engaged auto-pilot to revert to the dual mode of operation (see procedure herebelow),
- resynchronization unsuccessful :
- reset manually the FMC not coupled to the engaged auto-pilot(see the procedureherebelow).

Manual FMC reset

- The FMC manual reset is performed by using the circuit breaker. Power interruption, longer than 1s but shorter than 10 s , is necessary to revert to a dual mode of operation.
This will be followed by an automatic FMC resynchronization on the other FMC (sequence described hereafter).
- If the independent operation mode occurs on the ground before engine start, the reset can be done directly via the CDU, by selecting MAINT and SELF TEST. This will be followed by an FMC re-initialisation and an automatic resynchronization on the other FMC (sequence described hereafter).
- Ifthe INDEPENDENT OPERATION message remains, a power interruption (by pulling the C / B) longer than 10 s must be performed. This will allow a complete FMC re-initialisation (the sequence is described hereafter) followed by an automatic FMC resynchronization on the other FMC (sequence described hereafter).

Crew procedure

- As long as the FMCs remain in independent operation mode of operation, the crew must apply the following procedure :
- set identical range on both NDs,
- same inputs must be performed be done on both CDUs (to keep the same flight plan).

B. FMC FAILURES

General

- Whenever a FMC is temporarily inoperative, this means that an internal failure is self detected, an automatic FMC reset is done, followed by automatic FMC re-initialisation and resynchronization on the other FMC. This interrupts the normal processing of both FMCs.

If the reset is not successful, this means that the condition for an automatic reset persists, a second reset will be done. After four unseccessful resets, the FMC is latched.

- An automatic FMC reset can be initiated either on the ground or in flight.

The crew will identify an FMC autoreset by the transient sequences, described hereafter.

FMC re-initialization

- Depending on the failure being detected, part or the totality of the following sequence of events occur during the FMC re-initialisation.

The total sequence can last up to 1 min and 45 s .

- FMC FAIL specific page is displayed,
- FAIL annunciator light is transiently illuminated,
- VOR/DME tuning (auto and remote) is not available,
- on master ND, MAP NOT AVAIL is displayed,
- disengagement of NAV and PROFILE modes, if engaged,
- disengagement of AP, if NAV or PROFILE mode engaged,
- reversion to FCU SPD SEL mode when PROFILE mode disengages,
- A/THR disengagement,
- A/C STATUS page automatically selected on both CDU with PLEASE WAIT message displayed on the scratchpad (no input can be done),
- on master ND, MAP NOT AVAIL disappears, and same message appears on the slave ND,
- on slave ND, MAP NOT AVAIL disappears,
- on both CDUs, PLEASE WAITmessage disappears (input can be done),
- VOR/DME auto-tuning is resumed, but CDU remote navaid selection can remain lost.

FMC resynchronization

- An automatic FMC resynchronization is performed :
- after a manual reset
- after a re-initialisation,
- whenever the flight plan is different from the one of other FMC,
- the CDU entry processing by the two FMCs is not synchronized.
- Depending on the failure being detected, part or the totality of the following sequence of events occurs during the FMC resynchronization :

The total sequence can last up to 25 s .

- PLEASE WAIT message on both CDU scratchpad. New inputs are ignored,
- NAV and PROFILE modes, AP and A/THR remain engaged (if previously engaged) and master FMC remains in control,
- on slave ND, MAP NOT AVAIL message appears (may also transiently appear on the master ND),
- if PROFILE mode is engaged, the red SPD SEL flag appears on the slave PFD speed scale,
- VOR/DME tuning (auto and remote) is lost on the slave VOR,
- PLEASE WAIT message disappears if resynchronization is successful.
- Normally, the FMC should be recovered by itself once the re-initialisation and the resynchronisation is completed. Thus, all FMC functions are restored.
- The crew procedure is :
- re-engage AP, A/THR as required,
- re-engage navigation modes as required.

Whenever the resynchronization fails, the FMC reverts to the independent mode of operation.

USE OF « SPERRY » FMS
FMS ABNORMAL OPERATION

	2.02 .28	
PAGE 3		
REV 33		SEO 100

FMC latched

- The FMC is latched following four unsuccessful automatic reset.

This condition is identified as follows :

- FMC FAIL specific page is displayed,
- FAIL annunciator light is illuminated,

The consequence are :

- no dialogue with FMC possible,
- NAV and PROFILE modes are not available on the affected side.
- The crew procedure is :

The latched FMC can be recovered by a manual reset by pulling the C / B for more than 10 s . If it is unsuccessful, the manual reset can be repeated twice.

C. LOSS OF ONE FMS

- This occurs whenever a latched FMC is not recovered by a manual reset.

D. BOTH FMSs LATCHED

- Whenever both FMCs are simultaneously latched, both FMCs mustnot be manually reset simultaneously. This is to avoid the loss of the entire memory content on both sides.
- However, if the entire memory content of both FMC is lost, the crew can re-enter the entire flight plan and all other entries, as described in the following procedure :
- select DIR mode key (direct to), and insert a waypoint (generally the waypoint the aircraft was flying to, when the failure occured),
- select F-PLN mode key (flight plan), to rebuilt the flight plan,
- select LAT REV page, and insert the destination by selecting NEW RTE TO key,
- select FUEL PRED page from PROGRESS page, and insert the current aircraft gross weight
- select PROG mode key (progress page), and insert the current cruise flight level,
- select MODE mode key, and insert the required cost index,
- select VERT REV page, and insert the time, speed and altitude constraints as well as the wind forecast,
- cross-check FMC position with navaids raw data,
- if FMC position is validated and flight plan is completed, engage NAV and PROFILE modes.

E. LOSS OF BOTH FMCs

- This occurs whenever latched FMCs are not recovered by a manual reset.
- The crew procedure is to conduct the flight using raw data.

F. OTHER FAILURE MODES

- In case the CDU stops responding, the inputs are ignored and the CDU pages can be either frozen, blank or showing the FMC FAIL page. However, ND MAP/PLAN display and FMA modes annunciations are available.
This condition may appear following a FMC reset or be due to an internal CDU failure.
- Procedure to recover the affected CDU :
- pull the FMC/CDU circuit breaker longer than 5s but less than 10 s .

An FMC re-initialisation and resynchronisation is performed.

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS FMS ABNORMAL OPERATION	2.02.28	
		PAGE 4	
		REV 33	SEO 100

INTENTIONALLY LEFT BLANK

Mod : 6789
alight crew operating manual

PURPOSE

The following FMS performance charts allow to know in advance or to check in flight the different FMS speed/mach and altitude targets according to the cost index and flight parameters.

COST INDEX

The COST INDEX CI $=\frac{\mathrm{CT}}{\mathrm{CF}} \quad$ where
$\mathrm{CT}=$ cost of one minute of flight
$\mathrm{C}_{\mathrm{F}}=$ cost of one kilogramm of fuel.
When $\mathrm{Cl}=\mathrm{O}$ the ECON strategic mode corresponds to a MIN FUEL mode. When $\mathrm{Cl}=999$ (max value), the ECON strategic mode corresponds to a MIN TIME mode.

CHARTS

There are 8 charts :
1 - Optimum initial climb speed.
2 - Optimum final climb, cruise and initial descent mach.

3 - Optimum cruise altitude.
4 - Optimum descent speed.
5 - Maximum altitude.
6 - Maximum endurance speed (holding clean).
7 - Max slope climb speed (MAX CLIMB MODE).
8 - Flight envelope.

SPD/MACH targets

The FMS computes an optimum climb speed, descent speed and cruise mach.

During climb, when climb speed is equal to cruise mach, the latter becomes the target for the remaining climb segment, for the cruise and for the beginning of the descent until it is equal to the optimum descent speed.

LIMITATIONS

These charts don't always take care of the operational limitations but these limitations are taken in account by the FMS. These limitations are :
Vmax $=330 \mathrm{kt}$ (even if $\mathrm{Vmo}=340 \mathrm{kt}$)
MMAX $=0.82$
HMAX $=41000 \mathrm{ft}$ limited by the 1.2 g buffet margin
Vmin = MAX (GREEN DOT FAC, GREEN DOT FMS)
In addition the speed is limited by ICAO rules : 250 kt below 10000 ft ICAO holding speeds.

ACCURACY

The drawings of these charts give a speed accuracy better than 10 kt .

	PROCEDURES AND TECHNIQUES USE OF « SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 2	
		REV 33	SEQ 170

INTIAL CLIMB SPEED FOR STRATEGIC MODE BELOW 10000 FT CLIMB SPEED $\leqslant 250$ KT

$\mathrm{VMAX}=340 \mathrm{kt}$ if $\mathrm{VMO}=360 \mathrm{kt}$
$\mathrm{VMAX}=330 \mathrm{kt}$ if $\mathrm{VMO}=340 \mathrm{kt}$
Mod : 6789
PW Eng. : 4000

	PROCEDURES AND TECHNIQUES USE OF «SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 3	
		REV 33	SEQ 150

FINAL CLIMB, CRUISE AND INITIAL DESCENT MACH FOR STRATEGIC MODE

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 4	4 T
		REV 33	SEO 150

OPTIMUM ALTITUDE FOR STRATEGIC MODE

This chart gives the OPTIMUM FL taking into account the climb segment from ACTUAL FL. The OPTIMUM ALTITUDE is upper limited to the altitude giving a 5 mn cruise phase.

DESCENT SPEED FOR STRATEGIC MODE

BELOW 10000 FT CLIMB SPEED $\leqslant 250$ KT

	PROCEDURES and TECHNIQUES USE OF «SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 6	6 T
		REV 33	SEQ 160

MAXIMUM ALTITUDE

This chart gives the MAX FL taking into account the fuel consumption during the climb segment from ACTUAL FL.

	PROCEDURES and TECHNIQUES USE OF "SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 6	
			JUL 07

Note : At high weight and forward CG, the FMS Maximum Altitude may be higher than the Flight level limitations (FCOM 2.01.20) by up to 700 ft . The Flight Envelope limitations must still be applied.

	PROCEDURES and TECHNIQUES USE OF « SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 7	7 T
		REV 33	SEO 150

MAXIMUM ENDURANCE SPEED

	PROCEDURES and TECHNIQUES USE OF « SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 8	8 T
		REV 33	SEO 100

SPEED FOR MAXIMUM CLIMB ANGLE

SPEED is GREEN DOT
GREEN DOT $=\mathrm{A} / \mathrm{C}$ weight (tons) +100 below 20000 ft

	PROCEDURES and TECHNIQUES USE OF « SPERRY » FMS PERFORMANCE CHARTS	2.02.29	
		PAGE 9	
		REV 33	SEQ 170

FMS SPEED ENVELOPE (VMIN, VMAX) IN STRATEGIC MODE

VMAX $=$ MIN $(\mathrm{A}, \mathrm{B}) \quad \mathrm{VMIN}=\mathrm{C} \quad \mathrm{A}=$ VMAX AIRCRAFT $\quad \mathrm{B}=\mathrm{VMAX}$ ENGINE
IF VMIN > VMAX, FL IS ABOVE MAX ALTITUDE (SEE MAX ALT CHART)
$\mathrm{VMAX}=340 \mathrm{kt}$ if $\mathrm{VMO}=360 \mathrm{kt}$
$\mathrm{VMAX}=330 \mathrm{kt}$ if $\mathrm{VMO}=340 \mathrm{kt}$

	STANDARD OPERATING PROCEDURESCONTENTS	2.03.00	
		PAGE 1	
		REV 30	SEO 001

Pages

03.00 TABLE OF CONTENTS 1
03.01 GENERAL INFORMATION 1-3
03.02 FLIGHT PREPARATION 1
03.03 SAFETY EXTERIORINSPECTION1/2
03.04 PRELIMINARY COCKPIT PREPARATION 1 to 3
03.05 EXTERIOR INSPECTION 1 to 4
03.06 COCKPIT PREPARATION 1 to 7
03.07 BEFORE PUSH BACK OR START 1
03.08 ENGINE START 1 to 2
03.09 AFTER START 1
03.10 TAXI 1 to 4
03.11 BEFORE TAKE OFF 1
03.12 TAKE OFF 1 to 3
03.13 AFTER TAKE OFF 1
03.14 CLIMB 1
03.15 CRUISE 1
03.16 DESCENT PREPARATION 1
03.17 DESCENT 1-2
03.18 STANDARD APPROACH 1 to 4
03.19 VISUAL APPROACH 1 to 2
03.20 NON PRECISION APPROACH 1 to 2LOW VISIBILITY CIRCLING
APPROACH3
03.21 PRECISION APPROACH refer to 2.02.03
03.22 LANDING 1 to 5
03-23 GO-AROUND 1
03.24 AFTER LANDING 1
03.25 PARKING 1
03.26 SECURING THE AIRCRAFT 1
03.30 STANDARD CALLS 1 to 10

	STANDARD OPERATING PROCEDURES	2.03.00	
		PAGE 2	
	CONTENTS	REV 29	SEQ 001

	STANDARD OPERATING PROCEDURES	2.03 .01	
		PAGE 1	
	GENERAL INFORMATION	REV 31	SEO 001

FOREWORD

Procedures contained in this chapter are recommended by AIRBUS INDUSTRIE. They are subject to updating based on operational experience from the manufacturer and all operators.
Updating of the standard operating procedures may be communicated by Temporary Revisions or OEBs if fast dispatch is required, otherwise at the time of the next FCOM revision.
Compliance with standard operating procedures is vital for safe aircraft operation.

APPROVAL

The FCOM is not an approved document. Consequently the standard operating procedures contained in this FCOM are not certified by the regulatory authorities of the manufacturer.
If approval for standard operating procedures is required, the operator must obtain this approval from the relevant regulatory authority.

PRELIMINARY

Standard operating procedures consist of inspections, preparations and normal procedures.
All items are listed in a sequence following a standardized scan of the cockpit panels, except when required by the logic of actions priority, to ensure that all actions are performed the most efficient way.
Standard operating procedures are divided into flight phases and are accomplished by recall.
These procedures assume that all systems are operating normally and that all automatic functions are used normally. These procedures assume that the basic system description and operation as described in FCOM VOL 1 are fully understood.
Some normal procedures, which are non routine will be found in chapters 2.02 PROCEDURES AND TECHNIQUES and 2.18 SPECIAL OPERATIONS.

NORMAL CHECK LIST

After completion of a given procedure the related normal check list is used to ascertain that the safety points have been checked.
The crew member reading the check list should announce the completion of the check list (eg."LANDING C / L COMPLETED".
The normal check list developed by AIRBUS INDUSTRIE takes advantage of the ECAM system and includes only the items that may have a direct impact on safety and efficiency if not correctly accomplished.

All normal check lists are initiated by the PF and read by the PNF.

The normal check lists are of the "CHALLENGE / RESPONSE" type. The appropriate crew member shall respond to the challenge, only after having checked the existing configuration. If the configuration is not in accordance with check list response he will take the corrective action before answering.
If a corrective action is not possible, he will modify the response so as to reflect the actual situation (specific answer). The other crew member will cross check whenever necessary the validity of the response. The challenger will wait for the response before proceeding any further.
For those check list items identified "AS RORD" the actual condition or configuration of the system will be stated as the check list response eg. ANTI ICE \qquad ON.

Note : The normal check list is not a DO LIST.

The actions or checks should be performed prior reading the check list.
Obviously, corrective action should be undertaken if the proper condition is not achieved at the time of reading.

COMMUNICATION

- Cross cockpit communication :

Crew communication is VITAL. Any time a crew member makes any adjustments, changes, etc. to any information or equipment on the flight deck, he will advise the other crew member of his intentions and get an acknowledgement. This includes but is not limited tosuch items as FMS alterations, changes in speed / mach, tuning navigation aids, flight plan deviations, and selecting such systems as anti-ice and pack low flow. Use headsets from engine start up to top of climb and from top of decent up to parking.

- Sterile cockpit rule :

Below 10000 ft , any non-essential conversation within the cockpit and between the cabin and cockpit crews should be avoided. Adherence to this policy facilitates effective crew communication as well as communication of emergency or safety related information by cabin crew.

SELECTION OF CONTROLS

When selecting a control, ensure that the intended control is selected and is properly set to the intended position and, as applicable, is properly seated in this position.

USE OF THE AUTOPILOT AND FLIGHT DIRECTOR

The design objectives of the autopilot (AP) and flight director (FD) are to provide assistance to the crew throughout the flight.

- In FD mode, by providing the pilot flying (PF) with attitude and flightpath orders via the FD pitch and roll command bars on the Primary flight display (PFD) so as to enable accurate handflying of the aircraft.
- With AP engaged in command (CMD), the AP will follow the FD bars, thus freeing th PF from routine handling tasks and thus giving him the time and resources to access and manage the overall operational situation.
- With the AP engaged in control wheel steering (CWS), where the PF flies through the autopilot to follow the FD bars.
The AP/FD guides the aircraft along the selected flightpath at the selected speed, according to the modes selected by the pilot on the flight control unit (FCU) and flight management system (FMS).
There are two ways to use the autopilot :
- using pilot selected modes and targets, the aircraft is guided according to selections made on the FCU.
- by coupling the AP to the FMS by selection of PROFILE/NAV mode. The aircraft is guided along the FMS lateral and vertical flightplan and speed profile.
Here the FCU is the short term interface between the pilot and the FMS selecting guidance target and arming/engaging guidance modes. Long term guidance changes are made through the FMS CDU.
The task of the PF is to select the desired modes and targets to fly the aircraft on the intended flightpath, at the intended speed.
- If the FD is used, the PF asks the PNF to select the intended modes and targets on the FCU.
- If the AP is engaged, the PF selects the modes and targets on the FCU himself.
The AP/FD armed and engaged modes are indicated on the flight mode annunciator (FMA), at the top of the PFD. The targets (speed, altitude, heading) are indicated on the associated scales on the PFD/ND.
- The crew must check the FCU selected targets on the PFD/ND scales.
- The crew must check and monitor the engaged/armed modes on the FMA and announce any changes.
- Whatever the prevailing conditions, always ensure that one pilot is controlling and monitoring the flight path of the aircraft.
IF THE AP AND/OR FD DOES NOT GUIDE THE AIRCRAFT ON THE INTENDED FLIGHTPATH (OR TRAJECTORY) WHERE THE CREW ARE EXPECTING:
- THE PF MUST DISENGAGE THE AP USING THE INSTINCTIVE DISCONNECT PUSHBUTTON ON THE CONTROL COLUMN (OR BY DISENGAGING THE AP LEVER ON THE FCU)
THE PF MUST NEVER TRY TO DISENGAGE THE AUTOPILOT BY FORCE ON THE CONTROL COLUMN.

- IF THE FD ONLY IS ENGAGED, THE FD BARS SHOULD BE REMOVED FROM THE PFD USING THE FD/FPV/OFF SWITCH ON THE EFIS CONTROL PANEL
 THEN FLY THE AIRCRAFT MANUALLY ON THE INTENDED FLIGHTPATH AT THE INTENDED SPEED.

The AP may be used from takeoff down to a late stage on the approach (including autoland when permitted)
For manual landing, the pilot should disconnect the autopilot early enough to resume manual control of the aircraft and to evaluate the drift before flare.

R
R
R

The AP may be used in most failure cases, when available:

- In case of engine failure, without any restriction including Autoland down to CAT 1 minima CAT 2/CAT 3 ILS approaches may be continued to CAT 2 if engine failure is below 1000 ft , to CAT 3 minima if engine failure is below 100 ft .
- In case of abnormal configuration, down to CAT 1 minima.
When the PF handflies the aircraft using the FD, he must obey the FD orders; in other words, the pitch and roll command bars must be centered or the FPV must be on the Flight Path Target symbol so as to fly according to the selected modes and targets.
- If the PF does not wish to fly the FD orders, he must remove the FD symbol from the PFD.
- When flying a visual approach, the FD should be deselected.

USE OF AUTOTHRUST (A/THR)

The design objective for the $\mathrm{A} / \mathrm{THR}$ is to provide assistance to the crew for the thrust management throughout the flight.
The A/THR may be engaged in one of the following modes, which are depending automatically on the vertical modes engaged in the AP/FD :

- THRUST mode : the A/THR maintains a fixed thrust level (e.g. THR or IDLE) when the AP/FD guides the aircraft in Climb or Descent at a constant speed (e.g. LVL CH mode)
- SPEED/MACH mode : the A/THR varies the thrust so as to maintain a target speed, when the AP/FD guides the aircraft on a given trajectory (e.g. V/S, ALT, G/S modes).
The crew must monitor the $\mathrm{A} / \mathrm{THR}$ to ensure correct operation
- On the PFD, by checking the active mode on the FMA, the current speed versus the target speed, and most importantly the Speed Trend Arrow on the Speed Scale.
- On the ENGINE INSTRUMENTS, by checking the actual thrust against the commanded thrust and thrust limit.
In case the PF is not satisfied with the A/THR operation, he must disengage it using the instinctive disconnect pushbuttons located on the throttle levers and command the thrust manually.
The A/THR may be used from Take Off to touchdown.

	STANDARD OPERATING PROCEDURES	2.03 .01	
		PAGE 3	
	GENERAL INFORMATION	REV 31	SEC 100

USE OF THE FLIGHT MANAGEMENT SYSTEM (FMS)

The design objective for the FMS is to provide assistance to the crew for:

- Navigation
- Flight Planning
- Aircraft performance (optimum speeds/altitudes)
- Predictions

The FMS is an important "long term" planning and management tool, linked to the AP/FD.
When the AP/FD is engaged in PROFILE/NAV modes, the aircraft is guided along the FMS flight plan, using the FMS target speeds.
The Control and Display Unit (CDU) is used to insert and retrieve data to/from the FMS.

The various FMS entries required at successive flight phases should not distract the crew from the general flight conduct and duties.

The prime concern for the flight crew should be :

- Is the aircraft flying as expected NOW ?
- What is the aircraft expected to fly NEXT ?

If any doubt is raised about the aircraft current trajectory, or proposed target speed..., the PF must immediately select the appropriate modes and targets on the FCU (which automatically disengages PROFILE/NAV mode).
Subsequently and if time permits, the PNF will analyze and correct the FMS data.

> | GENERAL RULES FOR GOOD USE OF THE |
| :--- |
| AP/FD/ATHR/FMS |
| - FMS navigation accuracy should be cross-checked |
| against navaids raw-data |
| - Monitor the AP/FD/ATHR modes and engagement |
| status on the FMA |
| - Any FMA modification must be announced. |
| - Monitor the result of any target selection performed |
| on the FCU, on the related scales of the PFD (e.g. SPD |
| target, on SPD scale) |
| - Monitor the AP/FD/ATHR resulting guidance, on the |
| basic flight instrument scales of the PFD/ND and |
| flight instruments (HDG, SPD, ALT, attitude...) |
| - If the PF is not satisfied with the guidance he must : |
| . REVERT TO BASICS, DISCONNECT THE AP and/or |
| A/THR and fly the aircraft manually on the intendeeed |
| flight path, at the intended speed. |

FLIGHT CONTROLS TAKE-OVER

The normal procedure is for the designated pilot flying to handle the aircraft when the AP is not engaged. The PNF should not handle the controls symultaneoulsy except when specifically requested by the PF. If it becomes necessary for the PNF to take over control during the flight the PNF must clearly announce "I have control", the PF should respond with the confirmation "you have control". If the PF whishes to give control to the PNF, the PF should announce "You have control", the PNF then responds "I have control" once he has his hands on the control column.

The crew must not manually override the AP when in CMD mode, except in the case of "Supervisory Control Wheel Operation":

- in roll when in VOR* / VOR mode or in LOC* mode

If the AP operations are not satisfactory, the AP must be first disconnected and then the PF must fly manually.

Note : The Supervisory Control Wheel Operation is also available in pitch when in GS* mode but it does not permit AP override.

	STANDARD OPERATING PROCEDURES	2.03.01	
		PAGE 4	
	GENERAL INFORMATION	REV 28	SEO 001

LEFT BLANK INTENTIONALLY

	STANDARD OPERATING PROCEDURES	2.03.02	
		PAGE 1	
	Flight preparation	REV 36	SE0 001

TECHNICAL CONDITION OF THE A / C

- The crew will verify the technical status of the aircraft (defered defect list), with regard to airworthiness, acceptability of malfunctions (MEL) and influence on the flight plan and operational conditions.
- The list of OEB applicable to an aircraft is part of the technical status of the aircraft. It should therefore be reviewed by the flight crew during flight preparation. The OEB section of the ORH enables this review. The crew should particularly identify :
red OEB
. red OEB to be applied before ECAM procedures.

WEATHER BRIEFING

- Crew will receive weather briefing.
- Briefing should include :
. Actual and expected weather conditions for take-off and climb-out including runway conditions.
. En route significant weather : winds and temperatures.
. Terminal forecasts for destination and alternate airports.
. Actual weather for destination and alternates for short range flights and recent past weather if available.
Survey of the meteorological conditions at airports along planned route.
Weather can affect the choice of routing (e.g. minimum time) and choice of Flight Level.
The possibility of contaminated runways at the departure and destination airfield must be checked. ISA deviation and enroute icing conditions must also be verified as well as the possibility of holding due to weather at the destination.

NOTAMS

- Notams must be examined for changes to routings, navaid unserviceability, runway and approach aid availability etc, all of which may have an impact on the final fuel requirement.

FLIGHT PLAN and OPERATIONAL REQUIREMENTS

- The crew will check the company flight plan, in respect to routing, altitudes and flight time.
- The Captain will check ATC flight plan and ensure : . it is filled according to the prescribed procedures, . it agrees with the fuel flight plan routing.
- The crew will check the estimated load figures and will calculate max allowed take-off and landing weights.

OPTIMUM FLIGHT LEVEL

Choice of Flight Level should be as near the OPTIMUM as possible. To obtain the optimum Flight Level use the chart in the QRH or refer to 2.17.20.
It is recommended to stay within $\pm 2000 \mathrm{ft}$ of the Optimum Altitude in order to maintain within 1.5% of the optimum performance level.
If flight 4000 ft below optimum is contemplated, an increase of about 4% can be expected in trip fuel (usual contingency is 5%).
If flight above optimum (up to ceiling) is contemplated the increase in consumption may reach 4%.

FUEL REQUIREMENTS

COMPUTERIZED FLIGHT PLAN CHECK

In most cases a computer derived flight plan will be used to obtain the correct fuel requirements. Despite the fact that these flight plans are normally accurate, it is still important to check them for GROSS ERRORS.
The easiest way to check for gross error is to use the "Fuel and time to destination table" (refer to 2.17). Although the aircraft will fly at ECON MACH based on cost index, using the 0.80 Mach table gives sufficient accuracy for gross error checking.
Ensure that BOTH Captain AND First Officer have VERIFIED that the fuel calculations and required fuel on board are correct and that the figure complies with the applicable regulations.

FUEL TRANSPORTATION

The policy regarding "tankering" of fuel on sectors where a favourable fuel price differential or operational requirement exists must be checked.
Remember the effect of carrying UNNECESSARY EXTRA FUEL is to increase the fuel consumed for that sector and, therefore, affect the economy of the operation (lower flex temperature, tyre and brake wear, climb phase duration, lower optimum flight level etc).

	STANDARD OPERATING PROCEDURESFLIGHT PREPARATION	2.03.02	
		PAGE 2	
		REV 28	SEQ 001

LEFT BLANK INTENTIONALLY

	STANDARD OPERATING PROCEDURES	2.03.03	
		PAGE 1/2	
	SAFETY EXTERIOR INSPECTION	REV 35	SEO 001

Completion ensures that A / C and surroundings are not obviously unsafe for operations.
On arriving at the aircraft check for obstructions in the vicinity, engineering activity, refuelling etc...

```
NOSE WHEEL CHOCKS
CHECK IN PLACE
L / G DOORS
CHECK POSITION
``` without ground clearance if any gear door is open.

APU AREA . CHECK
- Observe APU inlet and outlet are clear.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03 .04} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & PRELIMINARY COCKPIT PREPARATION & REV 33 & SEO 001 \\
\hline
\end{tabular}

Items marked by (\({ }^{*}\)) are the only steps to be completed during a transit stop.
The following procedure, performed by the PNF, ensures that required safety checks are made prior to the application of electrical power to avoid inadvertent systems operation and danger to \(A / C\) and personnel. Included is APU starting and establishement of electrical and pneumatic power.
IGNITION OFF
WIPERS OFF
THROTTLE LEVERS Check Idle
REVERSE LEVERS Check Stowed position
FUEL HP VALVES Check OFF
LANDING GEAR LEVER Check DOWN
REAR and OVERHEAD C/B PANELS :
- Check all \(C / B\) are set. If a \(C / B\) is found tripped, coordinate with maintenance for reset.

\section*{BATTERIES and EMERGENCY INVERTER}
- BAT 1,2 and 3 Check OFF
- BAT 1,2 and 3 voltage Check Above 25 V If one battery is below 25 V connect external power before attempting to start the APU.
- BAT 1, 2 and 3

AUTO
Check FLOW BARS in line and observe DOME It is illuminated.
- AC EMER ON INV light Check ON
- DC ESS ON BAT light Check ON
- AC V/FRO rotary sel

EMER Check INV parameters in white range.

\section*{CAUTION}

In case of emergency inverter malfunction, switch off batteries before any other action to avoid damage to the electronic equipment.

\section*{HYDRAULIC :}

\section*{CAUTION}

Do not pressurize the green hydraulic system without ground clearance.

\section*{APU FIRE PROTECTION}
- APU FIRE handle check IN and Latched
- LOOP A and B pb Check IN
- SQUIB TEST pb . Press
- AGENT SQUIB It Check Illuminated
- LOOP TEST pb Press and Hold

Check : . LOOP A lt comes on with LOOP warning activation.
After few seconds, LOOP B It also illuminates associated with APU FIRE warning activation and APU FIRE handle illumination.
- LOOP TEST pb release

Check : . LOOP A warning and APU FIRE warning activation disappear. After few seconds LOOP B warning disappears.

\section*{ELEC}

EXT PWR (If AVAIL Lt illuminated) ON
AVAIL Lt extinguishes

\section*{APU START}
- If EXT PWR ON It illuminated- ECAM control panel Adjust brightness
- APU MASTER SW ONAPU page appears on ECAM- APU STARTON
ON It illuminates.
Blue ACCEL ligis acceleratingOn ECAM APU page, N and EGT rise
At 50 \% of SpeedStart PB-Switch is released automaticallyON white light extinguishes
At \(95 \%\) of speed
On ECAM APU page, AVAIL indication appears
On APU panel : . ACCEL blue light extinguishesAVAIL It illuminates
- EXT PWR As rqrd
The EXT PWR may be kept ON to reduce APU load,especially in hot conditions.- If EXT PWR ON It extinguished :
- APU MASTER SW ON
- APU START ON
ON It illuminates

Blue ACCEL light illuminates and indicates that APUR
is accelerating

\section*{At 50 \% of speed :}

START PB-switch is released automatically
ON white light extinguishes

\section*{At 95 \% RPM :}

AVAIL It illuminates
APU GEN on line :
ECAM APU page appears after 10 seconds. If required, adjust brightness on ECAM control panel.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.04} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & PRELIMINARY COCKPIT PREPARATION & REV 35 & SEQ 200 \\
\hline
\end{tabular}

\section*{STAND BY GENERATOR (if installed)}

If a test of the STBY GEN channel is required for ETOPS operations, perform the following procedure as early as possible during the cockpit preparation :

Checks to be performed :
- STBY GEN FAULT light

Extinguished
- ESS TR current Approximately 0
- DC ESS BUS 22-29 VDC
- AC ESS BUS and AC EMER BUS 110-122 VAC \(390-410 \mathrm{~Hz}\)
- DC ESS ON BAT light Extinguished
- AC EMER ON INV light Extinguished
- GREEN HYD ELEC PUMPS OFF
- ELECTRICAL NETWORK SUPPLY AS REQ

Note
On ECAM ELEC DC page (SYSTEM Display)
- DC BUS TIE is not displayed
- DC ESS BUS is amber.

\section*{* COCKPIT LIGHTS}

AS REO
Set STBY COMPASS, DOME, STORM and PANEL Lts as required. DOME Light should be selected since it is the only lighting source in EMER ELEC configuration. DIM position is recommended for take-off.

ELEC PWR
Check
- Scan ELEC PWR panel : no amber light illuminated except GEN 1 and GEN 2 FAULT lights.

FUEL :

\section*{LEFT INNER PUMP 2}

NORM
- If there is sufficient fuel in the left inner tank, this avoids fuel depletion from the outer tanks which would lead to increased refuelling time.

Note : Pump 1 of Left Inner Tank (and Pump 2 of Right Inner Tank) allows to open a drain valve which drains the fuel trapped in the refuel/defuel line in the respective tank. During refuelling, this drain valve should be closed (and therefore Left Inner Pump No. 1 or Right Inner Pump No. 2 should be OFF) to avoid fueling of the tanks through this drainvalve resulting in loading more fuel than preselected.

PROBE/WINDOW HEAT Check OFF

\section*{VENT}
- Check all lights OFF

Note : On ground OVBD green flowbar in line.

\section*{ANN LT :}

\section*{AUTO TEST PB}

ON
- Check that all lights are serviceable

The automatic test checks the lights of the overhead panel, instrument panels and pedestal except the following equipment :
\(\left.\begin{array}{lll}\text { OVERHEAD PANEL } & \text { INSTRUMENT PANELS } & \text { PEDESTAL } \\ & \text { MASTER CAUTION }\end{array}\right)\)

During AUTO TEST operation :
- all the lights not checked by the automatic test are illuminated steady (except \(\alpha\)-LOCK, MASTER CAUTION, MASTER WARNING, flashing) : check all the corresponding lights are illuminated.
- all digital displays indicate " ...888..." (except FQI during refuelling).
In case of low accuracy of fuel quantity in any tank, FQI display indicates «LA » code for corresponding tank (except during refuelling).

\section*{Note : Duration of AUTO TEST is approximately 65 sec.}
- If Windshear Warning is installed :
- WINDSHEARappears inred onthePFDforapproximately 15 seconds (If PFD is on)
- Audio warning "WINDSHEAR" is announced three times.
- WINDSHEAR ALERT NOT AVAILABLE message is displayed on ECAM STATUS page.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.04} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & PRELIMINARY COCKPIT PREPARATION & REV 36 & SEO 001 \\
\hline
\end{tabular}

\section*{AIR BLEED/COMPT TEMP}
- APU BLEED ON
Do not use APU bleed if a ground personnel confirms that ground air is connected. Pilots should also check the ECAM BLEED page to determine whether an HP ground air is connected (pressure in the system).
- PACK VALVES 1 and 2 pb switches Check ON - Check Flowbars in line
- COMPT TEMP selectors

AUTO/AS REO

\section*{PARKING BRAKE}

ON
- Check ACCU PRESS and recharge if necessary.
- The ACCU PRESS indication must be in the green band. If required, use the electric pump on yellow hydraulic system to recharge the brakes accumulators.

\section*{R}
- Check PARKING BRAKE pressure is 1500 PSI or more. PARKING BRAKE must be applied before performing the Exterior Inspection to allow removal of chocks and to check BRAKE wear indicators.

\section*{ALTERNATE BRAKING SYSTEM}

Note : The purpose of this check is to verify, before the first flight of the day, the efficiency of the alternate braking (absence of "spongy peda/s").
- CHOCKS

CHECK IN PLACE
- BRK/A/SKID

ALTN/ON
- PARKING BRAKE . OFF
- BRAKE PEDALS PRESS Apply maximum pressure on both pedals.
- BRAKE PRESSURE CHECK On the brake pressure triple indicator, pressure must build up symmetrically without delay on left and right sides.
With full pedal deflection, pressure must be between 2000 and 2700 psi.
- BRAKE PEDALS RELEASE
- PARKING BRAKE . ON
- BRK/A/SKID . NORM/ON

SPEED BRAKE HANDLE
Check in RETRACT position and DISARM

\section*{CAUTION}

If flight control surface positions do not agree with the control handle positions, check with the maintenance personnel before applying hydraulic power.

\section*{SLATS/FLAPS HANDLE}

Check
- If handle position disagrees with slats/flaps position, set handle to corresponding position.
At this stage, with no hydraulic pressure and with the slats/flaps handle in 0/0 position, the KRUGER NOT RETRACTED warning on the ECAM and the KRUGER light on the SFPI may be triggered.

\section*{LATERAL PANEL}
- Check ANN LT sel in OFF position.
- Check no light illuminated on lateral panel.

\section*{MAINTENANCE PANEL AUDIO SELECTOR}
- Select P.A. reception on audio selector of lateral panel, with volume selection in approx 12 o'clock position.
This selection will allow recording of cabin attendants announcements on the cockpit voice recorder.

\section*{EMERGENCY EQUIPMENT}
- Check:
- Life jackets stowed
- Asbestos gloves stowed
- Axe stowed
- Flashlights stowed
- Smoke goggles stowed
- Portable fire extinguisher lockwired and pressure within the green area
- Oxygen masks stowed
- Portable oxygen equipment and full face masks, bottle pressure within the green area and adapters stowed underneath right aft window
- RH and LH evacuation handles stowed
- L/G gravity extension handle stowed
- Smoke hoods (if carried)

\section*{RAIN REPELLENT (If installed)}
- Pressure and quantity indicators Check

CAUTION
The rain repellent should never be used as a windshield washer and should never be sprayed on a dry screen.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.04} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & PRELIMINARY COCKPIT PREPARATION & REV 28 & SEO 001 \\
\hline
\end{tabular}

\section*{LEFT BLANK INTENTIONALLY}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.05} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & EXTERIOR INSPECTION & REV 23 & SEQ 001 \\
\hline
\end{tabular}

\section*{EXTERIOR WALK - AROUND}

\section*{GENERAL}

The exterior inspection is primarily a visual check to ensure that the overall condition of the \(A / C\), the visible components and equipment are safe for the flight.
Complete inspection is normally performed by maintenance or in the absence of maintenance by a flight crew member before each originating flight.
Items marked by asterisks \(\left(^{*}\right)\) will be performed again by a flight crew member prior to each flight.
. If brake wear is checked during exterior inspection, parking brake must be applied.
Check structure for no impact.

\section*{CAUTION}

IF A L/G DOOR IS OPEN CONTACT MAINTENANCE CREW BEFORE APPLYING HYDR. POWER.

\section*{1) LEFT FORWARD FUSELAGE}
* - Static ports CLEAR
- Exterior lights CONDITION
* - Angle of attack probe CONDITION
* - Toilet service access door CLOSED
2) NOSE SECTION
* - Pitot probes and covers .CHECK/REMOVED
* - TAT probes CONDITION
* - Radome and latches CHECK
- Oxygen compt venturi CHECK
- Oxygen over pressure disk GREEN
3) NOSE GEAR
* - Nose wheel chocks IN PLACE
* - Wheels and tires CONDITION
- Nose gear structure CONDITION
- Taxi lights CONDITION
- External electric PWR access door(if EXT PWR not necessary)CLOSED
* - Nose wheel steering selector and by-pass pin CHECK
- Proximity detectors CLEAN
- Hydraulic lines and control cables CONDITION
- Wheelwell CHECK
* - Safety pin REMOVED
4) RIGHT FORWARD FUSELAGE
* - Cargo doors CHECK
* - Cargo loading control door CHECK
* - Cargo door selector access door CHECK
- Exterior Its CONDITION
* - Static ports CLEAR
* - Angle of attack probes CONDITION
- Lower fuselage access doors CLOSED

\section*{5) LOWER CENTER FUSELAGE}
- Extract valve/fan OPEN AND RUNNING
- Antennas CONDITION
- Ground air conditioning door CLOSED
- Fresh water service door CLOSED
- Ram air inlet flap CLOSED
- Ground air conditioning/engine starting door CLOSED
- Pack air intakes CLEAR
- Landing gear door opening on ground access doors) CLOSED
* - Refueling electric control panel access door) CLOSED
- Packs air outlets and flaps CLEAR
6) RIGHT CENTER WING
- Wing ventilation air intake CLEAR
- RH Inner fuel tank water drain valves CHECK
- Drip sticks SECURED
- Landing light CONDITION
- Yellow hydraulic access door CLOSED
- Ram air turbine doors CLOSED
* - Slat 1 and kruger CONDITION
7) ENGINE 2 LEFT SIDE
* - Cowlings CLOSED/LATCHED
- Latch access doors CLOSED
- Pressure relief doors CLOSED
- Engine oil access door CLOSED
- IDG and starter oil access door CLOSED
* - Engine drains CHECK
- Ambient pressure sensor port CHECK
* - Engine inlet and fan blades CHECK
8) ENGINE 2 RIGHT SIDE
- Anti-ice exhaust CLEAR
- Pressure relief doors CLOSED
- Hydraulic filter access door CLOSED
- Starter valve manual override opening .. CHECKED
- Engine oil access door CLOSED
- Turbine exhaust CLEAR
- Pylon overpressure door CLOSED
- Fire agent bottles access door CLOSED
- Pylon drains CHECK
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.05} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & EXTERIOR INSPECTION & REV 31 & SEQ 100 \\
\hline
\end{tabular}

\section*{9) RIGHT WING LEADING EDGE}
* - Slats 2 and 3

CONDITION
- Refuel plugs . CHECK
- Drip sticks . SECURED
- RH outer fuel tank water drain valves CHECK
- Surge tank air inlet CLEAR
* - Fuel Vent. 0/press disc INTACT
* - Wing tip . CHECK
- Navigation and strobe lights CHECK
10) RIGHT WING TRAILING EDGE
- Static dischargers CHECK
* - Control surfaces CHECK
- Flap track fairing's CHECK
* - Flaps . CONDITION
11) MAIN RIGHT LANDING GEAR and FUSELAGE
* - Wheel chocks REMOVED
* - Wheels and tires CONDITION
- Brakes and brake wear indicators . . . CONDITION
- Proximity sensors CLEAN
- Hydraulic lines CHECK
- Pitch damper pressure drop indicator CHECK
- Landing gear structure CHECK
- Gear uplock hook CONDITION
- Downlock spring CHECK
- Landing gear downlock safety pin REMOVED
- Wheelwell . CHECK
- Landing gear door CLOSED
* - Fuselage Fuel drain mast CHECK
- Water drain mast CHECK
- Antennas and beacon CHECK
12) RIGHT AFT FUSELAGE
- Cargo loading control access door CHECK
- Cargo compartment door hydraulic selector access door

CHECK
- Cargo door lock-unlock control lever CHECK
- Cargo doors . CHECK
- Outflow valve CHECK
* - Toilet service access door CHECK
- Tail cone access door CLOSED
- RH landing gear down lock indicator pin . EXTENDED
- Tail skid

CHECK
13) TAIL SECTION
* - Stabilizer and elevator CHECK
* - Fin and rudder CHECK
- Static dischargers CHECK
* - Fuel vent O/press disc INTACT
- Trim tank water drain valves CHECK
- Tail vent tank water drain valve CHECK
- Drip stick SECURED
14) APU
- APU doors CLOSED
- APU air intake OPEN
- APU drain and vents CHECK
- Oil cooler exhaust CHECK
- APU exhaust CLEAR
- APU fire agent discharge overpressure
red disc CHECK PRESENTR
15) LEFT AFT FUSELAGE
- LH landing gear downlock indicatorTEND
Stabilizer and elevato- Fresh water drainCHECK
- Green hydraulic access door LOSED
16) MAIN LEFT LANDING GEAR
- Wheelwell CHECK
- Landing gear door CLOSED
* - Wheels chocks REMOVED
* - Wheels and tires CONDITION
- Brakes and brake wear indicator CONDITION
- Proximity sensors CLEAN
- Hydraulic lines CHECK
- Pitch damper pressure drop indicator CHECK
- Landing gear structure CHECK
- Gear uplock hook CONDITION
- Downlock spring CHECK
- Landing gear downlock safety pin REMOVED
17) LEFT WING TRAILING EDGE
* Flaps CONDITION
- Flap track fairings CHECK
* - Control surfaces CHECK
- Static dischargers CHECK
18) LEFT WING LEADING EDGE
- Navigation and strobe lights CHECK
* - Wing tip CHECK
- Surge tank air inlet CLEAR
* - Fuel vent O/press disc INTACT
- LH outer fuel tank water drain valves CHECK
- Drip sticks SECURED
- Refuel plugs CHECK
* - Slats 2 and 3 CONDITION
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.05} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & EXTERIOR INSPECTION & REV 24 & SEO 070 \\
\hline
\end{tabular}

\section*{19) ENGINE 1 LEFT SIDE}
* - Cowlings CLOSED/LATCHED
- Latch access doors CLOSED
- Pressure relief doors CLOSED
- Engine oil access door CLOSED
- IDG and starter oil access door CLOSED
* - Engine drains CHECK
- Ambient pressure sensor port CHECK
* - Engine inlet and fan blades CHECK

\section*{20) ENGINE 1 RIGHT SIDE}
- Anti-ice exhaust CLEAR
- Pressure relief doors CLOSED
- Hydraulic filter access door CLOSED
- Starter valve manual override opening .. CHECKED
- Engine oil access door CLOSED
- Turbine exhaust CLEAR
- Pylon overpressure door CLOSED
- Fire agent bottles access door CLOSED
- Pylon drains CHECK

\section*{21) LEFT CENTER WING}
* - Slat 1 and Kruger CONDITION
- Blue hydraulic access door CLOSED
- Landing light CONDITION
- Drip sticks SECURED
- LH inner fuel tank water drain valves . . . CHECK
- Wing ventilation air intake CLEAR
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.06} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & COCKPIT PREPARATION & REV 30 & SEQ 001 \\
\hline
\end{tabular}

\section*{INTRODUCTION}

Items marked by (\({ }^{*}\)) are the only steps to be completed during a transit stop.
The cockpit preparation should be performed by the PF and PNF according to panel scan sequence, defined below, and the task sharing defined in the QRH.

\section*{DOCUMENTATION AND MAINTENANCE}

On entering the aircraft, obtain the technical (maintenance) log, verify the certificate of maintenance and daily inspection (or similar) are up to date and signed. Check the deferred or carried forward defects. If the refuelling has already been performed check the uplift.

\section*{PANELS SCAN SEQUENCE}
(1)

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03 .06} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & COCKPIT PREPARATION & REV 34 & SEO 001 \\
\hline
\end{tabular}

Note 1
IT IS A GENERAL RULE TO EXTINGUISH ALL WHITE LIGHTS FOR ALL SYSTEMS DURING THE SCANSEOUENCE. THESEACTIONSARETHEREFORE NOT LISTED HERE.
Note 2 : FUEL PUMPS MAYBE LEFTOFFUNTIL REFUELLING IS COMPLETED IF REOUIRED.
* GEAR PINS and COVERS Check
- Check three gear pins on board and stowed.
OVERHEAD PANEL

\section*{* IRS MSU 1, MSU 2, MSU 3}
- Mode . NAV

The IRS MSUs will normally be OFF when entering the cockpit, selecting each MSU to NAV will start the IRS alignment process.
If the MSUs are still in NAV mode, select to OFF for more than 10 seconds, then back to NAV for a complete realignment, which lasts approx 10 minutes.
ALIGN MODE will be illuminated.
Note: 1. The IRS outputs are used by many systems of the aircraft, so it is essential to align the IRS as early as possible to provide data to the related systems.
- FMS CDU ALIGN IRS prompt Press When any of the IRUs are in the align mode the prompt ALIGN IRS will be displayed. Press the ALIGN IRS prompt to align the IRS on the LAT/LONG entered in the CDU, as soon as MSU mode selectors are selected to NAV.
If another page is selected other than INIT A, the message ALIGN IRS remains in the scratchpad.
Note : If IRS had previously been aligned on ground at the same LAT/LONG, then the ALIGNIRS prompt will not be displayed. If the LAT/LONG are changed, the AL/GN IRS prompt is displayed.
- ISDU . . . Check valid co-ordinates have been sent
* CABIN SIGNS
- NO SMOKING

AUTO/ON
- SEAT BELTS SEAT BELTS/ON
* CALLS
- Check CALL Its extinguished. Reset as required.

\section*{HYD PWR}
- BLUE, GREEN, YELLOW RSVS within normal
- Check the 3 fluid level indications are normal.

Note : On ground, system not pressurized, qty ind. needle should be in the outer green sector for any OAT. For OAT below - \(10^{\circ} \mathrm{C}\) (above \(20^{\circ} \mathrm{C}\)), the needle may be below (above) the upper small green arc down (up) to two needles width.

\section*{* FLT RCDR}

GND CTL ON

Check DFDR and DFDAU Lts extinguished
ISDU
OFF
- Check SYS rotary sel set to OFF.
* EXT LT As required
- Check STROBE in AUTO position and BEACON in OFF position.
* PITCH TRIM/YAW DAMPER/ATS

PITCH TRIM 1 + 2 . ON
YAW DAMPER 1 + 2 . ON
ATS 1 (+ 2 If installed) ON
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03 .06} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & COCKPIT PREPARATION & REV 34 & SEQ 001 \\
\hline
\end{tabular}
```

ENG }1\mathrm{ FIRE

- ENG 1 FIRE handle . . . . . . . check IN and latched.
Engine fire protection test
SQUIB TEST pb . . . . . . . . . . . . . . . . . . . . Press
Check AGENT 1+2 SQUIB Lts illuminate
- LOOP TEST pb . . . . . . . . . . . . . Press and Hold
Check: . LOOP A It comes on associated with LOOP
warning activation.
After fewseconds,LOOPB light also illuminates
associated with ENG 1 FIRE warning activation
and ENG 1FIRE handle illumination (and fuel
HP valve light illumination if HP valve open).
- LOOP TEST pb . . . . . . . . . . . . . . . . . . . release
Check : · LOOP A warning and ENG 1 FIRE warning
activation disappear.
After fewsecondsLOOP B warning disappears.
EVAC SIGNAL (if installed) . . . . . . . As required
- For aircraft with CAPT+PURSER/CAPT switch, the
usual position is CAPT.
- For aircraft with ARM/OFF switch, the usual position is
OFF.
LDG GEAR ANNUNCIATOR
. . . . . . Check
Normal Indications.
- Cross check with center instrument panel.
* FUEL
- X-FEED
check CROSS-LINE
- ISOL VALVES/LP VALVES
check in line
. Flow bars in line and steady.
Note : ISOL VALVES check must be done with "PED and
OVHD PNL " control knob set to BR/GHT.
- For ETOPS Flights only
- X-FEED
Press
. Check IN-LINE flow bar illuminated
- X-FEED
Release
. Check CROSS-LINE flow bar illuminated.
* COCKPIT VOICE RECORDER
- CVR TEST.
PRESS
Check correct operation.
* CABIN PRESS
- AUTO PRESS RATE LIMIT knob . . . . . . . . . NORM
- RATE LT . . . . . . . . . . . . . . check extinguished
- Check CAB ALT, DIFF PRESS and CABIN V/S for logical
indication.

```

\section*{* CREW OXYGEN}
* SYSTEM HIGH PRESS
check indication between 1400 PSI and 2000 PSI.
Note: If pressure is below 1400 PSI, check oxygen duration chart to determine that quantity is sufficient for the scheduled flight.
- SYSTEM LOW PRESS check in green sector.

\section*{ENG 2 FIRE PROTECTION}
- Same as for ENG 1.
* EMER EXIT LT . ARM
- Check that DISARM light extinguishes.

\section*{COMPT TEMP}
- ECON FLOW ON/AS REQ
- MAX COOL . AS REO
- COMPT TEMP Selectors AUTO/AS REO
- Select CRT position.

Note : ECON FLOW may be selected ON, if required, for flight with less than 160 pax. Approx \(68 \%\) flow is provided.

\section*{* COM}

TUNE VHF COM frequencies use VHF 1 for ATC (only VHF 1 is available in emergency elec config), VHF 2 can be used for ATIS and company frequencies. VHF 3 (if installed) is normally used for ACARS.

\section*{* AIRFIELD DATA}

Obtain necessary data for system initialization and cockpit preparation. Thisshould include RUNWAYINUSE, ALTIMETER SETTING and WEATHER DATA. ATC Tower temperature should be used for all Take-off calculations.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.06} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & COCKPIT PREPARATION & REV 31 & SEO 001 \\
\hline
\end{tabular}

\section*{* FMS INITIALIZATION}

\section*{CAUTION}

If the message "PLEASE WAIT" appears : DO NOT PRESS ANY CDU KEY until the message is cleared.
- FMS data base validity Check

Press REF key and display A/C STATUS page
- Check DATA BASE validity and stored WPT/NAVAID if any review stored data for deletion decision.
- Check PERF FACTOR agrees with Flight Plan.

\section*{NAVAID DESELECTION}

As req
If NOTAMs warn of any unreliable DME or VOR/DME, access NAVAID page and DESELECT the related navaid.
- FLIGHT PLAN INITIALIZATION
- INIT key

Press
INIT A page is displayed.
- CO RTE or city pair code Insert
- INIT PAGE A Check/complete
- Check/modify ALTN/ALTN RTE
- Enter FLT number, FLT ID (For aircraft with ATC mode S).
- Enter Cost Index as per airline policy if it was not provided by the data base when a CORTE was inserted.
- Enter intended CRZ FL or check it if it was already provided by data base. Modify it if necessary taking into account ATC constraints or expected gross weight.
- Enter Tropopause altitude and/or modify CRZ FL TEMP according to MET forecast.
- Enter CRZ wind
- The IRS are usually aligned to the departure airport reference point coordinates, however, if the gate coordinates are published, these may be inserted here.
- F-PLN A page Complete and check

If CORTE has been inserted, the F-PLN should automatically include the preferential or most probable T/O RWY, approach and landing RWY, associated SIDs, STARs, transition and En Route WPTs. However some data bases will only include departure and arrival airport idents and EN ROUTE WPTs (if appropriate).
The crew must check, modify or insert (as applicable) the F-PLN according to the data given by ATIS, ATC or MET :
- Lateral revision at Departure Airport, Select RWY then SID then TRANS (if appropriate)
- Lateral revision at WPT for ROUTE modification if needed
- Vertical revision : check or enterspeed/alt. CONSTRAINTS according to ATC clearance.
- F-PLN

Check
- Check the Flight Plan versus computerized flight plan and navigation charts.
- Check Dist to DEST along the F-PLN indicated on PROGRESS page. Compare with the computerized flight plan.
- F-PLN B page

As req
- Enter wind/temp for waypoints as provided on the computerized Flight plan. It should be remembered that the more points entered, the better the accuracy of the FMS predictions.
- SECONDARY FLIGHT PLAN

As req
This is routinely a copy of the active. However, consideration may be given to the following :
a) Copy the active F-PLN but modify it at a suitable WPT for an immediate return to the departure airfield in the event of, for example engine failure.
b) If weather is below landing minimum at the departure airfield the secondary flight plan should be that required for an immediate diversion after take-off.
c) If there is the possibility of a runway and/or SID change during taxi, this can be prepared for by copying the active and making the necessary modifications.
- PROG . As req

Check VOR tuned by FMS, modify if required.

R
* FMS GROSS WEIGHT INSERTION
- ZFCG/ZFW INSERT
- BLOCK FUEL
. If ZFCG and ZFW are not yet available it is acceptable to enter the expected values in order to obtain predictions. Similarly the expected fuel on board may be entered if refuelling is not already completed at that time.
If ZFCG and ZFW are inserted, the FMS will provide the minimum fuel required for the trip according to fuel policy (Route Reserves, ALTN, FINAL)
- If ZFCG, ZFW and BLOCK FUEL are inserted, the FMS will provide all predictions, as well as the EXTRA fuel if any.
* FMS TAKE OFF DATA INSERTION
- V1, VR . Insert
- THR RED/ACC Set or check
- Check or modify THR RED/ACC ALT as needed
- TO SHIFT
As req
GLARESHIELD
* EFIS
- PFD and ND brightness As req
- FPV/FD . ON/FD
- VOR/NAV/ILS sw As req
Note: . VOR position: manual tune.
NAV/ILS positions : auto tune.
- EFIS control box . As req
- ND mode and range As req
MODE : It is recommended to use MAP mode for take-off unless the SID is not in the data base, then PF should use ARC or ROSE.
. RANGE : It is recommended to set the minimum range to display the first waypoint on departure, or as required for weather radar.

\section*{* FCU}
- Adjust brightness.
SPD/MACH setting knob
turn to select V2
SPD/MACH setting knob . . . Push to Activate Preset
SPD/MACH setting knob Turn to Preselect initial climb speed
ALT Sel Initial cleared ALT

\section*{LATERAL CONSOLES}
* RAT
- HYD RAM AIR TURBINE handle

\section*{OXYGEN MASK}
- Depress INT on audio panel and adjust volume.
- Select interphone transmit.
- Push down and hold RESET/TEST slide control and observe blinker momentarily yellow.
- Notice oxygen flow sounds through loudspeaker.
- Release RESET/TEST slide control.
- Set N/100\% manual control to \(100 \%\).
- Check system Low Press indication within green band.

GND SERVICE INTPH
OFF

\section*{CM1/CM2 INSTRUMENT PANELS}
* GPWS

NORM
- Check no FAULT light illuminated.

Note : GPWS FAULT light will be illuminated whilst IRS 1 is in align mode if a GPWS MK III is fitted.
* ND

Check
R
- Check for correct display.
- Cross check ND and RMI heading with standby compass.
- If ND/RMI and compass headings disagree :

MSU mode selector
OFF
- After at least 15 seconds :

MSU mode selector
NAV
ALIGN MODE annunciator . Check steady amber
- Upon completion of the 10 -minute alignment period:
Cross-check IRS (ND and RMI) and standby compass magnetic heading indications.
- Check radar operation if desired.
- Check ground speed, initial waypoint, VOR indications.
* STBY ASI

Check R
- Check speed pointer 0.
* PFD

Check
R
- Check for correct display.
- Check IAS, FMA, initial target ALT, altimeter readings, attitude.
R * VSI Check- Check no flag and pointer 0.
* ALTIMETER Check- Check no flag.- QNH/QFESet
R * CLOCK Check/Adjust
- Check time. Adjust if necessary.Set elapsed time and chrono to zero.
R * METRIC ALTIMETERS (If installed) Check
- QNH/QFE Set
CTR INSTRUMENT PANEL
* STBY ALTIMETER Check
- Check no flag.- QNH/QFESet
R * STBY HORIZON Check- Check no flag.- Erect if necessary.
* ECAM RCL
R * BRK-A/SKID NORM-ON
* ENG INSTRUMENTS
- Check:
. OIL PRESS check Zero
OIL QTY Check
MIN OIL quantity before start is 12OT + estimatedconsumption. (estimated consumption is based oneach operator's oil consumption monitoring)
- FF ind. check zero
N2 ind. needles and counter check zeroNo flags, and red max pointers in front of the red limitmarks.
EGT ind. needles and counter checklogical temperature
No flags and red max pointers in front of the red limitmarks.
N1 ind. needles and counter check zero
No flags, red max pointers in front of the red limitmark.approx 1.000
No flag, EPR mode selectmanual setting masked.
. check extinguished
* THRUST RATING PANEL
- TOGA/FLEX set
- TAT . check logical
- THR LIMIT bugs check correspond to THR LIMIT display

\section*{LANDING GEAR PANEL}
- WARN TEST pb . Press Observe down arrow illuminates, continuous repetitive chime sounds and ECAM system activates.
POSITION DET SYS1 or 2
Select Select SYS1 on odd days, SYS2 on even days
* LANDING ELEVATION Set departure field elevation
Note: If QFE is used set 0 on LANDING ELEVATION counter.

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03 .06} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & COCKPIT PREPARATION & REV 33 & SEQ 001 \\
\hline
\end{tabular}

\section*{* FMS F-PLN}

Check
- PNF ensures that inserted F-PLN agrees with planned routes.
- If company policy requires it, thoroughly check the whole F-PLN using the scroll key. Use ND PLAN mode while scrolling the F-PLN on the CDU.
* AIRFIELD DATA Confirm
* FLT RCDR . Check

Recheck that DFDR and DFDAU lights are extinguished. DFDR internal test may not be completed for up to 7 minutes following GND CTL selected ON.
* FUEL QUANTITY Check
. After refuelling is completed :
- FUEL PUMPS

NORM
- Check fuel quantity corresponds to FLIGHT PLAN fuel, \(X\) check with sum of individual tank quantities.
- Check fuel load asymmetry within limits.

Note : If a dash is displayed in the last digit of any fuel tank indicators, the quantity indication accuracy is fully serviceable.

\section*{* TAKE OFF BRIEFING}

The purpose of the take off briefing is for the PF to inform the PNF of the planned course of action for both normal and abnormal situations during take off. It is also a recall of standard emergency procedures and is the time for the Captain to give any specific instructions to the First Officer. It should be completed prior to engine start.
It is most important that the take off briefing is given at a time when the cockpit workload is low so that both pilots may concentrate on its content and at a time when the take off conditions are likely to be known. The most appropriate time, therefore, is at the end of the Cockpit Preparation, prior to start.

\section*{The take off briefing should include the following :}
- A review of the emergency procedures relating to the take off.
e.g. for a Captain briefing :
"This will be a left hand seat take off. If any malfunction occurs before V1 I will call STOP or GO la lack of any response to a malfunction could be considered a subtle incapacitation). If the call is STOP / will apply maximum reverser and bring the aircraft to a stop on the runway bearing in mind the wind direction if there is a fire. You will inform ATC and monitor the deceleration. When the aircraft has come to a stop and parking brake set you will carry out the necessary ECAM actions on my command. If the malfunction occurs after V1 we will continue the take off. No action other than the application of TOGA and silencing any aural warnings will be taken until the aircraft is safely established in the climb and above 400 ft AGL. At that point carry out the ECAM actions on my command up to second agent discharge, if necessary, for an engine fire."
Having completed the emergency briefing (which normally needs only be done in full on the first flight of the day for the crew) a review of the variable procedures must be made, making use of the CDU where possible :
- Runway state, weather expected after take-off, use of anti ice.
- Take off configuration, V1, VR, V2, Flex Temp.
- PACKS ON or OFF
- Single engine acceleration altitude, thrust reduction altitude, normal acceleration altitude, transition altitude and first cleared level.
- Terminal area topography and Minimum Safe Altitudes.
- Action in event of immediate return or diversion after take off. (Engine Out SID)
- SID routing and specific RAD/NAV tuning.
- Use of radar.

As already stated, make use of the FMS CDU wherever possible to confirm and emphasise the briefing.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{STANDARD OPERATING PROCEDURES
COCKPIT PREPARATION} & \multicolumn{2}{|r|}{2.03.06} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & & REV 23 & SEO 001 \\
\hline
\end{tabular}

TR \(N^{\circ}\) 535-2 Page 2 of 6

\section*{LOADSHEET}

Check
The Captain should thoroughly check the Load and Trim Sheet (LTS), particularly for gross errors.
Make sure, that the loadsheet data is correct, e.g. correct flight, correct aircraft, dry operating index, configuration.
- Check fuel on board and fuel index correction. For aircraft with a trim tank, check the trim tank quantity is as expected on the loadsheet, if not use the actual trim tank quantity to calculate the fuel index correction.
- Check the loadsheet CG, against the ECAM CG. In case there is a discrepancy of more than \(1.5 \%\), check that the ZFW and ZFCG have been correctly inserted in the CDU, then rely on the ECAM CG.
If there is less than \(1.5 \%\), no further action is required. Rely on the ECAM CG.
Check that the takeoff CG is within the LTS operational limits.

\section*{TAKEOFF DATA \\ Prepare and Check/revise}

Once the load sheet is checked :
- Check/modify FMS weights/CG
- PNF checks or recomputes the takeoff speeds and Flex Temperature using the RTOLW charts.
- PF then INDEPENDENTLY calculates the takeoff speeds and Flex Temperature as a crosscheck. Ensure particular care is taken to determine the takeoff configuration.
- Confirm takeoff weight limitation.
- To extend engine life and save maintenance costs, the use of flaps configuration giving the highest flex temperature is recommended. However, when the difference, in term of FLEX temperature, between 2 configurations is low (less than 5 degrees), the highest takeoff configuration is preferable.
- Enter the Flex Temperature and select FLEX on the TRP unless TOGA is required.
- Set V2 and green dot speed on standby ASI (all remaining bugs at 12 o'clock).
- PF enters (or revises) the take off data in the FMS CDU TAKE-OFF and INIT pages.
- Set V2 and Preset initial climb speed on FCU.
- Check CRZ FL is not above MAX FL.

\section*{SEAT, SEAT BELTS, HARNESSES, RUDDER PEDALS \\ Adjust}

The seat is correctly adjusted when the pilot's eyes are in line with the red and white balls.

\section*{CDU}

In TAKE OFF Configuration
- It is recommended to display F-PLN on PNF side, TAKE OFF on PF side.

\section*{EXT PWR}

Check OFF
Request external power removal

\section*{BEFORE START C/L DOWN} TO THE LINE

\section*{PUSHBACK OR/AND START UP CLEARANCE}
- At this stage, the «before start » preparation is stopped to :
- obtain ground crew clearance (For pushback, chocks removed, nose wheel steering selector and by-pass pin in place, tow truck connected and area clear for start/pushback).
obtain ATC pushback and start up clearance.
Engines may be started during pushback.

\section*{WINDOWS and DOORS}

\section*{Check closed}
- Check cockpit windows closed and locked. Check proper locking of sliding windows by pushing the window handle forward into full closed position.
- Check on ECAM DOOR page that all doors are closed.

COCKPIT DOOR toggle switch
NORM
- A test of the cockpit door locking system must be done once a day.
- Check that the cockpit door is closed and locked (no cockpit door fault/open indication).
- With the cockpit door spring loaded toggle switch at NORM, the cockpit door is closed and locked.
- For cockpit access request, refer to "procedures and techniques" chapter, "doors" section.
BEACON
ON/AUTO
PARKING BRAKE
As req
- If no pushback required, check parking brake is on and check brake pressure indication. Chocks may be removed.

\section*{CAUTION}

If, during engine start with parking brake on, the aircraft starts to move due to a parking brake failure, immediately release the parking brake and restore braking using the pedals.
- If pushback required, release the parking brake.

\section*{CAUTION}

Do not use brakes during pushback unless required due to an emergency.
Do not use the nose wheel steering during pushback.
- Once pushback is completed apply the parking brake and inform ground crew.

\section*{BEFORE START C/L BELOW}

THE LINE

\section*{Completed}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.07} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & BEFORE PUSHBACK OR START & REV 28 & SEO 001 \\
\hline
\end{tabular}

\section*{LEFT BLANK INTENTIONALLY}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{STANDARD OPERATING PROCEDURES} & \multicolumn{2}{|r|}{2.03.08} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & ENGINE START & REV 35 & SEO 070 \\
\hline
\end{tabular}
- THROTTLE LEVERS IDLE

Be aware of prevailing surface wind, as tail wind may result in starting difficulties.

Note
Confirm that probe heats are selected ON. If not FADEC CHANNEL A (or B) FAULT message will be displayed on left ECAM CRT after engine start.
- IGNITION

START A/B
Set IGNITION to START A (odd days) or START B (even days) and check both ARM lights illuminate on START 1 and 2 pushbuttons.

Note : PACK VALVE FAULT lightilluminates during closure.
ENG 2 is normally started first.
```

- Announce
" START ENGINE 2 "
- START 2 (1

Check ARM white light extinguishes OPEN blue light illuminates.

- Announce
" VALVE OPEN"
- BLEED PRESSURE check increasing


## WHEN N2 INCREASES

- Announce . . . . . . . . . . . . . . . . . . . . . . . . . "N2"
- OIL PRESSURE . . . . . . . . . . . . . . check inreasing.
- Announce . . . . . . . . . . . . . . . . . . "OIL Pressure"

AT MAX MOTORING SPEED

## R

## Note : For airfields with elevation of 8000 ft and above, the engine must be motored for 75 seconds. <br> This recommendation applies pending retrofit of a further FADEC standard.

- FUEL LEVER . . . . . . . . . . . . . . . . . . . . . . . . . ON Confirm fuel lever ON and locked/seated in notch.
- CLOCK . . . . . . . . . . . . . . . . . . . . . . . . . START

20 sec. max from FUEL ON to light up
120 sec. max from FUEL ON to idle N2.

## Notes

1. Max motoring speed is assumed when there is no significant increase in N2.
2. Do not move FUEL LEVER to ON if max motoring speed is less than $15 \%$ N2.

- Announce
"FUEL ON"
- FUEL FLOW . . . . . . . . . . . . check in normal range
- Announce . . . . . . . . . . . . . . . . . . . . "Fuel Flow"

EGT INCREASING

- Announce . . . . . . . . . . . . . . . . . . . . . . . . "EGT"

N1 INCREASING

[^1]
## N1, N2, FF, EGT

- Monitor for normal value and rate of increase.

Note : If the engine acceleration is slow and/or in case of high residual oil temperature (e.g. short turn around time), the ENG FAIL and/or GEN FAULT and/or the ENG OIL LO PR ECAM warning(s) may be activated.

This should not be misinterpreted as a failure to start or an engine malfunction.
If EGT is within limits and N1/N2 and OIL PRESS are increasing, continue the start attempt.
N2 45 \%

- Announce
" N2 45 \%"


## When START 2(1) OPEN light extinguished

- Announce . . . . . . . . . . . . . . ." VALVE CLOSED"


## AT IDLE

- N1, N2, EGT and FF . . . . . . . . . . . . . . . . . . check
(at ISA, sea level typical figures: N1 about 22\%, N2 about $64 \%$, EGT 325 to $425^{\circ} \mathrm{C}$ and FF about 540 to $620 \mathrm{~kg} / \mathrm{h}$ )
Note: Ground idle N2 exceeding 68\% with normal bleed extraction, or $70 \%$ with ENG ANTI-ICE ON, must be recorded for maintenance action at first suitable facility.
Small throttle control lever movements near to idle will cause a transientovershoot. This condition will cause the engine parameters to rise and then to return to idle. Throttle movements beyond this point will result in normal engine operation.
- CLOCK

STOP/RESET

- ECAM . . . . . . . . . Check Secondary Parameters.
- Announce . . . . . ." ALL PARAMETERS CORRECT"
- Announce . . . . . . . . . . . . . ." ${ }^{\text {START ENGINE } 1 " ~}$

Repeat the start sequence as stated above

## Note: Both ARMlights illuminate when ENG 1 N2 reaches $45 \%$.

	STANDARD OPERATING PROCEDURES	2.03.08	
		PAGE 2	
	ENGINE START	REV 36	SEQ 070

## CAUTION

1. Monitor both N2 and EGT indicators closely during the start for any abnormal indications. Slow N2 acceleration is an indication of either an impending hot start or a hung start.
If this indication is accompanied by rapidly increasing EGT, abort the start immediately.
If slow acceleration is accompanied by slowly increasing EGT, abort the start if idle is not reached within 120 seconds from FUEL ON.
Should EGT exceed the starting temperature limit the engine should be shut down immediately. The duration of the over-temperature in seconds and the peak temperature reached must be recorded.
A second start attempt should not be made until the appropriate maintenance action is taken.
2. The start attempt should be discontinued if :
a) Dense fuel vapor is emitted from the tail pipe while the FUEL lever is still OFF
b) An indication of N1 rotation is not obtained by 40 \% N2.
c) An increase in EGT is not obtained within 20 seconds after FUEL ON.
Note: When the engines have been cold soaked at OATs below $-30^{\circ} \mathrm{C}$, up to 30 seconds will be allowed to obtain an increase in EGT provided an increase in N2 is obtained within 20 seconds from FUEL ON.
d) Fuel or ignition is inadvertently interrupted.

After placing the FUEL lever OFF, maintain starter engagement and continue motoring the engine for 30 seconds to clear out trapped fuel or vapors.
e) The engine requires more than 120 seconds to accelerate from FUEL ON to IDLE N2.
3. Abnormally high or low fuel flow, high tail winds, or low pneumatic duct pressure may result in the requirement to abort the start.
4. If starter engagement is interrupted, set FUEL lever to OFF. Perform second engine start attempt when N 2 below $30 \%$.
5. If start sequence is discontinued after reaching 48 \% N2, allow N2 to decrease below 5 \% N2 prior to attempting a restart. This will remove power from the FADEC and thus reset the FADEC overspeed protection logic.
6. OIL CLOG light and ECAM message may be activated during engine warm up with oil temperature below $35^{\circ} \mathrm{C}$. Maintain the engine at idle until the light/message disappear.
Any illumination of the OIL CLOG light or ECAM warning with oil temperature above $35^{\circ} \mathrm{C}$ must be written in the logbook. This may be an early indication of a possible oil filter clogging.

	STANDARD OPERATING PROCEDURES	2.03.08	
		PAGE 3	
	ENGINE START	REV 28	SEQ 001

## GROUND RUN UP - DANGER AREAS



	STANDARD OPERATING PROCEDURES	2.03.08	
		PAGE 4	
	ENGINE START	REV 28	SEQ 001

## LEFT BLANK INTENTIONALLY

	STANDARD OPERATING PROCEDURES	2.03.09	
		PAGE 1	
	AFTER START	REV 29	SEQ 170

R IGNITION ..... OFF
$R_{R}$ - ARM lights extinguish.
Rthe signal for the PNF to commence the AFTER START actions.

## APU BLEED

OFF
APU BLEED is selected OFF just after engine start to avoid engine exhaust gas ingestion.

## APU

- MASTER sw ..... OFF
Note : APU shut down may be delayed if APU BLEED supply is required.


## ENGINE WARM-UP :

## CAUTION

- No minimum warm-up time is required following an engine shutdown of 2 hours or less.
- After a shutdown period greater than 2 hours, it is recommended to start the engines at the gate or operate at or near idle for at least 5 minutes prior to advancing the thrust lever to high power. This ensures engine warm-up and minimize any adverse thermal stress. Taxi time at idle may be included in the warm-up period. It is not, however, necessary to delay the takeoff to warm-up the engine, but when it is anticipated that the taxi time will be less than 5 minutes, it is recommended that engines which have been shutdown for more than 2 hours be started at the gate.

ENG ANTI ICE . . . . . . . . . . . . . . . . . . . AS REQ R

Note 1: Icing conditions may be expected when OAT or TAT is below $+8^{\circ} \mathrm{C}$ with visible moisture.
Note 2: . During ground operation in icing conditions, periodic engine run-ups must be performed to shed any possible ice build-up from the spinner, the fan blades or low pressure compressor stators.
. Periodic engine run-ups must be performed, every 15 minutes, by accelerating the engine to $50 \% N 1$ minimum and then retarding the throttles back to idle.
Before takeoff a last engine run-up must be performedwithobservation ofallengine parameters to ensure normal engine operation.
Note 3: Use of engine anti ice increases the ground idle thrust, care must be taken when taxiing on slippery surfaces.WING ANTI ICEAS REQ
Note: WING ANTI ICE valves stay closed as long as theaircraft is on the ground.
SLATS and FLAPS ..... SET for T/O

- Set SLATS/FLAPS and KRUGER for T/O, and checkposition on SFPI.
- If the OAT is below $-40^{\circ} \mathrm{C}$ extend the SLATS/FLAPSstep by step.
- If taxiing in slush conditions, keep slats/flaps retracteduntil reaching the holding point before take off.
GROUND SPOILERS ..... ARM
AIL TRIM and RUD TRIM ..... ZERO
PITCH TRIMSet for T/O
Note : If the OAT is below $-40^{\circ} \mathrm{C}$, check correct operationof the electrical pitch trim prior to setting thePITCH TRIM for $T / O$.
ECAM ..... check STATUS
ECAM DOOR Page ..... Select
- Check all slides armed
- Deselect DOOR page after slide verification.
Clear to disconnect
Announce
- Ground crew must ensure chocks removed, nose wheel steering by-pass pin removed and area clear for taxi. Interphone is disconnected.
- Check for hand signal display on the left/right side to show all clear for taxi.
AFTER START CHECK-LIST ..... Completed

	STANDARD OPERATING PROCEDURES	2.03.09	
		PAGE 2	
	AFTER START	REV 28	SEO 001

## LEFT BLANK INTENTIONALLY

NOSE Light
TAXI
Select NOSE Light to TAXI day and night

XI CLEARANCE . . . . . . . . . . . . . . . . Obtained	
PARKING BRAKE	
- Release the parking brake and check brake pressure zero.	
ELAPSED TIME	Start
To record block time	
EXTERIOR LTS	
THRUST LEVERS	As req

In order to get the aircraft moving, little if any power above idle thrust will be required ( $\max 40 \% \mathrm{~N} 1$ ). Thrust should normally be used symmetrically. Once aircraft is moving little thrust is required.
The wing mounted engines are close to the ground. Avoid placing engines over unconsolidated or unprepared ground e.g over the edge of taxiways.
Avoid high thrust settings at low ground speeds due to the risk of ingestion (FOD).
BRAKES . . . . . . . . . . . . . . . . . . . . . . . . . Check
Brakes can be checked once the aircraft is moving, or while stopped.
To check the brakes while stopped, depress brake pedals with parking brake ON, select the parking brake OFF and check that the yellow hyd pressure is zero on the brake pressure triple indicator.
The main purpose of the brake check is to check that green pressure has taken over and that yellow pressure is at zero on the brake pressure triple indicator. one needle width on the brake pressure triple indicator can be considered as zero.

Thereafter the normal maximum taxi speed should be 30 kt in a straight line, 15 kt for a sharp turn. The ground speed is difficult to assess so monitor ground speed on ND. Do not "ride" the brakes, as 30 kt is exceeded, apply brakes smoothly and decelerate to 10 kt , release the brakes and allow the aircraft to accelerate again.
Below- $40^{\circ} \mathrm{C}$, small braking inputs are required during Taxi. XX will be indicated in place of the brake temperatures while the temperatures are below $0^{\circ}$.

## CAUTION

If the brakes fail during ground operations, immediately select the BRK/A/SKID sw to ALTN-OFF and modulate the brakes with pedals. Brake pedals should be released when the A/SKID is switched OFF. Otherwise the pedal braking orders will be taken into account and the aircraft will react strongly.
In an extreme emergency and only if pedals are ineffective with the antiskid OFF the aircraft may be stopped with the parking brake (full pressure application will occur).

## CAUTION

- If aircraft has been parked in wet conditions for a Iong period, efficiency of first brakes application at low speed will be reduced.

ECAM Select F/CTL page

## FLIGHT CONTROLS

At a convenient stage during taxi :

1. The PNF checks full travel and feel of the elevators and ailerons/spoilers, whilst monitoring on the ECAM F/CTL page.
Note: If PITCH FEEL pushbutton is selected OFF/R then ON, full travel and feel force of the elevators must be checked.
2. The PF holds the nosewheel steering handle to maintain the aircraft direction and checks full travel and feel of the rudder, whilst the PNF monitors the ECAM F/CTL page.
Check all indications return to zero position with respective controls at neutral except the ailerons where droop position is indicated.
3. If the OAT is below $-40^{\circ} \mathrm{C}$, the PNF should check full extension of the speedbrakes by setting the speedbrake lever notch by notch up to the FULL position whilst monitoring ECAM F/CTL page.
Note 1: HYD SYS LO PR warning may occur if test is performed on more than one axis at a time.
Note 2 : FLIGHT CONTROL check sould be done with CWS OFF. If CWS is selected, full travel will not be available.
Note 3 : During aileron check, rudder deflects left or right coordinating with aileron movement (yaw damper input).

## ECAM

 . . . . . deselect F/CTL pageATC clearance obtain/confirm
TAKE OFF DATA/CONDITIONS Check/Revise

- If take off data have become more limiting such as wind change or tower temperature increase, or in case of runway change, prepare updated take off data and as appropriate:
SLAT/FLAP LEVER

takeoff position Select Take off position

## V2

Initial climb speed . reset on FCU

FLX TO temperature preset on FCU

## FMS

V1,VR . . . . . . . . . . . . . . . . . . . . . . . . . . Reinsert
F-PLN (Runway) Revise F-PLN (SID, TRANS) . . . . . . . . . . . Revise or check Check with ND in MAP mode, with a 15 NM range.
Particular care should be taken to confirm the ATC clearance agrees with the FMS if NAV is to be used.
FCU
As req
AP cannot be selected in CMD for Take off.
CLEARED ALT . . . . . . . . . . . . . . . . . . . Set on FCU
IF PROFILE NAV mode is used
PROFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arm
NAV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arm
INITIAL AFTER T.O. HDG . . . . . . . Set on FCU/As req If an ATC HDG is required after take off set the heading on the FCU, NAV will be disarmed
FD . . . . . . . . . . . . . . . . . . . . . . Check selected ON
FMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . Check

	STANDARD OPERATING PROCEDURES	2.03.10	
		PAGE 2	
		REV 36	SEQ 207

## FLIGHT INSTRUMENTS

Check

- Scan instruments panels observe no abnormal flag on instruments.

RADAR (if required) . . . . . . . . . . . . . . . . . . . . . ON
If the radar is required for the flight the following test procedure is recommended:
Adjust the tilt downward until ground returns appear and then slowly adjust it in 1 to 2 degrees steps, up to $15^{\circ}$ UP, for weather returns.
Select tilt at $4^{\circ}$ UP for takeoff.
ATC code

## Confirm/set

## EGPWS

- TERR ON ND . . . . . . . . . . . . . . . . . . . . . . As req
. In mountainous areas, consider displaying terrain on ND.
If use of radar is required, consider selecting the radar display on the PF side, and TERR ON ND on the PNF side only.


## TAKEOFF BRIEFING

Confirm
This briefing should normally be only a brief confirmation of the thorough takeoff briefing made at the gate. Any changes in the clearance should be addressed at this time. As extensive use as possible of the displays should be made. eg.
"Takeoff on RWY 07 (TAKE OFF page), weight 150 t (left ECAM), Slat/Flap 15/15 (SFPI + handle), 50 t fuel (L-ECAM), FLEX $50^{\circ}, 93 \% \mathrm{~N} 1$ (TRP), LMG2D departure (F-PLN page) V1 151, VR 161, V2 164 (TAKE OFF page + PFD) initial cleared ALT (PFD + FCU)."

## CABIN REPORT

 Received- Obtain cabin report from purser, as a minimum :
«CABIN SECURED for T.O."
T.O CONFIG TEST pb . . . . . . . . . . . . . . PRESS for $\min 3$ SEC.

ECAM
NORM FOR TO
BEFORE T.O. C/L DOWN TO THE LINE . COMPLETE

	STANDARD OPERATING PROCEDURESTAXI	2.03.10	
		PAGE 3	
		REV 22	SEO 001

## VISUAL GROUND GEOMETRY



	STANDARD OPERATING PROCEDURES	2.03.10	
		PAGE 4	
	TAXI	REV 36	SEQ 001

INTENTIONALLY LEFT BLANK

	STANDARD OPERATING PROCEDURES	2.03.11	
		PAGE 1	
	BEFORE TAKEOFF	REV 36	SEO 259

## TAKEOFF or LINE UP CLEARANCE <br> Obtain

## APPROACH PATH CLEAR OF TRAFFIC . . . Check CABIN CREW <br> Advise

## BRAKE YELLOW HYDRAULIC

## PRESSURE

CHECK

- If residual pressure is indicated :
- Depress several times the brake pedals until release of residual pressure
- If residual pressure remains
- Return to gate
- Maintenance action is due


## BRAKE Temperature

Check

- Check brake temperature on ECAM.

If brake fans are ON and indicated brake temperatures are above $150^{\circ} \mathrm{C}$ the takeoff must be delayed. Continue brake fan operation until the indicated temperature drops below $150^{\circ} \mathrm{C}$.
Note : With brake fans ON, a temperature indication of $150^{\circ} \mathrm{C}$ is equivalent to an actual brake temperature of $300^{\circ} \mathrm{C}$. Takeoff is only permitted with actual brake temperature below $300^{\circ} \mathrm{C}$.
If brake fans are OFF, takeoff may be continued unless the BRAKE TEMP HI caution appears, which is activated at $300^{\circ} \mathrm{C}$.

BRAKE FAN . . . . . . . . . . . . . . . . . . . . . . . . OFF
AUTO BRK
MAX
ON It illuminates
AUTO BRK may be armed with parking brake on.
Selection of MAX mode before takeoff will improve safety in the event of an aborted takeoff. If takeoff must be aborted, the autobrake system will apply the maximum braking (if the ground speed is above 85 kt ) as soon as the thrust levers are set to idle which represents a single action done without delay.

IGNITION
CONT RELIGHT

## PACK VALVE

As req

- If required to increase takeoff performance, select pack valves OFF, or use APU bleed to supply the packs.
- If APU bleed supply is used and wing anti-ice is required one pack must be selected off.ON/As req
ALT REPORTINGON/As req
TCAS (if installed) ..... Set to TA/RATA ONLY mode should be selected at particular airportsand during particular procedures identified by an operatoras having a significant potential for unwanted or inappropriateRAs (closely spaced parallel or converging runways...)
EXT LTS ..... Set
- Use NOSE TO, RUNWAY TURN OFF and LANDING lightsto minimize bird strike hazard during T.O and set NAVand LOGO as required.
- Set STROBE lights to ON before entering the runway.
QFU and THRESHOLD CONFIRMR- Check and confirm OFU and THRESHOLD versus theairport chart.R

	STANDARD OPERATING PROCEDURES	2.03.11	
		PAGE 2	
	BEFORE TAKE OFF	REV 28	SEO 001

## LEFT BLANK INTENTIONALLY



TR $N^{\circ}$ 535-2 Page 3 of 6

	STANDARD OPERATING PROCEDURES	2.03.12	
		PAGE 1	
	TAKEOFF	REV 36	SEQ 070

- Rolling takeoff is at the discretion of the captain.
- Announce
"TAKEOFF"
- CLOCK START
- INTERMEDIATE THRUST SETTING SET
- PF progressively adjusts and stabilizes engine thrust from idle to between 1.05 and 1.10 EPR with no more than 0.02 EPR difference between both engines.
Note: In case of Ring Case segmented Case engine intermix configuration, engine acceleration from idle to the intermediate thrust setting may differ significantly between one engine andtheother. Whateverbothengines configuration, intermediate thrust setting will ensure that both engines will accelerate similarly and will minimize any directional control problem.
- BRAKES

RELEASE

- GO-LEVERS

TRIGGER
Note 1: CM1 keeps his hand on the throttles until V1 is reached without interfering with the throttle movement.
Note 2: In case of asymmetric throttle movement, CM1 is ready to override or to disconnect the A/THR.

- PF applies sufficient forward control column until 80 Kt ,
then releases progressively to achieve the neutral position by 100 Kt .
Note 1: CGposition, runway and crosswind conditions dictate the necessary forward input. Objective is to conteract the pitch up moment during thrust application and to increase nose wheel aherence.
Note 2: In case of vibrations or shimmy of the nose wheels, release the forward pressure progressively and apply slight back pressure on the control column as necessary. Vibrations will probably disappear as the weight on the nose wheel is reduced.
- DIRECTIONAL CONTROL . . USE RUDDER PEDALS
- PFD / ND

SCAN

- Check FMA on PFD

THR, SRS, RWY (or HDG or HDG/S), FD1 (2)

- Announce

FMA indications

- Check FMS position update (A/C symbol on runway threshold)
- TAKEOFF EPR . . . . . . . . . . . . . . . . . . . . CHECK
- Check takeoff EPR is set prior to reaching 80 kt .

R
Announce . . . . . . . . . . . . . . . . . . "THRUST SET"

- AIRSPEED and ENGINE INSTRUMENTS . . . . SCAN
- Scan the airspeed and engines instruments throughout the takeoff roll.
- When speed is 100 Kt on PFD
- PNF Announce . . . . "ONE HUNDRED KNOTS"
- PF crosscheck speed reading on own PFD.
- PF Announce . . . . . . . . . . . . . . . . "CHECK".

Note: The FMA mode THR changes to blue indication (ATS declutch by 100 Kt .)
Below 100 Kt the decision to abort the T.O., may be taken at the discretion of the captain. Above 100 Kt , rejecting the T.O. is a more serious matter and becomes more critical as V 1 approaches.

## V SPEEDS

- At V1

Announce . . . . . . . . . . . . . . . . . . . . . . . . . . "V1"

- At VR

Announce . . . . . . . . . . . . . . . . . . . . . . "ROTATE"
AIRCRAFT HANDLING

- ROTATION . . . . . . . . . . . . . . . . . . . . . PERFORM
- At VR, initiate the rotation with a positive control column input to achieve a continuous rotation rate of about $3^{\circ} / \mathrm{sec}$, towards a pitch attitude of 15 degrees (12.5 degrees if one engine is failed).
- Avoid spoiler extension on the ground and during rotation, by minimizing lateral control to that which is required to maintain approximately wings level.
- After lift off, follow the SRS pitch command bar.


## CAUTION

High rotation rates may lead to tailstrike

## LANDING GEAR

- Announce
« POSITIVE CLIMB » Announce positive climb when the vertical speed indication is positive and the radio altitude has increased.
- Order . . . . . . . . . . . . . . . . . . . . . . . « GEAR UP „
- L/G lever . . . . . . . . . . . . . . . . . . . . . . . . . UP

GROUND SPOILERS
DISARM
EXTERIOR LTS . . . . . . . . . . . . . . . . . . . . . . . SET
NOSE AND RWY
TURN OFF lights OFF
RWY TURN OFF LTS and landing lights may be left ON according to the airline policy/local regulations.

## AP

AS REQ
$\overline{\mathrm{AP}} 1$ or AP 2 may be engaged. If AP is already engaged in CWS ; press CWS/CMD pushbutton to engage CMD.

	STANDARD OPERATING PROCEDURES	2.03.12	
		PAGE	
	TAKE OFF	REV 34	SEO 001

## AT THRUST REDUCTION ALTITUDE

- THROTTLES .. Check symmetrical retard movement
- ENGINES THRUST . . . . . . . . . . . Check CL setting
- TRP

Check LIM MODE Indication "CL" and "AUTO"
Note: In case of either asymmetrical thrust reduction or thrustreduction below CL, A/THRmustbe disconnected and thrust manually set.

Announce
FMA indication
Check PTHR and P.CLB engagement
LANDING GEAR lever.
Neutral

- When L/G lights are extinguished, set the L/G lever to neutral.
- Announce . . . . . . . . . . . . . . . . . . . . « GEAR UP »


## PACK VALVE

Select one pack
Check flow bar in-line
Note 1: Selecting both packs simultaneously may affect passenger comfort.
Note 2 : Selecting a pack before reducing T/O thrust may lead to an engine overboost.

## SLATS/FLAPS (and KRUGER)

Retract FLAPS once above acceleration altitude (or once in CLB phase). This ensures that the aircraft is effectively accelerating towards CLB speed.

- At F speed minimum (F on PFD) order FLAPS ZERO »
- SLATS/FLAPS FLAPS 0 When SFPI shows FLAPS ZERO
- Announce "FLAPS ZERO"
- At $S$ speed minimum (S on PFD) order . . . . . . . . . . . . . . . . " SLATS RETRACT » - SLATS/FLAPS handle SLATS 0 When SFPI shows SLATS ZERO.
- Announce "SLATS RETRACTED"

PACK VALVE Set second to ON

Check flow bar in-line

	STANDARD OPERATING PROCEDURES	2.03.12	
		PAGE 3	
	TAKE OFF	REV 24	SEO 001

BOFC=02-0312-003-A001AB


	STANDARD OPERATING PROCEDURES	2.03.12	
		PAGE 4	
	TAKE OFF	REV 28	SEO 001


	STANDARD OPERATING PROCEDURES	2.03.13	
		PAGE	1
	AFTER TAKE OFF	REV 24	SEQ 100

## APU BLEED

If the APU has been used to supply air conditioning during take off, select APU BLEED to OFF. Use of APU BLEED is limited to 20000 ft .

R APU . . . . . . . . . . . . . . . . . . . . . . . . . As req
R IGNITION As req

- Set CONT RELIGHT only if severe turbulence, heavy icing conditions or heavy rain is encountered.

ICE PROTECTION
As req

- ENG ANTI ICE must be ON when icing conditions exist with TAT below $+8^{\circ}$.

SIGNS
.As req

- Set SEAT BELTS sw as required.

TCAS (If installed)
Set to TA/RA
Action required only if the take off has been performed with TA only.

AFTER TAKE OFF/CLIMB
CHECKLIST DOWN TO THE LINE . . . Completed

	STANDARD OPERATING PROCEDURES	2.03.13	
		PAGE 2	
	AFTER TAKE OFF	REV 28	SEQ 001


	STANDARD OPERATING PROCEDURES	2.03.14	
		PAGE 1	
	CLIMB	REV 35	SEQ 020

## ENGINE MONITORING

A difference in EPR between the two engines may be observed during climb up to 14200 ft . This difference has a negligible effect on the aircraft handling.
The EPR difference may be corrected by advancing both throttles levers by at least 2 degrees and then releasing them, returning the thrust control to the A/THR.
This action is sufficient to ensure that both FADEC have switched over from the takeoff phase to the flight phase and, thus, provide consistent EPR CMD computations.

## LANDING LTS

OFF/RETRACT
When reaching the appropriate altitude according to airline policy/local regulations turn off RWY TURN OFF LTS and turn off and retract LANDING LTS.

## FMA

The normal climb mode is P. THR/P.CLB in profile mode.
When selecting a new cleared FL

- FMA indication . . . . . . . . . . . . . Check/Announce

Monitor the progress in climb, particularly when approaching the cleared altitude.

## When 1000 ft below the cleared altitude

- Announce . . . . . . . . . . . . " "one thousand to go"

Refer to 2.03 .30 page 1 for altitude standard calls
Monitor reduction in $\mathrm{V} / \mathrm{S}$ as the cleared altitude is reached. In V/S or LVL/CH mode, monitor ALT* engagement, then ALT at cleared altitude.

## At level off

- FMA indication . . . . . . . . . . . . . Check/Announce


## PF CDU

PROG
PF CDU should be preferably set on PROG page but other pages such as F-PLN may be selected as necessary. With the AP engaged the PF should make any required F-PLN revisions.

## PNF CDU <br> F-PLN

- PNF CDU should be preferably set on F-PLN page (allowing to carry out any ATC long term lateral or vertical revisions).


## CLIMB SPEEDS MODIFICATIONS

If a speed change is required by ATC, for turbulence or operational reasons (e.g. increase climb rate), select new speed using FMS TACT MODE.

ALTIMETERS . . . . . . . . . . . . . . . . . . . . . . . . . Set

- At transition altitude set standard on all altimeters.
- Cross check baro settings and altitude readings.


## CRZ FL

ATC clears the aircraft to intended CRZ FL or above there is no need to modify the CRZ FL inserted in the INIT A page during cockpit prep. Higher CRZ FL will be taken automatically into account by FCU ALT knob selection.
If ATC limits CRZ FL to a lower level than the one inserted in the INIT A page (or present on PROG page) it is necessary to insert this lower CRZ FL in the PROG page. Otherwise there is no transition into CRZ phase: consequently the speed targets and Mach are not modified.
The MAX FL displayed on the PROG page gives at least 0.2 g buffet margin. It is not recommended to fly above this level. If a level higher than MAX FL is entered as the CRZ FL, then the message "CRZ FL above MAX FL" will appear on the CDU.
The OPT FL displayed is a function of the Cost Index and aircraft weight.
Note : At high weight and forward CG, the FMS Maximum Altitude may be higher than the Flight Level Limitations (FCOM 2.01.20) by up to 700 ft . The flight envelope limitations must still be applied.

## AFTER T.O./CLIMB C/L

## BELOW THE LINE <br> Completed

RADAR
Adjust tilt angle depending on aircraft attitude and the selected range of the ND. A slightly negative tilt is required to avoid over-scanning and to provide some ground returns at the top edge of the ND.

## FMS

When time permits :

- Recopy the active flight plan in the secondary if an immediate return flight plan has been constructed.
- Check optimum and maximum altitude capability.

	STANDARD OPERATING PROCEDURES	2.03.14	
		PAGE 2	
	CLIMB	REV 28	SEQ 001


THRUST RATING PANEL	Check
- Check LIM MODE indication CL (Set CR if not in PROFILE).	
ECAM MEMO/Status	Review
ECAM SYS PAGES	Revie

Periodically review system pages and in particular :
ENG : Oil Press and temperature
HYD : Fluid quantities. Green sys is lower than on ground following L/G retraction
AC: GEN parameters, IDG OIL temp
DC : Battery charging status
BLEED : BLEED parameters
COND : Check duct temperature compared with zone temperature. Avoid large difference to improve pax comfort.
PRESS : Check Cabin ALT and V/S.
FUEL : Check distribution
F/CTL : Note any unusual surface position.

## FLIGHT PROGRESS

Check
Flight progress should be monitored in the conventional way.
R When overflying a waypoint :
R - Check the track and distance to the next waypoint.
R When overflying a waypoint, or every 30 minutes:

- Check Fuel : check FOB, Fuel PRED (FMS) and compare with computed Flight Plan or in cruise quick check table (2.17.30).

R - Check that the sum of the fuel on board and the fuel used is consistent with the fuel on board at departure. If the sum is unusually smaller than the fuel on board at departure, suspect a fuel leak.

## CAUTION

This check must also be performed each time a fuel imbalance procedure is necessary.
Perform the check before applying the fuel imbalance procedure. If fuel leak is confirmed, apply the fuel leak procedure.

## OPT FL

Check
Periodically check the OPT and MAX FL to ensure that the aircraft flies as close to the OPT FL as practical.
Allowing the CRZ FL to become significantly below the OPT FL may result in a large increase in fuel burn. Check the CRZ FL against that expected in the flight plan, on which the fuel requirements were based.

## AIRCRAFT TRIMMING

The minimum drag for cruise flight is obtained when the control wheel is neutral. This condition is obtained by the following procedure :

- Ensure symmetrical fuel loading,
- Ensure accurate symmetrical thrust, autothrottle disengaged,
- Engage the autopilot, if not already engaged, in HDG SEL mode and in ALT mode in CMD,
- Adjust the rudder trim in order to get a zero control wheel position (aileron deflection scale on the wheel), between $1.5^{\circ} \mathrm{L}$ and $1.5^{\circ} \mathrm{R}$ is a typical normal range
- Verify that the bank angle is not too large for passengers comfort ( $1.5^{\circ}$ appears to be a reasonable value),
- Check again the lateral trim conditions and retrim if necessary when there is a noticeable change in flight conditions.
- Revert to PROF/NAV mode, as required once trimming is completed.
Note: The same procedure applies to the low speed range of the aircraft inc/uding single engine climbout.


## NAVIGATION ACCURACY <br> Check

Navigation accuracy must be monitored, particularly when " 1 " (IRS only) or "LOW" is displayed on the PROG page.
Insert a VOR/DME ident in the FMS BRG/DIST TO function, check the bearing and distance compared to the same VOR/DME remotely tuned on the PROG page and displayed on the DDRMI.
The check is satisfactory if the difference in the distance is
$\leqslant 3 \mathrm{NM}$ en route
$\leqslant 2$ NM in TMA
$\leqslant 1 \mathrm{NM}$ on approach
If the check is satisfactory : FMS position is reliable.

- ND ARC or MAP and FMS NAV MODE may be used.

If the check is unsatisfactory : FMS position is not reliable.

- Refer to raw data for navigation and monitor.
- If a gross mismatch between display and real position is detected : disengage NAV mode and use raw data navigation (possibly switch to ROSE MODE so as not to be mislead by FMS data).
- Switch off the enhanced functions of the EGPWS via the TERR MODE pushbutton switch located on the Captain's switching panel.
RADAR TILT . . . . . . . . . . . . . . . . . . . . . . . Adjust
A near zero degree tilt setting should be used upto around $20,000 \mathrm{ft}$. If two different ranges are selected on the two NDs, it is recommended to set a downward tilt with the shorter ND range in order to monitor and detect nearby weather activity. A near zero tilt is recommended for the longer range ND in order to identify weather requiring a possible change of course.
At higher altitudes above 20, 000 ft , a slightly downward tilt is recommended for both NDs.

	STANDARD OPERATING PROCEDURESCRUISE	2.03.15	
		PAGE 2	
		REV 28	SEO 001

CABIN TEMP . . . . . . . . . . . . . . . . . . . . Monitor
Regular attention should be paid to the ECAM CRUISE page so that passenger cabin temperatures may be monitored and adjusted as necessary.

Note 1 : It willtake upto 20 minutes for the cabin temperature to stabilize after the adjustment of the COMPT TEMP selectors, so do not chase the ECAM cabin temperature indications. Make one change to the COMPT TEMP selectors then wait for the temperature to stabilize prior to any further adjustments.

Note 2: If the aft galley area temperature becomes too low, the most efficient way to increase the temperature, without making it too hot in the passenger cabin, is to increase the bulk cargo heating (if installed) as long as this is compatible with the load carried.

Descent preparation and approach briefing take approx 10 minutes. So they should be initiated approx 80-100 miles before top of descent.

## ECAM MEMO PAGE <br> Check

- Check STATUS on MEMO page. Review if required.

Take particular note of any landing capability downgrade or any other aspect affecting the approach and landing.

## WEATHER AND LANDING

INFORMATION
Obtain

- Check weather at alternate and destination, including runway in use.
LANDING ELEVATION . . . . . . . . . . . . . . . . . . . . Set
Note 1: If OFE is used set $O$ on LANDING ELEVATION counter.
Note 2: In case the destination field elevation is higher than the actual cruise CAB ALT, combined with low aircraft cruise FL, set the LANDINGELEVATION counter to landing field elevation before initiating the descent, in order to permit CAB ALT to reach the landing field elevation before landing.


## FUEL

- If flig ight has been performed below FL 200, check on ECAM FUEL page that there is less than $2000 \mathrm{~kg}(4400$ lbs) of fuel in trim tank. If there is more than 2000 kg (4400 lbs) of fuel in trim tank, check TRIM TK PUMPS are selected ON and select TRIM TK MODE push-button to FWD position.


## FMS

LANDING DATA . . . . . . . . . . . . . . . . . . . . . Prepare

- Set speed bugs on STBY ASI, VAPP and Green Dot.


## On FMS APPR page

- LANDING CONFIG . . . . . . . . . . . . . . . . . . . Check If landing in $20 / 20$ config, select $20 / 20$ on FMS APPR page.
- MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insert Note : Some authorities may require operators to add a certain number of feet to the MDA.
DESCENT WIND PROFILE
Insert
This insertion, on the DES FORECAST page should be made early to ensure optimum Top of Descent point can be re-computed and ensure that it is ahead of the present position.
If no wind is inserted, wind is computed by interpolation between CRZ wind and no wind at destination.


## For CAT II or CAT III approach :

- DH . . . . . . . . . . . . . . . . . . . . . . . . . Set on FCU
F-PLN . . . . . . . . . . . . . . . . . . . . . . Check/Modify
STAR/APPROACH . . . . . . . . . . . . . Insert
The FMS computes VAPP based on the predicted landing
weight, it is equal to VREF + WIND CORR (entered by crew)
+ 5 kts SThis assumes A/THR is engaged for landing).
The DECEL point, where the aircraft should start to
decelerate is computed based on the inserted flight plan
route and wind profile.
. . . . Set on FCU
F-PLN Insert
The FMS computes VAPP based on the predicted landing weight, it is equal to VREF + WIND CORR (entered by crew) The DECEL point where the aircraft should start to decelerate is computed based on the inserted flight plan route and wind profile.


## NAVAIDS

Check
Set Navaids as required and check idents.
If a VOR/DME exists close to the airfield, it should be selected systematically and its ident should be set on PROG page BRG/DIST TO field for navigation accuracy monitoring during descent.
GO AROUND page . . . . . . . . . . . . Check/Modify Check/modify the THR RED ALT and ACC ALT.
SEC F-PLN page . . . . . . . . . . . . . . . . . . . As req If weather is OK, SEC F-PLN can be used for setting another possible approach and/or RWY as a backup at destination airfield.
If there is a last minute RWY change, it is then only necessary to activate SEC F-PLN not forgetting to set new MDA/DH and navaids.

## APPROACH BRIEFING

It is recommended to use FMS pages and ND as a guide for descent and approach briefing. Main points to be covered are :

Navaid
F-PLN page
APPR page
FUEL PRED

- ILS, VOR selection procedures and crossing altitudes.
- STAR, APPR, TRANS, MISSED APPROACH
- Landing Config, speeds, MDA,
- Fuel needed for diversion, holding fuel available.
- Runway conditions, lighting and dimensions
- Ground Spoiler, reverse operation and autobrake selection
- Terminal area topography, transition level and minimum safe altitudes to ensure a proper terrain awareness.
- Weather at destination
- Go Around :
- Standard call/task sharing

Diversion decision
Note: If AP disengaged, it is recommended to descend at Mach 0.8 or below to avoid alpha-trim activation.
DESCENT CLEARANCE . . . . . . . . . . . . . . . . Obtain
WHEN DESCENT CLEARANCE IS GIVEN BY ATC

- FCU ALT KNOB . . . TURN to select cleared altitude
- FCU ALT KNOB . . . . . . . . . . . . . . . . . . . . . . Pull
- P. THR/P. DES armed . . . . . . . . . . . . . Check FMA

IMM DES prompt is displayed on FMS CDU
ANTI ICE . . . . . . . . . . . . . . . . . . . . . . . . . . As req
During descent ENG ANTI ICE should be ON when icing conditions are met, or when moderate to severe precipitation is encountered.

## IGNITION

As req
Ignition should be selected to CONT RELIGHT prior to ENG ANTI ICE selection.

	STANDARD OPERATING PROCEDURESDESCENT PREPARATION	2.03.16	
		PAGE 2	
		REV 28	SEQ 001


	STANDARD OPERATING PROCEDURES	2.03 .17	
		PAGE 1	
	descent	REV 35	SEQ 001

## DESCENT INITIATION

Descent will be initiated automatically in profile mode at the Top of Descent (T/D) point, provided a lower altitude has been preset on the FCU.
The FMS will hold the CRZ FL until the top of descent.
30 seconds before reaching the T/D, P. DES will flash to indicate that the descent will be initiated without any further pilot action.

- If ATC requires an early descent.

The descent may be initiated immediately (before reaching T/D) by pressing IMM DES prompt on CDU. In this case the descent will be performed at $1000 \mathrm{ft} / \mathrm{min}$ (this value can be changed on CDU) until the precomputed path is reached.

- If the descent is delayed by ATC

When passing the T/D the aircraft stays at the CRZ ALT as no lower altitude has been selected on the FCU. DECEL prompt is displayed in line 1R. Pressing this prompt reduces speed to green dot (highest of PFD and FMS values if they are different). As soon as clearance is given by ATC, select the cleared ALT on the FCU, select desired descent speed on the FCU, then pull the FCU speed/Mach knob. The descent will now be initiated in LVL/CH mode.

## DESCENT MONITORING

PF CDU . . . . . . . . . . . . . . . . . . . . . . . . . . . . PROG

- PF CDU should preferably be set to PROG page in order to see the VDEV and DIST TO DEST information. Other pages such as F-PLN may be selected as necessary. With AP engaged PF should make any required F-PLN revisions.

PNF CDU . . . . . . . . . . . . . . . . . . . . . . . . . . F-PLN

- Descent monitoring can be achieved as follows :
- When flying in NAV mode, PROFILE mode is most probably used. P.DES indicated on the FMA. The aircraft descends along the descent flight path : VDEV is provided on PROG page, and may be thus monitored. All constraints of the FPLN will be taken in to account by the FMS.
- When flying in HDG (TRK) mode out of the lateral F.PLN, PROFILE DESCENT should not be used. PROG page displays flight plan distance to DESTINATION and can display BRG/DIST to DESTINATION if selected. The comparison of this data is useful to monitor the descent.
The level $\longrightarrow$ symbol, on ND may be used to monitor the descent as well.
The predictions on CDU assume a return to the FPLN path.

From time to time, during stabilised descent select FPA on PFD and check that remaining distance to destination is approximately the FL change required divided by FPA in degrees.

$$
\operatorname{FPA}\left({ }^{\circ}\right)=\frac{\triangle \mathrm{FL}}{\operatorname{DIST}(\mathrm{NM})}
$$

When each new descent clearance is given by ATC
Cleared level . . . . . . . . . . . . . . . . . . . . Set on FCU FMA indication Check/Announce Cleared ALT on PFD . . . . . . . . . . . . . . . . . . . Check Check MSA and ensure that the aircraft does not descend below MSA. Monitor progress in the descent, particularly when approaching the cleared altitude.

## When 1000 Ft above the cleared altitude.

Announce . . . . . . . . . . . . . . "one thousand to go"
Refer to 2.03 .30 page 1 for altitude standard calls
Monitor reduction in V/S as the cleared altitude is reached. In V/S or LVL/CH mode, monitor ALT* engagement, then ALT at the cleared altitude.

## At level off

FMA indication . . . . . . . . . . . . . . . Check/Announce
Note : In PROFILE mode, the descent is performed at idle thrust, maintaining the required descent path by pitch control. Thus the aircraft speed will vary with the pitch and is not directly controlled.
However, if the speed varies by more than 20 kt from the FMS target speed (most probably due to lack of sufficient, or accurate descent wind inputs) the following will occur:
If the Speed is 20 kt above the target, or reaches VMAX-2Kt, "MORE DRAG" flashes on the PFD. The SPD BRK should be extended. The message will flash until the speed is within 5 kt of the target.
If the speed is 20 kt below the target or 10 kt below Green Dot, and the SPD BRK is extended, the message "LESS DRAG" is displayed on the CDU. The SPD BRK should be retracted. If the SPD BRK is not extended, the aircraft reverts to P. SPD mode, power is increased and the target speed re-captured.

	STANDARD OPERATING PROCEDURES	2.03.17	
		PAGE	
	DESCENT	REV 36	SEO 103

## DESCENT ADJUSTMENT

If an increased rate of descent is desired :

- Increase descent speed (by use of LVL/CH and selected speed) if comfort and ATC permit. This is economically better (Time / Fuel).
- Maintain high speed as long as possible (SPD LIM may be cleared, subject to ATC clearance).
- If aircraft is high with high speed, it is more efficient to keep high speed until lever off and then decelerate rather than to mix descent and deceleration.

If the aircraft goes below the desired profile, use SPD $\mathrm{V} / \mathrm{S}$ mode to adjust rate of descent.

- SPEED BRAKE As req
In descent speedbrake may be used to increase the rate of descent. Half speedbrake extension may be used to maintain the required rate of descent when engine anti ice is used.
In Profile descent (P.DES) if the aircraft is on or below the flight path and ATC requires an increased rate of descent, do not use speed brake on its own since rate of descent is dictated by planned flight path. In this case select MAX DES mode on TACT page with speed brake.
Note : 1. Use offullspeedbrake above 0.78Mis uncomfortable for passengers.

2. With ANTI-ICE ON engine thrust is increased which will reduce the descent path angle at idle. This can be compensated for by an increase of descent speed, or by extending half speed brake.
3. Do not use speedbrake in 30/40 config.
4. Do not change speedbrake position during configuration changes.
RADAR TILT Adjust

Every 10000 ft during descent down to around 15000 ft , adjust the tilt angle slightly upwards to eliminate excessive ground clutter on the upper part of the ND.
From 15000 ft , adjust the tilt angle by one degree upwards per 5000 ft descent, in order to keep the ND relatively free of ground clutter.

## EGPWS

R Consider switching TERR pushbutton to ON ND, depending R on external conditions (mountainous area, low ceiling, R low visibility).

If the use of radar is required, consider selecting radar display on PF side, and TERR ON ND on PNF side only.

## ALTIMETERS

Set
Set QNH (OFE if required) on all altimeters when approaching the transition altitude and when cleared for an altitude.
. Crosscheck baro settings and altitude readings.
Note : When operating in low OAT, altitude corrections as defined in 2.08.10 page 4 should be considered.

Navigation accuracy . . . . . . . . . . . . . . . . . Check
When reaching Terminal Area, (approximately 50NM from the destination) crosscheck navigation accuracy as defined in 2.03.15 page 1.

	STANDARD OPERATING PROCEDURES	2.03.18	
		PAGE 1	
	STANDARD APPROACH	REV 32	SEQ 170

The following approach procedure assumes AP engaged in PROFILE mode and A/THR engaged, which is the recommended procedure.

## INITIAL APPROACH <br> IGNITION <br> CONT RELIGHT

## SIGNS <br> SEAT BELTS sW . . . . . . . . . . . . . . . . . . . ON/AUTO

## EXT LTS <br> As req

R - Set RWY TURN OFF lights and LAND lights ON at FL 100. Use LAND lights as per company policy/regulatory recommendation

## POSITIONING

Check aircraft positioning for a smooth transition to the approach.

Rule of thumb : 9000 ft at $250 \mathrm{Kt}-30 \mathrm{NM}$ to touchdown

## NAV/COM FREQ

Check/Set
Set VHF as required
Set ILS frequency and course
Set VOR/NAV/ILS switch to ILS as required

## APPROACH SPEED

If ATC requires a particular speed to be flown then use selected speed. When ATC speed constraint no longer applies, return to profile mode.

## NAVIGATION ACCURACY

Check
Monitor navigation NAV accuracy and be prepared to change approach strategy, particularly when IRS ONLY NAVIGATION is displayed.
Refer to the FCOM 2.03.15 page 1 for the navigation accuracy check method.

If navigation accuracy is greater than 1 NM
ND must be used in ROSE or ARC mode by PF
NAV mode should not be used, use HDG SEL.
Switch off the enhanced functions of the EGPWS via the TERR MODE pushbutton switch located on the Captain's switching panel.

## RADAR TILT

Adjust
Increase tilt as required to keep the ND clear of ground clutter.
ND
Set/Check
PF ND MODE
E . . . . . . . . . . . . MAP for ILS approach otherwise depending on the FMS accuracy
PNF ND MODE $\qquad$ MAP may be kept ND RANGE . . . . . . . . . . . . . . . . . . . . Select 15 NM DH Check
Both CM1 and CM2 confirm DH setting on EFIS control box in accordance with company policy.
For CAT 1 precision approaches, or non-precision approaches, set the CAT 1 DH or MDA using the altimeter amber index and set a DH $=-5$ on the EFIS control panel to cancel the "MINIMUM" auto call-out.
For CAT 2 or CAT 3 approaches, set DH on the EFIS control panel to provide "MINIMUM" auto call-out based on radio altimeter height.

## APPROACH CHECK LIST

## FINAL APPROACH

The following procedure assumes an ILS approach with one AP engaged in CMD and $A / T H R$ engaged which is the recommended procedure.
R Conducting a stabilized approach is recommended. The R objective is to be stabilized on the final descent path at $R \quad$ VAPP in the landing configuration, at 1000 ft AAL in IMC,
R or at 500 ft AAL in VMC after continuous deceleration on
$R \quad$ the glide slope.
R To be stabilized, all of the following conditions must be
R achieved prior to, or upon reaching this stabilization
R height:

- the aircraft is on the correct lateral and vertical flight path,
- the aircraft is in the desired landing configuration,
- the power is stabilized and the aircraft is trimmed to maintain VAPP on the desired glide path,
- no excessive flight parameter deviation.

The advantages are:

- Lower fuel consumption
- Lower noise levels
- Time saving
- Flexibility and ability to vary speed to suit ATC.
$R$ If the aircraft is not stabilized on the approach path in
R landing configuration at 1000 ft AAL in IMC, or at 500 ft
R AAL in VMC, or as restricted by Operator policy/regulations,
R a go-around must be initiated unless the crew estimates
R that only small corrections are necessary to rectify minor
$R$ deviations from stabilized conditions due, amongst others,
R to external perturbations.
FCU . . . . . . . . . . . . . . . . . . . . . . . Green dot speed
HDG SEL . . . . . . . . . . . . . . . . . . . . . . . . . . As req
Airspeed . . . . . . . . . . . . . . . . . . . Check below VFE
Order . . . . . . . . . . . . . . . . . . . . . . "SLATS extend"
Announce . . . . . . . . . . . . . . . . . . . "Speed checked"
SLATS 15 . . . . . . . . . . . . . . . . . . . . . . . . . . Select
Slats 15 should be extended not later than 3NM prior to
the FAF (Final Approach Fix)
When SLATS 15 on SFPI
Announce . . . . . . . . . . . . . . . . . "SLATS extended"
FCU . . . . . . . . . . . . . . . . . . . . . . . S Speed
Check deceleration towards $S$ speed.
The aircraft should be established on the glide slope with Slats 15 at S Speed at or above 2000 ft AGL.
- In the event that a/c speed is significantly higher than S on the G/S, or the a/c does not decelerate on the G/S, extend the L/G in order to slow the a/c down.


## GPWS

If landing is planned to be performed in $\mathrm{S} 20^{\circ} / \mathrm{F} 20^{\circ}$ landing configuration select GPWS LANDING SLATS/FLAPS switch to 20/20.
Landing with Flaps 20 is recommended in windshear conditions or if approach climb requirements cannot be met with Flaps 40.

## WHEN CLEARED FOR FINAL APPROACH

LAND pb on FCU . . . . . . . . . . . . . . . . . . . . . . Press
This enables LOC and G/S capture.

Note : Arm the LAND mode only when ATC gives clearance for the ILS approach (clearance for both LOC and G/S capture). If only LOC capture required, use V/L mode until clearance for full ILS received.
2ND AP

As req

AUTOLAND lights Test For CAT 2 or 3 autolands only, check the AUTOLAND lights illuminate. This test checks the flight warning computer monitoring of autoland functions.

```
FMA
Check/announce
TCAS (If installed) Set TA/As req
```

TA only mode should be selected in the following cases :

- known nearby traffic which is in visual contact
- at particular airports and during particular procedures identified by an operator as having a significant potential for unwanted or inappropriate RAs (closely spaced parallel runways, converging runways, operation in airport with low terrain along the final approach...)
LOC CAPTURE
Monitor
Announce "LOC*"
At LOC capture, NAV or HDG is disengaged automatically. Check correct ILS course set.
RWY HDG . . . . . . . . . . . . . . . . . . . . . . . . . . . Set
G/S CAPTURE . . . . . . . . . . . . . . . . . . . . . Monitor
- If above the glideslope

V/S mode . . . . . . . . . . . . . . . . . . . . . . . . . Select
FCU altitude . . . . . . . . . . . . Set above A/C altitude
Announce . . . . . . . . . . . . . . . . . . . . . . . . . "GS*"
GO AROUND ALT . . . . . . . . . . . . . . . . . . . . . . . Set

Between 2500 ft and 2000 ft AGL
RAD ALT . . . . . . . . . . . . . . . . . . . . . . . . . CHECK
Announce "RAD ALT ALIVE"
Note : Crew should now keep RA in scan to landing.

## At 2000 ft AGL Minimum

Final deceleration sequence from SLATS $15 / \mathrm{S}$ speed to FLAPS 40/VAPP

SPD BRK	Check retracted
Airspeed	Check below Vfe
Order	"FLAPS 20"
Announce	"Speed checked"
FLAPS 20	Select


	STANDARD OPER
FCU	Vapp
If $A / T H R$ is OFF THROTTLES	Id
When FLAPS 20 on SFPI	
L/G LEVER	DOWN
GND SPOILERS	. ARM
When L/G down	
Announce . . . . . . . . . . . . . . . . . . "GEAR DOWN"	
Check "3 green" on landing gear main indication panel. BRAKE YELLOW HYDRAULIC PRESSURE	
- If residual pressure is indicated :	
- Depress several times the brake pedals until release of residual pressure	
- If residual pressure remains :	
- Select preferably the AUTOBRAKE system or apply brakes at touchdown.	
- A slight brake deflection ( $3^{\circ}$ ) will supersede any previous yellow pressure.	
Note : Ifantiskid is inoperative maintain a symmetrical braking as soon as aircraft touchdown.	
AUTO BRK . . . . . . . . . . . . . . . . . . . . . . . As req	
- The use of autobrake is recommended. Select the appropriate pushbutton according to the runway length and conditions and check related ON light illuminated.   The use of MAX is not recommended at landing.	
- When landing on short or contaminated runway or when operating in low visibility weather conditions use MED mode.	
- On a normal runway length LO mode is recommended. It is recommended to use max reverse thrust until 80 kt . Then idle reverse and brakes, as necessary, according to the remaining distance.	
Note: If, on very long runways, the pilot anticipates that braking will not be needed, use of the autobrake is unnecessary.	
Order . . . . . . . . . . . . . . . . . . . . . . . . . FLAPS 40	
FLAPS 40 . . . . . . . . . . . . . . . . . . . . . . . . Select	
BRK/A-SKID . . . . . . . . Check NORM/ON position	
ECAM wheel page . . . . . . . . . . . . . . . . . . Check	
Check 8 brake release indications	
When Flaps 40 on SFPI	
Announce . . . . . . . . . . . . . . . . . . . . . "FLAPS 40"	
Check speed approaching Vapp	
The approach must be stabilized with FLAP 40/VAPP by 500 ft min. in VMC, 1000 ft min in IMC, otherwise a Go around must be initiated.	

## If $A / T H R$ is not engaged : <br> THROTTLES Adjust

WING ANTI-ICE
OFF
Only use WING ANTI ICE in case of severe icing conditions
EXT LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . ON
Set NOSE sw to TAXI
Selecting lights on even in daylight will minimize bird strike hazard.

CABIN REPORT . . . . . . . . . . . . . . . . . Received
Obtain cabin report and advise cabin crew of landing.
LANDING CHECKLIST
Completed

## FLIGHT PARAMETERS

Check
PF announces any FMA modification
PNF calls out :

- Pitch attitude becomes lower than $0^{\circ}$ or greater than $10^{\circ}$ nose up
- Bank angle becomes greater than $7^{\circ}$
- V/S greater than $1000 \mathrm{ft} / \mathrm{min}$
- Airspeed deviations of more than + 10 kt or -5 kt
- Excessive LOC or GLIDE deviation occurs : 1/4 dot LOC
1 dot GS
- Any significant changes in ground speed that might indicate windshear.
If a call out occurs during the final approach, a go around must be initiated.


## At 400 ft AGL

Check/Announce
"LAND"
R

## At DA + 100 ft

"ONE HUNDRED ABOVE"

## At DA

Monitor or announce . . . . . . . . . . . "MINIMUM"

## Announce . "CONTINUE" or "GO AROUND FLAPS"

Do not "duck under" the G/S. Maintain a stabilized flight path down to the flare.
Note: Close to the ground, avoid important down corrections. Give priority to attitude and sink rate.

## AUTO CALL-OUT

Monitor
or announce appropriate heights as per company policy At 50 ft , aircraft one dot below $\mathrm{G} / \mathrm{S}$ is 7 ft below $\mathrm{G} / \mathrm{S}$.

	STANDARD OPERATING PROCEDURES	2.03 .18	
		PAGE 4	
	STANDARD APPROACH	REV 30	SEQ 001


BOFC-02-0318-004-4001AA
PERFORMED MANUALLY OR WITH AP ENGAGED ON A STABILIZED FINAL SLOPE OF ABOUT $3^{\circ}$ (VISUAL OR ILS APPROACH)


	STANDARD OPERATING PROCEDURES	2.03.19	
		PAGE 1	
	VISUAL APPROACH	REV 36	SEO 001

## INTRODUCTION

This procedure provides general guidelines to perform a visual approach. In every case, if a visual approach has been published for the landing runway, it must be applied.
Note : Keep in mind the possible risk of optical illusions due to night vision.

## OBJECTIVE

The objective is to approach using visual references on a nominal 3 degree glideslope and to be stabilized at 500 ft AAL.
To be stabilized, all the following conditions must be achieved before or when reaching this stabilization height :

- the aircraft is on the correct lateral and vertical flight path,
- the aircraft is in the desired landing configuration,
- the power is stabilized and the aircraft is trimmed to maintain VAPP on the desired glide path,
- no excessive flight parameter deviation.

If the aircraft is not stabilized on the approach path in landing configuration at 500 ft AAL, or as restricted by Operator policy/regulations, a go-around must be initiated unless the flight crew estimates that only small corrections are necessary to rectify minor deviations from stabilized conditions due, amongst others, to external perturbations.

## METHOD FOR VISUAL APPROACH

- The autopilot should be disconnected.
- The use of the FPV is recommended.


## VISUAL CIRCUIT

## INITIAL/INTERMEDIATE APPROACH

The flight plan selected on the CDU should include the selection of the LANDING RWY.
The down wind leg might be also part of the F PLN. This may be a useful indication of the aircraft positionning in the circuit, on the ND. However visual references must be used.

Therefore, at beginning of down wind leg :

- Select FPV ON
- The use of $A / T H R$ is at pilot's discretion.
- Apply the flight pattern (2.03.19 page 2) Down wind leg extension 45 seconds ( $\pm$ wind correction)
Turn into base leg - Bank $30^{\circ}$ max.


## FINAL APPROACH

- The speed trend arrow and FPV are useful for achieving timely and correct thrust (if in manual thrust) and approach path corrections. Avoid descent through the correct approach path with idle thrust. (Late recognition of this situation without prompt thrust increase may lead to considerable speed decay and altitude loss).
- Avoid any tendency to "duck under" in the latter stages of the approach.
- Avoid destabilization of the approach in the last 100 ft to give the best chance of achieving a good touch down at the desired position.

Note: Close to the ground, avoid important down corrections. Give priority to attitude and sink rate.

	STANDARD OPERATING PROCEDURES	2.03.19	
		PAGE 2	
	VISUAL APPROACH	REV 29	SEQ 001




## INTRODUCTION

This procedure contains recommendations that are specific to Non Precision Approaches.
The standard approach procedure steps have not been repeated. They must be completed before the Final Approach Fix.
This procedure provides general guidelines which may be adapted according to the airline policy and/or the actual flight conditions.

## APPLICABILITY

This procedure applies to all non-ILS approaches, e.g. NDB, VOR, VOR-DME, LOC ONLY, LOC-DME.
R For LOC BACK COURSE refer to Procedures and Techniques R chapter Use of AFS.

## APPROACH GUIDANCE

Non Precision Approaches can be performed using two different AP/FD guidances :

- FMS guidance :

NAV mode down to the MDA or until LOC interception (lateral)
PROFILE mode until FAF then V/S mode down to the MDA (vertical).

- Selected guidance :

HDG SEL mode down to the MDA (lateral) or until LOC interception
V/S mode after leaving the FAF down to the MDA (vertical)
When the approach is stored in the NAV database and the NAV ACCURACY check is positive, the FMS guidance is recommended. Otherwise, the selected guidance must be used.
In both cases, the recommended flight reference display for a Non Precision Approach is the FPV/FPR.

## APPROACH SPEED TECHNIQUE

The standard speed technique is a stabilized approach using AP engaged in CMD mode and A/THR engaged in SPD mode. This enables the aircraft to intercept the final descent path in the landing configuration and at VAPP, thrust above idle.

## INITIAL APPROACH

## NAVIGATION ACCURACY

CHECK
Check navigation accuracy using navaids raw data to determine approach strategy.

## REFERENCE NAVAIDS

TUNED/CHECKED
For VOR approach, tune frequency and course on VOR control panel and check VOR is also tuned on CDU.
MDA (MDH)
CHECK/SET
Set MDA (MDH) using the altimeter amber index and set a DH $=-5$ on the EFIS control panel to cancel the "MINIMUM" auto call out.

- If accuracy check is positive :

ND . . . . . . . . . . . . . . . . . . . . . . . both in MAP
FMS GUIDANCE . . . . . . . . . . . . . . . . . . . . . USE
VOR/NAV/ILS switches . . . . . . . . . BOTH IN NAV
For a LOC approach, revert to ILS position prior to LOC interception.

- If accuracy check is negative :

PF ND . . . . . . . . . . . . . . . . . . . . . ROSE or ARC
PNF ND . . . . . . . . . . . . . . . MAP or ROSE or ARC
SELECTED GUIDANCE . . . . . . . . . . . . . . . . . USE
PF VOR/NAV/ILS switch . . . . . . . . . . . VOR or ILS
PNF VOR/NAV/ILS switch . . . . . . . . . . . AS RQRD
FPA/CRS target . . . . . . . . . . . . . . . . . . . . . . . . SET
For NDB approach, set final approach course on ILS control panel.
APPROACH CHECKLIST
COMPLETE

## INTERMEDIATE APPROACH

The STANDARD APPROACH steps to prepare the aircraft for landing (L/G down, spoilers armed, Flaps 40, speed Vapp) should be performed before reaching the FAF.
The objective is to be stabilized on the final descent path at VAPP in the landing configuration, at 1000 ft AAL in IMC, or at 500 ft AAL in VMC.
To be stabilized, all of the following conditions must be achieved prior to, or upon reaching this stabilization height:

- the aircraft is on the correct lateral and vertical flight path,
- the aircraft is in the desired landing configuration,
- the power is stabilized and the aircraft is trimmed to maintain VAPP on the desired approach path,
- no excessive flight parameter deviation.

If the aircraft is not stabilized on the approach path in landing configuration, at 1000 ft AAL in IMC, or at 500 ft AAL in VMC, or as restricted by Operator policy/regulations, a go-around must be initiated unless the crew estimates that only small corrections are necessary to rectify minor deviations from stabilized conditions due, amongst others, to external perturbations.

## FINAL APPROACH

## FD/FPV switch

SELECT FPV
Select FPV just before FAF at the latest. The FPR is displayed only if the VOR/NAV/ILS switch is in VOR or ILS position.

## - At FAF :

V/S . . . . . . . . . . . . . . . . . . . . . . . . . . SELECT
Set pre-calculated V/S required to obtain desired FPA.

- If ND is in MAP mode :

> VOR/NAV/ILS switch . . . . . . .in;:. . . . . . ILS

ILS must be selected to cancel V/DEV scale.
GA ALTITUDE . . . . . . . . . . . . . . . . . . . . . . . SET
Set when below the go around altitude.

	STANDARD OPERATING PROCEDURES	2.03.20	
		PAGE 2	
	NON PRECISION APPROACH	REV 35	SEO 001

- During final approach :


## POSITION and FLIGHT PATH

CHECK/ADJUST

- Monitor reference navaid raw data.
- Monitor altitude in relation with the published descent profile and the distance to the runway.
- Adjust HDG SEL and V/S accordingly.
- If FMS NAV is not satisfactory, revert to HDG/SEL.


## LANDING CHECKLIST

$\qquad$ COMPLETE

FLIGHT PARAMETERS CHECK
PF announces any FMA modification.
PNF calls out if :

- Speed becomes lower than VAPP - 5 kt or greater than speed target + 10 kt .
- Pitch attitude becomes lower than $-2.5^{\circ}$ or greater than $10^{\circ}$ nose up.
- Bank angle becomes greater than $7^{\circ}$.
- Descent rate becomes greater than $1000 \mathrm{ft} / \mathrm{min}$.
- Any significant changes in ground speed that might indicate windshear.
If a call out occurs during the final approach, a go around must be initiated.
- At MDA (MDH) + 100 ft :

HUNDRED ABOVE
ANNOUNCE

- Reaching MDA (MDH) :
- When visual references are acquired and confirmed by both PF/PNF :

Continue as visual approach with the standard call outs.

AP
OFF
Note : Close to the ground, avoid important down corrections. Give priority to attitude and sink rate.

- If no visual references are acquired :
- At MDA (MDH) and VDP :

GO AROUND/FLAPS
ANNOUNCE
Initiate go around.

Note: In selected guidance, if ground references are not visible when the aircraft reaches MDA, an immediate go around must be initiated.
However, if the distance to the runway is not properly assessed, a step descent approach may be considered and a level off at MDA may be performed, using ALT HOLD to leve/ off not lower than MDA, while searching for visual references. If the pilot has no visual reference at MAPt at the latest, he must begin a go around.

	STANDARD OPERATING PROCEDURES   NON PRECISION APPROACH   LOW VISIBILITY CIRCLING APPROACH	2.03.20	
		PAGE 3	
		REV 30	SEQ 001

R Note: This pattern illustrates a low visibility circling approach and does not refer to a non precision approach as described in 2.03 .20 p 1 and 2.
BOFC-02-0320-003-A001AA


	STANDARD OPERATING PROCEDURES	2.03.20	
		PAGE 4	
	NON PRECISION APPROACH	REV 29	SEQ 001


	STANDARD OPERATING PROCEDURES	2.03.22	
		PAGE 1	
	LANDING	REV 35	SEQ 001





	STANDARD OPERATING PROCEDURES	2.03.22	
		PAGE 2	
	LANDING	REV 31	SEQ 001




	STANDARD OPERATING PROCEDURESLANDING	2.03.22	
		PAGE 3	
		REV 23	SEQ 001


BOFC-02-0322-003-A001AB


	STANDARD OPERATING PROCEDURESLANDING	2.03.22	
		PAGE 4	
		REV 30	SEO 100

GROUND CLEARANCE DIAGRAM


	STANDARD OPERATING PROCEDURES	2.03.22	
		PAGE 5	
	LANDING		FEB 08



## THROTTLES

Monitor idle

- Monitor throttles reduction to idle at 30 ft .
- If A/THR is not engaged, retard throttles to idle.
$R$ - If $A / T H R$ is engaged, it automatically disconnects $R \quad$ when both throttles are at idle position.

Note: If one or both thrust levers remain above the IDLE position, ground spoilers extension is inhibited.

## AT TOUCHDOWN



GROUND SPOILERS
Check extension

- Check ground spoilers extension after touch down on ECAM system display.
- If no ground spoilers are extended: R
- Verify and confirm that both thrust levers are $R$ at idle position $R$
- Set both thrust levers to REV MAX, and fully R press the brake pedals. R
Note : If ground spoilers are not armed they extend $R$ at reverser thrust selection. R
REVERSERS . . . . . . . . . . . . CHECK/ANNOUNCE R
- Check reverse deployment is as expected (REV R green).
DIRECTIONAL CONTROL
Rudder pedals
- Do not use NWS Control handle before taxi speed is reached
BRAKES . . . . . . . . . . . . . . . . . . . . . . . As req
- Apply brakes as required or monitor autobrake. When autobrake is used the PF should be ready to takeover and apply manual braking as required. Note: If no ground spoilers are extended, the autobrake is not activated.


## CAUTION

If brakes are found inoperative, switch immediately BRK-A/SKID to ALTN/OFF and modulate brake pressure as required at or below 1000 PSI.
Brake pedals should be released when the A/SKID is switched OFF. Otherwise the pedal braking orders will be taken into account and the aircraft will react

DECELERATION
.ANNOUNCE

- The deceleration is felt by the flight crew, and $R$ confirmed by the speed trend on the PFD.

AT 80 KTS or IAS FLUCTUATIONS . . . Announce


## FROM STABILIZED APPROACH CONDITIONS, THE FLARE HEIGHT IS ABOUT 30 FT

```
FLARE
ATTITUDE
 Perform
MONITOR
PNF should monitor the attitude and call out :
 PITCH PITCH when pitch reaches 9}\mp@subsup{9}{}{\circ
 - BANK BANK when bank reaches 7}\mp@subsup{7}{}{\circ
Note : Do not flare too high or with too high pitch attitude.
 Tailstrike will occur at + 13 pitch.
 The pilot's objective, with respect to vertical
 navigation, is to maintain a constant flight path
 angle down to the runway threshold, using the
 vertical deviation indication of an ILS. However,
 when approaching flare height, the pilot's primary
 objective will shift from vertical flight path control
 to safe pitch attitude and vertical speed to start the
 flare in good conditions.
```

THROTTLES ..... Monitor idle

- Monitor throttles reduction to idle at 30 ft .If A/THR not engaged retard throttles to idle.


## AT TOUCHDOWN

REVERSE LEVERS ..... Pull

- Immediately after touch down of main landing gear, pull reverse levers to the idle reverse point, when REV (green) appears, apply max reverse.
- After reverse thrust is initiated, a full-stop landing must be performed.

Note 1: Maximum efficiency of the reverse is obtained at high speed.
Note 2 : Do not move reverse levers towards stow position while reversers are in transit ; such action may cause system damage.
Note 3: If one or both REV UNLK It remains on, apply reverse normally.
Note 4: If the use of max reverse is restricted due to noise consideration, maintain reverse idle until taxi speed is reached.
Note 5: If directional control problems are encountered, reduce thrust to reverse idle until directional control is satisfactory.

- MAX. REVERSE THRUST. . . . . . . . . . . . . . . Apply
- N1, EGT and IAS Monitor


## GROUND SPOILERS check extension

- Check ground spoilers extension after touch down on ECAM system display.
Note : If ground spoilers are not armed they will extend when reverse is selected.

DIRECTIONAL CONTROL
Rudder pedals

- Do not use NWS Control handle before taxi speed is reached


## BRAKES

As req

- Apply brakes as required or monitor autobrake When autobrake is used the PF should be ready to take over and apply manual braking as required.


## CAUTION

If brakes are found inoperative, switch immediately BRK-A/SKID to ALTN/OFF and modulate brake pressure as required at or below 1000 PSI .
Brake pedals should be released when the A/SKID is switched OFF. Otherwise the pedal braking orders will be taken into account and the aircraft will react strongly.

## AT 80 KTS or IAS FLUCTUATIONS <br> Announce

REVERSE
Idle

## AT TAXI SPEED :

REVERSE

- Stow the reverse when taxi speed is reached and before leaving the runway.

CAUTION
Do not recycle if reverse fails to stow. Engine shut down is recommended.

## CAUTION

On taxiways, the use of reverse, even restricted to idle thrust, may have the following effects :

- Fine sand and debris may be ingested which might be detrimental to both the engine and airframe systems.
- On snow covered areas, snow will be recirculated into the air inlet, which may result in engine flame out or roll back.

Except in an emergency, reverse thrust should not be used to control aircraft speed while taxiing.

	STANDARD OPERATING PROCEDURESLANDING	2.03.22	
		PAGE 6	
		REV 28	SEO 001

LEFT BLANK INTENTIONALLY

## To initiate Go Around, simultaneously :

R	Announce . . . . . . . . . . . . "GO AROUND-FLAP
$R$ $R$ $R$ $R$	Announce GO AROUND. When "GO-AROUND-FLAPS" is called, PNF retracts FLAPS one step and announce the new FLAP position when indicated.
	GO LEVERS   Trigger   Note : Triggering one GO LEVER is sufficient to initiate GO AROUND.
	THROTTLE LEVERS . . . . . . . . . GO AROUND thrus
	Follow through on THROTTLE LEVERS if ATS is armed or manually set GO AROUND thrust if ATS is not armed.
	PF should be ready to override or disconnect the autothrottle function in case of thrust asymmetry and to counteract aircraft yaw.

## ROTATION

Perform
Rotate the aircraft at a rate of typically 3 degrees per seconds.
Set a 18 degrees pitch attitude then follow the SRS orders if available (not exceeding 18 degrees) or maintain 18 degrees.
As thrust increases, be prepared to counteract the thrust pitch-up moment.
Trim the aircraft nose down as required. The pitch attitude should not be allowed to develop beyond 25 degrees, as such a pitch attitude would result in a significant speed loss.

An immediate and firm elevator nose down command (together with a nose down pitch trim order) would allow to recover the target pitch attitude.
FMA indication
Announce
Check THR, GO ÄRÖU̇ND
Note: FMS CDU automatically switches to GO AROUND page.
FLAPS Retract one step
Announce new FLAP positon when indicated.
THRUST . . . . . . . . . . . . . . . . . . . . . . Check/Adjust
Announce . . . . . . . . . . . . . . . . . . "Positive climb"
Order . . . . . . . . . . . . . . . . . . . . . . . . . . "GEAR UP"
L/G UP

## FLIGHT PARAMETERS MONITOR

## Monitor :

the airspeed and speed trend,

- the pitch attitude and bank angle
the thrust increase (GA thrust on the TRP and on N1/EPR indicators).

A call out must be made in case of excessive deviation :
. speed dropping below VLS - 5 KT
. speed trend negative

- pitch attitude in excess of 20 degrees
. bank angle in excess of 15 degrees ( 30 degrees if the missed approach procedure requires a turn)
. significant thrust loss.

```
NAV or HDG mode
Select
Announce . "GEAR UP"
```

L/G . . . . . . . . . . . . . . . . . . . . . . . . . . Neutral

## At thrust reduction altitude

## Set CL on TRP.

THROTTLES . . . Check symmetrical retard movement
Note : In case of asymmetrical throttle retard movement, A/THR should be disconnected and thrust manually set.

## At GA acceleration altitude

SPD/MACH

Select 250 Kt
LVL/CH Select

- Retract slats/flaps on schedule

MISSED APPROACH PROCEDURE Follow

	STANDARD OPERATING PROCEDURES	2.03.23	
		PAGE 2	
	GO AROUND	REV 28	SEO 001


	STANDARD OPERATING PROCEDURESAFTER LANDING	2.03.24	
		PAGE 1	
		REV 33	SEQ 171

The following steps should be done once the aircraft has cleared the runway.

## BRAKE FANS (if installed) <br> As req

R Brake fans selection should be delayed for a minimum of R about 5 minutes or just before stopping at the gate R (whichever occurs first), to allow for thermal equalization R and stabilization and thus avoid oxidation of brake surface R hot spots.
R However, when turnaround times are short, or brake R temperatures are likely to exceed $500^{\circ} \mathrm{C}$, use the brake R fans disregarding possible oxidation phenomenon.

## R R

Note : - the arc displayed on the ECAM WHEEL page, suggesting the selection of brake fans at taxi out, should be ignored for taxi in.

- the ECAM BRAKE HOT warning after landing should not lead to the immediate selection of brake fans as long as $500^{\circ} \mathrm{C}$ is not likely to be reached (wait 5 minutes or gate arrival).
LAND LTS
RETRACT
Unless otherwise necessary.


## STROBE LTS

AUTO
Select the STROBE lights AUTO when leaving the runway.

## ICE PROTECTION

ENG ANTI ICE . . . . . . . . . . . . . . . . . . . . . . . As req
WING ANTI ICE SUPPLY
OFF
IF ENG ANTI-ICE is used, take care to control taxi speed especially on wet or slippery surfaces (ground idle is increased)

IGNITION . . . . . . . . . . . . . . . . . . . . . . . . . OFF
APU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Start
APU start may be delayed until just prior to engine shutdown.

GROUND SPOILERS . . . . . . . . . . . . . . . . Disarm
ATC
STBY/OFF
TCAS STBY/OFF

RADAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . OFF
Turn off RADAR to prevent RADAR emissions
TEST (if installed)
Select
Then in case of inadvertant switching of the RADAR to ON, no RADAR emission will occur.

## PITCH TRIM

$1^{\circ}$ NOSE UP

	STANDARD OPERATING PROCEDURES	2.03.24	
		PAGE 2	
	AFTER LANDING	REV 28	SEO 001


	STANDARD OPERATING PROCEDURES	2.03 .25	
		PAGE 1	
	PARKING	REV 32	SEC 270

## NOSE LIGHT

OFF/As req
Turn nose light OFF before turning towards ground marshaller approaching stand.

## PARKING BRAKE ACCU PRESS <br> Check

- The ACCU PRESS indication must be in the green band. In case of low accumulator pressure, chocks are required before engines shutdown.

PARKING BRAKE . . . . . . . . . . . . . . . . . . . . . ON
CAUTION
With Parking Brake ON, if the aircraft starts to move due to a parking brake failure, immediately release the Parking Brake and restore braking using the pedals.

Note: It is recommended not to leave PARKING BRAKE ON if "BRAKES HOT" ECAM message is displayed. Ensure chocks are in place as soon as possible so PARKING BRAKE can be released.

APU BLEED . . . . . . . . . . . . . . . . . . . . . . . . . ON

- Check APU bleed established

Note : Selection of APU BLEED before engine shut down avoids cycling of the packs.
However delay as late as possible to avoid engine exhaust fumes entering the air cond. If $A P U$ is not available, set EXT PWR to ON before shutting down engines.

## ENGINES FUEL LEVERS

OFF

## - Check engine parameters decrease

Note : 1) For thermal stabilization before shutdown the engines should be operated at idle or required taxi thrust until gate arrival. Refer to Single Engine Taxi procedure, as required.
2) If N2 does not decrease upon FUEL LEVER selection to OFF (HP VALVE light illuminated) select hydraulic pumps OFF and pullfire handle. Engine will shut down after 70 to 90 sec.
3) OIL LO PRESS warning may be spuriously triggered after fuel lever is selected off. If occurs, the warning may be disregarded.

## ELAPSED TIME <br> Stop

## EXT LTS

 As req- Set all lights as required. Switch off BEACON once all engines have spooled down.


## SLIDE DISARMED <br> Check

Check on ECAM DOOR page. Warn cabin crew if a slide is not disarmed.

## CABIN PRESS

Check
Check differential pressure is zero and inform cabin and ground crew that cabin and cargo doors can be opened.

## SEAT BELTS

OFF

- Check chocks in place and release parking brake to improve cooling
It is recommended not to use the parking brake for prolonged periods when brake temperatures are above $200^{\circ} \mathrm{C}$ to avoid hydraulic fluid degradation.


## RUD TRAVEL

Note: Do not select RUD TRAVEL pushbutton switches to OFF.
FUEL PUMPS ..... OFF

- Set all fuel pumps to OFF except L INNER TANK Pump2 if fuel remains in INNER TK and APU is used.
- TRIM TK MODE Pushbutton Check AUTO
WINDOW HEAT ..... OFF
Note: Window Heat can be selected ON during theturn-around time to avoid ice build-up on thefrontal windshield and the lateral windows.
PROBE HEAT ..... OFF
- Select CAPT, STBY and F/O pushbutton switches to OFF
IRSCheck
Record IRS 1, 2, 3 position, position error, Ground speedor drift rate as required for maintenance monitoring.
IRS MSU 1, 2, 3 ..... OFF/As req
IRS ISDU ..... OFF/As req
BRAKE TEMP ..... Check
BRAKE FAN (If installed) ..... OFF/As req
Select brake fans OFF when brake temperature is below$100^{\circ} \mathrm{C}$
CRT's : (FMS, ECAM, EFIS) ..... Dim
- Dim the CRTs to increase their life, do not switch OFF.
If aircraft is not flying again within 2 hours, switch EFISCRTs to OFF.
PARKING CHECK LIST ..... Completed

	STANDARD OPERATING PROCEDURESPARKING	2.03.25	
		PAGE 2	
		REV 28	SEQ 001


	STANDARD OPERATING PROCEDURES	2.03.26	
		PAGE	
	SECURING THE AIRCRAFT	REV 28	SEO 001

R This procedure should be accomplished when required R by airline policy.

IRS MSU 1, 2, 3 . . . . . . . . . . . . . . . . . . OFF
R R

- After switching the IRS OFF, wait at least 10 seconds before switching off the electrical supply to ensure that the IRS memorize the last position data.

CREW OXYGEN . . . . . . . . . . . . . . . . . OFF
EXTERIOR LTS . . . . . . . . . . . . . . . . . . . OFF
CRT'S . . . . . . . . . . . . . . . . . . . . . . . . . OFF
APU AIR BLEED . . . . . . . . . . . . . . . . . OFF/R
EXT PWR . . . . . . . . . . . . . . . AS REQUIRED
APU . . . . . . . . . . . . . . . . . . AS REQUIRED

- Set master switch to OFF after the passengers have disembarked.
- Set L INR TK PUMP 2 to OFF.

[^2]```
EMERG EXIT LT . . . . . . . . . . . . . . . DISARM
```

BATTERIES . OFF

| | STANDARD OPERATING PROCEDURES | 2.03.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 | |
| | SECURING THE AIRCRAFT | REV 28 | SEO 001 |

| | STANDARD OPERATING PROCEDURES | 2.03 .30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | STANDARD CALLS | REV 35 | SEO 001 |

COMMUNICATIONS AND STANDARD TERMS

Standard phraseology is essential to ensure effective crew communication. The phraseology should be concise and exact. The following chapter lists calls that should be used as standard. They supplement the call outs identified in the SOP.

These Airbus standard calls are also designed to promote situational awareness, and to ensure crew understanding of systems and their use in line operation.

CHECKLIST CALLS

- "CHECK" : a command for the other pilot to check an item.
- "CHECKED" : a response that an item has been checked. - "CROSS-CHECKED" : a call verifying information from both pilot stations.
If a checklist needs to be interrupted, announce "HOLD CHECKLIST AT __ " and "RESUME CHECKLIST AT __ " for continuation.
At the completion of a checklist announce "_CHECKLIST COMPLETED".

ACTIONS COMMANDED BY PF

The following commands do not necessarily initiate a change in a guidance mode. The intend is to ensure clear, consistent, standard communication between crew members.
All actions made on the FCU must be verified on the verify indications on the PFD/ND.

SET

The command "SET" means to use a knob to set a value, but not to change a mode. SET is accomplished by only rotating the appropriate selection knob :
e.g. : "SET GO AROUND ALTITUDE __"
e.g. : "SET QNH _
e.g. : "SET ALTITUDE __

ENGAGE

The command "ENGAGE" means to PUSH the specified FCU button or set the specified lever or switch to "ON" that causes an immediate FMA change.

```
e.g. : "ENGAGE NAV"
e.g. : "ENGAGE PROFILE"
e.g. : "ENGAGE ALT HOLD"
```


ARM

The command "ARM " means to arm a system, such as by pushing the specified FCU button.
e.g. : "ARM LAND"
e.g. : "ARM LOC."

PULL

The command"PULL" means to use a FCU knob to engage a mode.
e.g. : "ALTITUDE 8000 PULL"
e.g. : "VERTICAL SPEED SET - $10000^{\text {FT } / \mathrm{MN}}$ AND PULL"

PUSH

The command "PUSH" means to use a FCU knob to synchronize or preset a value.
e.g. : "HEADING PUSH"
e.g. : "SPEED PUSH PRESET 250"

Note 1: Wheneverthere is no requirementfor PULL/PUSH, and if a new setting is required, simply command SET the specific selector knob followed by the required value.
e.g. : existing mode is lateral mode heading of 140 degrees and a new heading of 100 degrees is required ; command should be "SET HEADING 100".
Note 2 : All actions made on the FCU and CDU must be verified on the PFD and ND as follows :
a. First, ensure that the correct FCU knob is used, then verify indications on the PFD/ND.
b. Mode changes should be confirmed by calling the colour when appropriate - e.g. BLUE, GREEN.

FMA

Unless listed otherwise (e.g. CAT II \& III task sharing), all FMA changes will be normally called by the PF and checked by the PNF :

- All armed modes are announced by calling their associated color e.g.: "G/S BLUE", "LOC BLUE".
- All active modes are announced without calling the color (green, white) e.g. : "NAV", "ALT".

ALTITUDE

The PNF calls "ONE THOUSAND TO GO" when passing 1000 feet before the cleared altitude or FL , and the PF calls "CHECKED".

SLATS/FLAPS CONFIGURATION

After selection of the Slats/Flaps lever position, the PNF replies when the correct selection is shown on SFPI.

EXTENSION

R PNF Checks the speed below VFE next and decelerating (approach).

| SLATS/FLAPS CONFIGURATION | PF | PNF |
| :---: | :--- | :--- |
| $0 / 0$ to $15 / 0$ | SLATS EXTEND | SPEED CHECKED
 SLATS EXTENDED |
| $15 / 0$ to $15 / 15$ | FLAPS 15 | SPEED CHECKED
 FLAPS 15 |
| $15 / 15$ to $20 / 20$ | FLAPS 20 | SPEED CHECKED
 FLAPS 20 |
| $20 / 20$ to $30 / 40$ | FLAPS 40 | SPEED CHECKED
 FLAPS 40 |

RETRACTION

R PNF Checks the speed above the S or F speed and accelerating (takeoff).

| SLATS/FLAPS CONFIGURATION | PF | PNF |
| :---: | :--- | :--- |
| SLATS/FLAPS 20/20 passing "F" speed
 $20 / 20$ to $15 / 0$ | FLAPS 0 | SPEED CHECKED
 FLAPS 0 |
| SLATS 15 passing "S" speed | SLATS RETRACT | SPEED CHECKED
 SLATS RETRACTED |

GEAR CONFIGURATION

| EVENT | PF | PNF |
| :---: | :---: | :--- |
| To rectract the landing gear | GEAR UP | GEAR UP/NEUTRAL
 The PNF selects the gear lever position and replies when
 lights are extinguished and gear lever set to Neutral. |
| To extend the landing gear | GEAR DOWN | GEAR DOWN
 The PNF selects the gear lever position and replies after
 checking 3 green lights on the landing gear main indication
 panel. |

FLIGHT PARAMETERS

PNF will make calls for the following conditions during final approach. Attitude callouts are also to be made through to landing.

| CONDITIONS | PNF |
| :--- | :---: |
| When airspeed becomes less than Vapp -5 or more than speed target +10. | SPEED |
| When V/S is greater than $-1000 \mathrm{ft} / \mathrm{min}$. | SINK RATE |
| When bank angle becomes greater than 7°. | BANK |
| When pitch attitude becomes lower than 0° or higher than $+10^{\circ}$ nose up.
 For non precision approach, when pitch attitude becomes lower than -2.5° or higher
 than 10° nose up. | PITCH |
| When excessive LOC or GLIDE deviation occurs :
 $-1 / 4$ dot LOC
 -1 dot GS. | LOC or GLIDE |
| When greater than 0,5 dot (VOR) or 5 degrees (ADF). | COURSE |
| At altitude checks points. | FT HIGH (LOW) |

| | STANDARD OPERATING PROCEDURES | 2.03.30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | Standard calls | REV 35 | SEO 001 |

PF/PNF DUTIES TRANSFER

To tranfer control, flight crewmembers must use the following calls :
To give control : The pilot calls "YOU HAVE CONTROL". The other pilot accepts this transfer by calling "I HAVE CONTROL", before assuming PF duties.
To take control : The pilot calls "I HAVE CONTROL". The other pilot accepts this transfer by calling "YOU HAVE CONTROL", before assuming PNF duties.

ABNORMAL AND EMERGENCY CALLS

ECAM Procedures

1. "ECAM ACTION" is commanded by PF when required.
2. "CLEAR __ (title of the system) ?" is asked by the PNF for confirmation by the PF, that all actions have been taken/reviewed onthe present ECAMWARNING/CAUTION or SYSTEM PAGE.
e.g. : "CLEAR HYDRAULIC ?"
3. "CLEAR__(title of the system)" is the command by the PF that the action and review is confirmed. For status page, the call "REMOVE STATUS" is used.
4. "ECAM ACTIONS COMPLETED" is the announcement by the PNF that all APPLICABLE ACTIONS have been completed and system pages have been reviewed.
5. Should the PF requires an action from the PNF during ECAM procedures, the order "STOP ECAM" is used. When ready to resume the ECAM the order/statement "CONTINUE ECAM" is used.

MEMORY ITEMS

The following commands allow the crew to be aware of a situation that requires or will require actions to be done by memory. Crew will be prepared to properly react in terms of crew coordination, tasksharing and communication.

| CALLS | CONDITIONS |
| :---: | :--- |
| PULL UP
 TOGA | When GPWS warning requireanavoidance
 maneuver. |
| WINDSHEAR
 TOGA | When windshear conditions required
 to select maximum takeoff power |
| UNRELIABLE
 SPEED | When an unreliable speed indication is
 detected |
| TCAS,
 I have control | "TRAFFIC" warning is triggered by TCAS |
| EMERGENCY
 DESCENT | When EMERGENCY DESCENT has to
 be initiated |
| LOSS OF
 BRAKING | In case of loss of braking at landing. |

| | 2.03 .30 | |
| :---: | :---: | :---: |
| PAGE 4 | | |
| REV 35 | SEO 001 | |

SUMMARY FOR EACH PHASE

| EXTERNAL POWER DISCONNECTION | | |
| :---: | :--- | :--- |
| EVENT | PF | GND Mech |
| Initial ground contact | GROUND (from) COCKPIT | COCKPIT (from) GROUND |
| External _ disconnection | REMOVE EXTERNAL__ | EXTERNAL _ REMOVED |

| BEFORE ENGINE START | | |
| :--- | :--- | :--- |
| EVENT | PF | PNF |
| Before start up clearance received | BEFORE START C/L
 DOWN TO THE LINE | BEFORE START C/L
 COMPLETED DOWN TO THE LINE |
| After start up clearance received | BEFORE START C/L
 BELOW THE LINE | BEFORE START C/L
 COMPLETED |

| PUSH BACK | | |
| :--- | :--- | :--- |
| EVENT | PF | GND Mech |
| When ready for push back and push
 back clearance received from ATC | GROUND, (from) COCKPIT
 READY FOR PUSH | COCKPIT, (from) GROUND
 RELEASE PARKING BRAKE |
| Start of push | BRAKES RELEASED
 CLEARED TO PUSH | |
| When push back completed | BRAKES SET | SET PARKING BRAKES |
| When ready to disconnect (engine
 parameters are stabilized) | CLEAR TO DISCONNECT
 (hand signals on left/right) | DISCONNECTING
 (hand signals on left/right) |

| ENGINE START | | | |
| :--- | :---: | :---: | :---: |
| EVENT | PF | PNF | GND |
| When start up clearance obtained | CLEAR TO START? | | CLEAR TO START |
| When fan starts to rotate | STARTING ENGINE(S) - | | ROTATION |

| AFTER ENGINE START | | |
| :---: | :--- | :--- |
| EVENT | PF | PNF |
| All engines started and
 stabilized and GND is
 disconnected | AFTER START C/L | AFTER START C/L
 COMPLETED |

| TAXI/BEFORE TAKEOFF | | |
| :---: | :---: | :---: |
| EVENT | PF | PNF |
| When taxi clearance obtained | CLEAR LEFT (RIGHT) SIDE | CLEAR RIGHT (LEFT) SIDE |
| Checking Brakes | BRAKE CHECK | PRESSURE ZERO |
| Flight controls checkinfollowing sequence (can be done before start of taxi) | FLIGHT CONTROL CHECK | |
| 1. Elevators | | FULL UP
 FULL DOWN NEUTRAL |
| 2. Ailerons/spoilers | | FULL LEFT FULL RIGHT NEUTRAL |
| 3. Rudder
 Note: the PNF should follow pedal movement with feet | RUDDER | FULL LEFT FULL RIGHT NEUTRAL |
| During taxi | BEFORE TAKEOFF C/L DOWN TO THE LINE | BEFORE TAKEOFF C/L DOWN TO THE LINE COMPLETED |
| Lining up on the runway | BEFORE TAKEOFF C/L BELOW THE LINE | BEFORE TAKEOFF C/L COMPLETED |

| A310
 imulator FLIGHT CREW OPERATING MANUAL | STANDARD OPERATING PROCEDURES | 2.03.30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 6 | |
| | STANDARD CALLS | REV 36 | SE0 001 |

R

| TAKEOFF | | |
| :--- | :--- | :--- |
| EVENT | PF | PNF |
| When triggering go levers | TAKEOFF
 ANNOUNCE FMA | CHECKED |
| Before passing 80 kts | | THRUST SET |
| At 100 kts | CHECKED | ONE HUNDRED |
| At V1 | | V1 |
| At VR | GEAR UP | POSITIVE CLIMB |
| When positively clear from the ground
 + + V/S and RAD ALT increase) | GNGAGE AP | |
| If AP is required | Followed by confirmation on FMA | AP_-ENGAGED |
| When gear retracted | FLAPS 0 | GEAR UP/NEUTRAL |
| When F Speed and accelerating | SLPEED CHECKED
 FLAPS 0 | |
| When S Speed and accelerating | SLATS RETRACT | SPEED CHECKED
 SLATS RETRACTED |
| After TAKEOFF/CLIMB checklist | AFTER TAKEOFF C/L
 DOWN TO THE LINE | AFTER TAKEOFF C/L
 DOWN TO THE LINE COMPLETED |
| At transition altitude | AFTER TAKEOFF C/L
 BELOW THE LINE | AFTER TAKEOFF C/L
 COMPLETED |

| | STANDARD OPERATING PROCEDURES | 2.03.30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 7 | |
| | Standard calls | REV 35 | SEO 001 |

| ALTIMETER SETTING CHANGES TO/FROM QNH/QFE-STD | | |
| :--- | :--- | :--- |
| EVENT | PF | PNF |
| Barometricsetting changeandsubsequent
 altimeter cross-check | PULL STANDARD | STANDARD CROSS-CHECKED
 PASSING FL_NOW |
| | CHECKED | QNH/QFE _—ROSS-CHECKED
 PASSING —FT NOW |
| | SET QNH/QFE_ | |

| | STANDARD OPERATING PROCEDURES | 2.03.30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 8 | |
| | STANDARD CALLS | REV 35 | SEO 001 |

| APPROACH AND LANDING
 STABILIZED ILS APPROACH | | |
| :--- | :--- | :--- |
| EVENT | PF | PNF |
| When cleared below transition level or
 as appropriate. | APPROACH C/L | APPROACH C/L
 COMPLETED |
| Initial Approach | SET GREEN DOT SPEED
 (see note 3 below) | GREEN DOT SPEED SET |

| APPROACH AND LANDING STABILIZED ILS APPROACH | | |
| :---: | :---: | :---: |
| EVENT | PF | PNF |
| $1000{ }^{\text {FT }}$ AGL | CHECKED | ONE THOUSAND (see note 2 below) |
| $700^{\mathrm{FT}} \mathrm{AGL}$
 Each pilot checks the ILS selected course on his ND. | | COURSE SET |
| $400^{\text {FT }}$ | LAND | CHECKED |
| $100^{\text {FT }}$ above MDA | CHECKED | ONE HUNDRED ABOVE |
| MDA visual reference | CONTINUE | MINIMUM |
| MDA no visual reference | GO AROUND FLAPS | MINIMUM |
| | | ONE HUNDRED
 FIFTY
 (see note 2 below) |
| After touch down | | SPOILERS
 REVERSE GREEN
 (See the note 3 below) |
| When autobrake armed | | DECEL
 (See note 4 and 5 below) |
| At 80kts ground speed or IAS fluctuations | | EIGHTY KNOTS |
| Note 1: Crew should now keep RA in
 Note 2 : PNF monitors auto callouts
 Note 3 : If reverse deployment is not
 Note 4: "DECEL" call means that the
 Note 5 : if Autobrake is armed and NO | scan to landing.
 r announces if inoper
 as expected, call NO R
 deceleration is felt by
 flow BAR green ligh | practical - CAT I and lower only). _ or NO REVERSE, as appropriate. firmed by the speed trend on the PFD. O AUTOBRAKE |

| | STANDARD OPERATING PROCEDURES | 2.03.30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 10 | |
| | STANDARD CALLS | REV 35 | SEQ 001 |

| GO AROUND | | |
| :--- | :--- | :--- |
| EVENT | PF | PNF |
| GO AROUND decision | GO AROUND - FLAPS | FLAPS__ |
| Flaps retraction | GEAR UP | GEAR UP |
| Gear retraction | AFTER TAKEOFF C/L
 DOWN TO THE LINE | AFTER TAKEOFF C/L
 DOWN TO THE LINE COMPLETED |
| Checklist | AFTER TAKEOFF C/L
 BELOW THE LINE | AFTER TAKEOFF C/L
 COMPLETED |
| At transition altitude | | |

| AFTER LANDING | | |
| :--- | :---: | :---: |
| EVENT | PF | PNF |
| Checklist | AFTER LANDING C/L | AFTER LANDING C/L
 COMPLETED |

| PARKING | | |
| :--- | :--- | :--- |
| EVENT | PF | PNF |
| Checklist | PARKING C/L | PARKING C/L
 COMPLETED |

| SECURING THE AIRCRAFT | | |
| :--- | :--- | :--- |
| EVENT | PF | PNF |
| Checklist | SECURING THE AIRCRAFT C/L | SECURING THE AIRCRAFT C/L
 COMPLETED |

| | EMERGENCY PROCEDURES | 2.04.00 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | CONTENTS | REV 34 | SEQ 200 |

| | | Page | | | Page | |
|---|---|---|---|---|---|---|
| INTRODUCTION | 2.04.10 | 1 to 2 | HYD | 2.04.29 | |
| | | | DUAL HYD SYS LO PR : | | |
| CAB PRESS | 2.04.21 | | - G+Y HYD SYS LO PR (BLUE REMAINING) | | 1 |
| EMER DESCENT
 EXCESS CAB ALT | | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | - B+Y HYD SYS LO PR (GREEN REMAINING)
 - B+G HYD SYS LO PR (YELLOW REMAINING) | | 2 |
| ELEC | 2.04.24 | | | | |
| LOSS OF BOTH ENG GENERATORS FLIGHT ON BAT ONLY | | $\begin{gathered} 1 \text { to } 2 \\ 3 \end{gathered}$ | L/G - BRAKES | 2.04.32 | |
| | | LOSS OF BRAKING AT LANDING | 1 | |
| FIRE | 2.04.26 | | | | | |
| IN FLIGHT ENG FIRE 1 NAV/ADC/INST 2.04 .34 | | | | | |
| ON GROUND ENG FIRE APU FIRE | | | GPWS or EGPWS ALERTS | | 1 |
| | | | ENG | 2.04.70 | |
| SMOKE | 2.04.26 | | BOTH ENG FLAME OUT :- FUEL REMAINING . . . | | |
| SMOKE/FUMES
 FUEL MANAGEMENT FOR AVIONICS SMOKE | | 3-3A | | | 1 to 3 |
| | | | - NO FUEL REMAINING | | 4 to 6 |
| | | 3B | | | |
| BAT SMOKE | | 4 | ENG OIL LO PR | | 7 |
| CARGO COMPT SMOKE | | 4 | | | |
| SMOKE/FUMES REMOVAL | | 5 | | | |
| | | | MISC | 2.04.80 | |
| FLT CTL | 2.04.27 | | FORCED LANDINGDITCHING | | 1 |
| G+Y SERVO LO PR (BLUE REMAINING) | | | | | 3 |
| | | 1 | CREW INCAPACITATION | | 4 |
| B+Y SERVO LO PR | | | EVACUATION PROCEDURE | | 5 to 7 |
| (GREEN REMAINING) B+G SERVO LO PR | | 2 | | | |
| (YELLOW REMAINING) | | 3 | | | |
| FUEL | 2.04.28 | | | | |

| | EMERGENCY PROCEDURES | 2.04.00 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 | |
| | CONTENTS | REV 28 | SEQ 001 |

GENERAL

- The emergency procedures provide the sequences of actions to be performed following :
- A red warning,
- An emergency condition not associated to a warning (e.g. both engine flame out, forced landing or ditching).
- The emergency procedures are to be applied following the READ-AND-DO principle.

COORDINATED USE OF ECAM AND ORH

- The ECAM and QRH (Quick Reference Handbook) must be used in a coordinated manner.
- The ORH is used :
- When no ECAM procedure is available, or
- When a QRH procedure is called by the prompt PROC in an ECAM warning page or in the ECAM STATUS page,
and / or (in any case), before completing the ECAM STATUS page, in order to review the originating procedure for possible additional actions or information.
- Referring to the FCOM 1 and / or FCOM 2 is not required for the short term handling of any emergency procedure but may be considered when convenient, if so desired.

PROCEDURES LAYOUT

The FCOM / QRH procedures are presented using the following layout standards :

- Emergency procedures are identified by two black rectangles on each side of the title on top of the procedure
- ACTIONS : all actions are printed in capital letters. For enhanced clarity, actions are regrouped by action blocks (e.g. actions related to the same system or the same purpose) when there is space available. The abbreviations are used only when abbreviations are used on the ECAM or on the cockpit panels,
- MEMORY ITEMS : are identified by a thin solid line box. These actions have to be performed without referring to the QRH.

PROCEDURE TITLE

MEMORY ITEM

- ECAM ACTIONS : are identified by a bold solid vertical line,
- ECAM STATUS : items are identified by a bold dotted vertical line,
- Conditional actions:
- squares symbols are used whenever several conditions (If) are possible but only one entry is to be used,
- dots are used to identify a condition or a flight phase (e.g. If, At, When), all questions starting by a dot must be answered.
Note : ■ and • are not displayed on ECAM.
Small underlined letters in QRH mean that the condition is not displayed on the ECAM, but this condition is managed by the aircraft system.
If the condition is displayed on the ECAM, it appears in the QRH in large letters and have to be managed by crew.

| PROCEDURE TITLE | |
| :---: | :---: |
| ACTION | SET |
| - If condition managed by A / C system : | |
| action | SET |
| - If CONDITION MANAGED BY CREN : | |
| ACTION | |
| PROC : EXAMPLE PROC | |

Note: When action requests to set a system "OFF/R", the OFF position must be selected. It is not a request for reset.

- Cross-references :
- when an other QRH procedure iscross-referenced, the procedure title is indicated after the prompt PROC :, and the associated QRH page is indicated between brackets,
- FLIGHT PHASE identifies the actions which must be delayed until indicated flight phase (e.g. FOR LANDING, FOR APPROACH...),
- Expanded information : for each procedure, an expanded information is provided in order to :
- list the indications (warning light and audio warning) and / or clues associated with the prevailing emergency condition,
- provide background information regarding the reason(s), result(s) and benefit(s) of actions (unless such reason, result and benefit are self evident).

PROCEDURES INITIATION

- No action shall be taken (apart from audio warning cancel) until :
- The appropriate flight path is stabilized,
- Normal procedures are applied,
- At least 400 ft above runway, in case of failure during takeoff, approach or go-around,
- A height of 400 ft is recommended as a good compromise between :
* the time required for flight path stabilization,
* the initiation ofthe procedure withoutexcessive delay.
- In some emergency conditions, provided the appropriate flight path is established, the PF may initiate actions before reaching 400 ft AGL.
- Appropriate command by PF.

TASK SHARING

- The Pilot Flying (PF) remains PF throughout the entire procedure.
- However, when actions can only be performed from one side (e.g. landing gear gravity extension, minimum equipment bay sniffer fan), tasks must be redistributed accordingly.
- The PF (Pilot Flying) is responsible for :
- Throttle levers,
- Flight path and airspeed control,
- Aircraft configuration (PF orders, PNF executes),
- Navigation,
- Communications.
- The PNF (Pilot Non Flying) is responsible for :
- Reading the ECAM and QRH,
- Execution of ECAM actions and paper check-list(s), upon PF command,
- Actions on fuel levers, fire handles and guarded switches (with confirmation of PF).

Note : During a rejected takeoff, an on-ground engine fire oran on-groundemergency/ evacuation, a CAPT-F/O task sharing applies.

Note : Memory Items may be carried out by either pilot, since response time may be importantfor success. However, initiation of Memory Items must be called out by the PF.

- Whenever a procedure calls for LAND ASAP, landing at the nearest suitable airport (considering the applicable LDG DIST factor, if any) must be considered.
- Following a fire or smoke condition, landing at the nearest suitable airport is recommended even if the fire (smoke) source has been successfully extinguished (stopped).
- If the fire or smoke source cannot be extinguished (stopped) or if extinction cannot be positively confirmed, landing at the nearest suitable airport must be considered.

LDG SPEED INCREMENT - LDG DISTANCE FACTOR

- Unless otherwise specified in the procedures, the minimum speed to be used for approach and landing is the VLS corresponding to the configuration requested by the procedure.
Note : VLS, when mentioned in a procedure, is the one corresponding to the configuration requested by the procedure (e.g. if the procedure requests to use $15^{\circ} / 15^{\circ}$ configuration, take VLS of $15^{\circ} / 15^{\circ}$ configuration).
- When applicable, the LDG SPEED INCREMENT is to be added to the indicated V LS.
- A V LS increment is indicated on the ECAM STATUS page and in the FCOM / ORH procedure only when the indicated V LS does not account for the abnormal condition, this is the case only in the following three conditions:
- Kruger flaps not extended when selected, or
- Loss of 4 or more roll spoilers per wing. or
- Spoiler(s) stuck in extended position.

In all other abnormal conditions, the indicated V LS accounts for the abnormal configuration. For abnormal slats or flaps configuration, the QRH increment applies to VREF only.

- The SPD INCREMENT is to be added to S and F speeds, only if specified in the QRH procedure :
- Loss of krugers :
* SPD INCREMENT applicable to S, F and V LS for recovery of the stall margin.
- Loss of 4 or more roll spoilers per wing :
* SPD INCREMENT applicable to V LS only for recovery of the maneuvering capability.
- The LDG DIST factor is to be applied on the LDG DIST 30 / 40 (QRH 15.02).
- A LDG DIST factor is indicated on the ECAM STATUS page and in the FCOM / QRH procedure only in the following conditions:
- When a LDG SPD INCREMENT is applicable, and / or
- In case of loss of 3 or more ground spoilers per wing,
and / or
- In case of braking in ALTN / ON or ALTN / OFF.

ECAM

Warning inhibition during takeoff

Some warnings (non-inhibited) appear when the situation that prompts them occurs. Other warnings (inhibited) do not appear immediately, when the situation that prompts them occurs during takeoff.

Crew coordination

- When performing anECAM or non-ECAM procedure, both pilots must be fully aware of the status of the warning and system displays.
- After completing a warning page, CLEAR ... (title of the ECAM page) is proposed by the PNF but must be confirmed by the PF (after checking the status of the warning and system pages) before the PNF presses the CLR key.

AFFECTED EQUIPMENT REVIEW

- In case of Abnormal/Emergency procedure related to Electrical, Hydraulic, Auto flight systems or Servo Controls, the affected equipment have to be reviewed using the dedicated tables:
- BUS EOPT LIST (ORH 3.08-3.09-3.10)
- HYDRAULIC POWER DISTRIBUTION (QRH 8.01)
- AUTO FLIGHT SYSTEM - DISTRIBUTION (QRH 11.03)
- SERVO CONTROLS (QRH 6.12).

OPERATING ENGINEERING BULLETIN (OEB)

An OEB is issued to rapidly inform operators of any deviations from initial design objectives that have a significant operational impact. An OEB provides the operators with technical information and temporary operational procedures that address these deviations. The information in the OEB should be followed immediately.

The list of applicable OEBs is in the FCOM 2.19 and in ORH 19.00.

In addition the OEB operational procedure(s) that the flight crew must apply are provided in the QRH (19.00).

| | EMERGENCY PROCEDURES | 2.04 .10 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | INTRODUCTION | REV 27 | SEQ 001 |

Example of Coordination and Cross-Confirmation

R

| WARNING DISPLAY | PILOT FLYING | PILOT NOT FLYING |
| :---: | :---: | :---: |
| HYD
 bLUE RSVR OVHT
 - BLUE PUMP . \qquad | - READ FAILURE TITLE
 - take atc radio ctl
 - REQUEST «ECAM ACTION*» | - READ FAILURE TITLE
 - READ ACTION (full line)
 - PERFORM ECAM ACtIon or REQUEST EXECUTION BY THE PF |
| | - REQUEST «PAPER C/L» | |
| HYD
 bLUE RSVR OVHT BLUE PUMP OFF
 BLUE SYS LO PR | | - REQUEST «CLEAR HYDRAULIC " |
| | - CHECK ECAM ACTION COMPLETED
 - CONFIRM « CLEAR » | |
| * FLT CTLSLATS SYS 1 FAULTSPLR 7 FAUTSPLR 3 + FAULT OFF OFFYAW DAMPER 1 OFF | | - PERFORM ECAM ACTIONS FOR SECONDARY FAILURES
 - CHECK NO CYAN ON ECAM
 - REQUEST «CLEAR FLIGHT CONTROLS » |
| | - CHECK ECAM WARNING AND SYSTEM PAGES
 - CONFIRM «CLEAR » | |
| STATUS
 LAND 3 INOP
 LDG DIST: MULTIPLY BY 1.2 PROC: HYD SYS LO PR BLUE HYD SYS INOP SPLR PARTIALLY INOP SLATS SLOW | | - Read status line by line |
| | - REQUEST «PAPER C/L "
 Note: STATUS will be called in APPROACH C/L | |
| | | - PERFORM PAPER C/L
 - CONFIRM «PAPER C/L COMPLETED» |
| | - REQUEST
 «CONTINUE STATUS » | - read status Line by line
 - CONFIRM « STATUS COMPLETED " |
| | - REQUEST « PAPER C/LFOR (originating procedure)" | - REVIEW/PERFORM PAPER C/L FOR POSSIBLE ADDITIONAL ACTION/INFORMATION |
| | | - REQUEST « CLEAR STATUS " |
| | - CONFIRM «CLEAR" | |
| | | - CONFIRM «ECAM ACTIONS COMPLETED » |

* Although the pilot flying requests ECAM actions, this does not preclude the CM1 from either taking control of the aircraft or ordering ECAM actions if he/she considers this necessary.

| | EMERGENCY PROCEDURES | 2.04.21 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | CAB PRESS | REV 36 | SEO 100 |

| |
| :---: |
| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

EMERGENCY DESCENT

- The descent is initiated in a turn, do not exceed a maximum bank angle of 30°.
- The following applies, in case of rapid decompression :
a) Ensure crew communication is established with oxygen masks. Set oxygen masks on normal (N) position.
b) Avoid the use of interphone position to minimize interference from oxygen mask breathing noise.
c) Passenger signs come on automatically when cabin altitude exceeds $11,300 \mathrm{ft}$ except if MAN PRESS is selected.
d) Passenger oxygen masks drop automatically and OXYGEN SYS ACTUATED light illuminates green when cabin altitude exceeds $14,000 \mathrm{ft}$.
Confirm system activation by selecting the OXYGEN PASSENGER guarded switch to MAN OVRD.
e) Notify cabin crew to confirm that passenger masks are released.
- Maximum airspeed is MMO/VMO.

If structural damage is suspected use the flight controls with care and reduce speed as appropriate.

- In the event ATC cannot be contacted select ATC code 7700 or declare an emergency on one of the following frequencies :
(VHF) 121.5 MHz or (HF) 2182 KHz or 8364 KHz .
- Landing gear may be extended when below 20,000 ft at VLO/VLE 270 Kt to increase the rate of descent.
(Above 20000 ft , descending at MMO/VMO with landing gear retracted provides the highest rate of descent).

| | EMERGENCY PROCEDURES | 2.04.21 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 | |
| | CAB PRESS | REV 32 | SEO 100 |

| EXCESS CAB ALT |
| :---: |
| Indications: |
| Continuous repetitive chime |
| ECAM activation with appropriate warning light |
| Left ECAM CRT : EXCESS CAB ALT procedure |
| Right ECAM CRT : CAB PRESS system page |
| - If decompression is rapid, apply EMER DESCENT procedure. |
| Oxygen masks should be set to the normal (N) position. |

LOSS OF BOTH ENG GENERATORS

IGNITION CONT RELIGHT
GEN 1 and 2 OFF/R then ON

- If GEN 1 and 2 not recovered (and APU GEN not available) :
- If APU not required for air bleed :

APU MASTER SWITCH
CHECK OFF

STBY GEN OPERATION CONFIRM BY :
_ DC ESS ON BAT CHECK EXTINGUISHED

- AC EMER ON INV CHECK EXTINGUISHED
_ FUEL X-FEED CHECK IN-LINE
- If STBY GEN FAULT light illuminated :
\qquad
- If STBY GEN inoperative :

PROC : FLIGHT ON BAT ONLY (3.05) . . APPLY

R

- If STBY GEN operative :

PITCH TRIM 1 RESET
YAW DAMPER 1 RESET
TRIM TK MODE FWD
COMMUNICATIONS VHF1/ATC1
VENT EXTRACT OVBD

PACK 1 MAN CTL
LDG GEAR POSITION DET SYS 1
RUDDER TRAVEL 1 . . . OFF, after 1 min . . . ON
THROTTLE 1 + 2 REDUCE
ENG 1 and 2 MODE N1

N1 THRUST SETTING AS RORD

FUEL MANAGEMENT (3.07) APPLY
BUS EQPT LIST-STBY GEN (3.08/3.09) . . REVIEW LDGDISTNREFincrements $(15.02,15.04)$. DETERMINE LAND ASAP
continued)

LOSS OF BOTH ENG GENERATORS

```
Indications
    Single chime
    ECAM activation with appropriate warning light
    The following lights illuminate on ELEC panel:
    GEN }1\mathrm{ and 2 FAULT, AC BUS }1\mathrm{ and 2, DC NORM
    BUS OFF.
```

- Generators reset may be successful if the origin of the fault was an electrical transient (lightning strike for instance).
- If the loss is caused by subsequent GEN or IDG failure, refer to GEN FAULT or IDG FAULT (use of APU if available. In case of unsuccessful APU start make sure that APU MASTER switch is reselected OFF).
- In case of GEN recovery, restore systems following ECAM INDICATIONS.
- Check of APU MASTER SWITCH to OFF is requested to confirm operation of stand-by generator (performed by checking that DC ESS BUS ON BAT and AC EMER ON INV ligths are extinguished). Indeed with APU MASTER SWITCH set to ON and APU N < 60% during stand-by generator operation, DC ESS BUS is supplied by batteries and therefore DC ESS BUS ON BAT light is illuminated.
- If operation of stand-by generator is not confirmed, set STBY GEN p/b to OVRD position for manual start of stand-by generator. If manual start is unsuccessful, the aircraft is supplied by batteries only.
- APU start is possible below 20000 ft during operation of stand-by generator. During APU start sequence, DC ESS BUS is supplied by batteries to avoid auto shut down of stand-by generator (due to high DC loads). If APU start is unsuccessful, APUMASTER SWITCH must be re-selected OFF.
- EPR probes are not heated. FADEC automatically reverts to N1 mode. Confirmation should be performed by selecting both ENG MODE p/b switches to N1 position. Thrust managements should be performed using N1 parameter.
- If stand by generator is used in temperature conditions above ISA +30 , the green hydraulic fluid temperature may reach the warning level. In this case, the green hydraulic pumps must not be selected OFF.
- VENT EXTRACT is selected to OVBD to ensure ventilation of electronic bay with blower fans lost. As both HP valves are not supplied, it may be necessary to re-select VENT EXTRACT to normal and/or to increase engine power during descent to avoid triggering of EXCESS CAB ALT warning due to high rate of cabin leakage.
- For equipment supplied by stand-by generator, refer to BUS EOPT LIST.
(continued)

| | EMERGENCY PROCEDURES | 2.04.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ELEC | REV 33 | SEO 300 |

LOSS OF BOTH ENG GENERATORS (cont'd)

FUEL MANAGEMENT

- If CTR + TT FQI above $500 \mathrm{~kg}(\mathbf{1 1 0 0} \mathrm{lb})$: L INR TK PUMP 2 and R INR TK PUMP 1 . . . OFF
- When CTR + TT FQI below $\mathbf{5 0 0} \mathbf{~ k g ~ (~} \mathbf{1 1 0 0} \mathrm{lb}$) : L INR TK PUMP 2 and R INR TK PUMP 1 . . NORM
- When L INR TK empty or fuel unbalance (max 4t/88001b) :
L INR TK PUMP 2 OFF
- When R INR TK empty or fuel unbalance $(\max 4 t / 88001 \mathrm{lb})$:
L INR TK PUMP 2 NORM
REPEAT CYCLE UNTIL BOTH INR TK'S ARE EMPTY.
- When L and R INR TK empty : IGNITION CONT RELIGHT MAX FL 250 (200 IF JP4/JET B USED)/MEA OUTR TK ISOL VALVES CHECK IN LINE INR TK ISOL VALVES OFF
CAUTION : Avoid rapid throttle movement and negative load factors (fuel gravity feeding).
- Before slats extension:

LAND RECOVERY ON
CAUTION: DC power is nowsupplied from batteries, flight duration will be limited.

- If ENG 2 inoperative :

RAT . ON
■ If YELLOW HYD SYS LO PR :
FLAPS INOP

- If FLAPS less than $\mathbf{2 0 ^ { \circ }}$:

FOR APPROACH : ATS OFF
PROC : ABNORMAL SLATS/FLAPS
LANDING (6.14) .
APPLY
■ If BLUE HYD SYS LO PR :
SLATS INOP

- If SLATS less than $2 \mathbf{0}^{\circ}$:

PROC : ABNORMAL SLATS/FLAPS
LANDING (6.14) APPLY
PROC : L/G GRAVITY EXTENSION (10.02) APPLY
NOTE 1: In case of go around, do not retract landing gear NOTE 2 : Nose wheel steering and reverse inoperative

LOSS OF BOTH ENG GENERATORS (continued)

- Only INR TK PUMPS 2L and 1R and CTR TK L PUMP remain supplied. They are supplied one at a time with the following priority order :
INR TK 2L, INR TK 1R, CTR TK L
Selection of TRIM TK MODE FWD allows gravity transfer from TRIM TK to CTR TK (if any fuel in TRIM TK).
- Fuel feed from CTR TK is ensured by selecting INR TK PUMPS 2L and 1R OFF.
- Fuel feed from INR TKs is accomplished alternatively from left or right tank. Switching from one tank to the other one is made when the tank is empty or in case of fuel unbalance ($4000 \mathrm{~kg} / 8800 \mathrm{lbs}$ maximum).
- Switching LAND RECOVERY to ON restores SPLRS and SPD BRK 1, 4, 6, 7, FLAPS, SLATS and A/SKID. KRUGERS remain lost.
- Landing gear is extended by gravity to avoid disconnection of stand-by generator which may occur during normal landing gear extension due to temporary pressure drop in green hydraulic system.
For the same reason, it is not recommended to retract landing gear in case of go around.
Nose wheel steering is lost due to L/G gravity extension.
Note : In case of discrepancies between CM1 and STBY airspeed indications, disregard STBY indication (probe not de-iced).
- If BLUE HYD SYS is lost (In case of loss of engine 1), slats are lost.
- If YELLOW HYD SYS is lost (In case of loss of engine 2), and not recovered by RAT, flaps are lost.

| | EMERGENCY PROCEDURES | 2.04.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | ELEC | REV 29 | SEC 300 |

FLIGHT ON BAT ONLY

- STBY GEN FAULT light illuminates on ELEC panel
- CONT RELIGHT is selected to reduce the risk of engine malfunction with all tank pumps inoperative (gravity feeding).
- Keeping throttle movements slow and avoiding low load factors will prevent fuel supply surges.
- Airspeed must be limited due to loss of pitch feel.
- Descent to the specified flight level should provide sufficient static pressure to supply the engine driven fuel pumps.
- Fuel will be fed from all tanks containing fuel, but mainly from the OUTR TK due to their greater height above the engine.
- INR TK ISOL VALVES must be closed, when tank quantity is 2000 kg (4400 lbs).
Below this level the non-return valves in the CTR TK feed line may not remain closed, resulting in fuel surges and possible air suction.
- It has been demonstrated that batteries with a capacity of 25 Ah charged at 70% will last for 38 minutes or for 26 minutes if 2 APU start attempts are made.
- Switching LAND RECOVERY to ON restores SPLRS and SPD BRK 1, 4, 6, 7, FLAPS, SLATS and A/SKID. KRUGERS remaín lost.
- If yellow hydraulic system is lost (in case of loss of engine 2) and not recovered by RAT, flaps are lost.
- If blue hydraulic system is lost (in case of loss of engine 1), slats are lost.

| | EMERGENCY PROCEDURES | 2.04.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | | REV 29 | SEO 100 |

LEFT BLANK INTENTIONALLY

| | EMERGENCY PROCEDURES | 2.04.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | FIRE | REV 34 | SEO 001 |

| IN FLT ENG FIRE | |
| :---: | :---: |
| THROTTLE | IDLE |
| fuel lever | OFF |
| FIRE HANDLE | PULL |
| 1ST AGENT AFTER 10 S | DISCH |
| - IF FIRE AFTER FURTHER 30 S : | |
| 2ND AGENT | DISCH |
| LAND ASAP | |
| PROC : SINGLE ENG OPERATION (12.08) | APPLY |
| ------- | |

IN FLIGHT ENG FIRE

Indications:
Continuous Repetitive Chime
ENG 1 or ENG 2 FIRE handle illuminated.
ECAM activation with appropriate warning light
Left ECAM CRT : ENG FIRE procedure
Right ECAM CRT : ENG page
ENG 1 or 2 FUEL LEVER illuminated LOOP A and LOOP B (ENG 1 or 2) lights

R : PROC : SINGLE ENG OPERATION (12.08) APPLY

- The 10 sec delay allows N1 to decrease, this reduces the nacelle ventilation and increases the agent effect.
- CRC stops when pulling fire handle. CRC may be cancelled by use of AUDIO CANCEL switch.
- Fire handle remains illuminated as long as a fire is detected.

| | EMERGENCY PROCEDURES | 2.04.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | FIRE | REV 35 | SEO 001 |

| ON GND ENG FIRE | |
| :---: | :---: |
| THROTTLE | IDLE |
| - WHEN A/C IS STOPPED | |
| PARKING BRK | SET |
| FUEL LEVER | OFF |
| FIRE HANDLE | . PULL |
| 1ST AGENT | DISCH |
| PROC : ON GND ENG FIRE | |
| $2{ }^{\text {ND }}$ FUEL LEVER | OFF |
| - If fire after 30 s : | |
| $2{ }^{\text {ND }}$ AGENT | DISCH |
| FIRE HANDLES (ENG and APU) | PULL |
| FUEL ISOL VALVES | OFF |
| PROC : ON GROUND EMER/EVAC (20.01) | APPLY |

| APU FIRE | |
| :---: | :---: |
| FIRE HANDLE | PULL |
| AGENT AFTER 10 S | DISCH |
| MASTER SW . | . . OFF |
| IF FIRE WARN PERSISTS : LAND ASAP | |

ON GROUND ENG FIRE

Indications:

Continuous Repetitive Chime
ENG 1 or ENG 2 FIRE handle illuminated.
ECAM activation with appropriate warning light
Left ECAM CRT : ENG FIRE procedure
Right ECAM CRT : ENG page
ENG 1 or 2 FUEL LEVER illuminated
LOOP A and LOOP B (ENG 1 or 2) lights

- The aircraft may be stopped using full reverse.
- Consider positioning the aircraft according to wind so that any possible fire is kept away from the fuselage.
- CRC stops when pulling fire handle. CRC may be cancelled by use of AUDIO CANCEL switch.
- Fire handle remains illuminated as long as a fire is detected.
- Do not attempt to restart the engine.
- The 10 sec delay before discharging agent is not required on ground.

APU FIRE

Indications :

Continuous repetitive chime
ECAM activation with appropriate warning light
Left ECAM CRT : APU FIRE procedure
Right ECAM CRT : APU page
Fire handle illuminated
LOOP A and LOOP B lights

- The 10 seconds delay allows the airflow from the APU cooling fan to reduce, which increases the agent effect.
- Do not attempt to restart APU.

| | EMERGENCY PROCEDURES | 2.04 .26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | SMOKE | REV 35 | SEO 001 |

| | SMOKE/FUMES |
| :---: | :---: |
| LAND ASAP | |
| - If MIN EQPT BAY smoke or AVIONICS smoke : | |
| | SNIFFER FAN OPERATE |
| - If smoke confirmed or if perceptible smoke : | |
| | OXY MASKS 100\%/EMERG/ON |
| | GOGGLES . ON |
| | CKPT/CABIN COM ESTABLISH |
| | CABIN FANS OFF |
| | VENT EXTRACT ovbd |
| | GALLEY . SHED |
| | CABIN SIGNS ON |
| If smoke source immediately obvious, accessible and extinguishable : | |
| FAULTY EQPT \qquad ISOLATE If smoke source not immediately isolated : | |
| DIVERSION INITIATE
 DESCENT (FL 100/MEA, min obstacle clearance altitude)
 initiate | |
| | |
| At ANY TIME of the procedure, if smoke/fumes becomes the GREATEST THREAT : | |
| PROC : SMOKE/FUMES REMOVAL CONSIDER | |
| - At ANY TIME of the procedure, if situation becomes UNMANAGEABLE: | |
| IMMEDIATE LANDING CONSIDER | |
| If AIR COND SMOKE suspected (visible smoke or odors and/or simultaneous warnings) : | |
| | |
| | APU BLEED OFF/R |
| | VENT EXTRACT AUTO |
| | PACK 1 VALVE off |
| - If AIR COND smoke continues : | |
| | PACK 1 Valve AUto |
| | PACK 2 VALVE OFF |
| - If AIR COND smoke still continues : | |
| VENT EXTRACT
 . OVBD | |
| | |
| | (Continued) |

This procedure is applicable in case of suspected smoke from the avionics compartment, air conditioning, minimum equipment bay or if the cause is unknown. The flight crew must apply this paper procedure if smoke is detected with or without ECAM activation.
This paper procedure includes all the steps of the AVIONICS and MIN EOPT BAY SMOKE ECAM procedures. Therefore, if the ECAM procedure is displayed, it may be applied if smoke from the avionics or the minimum equipment bay is suspected. Associated additional steps must be performed after ECAM. However, if another smoke source is suspected, refer to the paper procedure.
The procedure layout is organized as follows:

- The first lines correspond to immediate actions which must be performed by the crew as soon as smoke is detected (with or without ECAM activation, whatever the smoke source). These immediate actions enable the crew to quickly refer to the steps most commonly adopted in smoke-related cases. In parallel, when smoke is detected, the crew must immediately be prepared to perform a diversion. This diversion may be avoided if the smoke source is obvious, extinguishable and accessible or confirmed isolated after completion of these immediate actions.
- The memory items indicate the immediate applicable procedure, if at any time of the procedure, the smoke/fumes becomes the greatest threat and smoke removal is required, before continuing the SMOKE/FUMES procedure.
- The last part of the procedure corresponds to specific actions to be applied by the crew once the smoke source has been identified.
In case of a CARGO SMOKE or BAT SMOKE (if applicable) ECAM warning, without any smoke detected in the cockpit/cabin, directly apply the related ECAM/ORH procedure. Note that these warnings may be caused by some other sources that should, ordinarily, be first detected by the flight crew/cabin crew or avionics smoke detectors.

AIR COND SMOKE

Indications

Visible smoke or odor.
Several SMOKE warnings may be triggered.

- As a result of contamination within the air conditioning system AVIONICS SMOKE, MIN EOT BAY SMOKE or BAT SMOKE (if applicable) warnings may be triggered simultaneously.
Apply AIR COND SMOKE procedure only if visible smoke and/or strong odor is encountered.
- Avoid the use of interphone position to minimize interference from oxygen mask breathing noise. Check oxygen masks at 100 \%.
- When VENT EXTRACT is in the OVBD position, a single pack may not be able to maintain the cabin pressure.
(Continued)

| | EMERGENCY PROCEDURES | 2.04 .26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3A | |
| | SMOKE | REV 33 | SEO 570 |- If AVIONICS SMOKE suspected and FAULTY EOPT not identified :

SNIFFER FAN operate

- IF SMOKE CONFIRMED : OXY MASKS/GOGGLES ON
VHF 1 / ATC 1 SELECT
PILOT FLYING CM1
TRIM TK MODE FWD
APU GEN OFF/R
OVRD SUPPLY 1 AND 2 ON
NOTE: FUEL X FEED opens automaticallyPITCH TRIM 1 / YAW DAMPER 1 / AP-FD1 .. RESETTHROTTLE 1 + 2 REDUCEENG 1 AND 2 MODE N1
ENG PWR AS RQRD
LDG GEAR POSITION DET SYS 1
PACKS (if required) MAN CTL
- If WING ANTI ICE required :WING ANTI ICE MODE SELALTN
BUS EOPT LIST (3.08/3.09) REVIEW
PROC : FUEL MANAGEMENT (5.06)
- Before slats extension
LAND RECOVERY ONSPEED INCREMENT ON S, F, Vref, (14.01) . + 10 KTLDG DIST MULTIPLY BY 1.4
If MIN EQPT BAY SMOKE suspected and FAULTY EQPT not identified :
SNIFFER FAN OPERATE
 - IF SMOKE CONFIRMED :
VHF 2 . SELECT
VENT EXTRACT OVBD
MIN EOPT C/B's PULL
CAPT ADC INST SYS 2
ATC . SYS 2
ATS . RESET
AFFECTED EOUIPMENT OFF
PROC : FUEL FEED MANUAL CONTROL (7.04)
 - If the SMOKE warning is still activated after
3 minutes:
 - If IRS 1 or IRS 3 FAULT :
MSU (affected IRS
OFF
PROC : CABIN SMOKE

AVIONICS SMOKE

```
Indications:
    Continuous repetitive chime
    ECAM activation with appropriate warning light.
    Left ECAM CRT : AVIONICS SMOKE proc.
    Right ECAM CRT : Nil
    AVIONICS SMOKE light.
```

- Avoid the use of interphone position to minimize the interference from oxygen mask breating noise.
- It is recommended to wait for a few seconds (typically 2 or 3 seconds) before sniffing in order to evacuate any possible dust accumulation in the duct.
- VHF 1, ATC 1 are selected due to loss of VHF 2, ATC 2 resulting from OVRD SUPPLY 1 and 2 at ON.
- Pressing both OVRD SUPPLY switches sheds the AC BUS 1, AC BUS 2 and DC NORM BUS.
- APU GEN must be selected OFF to open both AC BUS XFR contactors, if APU is operating.
- EPR probes are not heated. FADEC automatically reverts to N1 mode. Confirmation should be performed by selecting both ENG MODE pushbutton switches to N1 position. Thrust management should be performed using N1 parameter.
- Alternate wing anti ice valves remain supplied and must be selected if wing anti ice is required

MIN EQPT BAY SMOKE

Indications:

Repetitive chime
ECAM activation with appropriate warning light
Left ECAM CRT : MIN EOPT BAY SMOKE proc.
Right ECAM CRT : nil.
SMOKE light on C/B panel

- If MIN EOPT BAY SMOKE warning is activated together with AVIONICS SMOKE or other SMOKE warnings, suspect AIR COND SMOKE as probable cause of warnings.
- It is recommended to wait for a few seconds (typically 2 or 3 seconds) before sniffing in order to evacuate any possible dust accumulation in the duct.
- With MIN EQPT BAY SUPPLY C/B's pulled, the following are lost :
a) VHF 1
b) Publicaddress (use megaphone if evacuation required)
c) Fuel OUTR TK LO LVL warning
d) Autofeed due to the loss of OUTR, CTR and INR TK low level detection.
e) Engine 1 and 2 fire detection
f) Engine 1 bleed air control
g) Crew oxygen control
h) ADC 1

Note: AP1/FD1 is lost
i) $\overline{\mathrm{ADC}} 2 \mathrm{BARO}$ SET

Note: AP2/FD2 is lost
j) $\overline{C a b}$ press sys 1
k) Cargo smoke detection and warning

| | EMERGENCY PROCEDURES | 2.04.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3B | |
| | SMOKE | REV 36 | SEO 300 |

FUEL MANAGEMENT FOR AVIONICS SMOKE

- If CTR + TT FQI above $500 \mathrm{~kg}(1100 \mathrm{lbs})$: INR TK PUMP 2 L and 1R
- If/when CTR + TT FQI below $500 \mathbf{~ k g ~ (1 1 0 0 ~ l b s) ~ : ~}$

INR TK PUMP 2 L and 1 R

- When L INR TK empty or fuel unbalance (max $4000 \mathrm{~kg} / 8800 \mathrm{lbs}$) :
L INR TK PUMP 2 OFF
- When R INR TK empty or fuel unbalance (max $4000 \mathrm{~kg} / 8800 \mathrm{lbs}$):
L INR TK PUMP 2 NORM
REPEAT CYCLE UNTIL BOTH INR TK EMPTY.
- When L and R INR TK empty :

סבסבסבסבסבס CAUTION : Avoid rapidthrottle movement andnegative load factors (fuel gravity feeding).
IGNITION
CONT RELIGHT
MAX FL . 250 (200 IF JP4/JET B USED)/MEA/MORA OUTR TK ISOL VALVES CHECK IN LINE
INR TK ISOL VALVES OFF RETURN TO AVIONICS SMOKE PROCEDURE (5.05)

FUEL MANAGEMENT FOR AVIONICS SMOKE

- This fuel management is the one to be used in case of avionics smoke.
- Only INR TK PUMPS 2L and 1R and CTR TK L PUMP remain supplied. They are supplied one at a time with the following priority order :
INR TK 2L, INR TK 1R, CTR TK L.
Selection of TRIM TK MODE FWD allows gravity transfer from TRIM TK to CTR TK (if any fuel in TRIM TK).
- Fuel feed from CTR TK is ensured by selecting INR TK PUMPS 2L and 1R OFF.
- Fuel feed from INR TKs is accomplished alternatively from left or right tank. Switching from one tank to the other one is made when the tank is emply or in case of fuel unbalance ($4000 \mathrm{~kg} / 8800 \mathrm{lb}$ maximum).

| | EMERGENCY PROCEDURES | 2.04.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | SMOKE | REV 35 | SEC 502 |

| BAT SMOKE | |
| :---: | :---: |
| BAT (ALL)
 IF WARN PERSISTS : LAND ASAP | OFF/R |
| If other SMOKE warnings are activated AIR COND SMOKE
 PROC : SMOKE/FUMES (5.04) FOR AIR COND SMOKE | SUSPECT
 . . APPLY |

BAT SMOKE

Indications:

Continuous repetitive chime
ECAM activation with appropriate warning light.
Left ECAM CRT : BATTERY SMOKE proc.
Right ECAM CRT : ELEC/DC page
BAT SMOKE light

- If BAT SMOKE warning is activated together with other SMOKE warnings, suspect AIR COND SMOKE as probable cause of warnings.

CARGO COMPT SMOKE

Indications:

Continuous repetitive chime
ECAM activation with appropriate warning light
Left ECAM CRT : COMPT SMOKE proc
Right ECAM CRT : nil.
SMOKE light.

- Smoke warning activation automatically closes the ISOL and TEMP CONTROL valves.

Note : Expect SMOKE warning to remain after AGENT discharge, even if smoke source is extinguished. Gases from smoke source are not evacuated and smoke detectors are sensitive to extinguishing agent as well.
Once the ISOL and TEMP CONTROL valves are closed, the cargo is not ventilated and cargo temperature is no longer reliable.

- Opening the access door to the forward cargo compartment from the main bay would result in a decrease of agent concentration.
- Maximum protection time is 260 minutes.

| | EMERGENCY PROCEDURES | 2.04.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | SMOKE | REV 34 | SEO 200 |

| SMOKE/FUMES REMOVAL |
| :---: |
| |
| SEAT belt / No Smoking on |
| CABIN FANS . OfF |
| COMPT TEMP ISOL VALVES OFF / R |
| ECON FLOW . OfF |
| ALL COCKPIt louvers open |
| COCKPIT DOOR CLOSE |
| LDG ELEVATION $10000 \mathrm{FT} / \mathrm{MEA}$ / MORA |
| CAB PRESS RATE LIM MAX NOTE : CAB ALT warning will be activated. |
| OUTFLOW AFT . OfF |
| DESCENT (FL 100 or MEA or MORA) INITIATE |
| ATC . NOTIFY |
| PROC : SMOKE/FUMES CONTINUE |
| - When \triangle P 1 PSI or below: |
| RAM AIR . ON |
| - If required to open sliding window : |
| COCKPIT DOOR OPEN |
| MAX SPD 222 KT |
| PACK VALVES 1 AND 2 OFF |
| PNF SLIDING WINDOW OPEN |
| |
| CAUTION : Due to increased noise level pay particular attention to visual warnings. |
| PROC : SMOKE/FUMES CONTINUE |

SMOKE/FUMES REMOVAL

Note : The efforts to extinguish the fire and to determine the smoke source must be the primary concern. If this is not possible, the captain must judge, whether survival depends on elimination of an extreme concentration of smoke or toxic fumes in the pax cabin.
Therefore he can decide to increase the ventilation rate by applying the SMOKE/FUMES REMOVAL procedure regardless of the effect, which the increased airflow might have on the fire.

- The smoke removal procedure must be applied if smoke becomes the greatest threat or in case of toxic fumes or if smoke generation cannot be stopped.
- In case of smoke in cabin it may be necessary to make a PA announcement to minimize apprehension.
- CABIN FANS are selected OFF to avoid recirculation of contaminated air.
- Putting the COMPT TEMP ISOL VALVES switches to OFF/R closes the CARGO ISOL VALVES and prevents a CARGO SMOKE warning triggered by smoke originating in the cabin.
- ECON FLOW is selected OFF to provide full airflow from packs.
- It is recommended to fully open all cockpit ventilation devices and to close the cockpit/cabin door.
- Since the most effective means for smoke removal is use of RAM AIR, descent is initiated to FL 100 or MEA or MORA while cabin altitude is increased to 10000 ft . The increase of cabin altitude also reduces, at least temporarily the smoke concentration.
- While descending, consider continuing the appropriate steps of the SMOKE/FUMES paper procedure depending on the suspected smoke source.
- At FL 100 or MEA or MORA opening of the RAM AIR valve is possible, when $\triangle P$ is 1 psi or below, without oxygen requirement for further flight (except when MEA above FL 140).
- If cockpit smoke removal required, one sliding window may be opened when at or below 225 kt . To facilitate opening, it is recommended to select both PACKS OFF before and reselect PACKS ON as required after opening. Headsets must be donned to ensure crew communication inspite of high noise level with one window open.
- Selecting CAB PRESS OUTFLOW AFT to OFF increases the air exchange in the cockpit.

R

PROC : SMOKE/FUMES CONTINUE

| | EMERGENCY PROCEDURES | 2.04.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 6 | |
| | SMOKE/LOOP | REV 28 | SEQ 001 |

| | EMERGENCY PROCEDURES | 2.04.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | FLT CTL | REV 33 | SEO 001 |

```
G + Y SERVO LO PR (BLUE REMAINING)
LAND ASAP
    MAX SPD . . . . . . . . . . . . . . . . . . . . . . 285/.78
    USE ELEV WITH CARE ABV SPD 170
    PROC : G + Y SERVO LO PR (below) . . . . . . . APPLY
    AFFECTED EQUIPMENT . . . . . . . . . . . . . . . . OFF
    \square If GREEN HYD SYS lost (KRUGER inoperative) :
        LDG SPD INCREMENT . . . . . . . . . . . . . + 10 KT
        LDG DIST . . . . . . . . . . . . . . . MULTIPLY BY 1.5
        PROC : L/G GRAVITY EXT (10.02) . . . . . . . APPLY
    \square If GREEN SERVO only inoperative (KRUGER available) :
        LDG DIST . . . . . . . . . . . . . . . MULTIPLY BY 1.3
        PROC : L/G GRAVITY EXT (10.02) . . . . . . . APPLY
    L-----------
    MAX FL .350
- If YELLOW PUMP LO PR :
        RAT . . . . . . . . . . . . . . . . . . . . . . . . . . ON
        AFFECTED YELLOW EQUIPMENT . . . . . . RESTORE
        CAUTION : If YELLOW SYS powered by RAT, G + Y
        SERVO LO PR will apply for landing.
        FOR APPROACH
- If one SERVO LO PR caused by :
    - related HYD SYS RSVR OVHT (and if OVHT light
        is extinguished)
    or
    - related HYD SYS LO AIR PR :
        HYD PWR ENG PUMP(s) - related . . . . . . . . . ON
        AFFECTED EQUIPMENT . . . . . . . . . . . RESTORE
        - If GREEN HYD SYS not recovered
        SPEED INCREMENT ON S, F, V LS . . . . + 10 KT
        LANDING SPEED . (VLS + 10 KT) or (VREF + 10 KT)
        OFF
-------
AFFECTED YELLOW EQUIPMENT . . . . . . RESTORE
CAUTION : If YELLOW SYS powered by RAT \(G+Y\) SERVO LO PR will apply for landing.
```

G + Y SERVO LO PR (BLUE REMAINING)

| Indications : |
| :--- |
| Continuous repetitive chime |
| ECAM activation with appropriate warning light |
| Left ECAM : Procedure |
| Right ECAM : HYD page |
| LO PR lights on SERVO CTL panel |
| Local alert lights according to secondary failures. |

- The procedure is applicable when two servo systems
Local alert lights according to secondary failures.

Continuous repetitive chime
ECAM activation with appropriate warning light
Left ECAM : Procedure
Right ECAM : HYD page are lost or one servo and one hydraulic system are lost. If YELLOW system is recovered by use of RAT, be aware that YELLOW hydraulic pressure is not guaranteed below 140 Kt . It will not be available for landing.

- PITCH TRIM and PITCH FEEL systems are lost. Airspeed and altitude are limited respectively. PITCH FEEL system is in LO SPD mode.
- For approach the landing gear is extended by gravity, to maintain the GREEN system full capability and integrity.
- Approach with GREEN HYD SYS not recovered :

VLS and maneuvering speeds are increased due to kruger fault.

| | EMERGENCY PROCEDURES | 2.04.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | FLT CTL | REV 33 | SEO 200 |

| B + Y SERVO LO PR (GREEN REMAINING) |
| :---: |
| LAND ASAP |
| PROC : B + Y SERVO LO PR (below) APPLY |
| AFFECTED EQUIPMENT OfF |
| LANDING CONFIG/GPWS 20/20 |
| LDG SPD INCREMENT +10 KT |
| LDG DIST MULTIPLY BY 1.8 |
| PROC : L/G GRAVITY EXT (10.02) APPLY |
| AVOID USING PTU |
| - If YELLOW PUMP LO PR |
| RAT . ON |
| AFFECTED YELLOW EQUIPMENT RESTORE |
| CAUTION : If YELLOW SYS powered by RAT, B $+Y$ SERVO LO PR will apply for landing. |
| FOR APPROACH |
| - If one SERVO LO PR caused by |
| - related HYD SYS RSVR OVHT (and if OVHT light is extinguished), |
| or |
| - related HYD SYS LO AIR PR |
| HYD PWR ENG PUMP (related) ON |
| AFFECTED EQUIPMENT RESTORE |
| - If GREEN SERVO CTL only remaining |
| GPWS FLAP 20 |
| SPEED INCREMENT ON V LS + 10 KT |
| LANDING CONFIG FLAPS 20 |
| LANDING SPEED . (V LS + 10 KT) or (V REF + 20 KT) |

| B + Y SERVO LO PR (GREEN REMAINING) |
| :---: |
| Indications : |
| Continuous repetitive chime |
| ECAM activation with appropriate warning light |
| Left ECAM : Procedure |
| Right ECAM : HYD page |
| LO PR lights on SERVO CTL pane |
| Local alert lights according to secondary failures. |
| - The procedure is applicable when two servo control systems are lost or when one servo control and one hydraulic system fail. |
| If YELLOW system is recovered by use of RAT, be aware that YELLOW hydraulic pressure is not guaranteed below 140 Kt . It will not be available for landing. |
| - Approach with GREEN SERVO remaining : |
| VLS is augmented by 10 Kt and landing configuration is limited to $20 / 20$ due to reduced lateral controllability caused by partial loss of roll spoilers. |
| Landing distance is increased due to landing configuration, LDG SPD increment and partial loss of GND SPLRS. |
| The landing gear is extended by gravity to maintain GREEN system full capability and integrity. |

| | EMERGENCY PROCEDURES | 2.04.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | FLT CTL | REV 33 | SEQ 001 |

| B+G SERVO LO PR (YELLOW REMAINING) |
| :---: |
| LAND ASAP |
| PROC : B + G SERVO LO PR (below) APPLY |
| AFFECTED EQUIPMENT OFF |
| - If GREEN HYD SYS lost (KRUGER inoperative) : |
| LDG SPD INCREMENT + 10 KT |
| LDG DIST MULTIPLY BY 1.5 |
| PROC : L/G GRAVITY EXT (10.02) APPLY |
| - If GREEN SERVO only inoperative (KRUGER available) : |
| LDG DIST MULTIPLY BY 1.3 |
| PROC : L/G GRAVITY EXT (10.02) APPLY |
| FOR APPROACH |
| - If one SERVO LO PR caused by : |
| - related HYD SYS RSVR OVHT (and if OVHT light is extinguished), |
| or |
| related HYD SYS LO AIR PR : |
| HYD PWR ENG PUMP(s) - related ON AFFECTED EOUIPMENT RESTORE |
| | |
| |
| SPEED INCREMENT ON S, F, V LS + 10 KT LANDING SPEED . (VLS + 10 KT) or (VREF + 10 KT) |
| | |

| $\underline{\text { + G SERVO LO PR (YELLOW REMAINING) }}$ |
| :---: |
| Indications : |
| Continuous repetitive chime |
| ECAM activation with appropriate warning ligh |
| Left ECAM : Procedure |
| Right ECAM : HYD page |
| LO PR lights on SERVO CTL pane |
| Local alert lights according to secondary failures |
| - The procedure is applicable when two servo control systems are lost or when one servo control and one hydraulic system are lost. |
| | |
| |
| - The landing gear is extended by gravity, to maintain the GREEN system full capability and integrity. |
| - Approach with GREEN HYD SYS not recovered : |
| VLS and maneuvering speeds are increased due to kruger fault. |

| | EMERGENCY PROCEDURES | 2.04.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | FLT CTL | REV 33 | SEQ 001 |

| | EMERGENCY PROCEDURES | 2.04.28 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | FUEL | REV 30 | SEO 100 |

| EXCESS AFT CG | |
| :---: | :---: |
| TRIM TK MODE | FWD |
| TRIM TK PUMP 1 and 2 | CHECK ON |
| IF FWD XFR UNSUCCESSFUL:
 TRIM TK FUEL UNUSABLE PROC (7.08) | . . APPLY |
| AUTO TRIM TK SYS InOP | |
| - FUEL MAN FWD XFR ONLY | |
| - If/When TRIM TK empty : | |
| TRIM TK PUMP 1 and 2 | . OFF |
| TRIM TK MODE . | . . AUTO |
| - If EXCESS AFT CG warning persists : | |
| PASSENGER RELOCATION | CONSIDER |
| 10 Pax from rear to front $=-2 \% \mathrm{CG}$ | |
| 10 Pax from rear to mid $=-1 \% \mathrm{CG}$ | |
| PROC : TRIM TK FUEL UNUSABLE (7.08 | . . APPLY |

EXCESS AFT CG

Indications:

Continuous repetitive chime
ECAM activation with appropriate warning light.
Left ECAM CRT : EXCESS AFT CG procedure
Right ECAM CRT : Fuel page.
TRIM TK MODE FAULT light illuminated

- This warning is triggered when the THS position reaches a deflection limit (which represents a center of gravity of 43%). This deflection limit is computed by the FWC and depends on Mach and N1 values.
- This warning should be preceded by the AFT CENTER OF GRAVITY warning which occurs when the center of gravity reaches 41%.
- When TRIM TK is empty, select TRIM TK pumps OFF and TRIM TK MODE to AUTO to prevent further aft transfer and CTR TK overflow during next TRIM TK refueling.

| | EMERGENCY PROCEDURES | 2.04.28 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 | |
| | | REV 28 | SEO 100 |

LEFT BLANK INTENTIONALLY

G+Y HYD SYS LO PR (BLUE REMAINING)

```
    LAND ASAP
    MAX SPD . . . . . . . . .. . . . . . . . . . . . . 285/78
    ELEV WITH CARE ABV SPD 170.
    BRK/ANTI SKID . . . . . . . . . . . . . . . . . . . ALTN / OFF
    GPWS . . . . . . . .................. FLAP OVRD
```

 - IF YELLOW PUMP FAIL (and no YELLOW HYD fluid
 loss suspected) :
 RATON
 AFFECTED EQUIPMENT OFF
MAX BRK PRESS 1000 PS
PROC : DUAL ($\mathrm{G}+\mathrm{Y}$) HYD SYS LO PR APPLY
PROC : L/G GRAVITY EXTENSION (10.02) APPLY

- If YELLOW SYS powered by RAT :
AFFECTED YELLOW EQUIPMENT RESTORE
CAUTION : G+Y HYD SYS LO PR will still apply for landing.
- If both GREEN ENG PUMP failed (and no GREEN HYDfluid loss suspected) :HYD PWR ELEC PUMPSON
MAX FL 350
LDG DIST and \vee REF increments $(15.02,15.04)$. . . DETERMINE
FOR APPROACH
- If SYS lost by RSVR OVHT (and if OVHT light is extinguished) or by LO AIR PR :
HYD PWR ENG PUMP (related) ON
AFFECTED EQUIPMENT RESTORE- If YELLOW SYS lost by RSVR LO LEVEL, for flaps extension :RATON
CAU- If unable to restore by HYD PWR ENG PUMP :SYSTEM STATUS WITH ONE HYD SYS (8.05) REVIEWLDG DIST and V REF increments APPLY
- If FLAPS less than 20° :ATS LEVER(s)OFFPROC : ABNORMAL SLATS/FLAPS LANDING (6.14) . APPLY

DUAL (G + Y) HYD SYS LO PR

```
Indications:
    Repetitive chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : procedure
    Right ECAM CRT : HYD page
    Local alert lights according to the secondary
    failures
```

- Hydraulic system failure may be due to loss of system pressure or fluid.
- RAT should be extended if yellow circuit is lost. If the yellow circuit is powered by the RAT, yellow hydraulic pressure cannot be guaranteed below 140 kt and therefore will not be available for landing.
- Altitude is limited to FL 350 due to loss of both PITCH TRIM.
- If YELLOW HYD pressure is recovered by RAT, leave BRK/A/SKID in OFF.
- Airspeed is limited due to loss of PITCH TRIM and PITCH FEEL systems.
- Selecting RAT to ON for approach may at least temporarily provide an opportunity for stabilizer trim and flap extension.
- Due to the low flow of the RAT, when flaps are extended using the RAT, the yellow pressure may drop below 130 bars leading to the closure of priority valves. DUAL HYD SYS LO PR may be triggered again. When pressure raises back to 130 bars, the priority valves re-open, and flaps extension continues.
- In case of turbulent approach, flight controls inputs greater than 20% sec may also lead to priority valve temporary closure.
- When using the ELEC PUMPS, the slats, flaps and L/G must be extended in sequence in order to reduce loads on green system.
- If flaps are stuck at less than 20°, ATS must be disarmed to prevent operation of alpha floor.
- If the flaps were extended when the failure occurred, and remain, the landing distance increase is reduced respectively.
- BRK/A/SKID is switched OFF to avoid YELLOW brake accumulator pressure loss caused by antiskid operation. The yellow accumulator pressure should read $3,000 \mathrm{psi}$ before landing. If below this value the PARKING BRAKE ACCU PRESS pushbutton may be operated to recharge the brake accumulator.
- As antiskid is not available, limit brake pressure to 1,000 psi and at low ground speed adjust brake pressure as required. Landing on an icy runway should be avoided.

B+Y HYD SYS LO PR (GREEN REMAINING)

LAND ASAP

AVOID USING PTU

- IF YELLOW PUMP FAIL (and no YELLOW HYD fluid loss suspected) :
RAT . ON
AFFECTED EQUIPMENT OFF
LANDING CONFIG / GPWS 20/20
LDG SPD INCREMENT + 10KT
LDG DIST MULTIPLY BY 1.8
PROC : DUAL (B + Y) HYD SYS LO PR APPLY
PROC : L/G GRAVITY EXTENSION (10.02) APPLY
- If YELLOW SYS powered by RAT :

AFFECTED YELLOW EQUIPMENT RESTORE
CAUTION : B + Y HYD SYS LO PR will still apply for landing.

TRIM TK MODE . FWD
DESCENT TO FL 310 CONSIDER
LDG DIST and VREFincrements (15.02, 15.04) . DETERMINE

FOR APPROACH

- If SYS lost by RSVR OVHT (and if OVHT light is extinguished) or by LO AIR PR :

HYD PWR ENG PUMP (related) ON
AFFECTED EQUIPMENT RESTORE

- If YELLOW SYS lost by RSVR LO LEVEL for flaps extension :

RAT
CAUTION : B + Y HYD SYS LO PR will still apply for landing.

- If unable to restore by HYD PWR ENG PUMP :

SYSTEM STATUS WITH ONE HYD SYS (8.05) . REVIEW LDG DIST and V REF increments APPLY

DUAL (B + Y) HYD SYS LO PR

```
Indications:
    Continuous Repetitive chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : procedure
    Right ECAM CRT : HYD page
    Local alert lights according to the secondary
    failures
```

- It is recommended to avoid using PTU in order not to decrease the reliability of the remaining GREEN hydraulic system.
- Hydraulic system failure may be due to loss of system pressure or fluid.
- RAT should be extended if yellow circuit is lost. If the yellow circuit is powered by the RAT, yellow hydraulic pressure cannot be guaranteed below 140 kt and therefore will not be available for landing.
- Due to the low flow of the RAT, when flaps are extended using the RAT, the yellow pressure may drop below 130 bars leading to the closure of priority valves. DUAL HYD SYS LO PR may be triggered again. When pressure raises back to 130 bars, the priority valves re-open, and flaps extension continues.
- In case of turbulent approach, flight controls inputs greater than $20^{\circ} / \mathrm{sec}$ may also lead to priority valve temporary closure.
- If the PTU was used to repressurize the first failing HYD system, it is recommended to select the PTU to OFF to maintain GREEN system full capability and integrity.
- VLS is augmented by 10 kt and landing configuration is limited to 20/20 due to reduced lateral controllability caused by partial loss of roll spoilers.
- Landing gear is extended by gravity to maintain GREEN system full capability and integrity.
- As both Yaw Dampers are lost, transferring fuel forward and descending to FL 310 will improve dutch roll characteristics.

| | EMERGENCY PROCEDURES | 2.04.29 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | HYD | REV 36 | SEQ 001 |

| B+G HYD SYS LO PR (YELLOW REMAINING) |
| :---: |
| LAND ASAP |
| AFFECTED EQUipment off |
| PROC : DUAL (B+G) HYD SYS LO PR APPLY |
| PROC : L/G GRAVITY EXTENSION (10.02) APPLY |
| - If both GREEN ENG PUMP failed (and no GREEN HYD fluid los suspeidil |
| | |
| |
| LDG DIST and V REFincrements ($15.02,15.04$) . DETERMINE |
| FOR APPROACH |
| - If SYS lost by RSVR OVHT (and if OVHT light is extinguished) or by LO AIR PR : |
| HYD PWR ENG PUMP (related) ON AfFECTED EQUIPMENT RESTORE |
| | |
| |
| BRK-A/SKID selector ALTN-ON |
| SYSTEM STATUS WITH ONE HYD SYS (8.05) . REVIEW |
| LDG DIST and V REF increments APPLY |
| - If SLATS less than 20° |
| $\frac{\text { PROC }}{(6.14)}$: ABNORMAL SLATS/FLAPS LANDING |

DUAL B+G HYD SYS LO PR

Indications:

Continuous Repetitive chime
ECAM activation with appropriate warning light
Left ECAM CRT : procedure
Right ECAM CRT : HYD page
Local alert lights according to the secondary failures

- Hydraulic system failure may be due to loss of system pressure or fluid.
- VLs is augmented by 10 KT if slats are extended 15° or more but KRUGERS remain retracted.
- If slats were extended when the failure occured, and remain, the landing distance increase is reduced respectively. Braking is automatically transferred to YELLOW HYD system. However to obtain the RELEASE indication for YELLOW alternate braking, it is recommended to set the A/SKID-BRK selector to ALTN/ON.
- When using the ELEC PUMPS, the slats, flaps and L/G must be extended in sequence in order to reduce loads on green system.

| | EMERGENCY PROCEDURES | 2.04.29 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | HYD | REV 36 | SEQ 001 |

INTENTIONALLY LEFT BLANK

| | EMERGENCY PROCEDURES | 2.04.32 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | L/G - BRAKES | REV 33 | SEQ 001 |

R

| LOSS OF BRAKING AT LANDING | |
| :---: | :---: |
| - If AUTOBRAKE is selected | |
| BRAKE PEDALS PRESS | |
| - If NO BRAKING available : | |
| MAX REVERSE | APPLY |
| BRAKE PEDALS | RELEASE |
| BRK/ANTI SKID | ALTN/OFF |
| BRAKE PEDALS | . PRESS |
| MAX BRK PRESS | . 1000 PSI |
| - If still NO Braking | |
| PARKING BRAKE | USE |

BRAKE PEDALS RELEASE
BRAKE PEDALS PRESS

- If still NO BRAKING

RAKE

[^3]| | EMERGENCY PROCEDURES | 2.04.32 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 | |
| | L/G - BRAKES | REV 33 | SEO 001 |

INTENTIONALLY LEFT BLANK

| | EMERGENCY PROCEDURES | 2.04.34 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | NAV/ADC/INST | REV 36 | SEQ 220 |

EGPWS ALERTS

CAUTION : During night or IMC conditions, apply the procedure immediately. Do not delay reaction for diagnosis.
During daylight VMC conditions, with terrain and obstacles clearly in sight, the alert may be considered cautionary. Take positive corrective action until the alert ceases or a safe trajectory is ensured.
"PULL UP" - "TERRAIN TERRAIN PULL UP" "TERRAIN AHEAD PULL UP"

- Simultaneously :

AUTOPILOT \qquad DISCONNECT
PITCH ATTITUDE \qquad INITIALLY 20° NOSE UP

- Use Stick Shaker boundary as upper limit of pitch

A/THR DISCONNECT
THROTTLES FULL FORWARD
SPEED BRAKES LEVER CHECK RETRACTED
R
BANK . WINGS LEVEL OR ADJUST

- When flight path is safe and GPWS warning ceases :
- Decrease pitch attitude and accelerate.
- When speed above VLS and V/S positive: - Clean up aircraft as required.

■ "TERRAIN TERRAIN" - "TOO LOW TERRAIN"

- Adjust the flight path or initiate a go around.
- "TERRAIN AHEAD"
- Adjust the flight path. Stop descent. Climb and/or turn as necessary based on analysis of all available instruments and information.
- "SINK RATE"
- Adjust pitch attitude and thrust to silence the warning.

"DON'T SINK"

- Adjust pitch attitude and thrust to maintain level or climbing flight.

■ "TOO LOW GEAR" - "TOO LOW FLAPS"

- Perform a go-around.
- "GLIDE SLOPE"
- Establish the airplane on the glide slope or
- Switch off the G/S mode pushbutton switch if flight below glide slope is intentional (non precision approach).

EGPWS ALERTS

A nuisance EGPWS "TOO LOW GEAR" warning may be generated if the Nose Landing Gear downlock system 2 is inoperative.

Best climb performance is obtained when close to wings level. Then depending on the situation, a turn will be performed

| | EMERGENCY PROCEDURES | 2.04.34 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 | |
| | NAV/ADC/INST | REV 27 | SEO 001 |

EMERGENCY PROCEDURES

BOTH ENG FLAME OUT - FUEL REMAINING

CAUTION : This paper procedure is applicable in case of both engines flame out, when there is fuel remaining on board. It includes all the necessary information to manage the situation.

| LAND ASAP IGNITION RAT | | | | | REL | $\begin{array}{r} \mathrm{GHT} \\ \text { ON } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| THROTTLES | | | | | | DLE |
| OPTIMUM SPD | | $60 \mathrm{KT}$ | IAS whic | $\begin{aligned} & \text { or GF } \\ & \text { heve } \end{aligned}$ | EEN is hi | $\begin{aligned} & \text { DOT } \\ & \text { gher } \end{aligned}$ |
| NOTE : At optim about 15 ground. | speed w minutes to distanc | both scend about | $\begin{aligned} & \text { enging } \\ & \text { d from } \\ & \text { it } 90 \wedge \end{aligned}$ | | $\begin{aligned} & p, \text { it } \\ & 50 t \end{aligned}$ | akes the |
| GREEN DOT SP | WITH B | , | , | INO | , | |
| Weight (tons) | FL200 an | low | FL 30 | | FL | |
| 80 | 18 | | 200 | | 21 | |
| 100 | 20 | | 220 | | 23 | |
| 120 | 22 | | 240 | | 25 | |
| 140 | 24 | | 260 | | 27 | |
| 160 | 26 | | 280 | | 28 | |
| If unreliable or lost airspeed indication (volcanic ash encounter): | | | | | | |
| SET PITCH ATTITUDE | | 80t | 100t | 120t | 140t | 160t |
| FL 200 and below | | -1.5 | -1.5 | -0.5 | 0.5 | 0.5 |
| FL 300 | | -1.5 | -1.5 | -0.5 | 0.5 | 0.5 |
| FL 350 | | -1.5 | -1.5 | -0.5 | -0.5 | -1 |

USE ELEVATOR AND RUDDER WITH CARE ABOVE SPD 170 KT IAS
COMMUNICATIONS VHF1/ATC1

- When time permits :

ATC . NOTIFY
TRANSPONDER AS RQRD
LANDING STRATEGY DETERMINE
RELIGHT . MONITOR
NOTE : . The ground start EGT limit does not apply for airstarts.
If EGT approaches the red line, cycle the FUEL LEVER (OFF, then ON as EGT decreases).

- The engine will accelerate very slowly at high altitudes, in heavy rain or in volcanic ash. If EGT is within limit and N1/N2 are increasing, continue the start attempt.
ENGINE RESPONSE CHECK
- If neither engine relights within 30s:

FUEL LEVERS OFF then ON after 30s

- If unsuccessful :

CREW OXY MASKS (above FL 100) ON

- Below FL 200 :

APU . START
APU BLEED ON
STARTER ASSISTED RELIGHT ONE ENG AT A TIME

BOTH ENG FLAME OUT - FUEL REMAINING

- Before applying this procedure, a fuel supply check, must be done to confirm the correct fuel panel setting according to remaining fuel quantity, ISOL VALVES OPEN. If no fuel remains on board, the procedure "BOTH ENG FLAME OUT - NO FUEL REMAINING" must be applied.
- CONT RELIGHT selected during rundown ensures an immediate restart attempt. Above 30000 ft (outside of engine relight envelope) a sub idle hung start condition may occur. Shut down the engine and relight within the relight envelope, with N2 stabilized.
- The optimum airspeed to achieve the best lift to drag ratio, and to allow simultaneously an effective windmilling start attempt is the highest speed between 260 kt and GREEN DOT speed. Green dot speed is read on the table.
- In case of unreliable or lost airspeed indication set aircraft pitch attitude according to aircraft estimated weight and Flight Level.
- Avoid abrupt rudder and elevator inputs because RUD TRAVEL and PITCH FEEL are in low speed configuration.
- Notify ATC of the nature of emergency encountered and state intentions.

CAUTION

Only VHF 1/ATC 1 are available on batteries only.

- If the nature of the emergency permits, allow cabin crew to makeP/A announcement that will minimize apprehension. In the event of no ATC contact select ATC code 7700 or transmit the distress message on one of the following frequencies, (VHF) 121.5 MHZ or (HF) 2182 KHZ or 8364 KHZ.
- Determine whether a runway can be reached, or the most appropriate place for a forced landing or ditching.
- During rapid relight attempt(s), the EGT may be allowed to rise above the ground starting EGT limit. If EGT approaches the EGT red line, the FUEL LEVER should be cycled (OFF then ON as EGT decreases) to clear a possible stall or hang-up engine condition. If unsuccessful, the start should be aborted and an other restart attempt considered.
- If no relight within 30 seconds, fuel lever must be left OFF for 30 seconds before new start attempt to allow ventilation of combustion chamber.
- If engine relights unsuccessful, it is recommended to don the oxygen masks to anticipate cabin depressurization.
- When one engine relights, the ECAM is reactivated and provides ENG FAIL/ENG SHUT DOWN message for the non operating engine. In addition, the systems which are to be restored with regard to the operating engine are displayed simultaneously.
Perform ECAM actions as soon as display reappears.

| | EMERGENCY PROCEDURES | 2.04.70 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ENG | REV 34 | SEO 110 |

BOTH ENG FLAME OUT - FUEL REMAINING (cont'd)

- When APU bleed is available or if engines restart is considered impossible :
OPTIMUM SPD
GREEN DOT
NOTE : . At green dot speed, the aircraft can fly up to approximately 3 NM per 1000 feet (with no wind).
. Average rate of descent is about 2200 feet/min.
HYD PWR ELEC PUMPS (if APU GEN operating) .. ON GREEN HYDRAULIC EQUIPMENT RESTORE

APPROACH PREPARATION

LDG ELEV . SET
ALTIMETERS . SET
CREW OXY MASKS (below FL 100) OFF
CABIN CREW NOTIFY
SEAT BELTS/NO SMOKING ON
GPWS . OFF
CABIN and COCKPIT PREPARE
. Loose equipment secured,
. Survival equipment secured,

- Belts and shoulder harness locked.

If forced landing anticipated :
APPROACH

- Before slats extension :

LAND RECOVERY
APPROACH CONFIG FLAPS 15°
APPROACH SPEED Determine below

| Weight (tons) | ≤ 100 | 110 | 120 | 130 | 140 | 160 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| App speed (kt) | 150 | 155 | 165 | 170 | 175 | 183 |

NOTE : To reach the landing field/runway, the approach speed can be adjusted up to 210 (max speed with flaps 15).
L/G GRAVITY EXTENSION :
GRAVITY EXTENSION HANDCRANK INSERT
L/G LEVER CHECK NEUTRAL
GRAVITY EXTENSION HANDCRANK . . . ROTATE
L/G LEVER DOWN
GEAR DOWN INDICATIONS CHECK
GND SPLRS . ARM
NOTE : Final descent slope at approach speed, F15 and LDG GEAR DOWN, will be approximately 1900 feet/min (with no wind).
TRIM TK ISOL VALVE OFF

AT 2000 FEET AGL

CABIN REPORT OBTAIN
EMER EXIT LT selector ON
BEFORE IMPACT
BRACE FOR IMPACT ORDER
RAM AIR . ON
PITCH ATTITUDE APPROXIMATELY 11°
VERTICAL SPEED MINIMIZE
AT TOUCHDOWN
BOTH FUEL LEVERS OFF
APU MASTER SWITCH OFF
FIRE HANDLES (ALL) PULL

BOTH ENG FLAME OUT - FUEL REMAINING (cont'd)

The continuation of the procedure is linked to the fact that neither engine has been recovered :

- When APU bleed is available, GREEN DOT speed is the optimum speed for gliding as far as possible. Read green dot speed in the table at the beginning of the procedure (previous page).
- If APU GEN is available the ELEC PUMPS may be used to restore GREEN hydraulic pressure.
- The aircraft is then prepared for approach before referring to the forced landing or the ditching part of the procedure according to the situation.
- Notify the cabin crew of the nature of emergency encountered and the intentions.
- Specify the available time.

FORCED LANDING/DITCHING :

- LAND RECOVERY is selected ON to restore SLATS/ FLAPS/SPLRS operation.
- SLATS/FLAPS operating times are noticeably increased due to the reduced hydraulic system capability.
- Flaps 15° configuration is considered as the optimum setting obtaining best controllability and optimum rate of descent (estimated approximately $1.900 \mathrm{ft} / \mathrm{mn}$).
- In flaps 15° configuration, the recommended approach speed ensuring an adequate stall margin and an optimum rate of descent is determined according to the estimated aircraft weight.
- RAT operation is guaranteed above 140 kt .

Landing gear gravity extension (forced landing only)

- The landing gear gravity extension handcrank must be rotated clockwise 20 full turns until the mechanical stop is reached. Increasing loads are to be expected beyond 16 turns, then beyond 18 turns.
- When the landing gear is down, the amber door lights remain illuminated due to the door remaining open.
- Main gear : Positions for checking red pins on upper wing surface are marked by inverted T-symbols on cabin side walls.
- Nose gear : The mechanical indicator on the nose gear drag strut is checked from the avionics compartment through viewing windows in the nose landing gear well.

BOTH ENG FLAME OUT - FUEL REMAINING (contd)
AFTER LANDING

- When aircraft stopped :

CABIN CREW (PA) NOTIFY
FUEL ISOL VALVES OFF

AGENTS (ENG and APU)
DISC

- If evacuation required :
ΔP (DIFF PRESS) CHECK ZERO
EVACUATION INITIATE BAT (before leaving the cockpit) OFF/R

If ditching anticipated :
APPROACH

- Before slats extension :

LAND RECOVERY
ON
APPROACH CONFIG FLAPS 15
APPROACH SPEED Determine below

| Weight (tons) | ≤ 100 | 110 | 120 | 130 | 140 | 160 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| App | | | | | | |

| App speed (kt) | 150 | 155 | 165 | 170 | 175 | 183 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOTE : To reach the landing field/runway, the approach speed can be adjusted up to 210 (max speed with flaps 15)
L/G LEVER UP

TRIM TX ISOL VALVE OFF
AT 2000 FEET AGL
CABIN REPORT OBTAIN
EMER EXIT LT selector ON
OUTFLOW 1 and 2 (FWD and AFT) . . OFF/(CLOSED)
MAN PRESS CHECK OFF
RAM AIR OFF/CLOSED
BEFORE DITCHING
BRACE FOR IMPACT ORDER
PITCH ATTITUDE APPROXIMATELY 11°
VERTICAL SPEED MINIMIZE
AT TOUCHDOWN
BOTH FUEL LEVERS OFF
PU MASTER SWITCH OFF
FIRE HANDLES (ALL) PULL
AFTER DITCHING
CABIN CREW (PA) NOTIFY
FUEL ISOL VALVES OFF
$\Delta \mathrm{P}$ (DIFF PRESS) CHECK ZERO
AGENTS (ENG and APU) DISCH
EVACUATION INITIATE
BAT (before leaving the cockpit) OFF/R

BOTH ENG FLAME OUT - FUEL REMAINING (cont'd)

DITCHING SPECIFICITIES :

- Reference aircraft attitude after ditching

- Note: The direction of ditching is mainly dependent on wind and state of sea and these factors may be assessed as follows :
(1) Wind direction:

This may be assessed by observing the waves, wish move and break down wind, spray from wave tops is also a reliable indicator.
(2) Wind speed:

The following conditions can be used as a guide to wind speed:

A few white crest 8-17 Kt
Many white crests 17-26 Kt
Streaks of foam along water . . . 23-35 Kt
Spray from waves 35-43 Kt
(3) State of sea:

This is better assessed from a height of 500 to 1000 ft , particularly direction of swell which may not be as obvious as the less important wave direction when seen from a lower altitude.

- When there is no swell, align into the wind. In the presence of a swell, and provided that drift does not exceed 10 degrees, land parallel to the swell, and as nearly into wind as possible. If drift exceeds 10 degrees, land into wind. The presence of drift on touchdown is not dangerous, but every effort should be made to minimize roll.

| | EMERGENCY PROCEDURES | 2.04 .70 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | ENG | REV 36 | SE0 001 |

BOTH ENG FLAME OUT - NO FUEL REMAINING
CAUTION : This paper procedure is applicable in case of both engines flame out, when there is no fuel remaining on board. It includes all the necessary information to manage the situation.

| LAND ASAP
 RAT . ON |
| :--- |
| THROTTLES . IDLE |
| OPTIMUM SPD GREEN DOT |
| NOTE : At green dot speed with both engines inop, the |
| aircraft can fly up to approximately 3.1 NM per 1000 |
| feet (with no wind). |
| . Average rate of descent is about 1700 feet/min. |
| . It takes about 20 minutes to descend from FL 350 |
| to the ground. The distance is about 105 NM. |$|$| GREEN DOT SPEED WITH BOTH ENGINES INOP (KNOTS) | | | |
| :---: | :---: | :---: | :---: |
| Weight (tons) | FL200andbelow | FL 300 | FL 350 |
| 80 | 180 | 200 | 210 |
| 100 | 200 | 220 | 230 |
| 120 | 220 | 240 | 250 |

If unreliable or lost airspeed indication (volcanic ash encounter) :
PITCH ATTITUDE Determine below

| FL 200 and below | FL 300 | FL 350 |
| :---: | :---: | :---: |
| 1.5° | 0.5° | 0° |

USE ELEVATOR AND RUDDER WITH CARE ABOVE SPD 170 KT IAS
COMMUNICATIONS VHF1/ATC1

- When time permits

ATC NOTIFY
TRANSPONDER AS RORD
LANDING STRATEGY DETERMINE

CREW OXY MASKS (above FL 100) ON
EMER EXIT LT DISARM

BOTH ENG FLAME OUT - NO FUEL REMAINING

- Before applying this procedure, a fuel supply check, must be done to confirm the correct fuel panel setting according to remaining fuel quantity, ISOL VALVES OPEN. If fuel remains on board, the procedure "BOTH ENG FLAME OUT - FUEL REMAINING" must be applied.
- The optimum airspeed to achieve the best lift to drag ratio for gliding as far as posible, is GREEN DOT speed. Green dot speed is read on the table.
- In case of unreliable or lost airspeed indication set aircraft pitch attitude according to aircraft Flight Level.
- Avoid abrupt rudder and elevator inputs because RUD TRAVEL and PITCH FEEL are in low speed configuration.
- Notify ATC of the nature of emergency encountered and state intentions.

CAUTION

Only VHF 1/ATC 1 are available on batteries only.

- If the nature of the emergency permits, allow cabin crew to makeP/A announcement that will minimize apprehension. In the event of no ATC contact select ATC code 7700 or transmit the distress message on one of the following frequencies, (VHF) 121.5 MHZ or (HF) 2182 KHZ or 8364 KHZ.
- Determine whether a runway can be reached, or the most appropriate place for a forced landing or ditching.
- It is recommended to don the oxygen masks to anticipate cabin depressurization.
- The EMER EXIT LT selector should be set to disarm (and then back to ON at 2000 ft , just prior to landing/ditching). This allows to preserve aircraft batteries, as well as dedicated battery packs for the emergency lights and the FPEEPMS.

| | EMERGENCY PROCEDURES | 2.04.70 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ENG | REV 34 | SEQ 001 |

BOTH ENG FLAME OUT - NO FUEL REMAINING (cont'd)

APPROACH PREPARATION

LDG ELEV . SET
ALTIMETERS . SET
CREW OXY MASKS (below FL 100) OFF
CABIN CREW NOTIFY
SEAT BELTS/NO SMOKING ON
GPWS . OFF
CABIN and COCKPIT PREPARE
Loose equipment secured,
Survival equipment secured,
Belts and shoulder harness locked.
If forced landing anticipated :
APPROACH

- Before slats extension :

LAND RECOVERY
ON
APPROACH CONFIG FLAPS 15
APPROACH SPEED Determine below

| Weight (tons) | ≤ 100 | 110 | 120 | 130 | 140 | 160 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| App speed (kt) | 150 | 155 | 165 | 170 | 175 | 183 |

NOTE: To reach the landing field/runway, the approach speed can be adjusted up to 210 (max speed with flaps 15).
L/G GRAVITY EXTENSION :
GRAVITY EXTENSION HANDCRANK INSERT
L/G LEVER CHECK NEUTRAL
GRAVITY EXTENSION HANDCRANK . . . ROTATE
L/G LEVER DOWN
GEAR DOWN INDICATIONS CHECK
GND SPLRS . ARM
NOTE : Final descent slope at approach speed, F15 and LDG GEAR DOWN, will be approximately 1900 feet/min (with no wind).
AT 2000 FEET AGL
CABIN REPORT OBTAIN
EMER EXIT LT selector ON

| BEFORE IMPACT |
| :--- |
| BRACE FOR IMPACT ORDER |
| RAM AIR . ON |
| PITCH ATTITUDE APPROXIMATELY 11º |
| VERTICAL SPEED MINIMIZE |
| AT TOUCHDOWN
 BOTH FUEL LEVERS OFF |
| FIRE HANDLES (ALL) PULL |

BOTH ENG FLAME OUT - NO FUEL REMAINING (cont'd)

- The aircraft is then prepared for approach before referring to the forced landing or the ditching part of the procedure according to the situation.
- Notify the cabin crew of the nature of emergency encountered and the intentions.
- Specify the available time.

FORCED LANDING/DITCHING :

- LAND RECOVERY is selected ON to restore SLATS/ FLAPS/SPLRS operation.
- SLATS/FLAPS operating times are noticeably increased due to the reduced hydraulic system capability.
- Flaps 15° configuration is considered as the optimum setting obtaining best controllability and optimum rate of descent (estimated approximately $1.900 \mathrm{ft} / \mathrm{mn}$).
- In flaps 15° configuration, the recommended approach speed ensuring an adequate stall margin and an optimum rate of descent is determined according to the estimated aircraft weight.
- RAT operation is guaranteed above 140 kt .

Landing gear gravity extension (forced landing only)

- The landing gear gravity extension handcrank must be rotated clockwise 20 full turns until the mechanical stop is reached. Increasing loads are to be expected beyond 16 turns, then beyond 18 turns.
- When the landing gear is down, the amber door lights remain illuminated due to the door remaining open.
- Main gear: Positions for checking red pins on upper wing surface are marked by inverted T-symbols on cabin side walls.
- Nose gear : The mechanical indicator on the nose gear drag strut is checked from the avionics compartment through viewing windows in the nose landing gear well.

| | 2.04 .70 | |
| :--- | :--- | :--- |
| PAGE 6 | | |
| REV 36 | | SEO 001 |

BOTH ENG FLAME OUT - NO FUEL REMAINING (cont'd)

AFTER LANDING

- When aircraft stopped :

CABIN CREW (PA) NOTIFY
FUEL ISOL VALVES OFF
AGENTS (ENG and APU) DISCH

- If evacuation required :
ΔP (DIFF PRESS) CHECK ZERO
EVACUATION INITIATE
BAT (before leaving the cockpit) OFF/R
■ If ditching anticipated :
APPROACH
- Before slats extension :

LAND RECOVERY ON
APPROACH CONFIG FLAPS 15
APPROACH SPEED Determine below

| Weight (tons) | ≤ 100 | 110 | 120 | 130 | 140 | 160 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| App speed (kt) | 150 | 155 | 165 | 170 | 175 | 183 |

NOTE : To reach the landing field/runway, the approach speed can be adjusted up to 210 (max speed with flaps 15)
L/G LEVER . UP
AT 2000 FEET AGL
CABIN REPORT OBTAIN
EMER EXIT LT selector ON
OUTFLOW 1 and 2 (FWD and AFT) . . OFF/(CLOSED)
MAN PRESS CHECK OFF
RAM AIR OFF/CLOSED
BEFORE DITCHING
BRACE FOR IMPACT ORDER
PITCH ATTITUDE APPROXIMATELY 11°
VERTICAL SPEED MINIMIZE

AT TOUCHDOWN

BOTH FUEL LEVERS OFF
FIRE HANDLES (ALL) PULL
AFTER DITCHING
CABIN CREW (PA) NOTIFY
FUEL ISOL VALVES OFF
ΔP (DIFF PRESS) CHECK ZERO
AGENTS (ENG and APU) DISCH
EVACUATION INITIATE
BAT (before leaving the cockpit) OFF/R

BOTH ENG FLAME OUT - NO FUEL REMAINING

 (cont'd)
DITCHING SPECIFICITIES :

- Reference aircraft attitude after ditching.

- Note: The direction of ditching is mainly dependent on wind and state of sea and these factors may be assessed as follows :
(1) Wind direction :

This may be assessed by observing the waves, wich move and break down wind, spray from wave tops is also a reliable indicator.
(2) Wind speed:

The following conditions can be used as a guide to wind speed:
A few white crest 8-17 Kt
Many white crests 17-26 Kt
Streaks of foam along water . . . 23-35 Kt
Spray from waves 35-43 Kt
(3) State of sea :

This is better assessed from a height of 500 to 1000 ft , particularly direction of swell which may not be as obvious as the less important wave direction when seen from a lower altitude.

- When there is no swell, align into the wind. In the presence of a swell, and provided that drift does not exceed 10 degrees, land parallel to the swell, and as nearly into wind as possible. If drift exceeds 10 degrees, land into wind. The presence of drift on touchdown is not dangerous, but every effort should be made to minimize roll.

| | EMERGENCY PROCEDURES | 2.04.70 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 7 | |
| | ENG | REV 34 | SEQ 070 |

ENG OIL LO PRESS

Indications:

Continuous repetitive chime
ECAM activation with appropriate warning light
Left ECAM CRT : ENG OIL LO PR PROC
Right ECAM CRT : ENG page
OIL LO PRESS light

- Oil pressure drops below 5 psi prior to engine shutdown, and windmilling time without positive oil pressure indicated, must be recorded for maintenance purposes.
- If conditions do not permit engine shutdown, use the minimum thrust required to sustain safe flight.
- If the low oil pressure condition (OIL LO PRESS local warning and ENG OIL LO PR ECAM procedure) is not confirmed by the OIL PRESS reading on the RH ECAM ENGINE page, continue normal engine operation while monitoring the OIL PRESS reading and other engine primary and secondary parameters (a low oil pressure switch defect may be suspected).

| | EMERGENCY PROCEDURES | 2.04.80 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | MISC | REV 31 | SEQ 100 |

| FORCED LANDING | |
| :---: | :---: |
| PREPARATION (time permitting) | |
| CABIN CREW NOTIFY | |
| ATC . NOTIFY | |
| TRANSPONDER AS RORD | |
| SEAT BELTS/NO SMOKING On | |
| GPWS . off | |
| CABIN and COCKPIT PREPARE | |
| . Loose equipment secured,
 . Survival equipment secured,
 . Belts and shoulder harness locked. | |
| CAB PRESS-LDG ELEVATION SET | |
| APPROACH | |
| - If green hydraulic system lost : | |
| PROC : L/G GRAvITY EXTENSION (10.02) .. APPLY | |
| L/G LeVER . DOWn | |
| GND SPLRS ARM | |
| SLATS and FLAPS (if engines running) . . MAX AVAIL TRIM TK ISOL VALVE \qquad | |
| | |
| CABIN REPORT ObTAIN | |
| EMER EXIT LT selector ON | |
| BEFORE IMPACT | |
| | |
| RAM AIR . ON | |
| BRACE FOR IMPACT ORDER | |
| PITCH ATTITUDE APPROXIMATELY 11° | |
| VERTICAL SPEED MINIMIZE | |
| IMPACT | |
| BOTH FUEL LEVERS OFF | |
| AFTER IMPACT | |
| FIRE HANDLES (ALL) PULL | |
| - When aircraft stopped : | |
| CABIN CREW (PA) NOTIFY | |
| fuel isol valves off | |
| AGENTS (ENG and APU) DISCH | |
| $\triangle \mathrm{P}$ (DIFF PRESS) CHECK ZERO | |
| EVACUATION Initiate | |
| BAT (before leaving the aircraft) OFF/R | |

FORCED LANDING

- Notify ATC of the nature of emergency encountered and state intentions.

In the event of no ATC contact select ATC code 7700 or transmit the distress message on one of the following frequencies, (VHF) 121.5 MHZ or (HF) 2182 KHZ or 8364 KHZ.

CAUTION

Only VHF 1/ATC 1 are available on batteries only.

- Notify the cabin crew of the nature of emergency encountered and the intentions. Specify the available time.
If the nature of the emergency permits, allow cabin crew to make P / A announcement that will minimize apprehension.

| | EMERGENCY PROCEDURES | 2.04.80 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | 2 |
| | MISC | REV 31 | SEO 200 |

DITCHING

| DITCHING |
| :---: |
| PREPARATION (time permitting) |
| CABIN CREW NOTIFY |
| ATC . NOTIFYTRANSPONDER AS RQRD |
| | |
| |
| |
| CABIN and COCKPIT PREPARE
 . Loose equipment secured,
 . Survival equipment prepared,
 . Belts and shoulder harness locked. |
| | |
| | |
| | |
| |
| |
| |
| |
| |
| CABIN REPORT OBTAINED |
| EMER EXIT LT selector ON |
| BEFORE DITCHING |
| OUTFLOW FWD and AFT OFF/CLOSED MAN PRESS CHECK OFF BLEED VALVES (ENG and APU) OFF/R RAM AIR OFF/CLOSED |
| | |
| | |
| | |
| |
| |
| |
| |
| BOTH FUEL LEVERS OFF |
| AFTER DITCHING |
| FIRE HANDLES (ALL) PULL CABIN CREW (PA) NOTIFY |
| | |
| |
| \triangle P (DIFF PRESS) CHECK ZERO |
| EVACUATION INITIATE |
| BAT (before leaving the aircraft) OFF/R |

DITCHING

- Notify ATC of the nature of the emergency encountered and state intentions.
In the event of no ATC contact select ATC code 7700 or transmit the distress message on one of the following frequencies, (VHF) 121.5 MHZ or (HF) 2182 KHZ or 8364 KHZ.

CAUTION

VHF1/ATC1 only are available on batteries only.

- Notify the cabin crew the nature of emergency encountered and intentions. Specify the available time.
- Reference aircraft attitude after ditching.

- Note : The direction of ditching is mainly dependent on wind and state of sea and these factors may be assessed as follows :
(1) Wind direction :

This may be assessed by observing the waves, wich move and break down wind, spray from wave tops is also a reliable indicator.
(2) Wind speed:

The following conditions can be used as a guide to wind speed:
A few white crest 8-17 Kt
Many white crest 17-26 Kt
Streaks of foam along water 23-35 Kt
Spray from waves 35-43 Kt
(3) State of sea :

This is better assessed from a height of 500 to 1000 ft , particularly direction of swell which may not be as obvious as the less important wave direction when seen from a lower altitude.

- When there is no swell, align into the wind. In the presence of a swell, and provided that drift does not exceed 10 degrees, land parallel to the swell, and as nearly into wind as possible. If drift exceeds 10 degrees, land into wind. The presence of drift on touchdown is not dangerous, but every effort should be made to minimize roll.

| | EMERGENCY PROCEDURES | 2.04.80 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | MISC | REV 34 | SEO 001 |

ON GROUND EMER/EVACUATION

AIRCRAFT/PARKING BRK STOP/SET
ATC (VHF 1) . NOTIFY
BOTH FUEL LEVERS OFF
CABIN CREW (PA) NOTIFY
EMER EXIT LT selector ON
FIRE handles (ENG and APU) PULL
FUEL ISOL VALVES OFF
AGENTS (ENG and APU) AS RORD
RAM AIR . ON

- If CAB MAN PRESS selected :

V/S CTL MAINTAIN UP
\triangle P (DIFF PRESS) CHECK ZERO

- If Evacuation required

EVACUATION (PA) INITIATE
BAT (ALL) (before leaving the cockpit) OFF/R
\square If Evacuation not required : CABIN CREW \& PASSENGERS (PA) NOTIFY

ON GROUND EMERGENCY - EVACUATION

- Consider positioning the aircraft according to wind, so that any possible fire is kept away from the fuselage.
- Careful analysis is required to decide on passenger evacuation, however, useful time should not be wasted.
- Notify ATC of the nature of the emergency, and state intentions.

CAUTION
Only VHF 1 is available on batteries only.

- Notify the cabin crew about the emergency encountered and the intentions.
- To facilitate doors opening RAM AIR selected ON automatically opens all OUTFLOW valves when in CAB AUTO PRESS.
- Switching the batteries OFF stops the cockpit voice recorder (CVR) and prevents tape erasure.

| | EMERGENCY PROCEDURES | 2.04.80 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | MISC | REV 27 | SEQ 001 |

CREW INCAPACITATION

In case of incapacitation of a cockpit crew member, the remaining crew member shall as soon as practicable call a cabin attendant.
The best way to request assistance from the cabin crew, is by P / A system :

«ATTENTION, PURSER TO COCKPIT PLEASE ».

The Purser or any other Cabin Attendant must proceed to the cockpit immediately.
The Cabin Attendant then must :

- Tighten and manually lock the shoulder harness of the incapacitated crew member ;
- Push the seat completely aft ;
- Recline the seat back.

It takes 2 people to remove an unconscious body from a seat without endangering any controls and switches.
If it is not possible to remove the body, one cabin attendant shall remain in the cockpit to take care of and observe the incapacited crew member.
In coordination with the purser :

- Request assistance from any medically qualified passenger.
- Check if a type qualified company pilot is on board to replace the incapacitated crew member.

| | EMERGENCY PROCEDURES | 2.04 .80 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 5 | |
| | CABIN/COCKPIT EVACUATION | REV 33 | SEO 001 |

GENERAL

- The successful conclusion of an emergency situation depends upon the perfect knowledge and execution of the duties assigned to each crew member.
- The captain must make sure that all crew members know exactly their assigned positions and their specific duties, as well as the duties of the other crew members.
- Since it is not possible to cover all the situations which may occur, the captain is responsible for the adaptation of the following instructions, to obtain the best coordination. Should it be physically impossible for the captain to carry out his duties, he will be substituted according the prevailing chain of command.

COCKPIT CREW ASSIGNED AREAS FOR EVACUATION

R - If it is not possible to reach the passenger cabin : The crew shall evacuate the aircraft through the cockpit sliding windows by means of the escape ropes.
On ground, each crew member shall give assistance to the passengers in order to direct them away from the aircraft.

R - If it is possible to reach the passenger cabin :

| C | - He (she) is the last person to leave the cockpit, proceed to the cabin and assist in passenger evacuation, as situations dictate.
 - Check that all persons on board have been evacuated,
 - Leave the aircraft through the rear door (or any other suitable exit if rear door cannot be reached)
 - Take command on ground and gives assistance as required. |
| :---: | :---: |
| F | - Proceed to the cabin, assist passengers and take the emergency equipment.
 - Evacuate the aircraft through any suitable exit.
 - Assist on the ground as necessary. |

CABIN CREW ASSIGNED AREAS FOR EVACUATION

| C/ADESIGNATION | ASSIGNED
 JUMPSEATandDOOR | ASSIGNED
 AREA |
| :--- | :--- | :--- |
| PURSER | DOOR 1 LH | FWD-ALLCABIN |
| ATTENDANT 1R | DOOR 1 RH | FWD/MID |
| ATTENDANT($\left.{ }^{*}\right)$ | $\left({ }^{(*)}\right.$ | $\left({ }^{*}\right)$ |
| ATTENDANT3L/R | DOOR 3 LH/RH | AFT/MID |

(*) Depending on overwing exists type (Type I or Type III)

If the cockpit crew does not participate in the cabin evacuation, the purser attendant is responsible to check the entire cabin, before leaving the aircraft.
Note : The following procedures were estab/ished for the

- minimum required cabin attendant number.

COMMUNICATION BETWEEN FLIGHT CREW
 COMMUNICATON BETWEEN FIGHT CREW

| 1. EMERGENCY CALL | | | |
| :---: | :---: | :---: | :---: |
| FROM | TO | COMMUNICATION METHOD | REMARKS |
| COCKPIT | CABIN | "ALL ATTND" pushbutton on CALLS panel : ```press lat least 6 chimes)``` or P.A. SYSTEM : - "PURSER REPORT TO COCKPIT" | Purser must proceed to cockpit immediately |
| CABIN | COCKPIT | INTERPHONE : - "PRIO CAPT" | Any C/A can make such a call, cockpit crew must reply. |

| 2. EMERGENCY ALERT | | | |
| :---: | :---: | :---: | :---: |
| FROM | TO | COMMUNICATION
 METHOD | REMARKS |
| COCKPIT | CABIN | P.A. SYSTEM :
 - "ATTENTIONICREW
 AT STATIONS" | Short and precise
 announcement to
 warnan emergency
 evacuation might
 be required in very
 short time.
 C/A must proceed |
| to their emergency | | | |
| stations and fasten | | | |
| seat belts. | | | |

EMERGENCY PROCEDURES

| | 2.04 .80 | |
| :--- | :--- | :--- |
| PAGE 6 | | |
| REV 33 | SE0 001 | |

| 3. NOTIFICATION TO PASSENGERS | | | | | |
|---|---|---|---|---|---|
| FROM | TO | $\begin{array}{l}\text { COMMUNICATION } \\ \text { METHOD }\end{array}$ | REMARKS |
| COCKPIT | CABIN | $\begin{array}{l}\text { P.A. SYSTEM } \\ \text { NO SMOKING/SEAT } \\ \text { BELT signs : } \\ - \text { select ON }\end{array}$ | $\begin{array}{l}\text { For psychological } \\ \text { reasons the first } \\ \text { information about } \\ \text { an intended } \\ \text { emergency landing } \\ \text { should be made by } \\ \text { the cockpit crew }\end{array}$ |
| PURSER | CABIN | $\begin{array}{l}\text { P.A. SYSTEM } \\ \text { CABIN LIGHTS : } \\ - \text { select 100 \% }\end{array}$ | $\begin{array}{l}\text { Passengers must } \\ \text { be informed that } \\ \text { they have to pay } \\ \text { special attention to } \\ \text { the warnings : } \\ \text { - FINISH } \\ \text { PREPARATION }\end{array}$ |
| PRACE FOR | | | |$\}$| IMPACT |
| :--- |
| IMASSENGER |
| EVACUATION |

| 4. FINISH PREPARATION | | | |
| :---: | :---: | :---: | :---: |
| FROM | TO | COMMUNICATION
 METHOD | REMARKS |
| COCKPIT | CABIN | P.A. SYSTEM :
 - "FINISH
 PREPARATION" | Order to be made
 short time before
 emergency landing. |

| 5. BRACE FOR IMPACT | | | |
| :---: | :---: | :---: | :---: |
| FROM | TO | COMMUNICATION
 METHOD | REMARKS |
| COCKPIT | CABIN | P.A. SYSTEM :
 - "BRACE FOR
 IMPACT" | Order to be made
 not later than 1 mn
 before impact |

| 6. INITIATION EVACUATION - (RESTRICTED EXITS) | | | |
| :---: | :---: | :---: | :---: |
| FROM | TO | COMMUNICATION METHOD | REMARKS |
| COCKPIT | CABIN | P.A. SYSTEM :
 "PASSENGER EVACUATION THROUGH LH (RH) EXITS"
 and
 EVAC SIGNAL/ COMMAND EVAC pushbutton:
 - Press to activate (ON) | This order means immediate evacuation through all usable exits |
| CABIN | $\begin{gathered} \text { COCKPIT } \\ \text { AND } \\ \text { CABIN } \end{gathered}$ | EVAC signal system at purser's station :
 - PUSH FOR ON, or
 P.A. SYSTEM,
 or
 Megaphone | When no signal or orderfromthecockpit and itisunmistakably apparent that an evacuation must be executed |
| CABIN | CABIN | | STANDUP AND SHOUT - "SEAT BELTS OFF" - "SHOES OFF" - "LEAVE EVERYTHING" - "GET OUT" |

| 7. EVACUATION NOT REQUIRED | | | |
| :---: | :---: | :--- | :--- |
| FROM | TO | COMMUNICATION
 METHOD | REMARKS |
| COCKPIT | CABIN | P.A. SYSTEM :
 -"CABINCREW AND
 PASSENGERS
 KEEPYOURSEATS" $"$
 WhenCAPT decides
 that evacuation is
 not required | |

LAND EVACUATION PROCEDURE

CABIN ATTENDANTS RESPONSIBLE FOR FWD/MID/AFT PAX DOOR AND EMER EXITS

Each cabin attendant applies the following :

- Wait aircraft stop,
- Command to unfasten seat belts,
- Check outside conditions.
- If outside condition is considered safe :
- Open door in ARMED configuration
- Protect the exit and watch slide deployment
- Command and assist passengers evacuation.
- If outside condition is considered unsafe :
- Block the exit and direct the passengers to the nearest usable exit,
- Evacuate the cabin after check of responsible area
- Assist passengers on ground.

COCKPIT EVACUATION THROUGH SLIDING WINDOW, USING EMERGENCY DESCENT DEVICES

- Open sliding window,
- Remove the cover of the emergency descent devices (reels),
- Pull the reel, adjacent to the sliding window, from its stowage compartment,
The handgrip will extend a few inches to allow grip with both hands while descending,
- Climb backwards into the cockpit window and stand on the window frame.
- Secure yourself with one hand, do not attempt to secure yourself at the handgrip due to the backlash in the cable,
Secure yourself until your body is in a vertical position outside the cockpit, the feet under your body.
- Descend while holding the emergency descent device handgrip with both hands.
- Expect a high descent speed but attempt to reach the ground in an up-right position, practically standing.
- Walk away from the cockpit area to assist passengers and direct them away from the aircraft.

DITCHING EVACUATION PROCEDURE

CABIN ATTENDANT RESPONSIBLE FOR FWD/ MID AND AFT DOORS

- Deploy the slide/raft in the same manner as for land deployment
- Pull manual inflation handle

Do not wait for automatic inflation

- If water level close to doors sill
- Slide/raft is inflated on water
- Keep slide/raft attached to cabin floor
- Board passengers
- Last crew member separates slide/raft from door sill
- Cut mooring line
- If water level too far from door sill
- Disconnect slide/raft from door sill Slide/raft remains tied to the aircraft by a 20 feet mooring line.
- Hold mooring line to approach the slide/raft close to the exit
- Evacuate passengers into the slide/raft
- Crew members board slide/raft last
- Cut mooring line
- Retrieve survival kit attached via the lanyard to the slide/raft.

Note : As the capacity of the six s/ide/rafts is sufficiently large to accomodate all persons on board, priority of evacuation should be given to the doors equipped with slide/rafts.

| | ABNORMAL PROCEDURES | 2.05 .00 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | CONTENTS | REV 34 | SEO 301 |

| | ABNORMAL PROCEDURES | 2.05.00 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | 2 |
| | CONTENTS | REV 35 | SEO 070 |

Page

Page

ENG ANTI ICE FAULT 1
WING ANTI ICE VALVES FAULT 1
PROBE HEAT FAULT 2
WINDOW HEAT FAULT 2
ICE DETECTED (if applicable) 3
ICE DET OVHT (if applicable) 3
L/G - BRAKES 2.05.32
LDG WITH ABNORMAL L/G 1 to 3
L/G LEVER INTERLOCKED 4
L/G DOOR NOT CLOSED 4
L/G GRAVITY EXTENSION 4
L/G UNSAFE INDICATION 5
BRAKES TEMP HI 6
ANTI SKID FAULT 6
NAV/ADC/INST 2.05.34
EFIS SGU FAULT 1
LOSS OF PFD DISPLAY 1
LOSS OF ND DISPLAY 1
LOSS OF ECAM DISPLAY 2
ADC FAULT 2
IRS FAULT 3
AFS DISTRIBUTION 4
FMS INDEPENDENT/NO DUAL OPERATION 5
LOSS OF ONE FMS 5
LOSS OF BOTH FMS 5
FM/GPS POS DISAGREE (if applicable) 6
GPS FAULT (if applicable) 6
TCAS WARNING 7
R RA FAULT 8
APU 2.05.49
APU AUTOMATIC SHUT DOWN 1
APU FUEL LO PR. 1
APU FLAP FAULT 1

| | ABNORMAL PROCEDURES | 2.05 .10 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | INTRODUCTION | REV 33 | SEQ 001 |

GENERAL

- The abnormal procedures provide the sequence of actions to be performed following :
- An amber warning,
- An abnormal condition not associated to a warning (e.g. elevator jam, unreliable airspeed),
- An adverse weather condition (e.g.severeturbulence or volcanic ash encounter).
- The abnormal procedures are to be applied following the READ-AND-DO principle.

COORDINATED USE OF ECAM AND QRH

- The ECAM and QRH (Quick Reference Handbook) must be used in a coordinated manner.
- The QRH is used :
- When no ECAM procedure is available, or
- When a QRH procedure is called by the prompt PROC in an ECAM warning page or in the ECAM STATUS page, and / or (in any case), before completing the ECAM STATUS page, in order to review the originating procedure for possible additional actions or information.
- Referring to the FCOM 1 and / or FCOM 2 is not required for the short term handling of any abnormal procedure but may be considered when convenient, if so desired.

PROCEDURES LAYOUT

The FCOM / QRH procedures are presented using the following layout standards:

- ACTIONS : all actions are printed in capital letters. For enhanced clarity, actions are regrouped by action blocks (e.g. actions related to the same system or the same purpose) when there is space available. The abbreviations are used only when abbreviations are used on the ECAM or on the cockpit panels,
MEMORY ITEMS : are identified by a thin solid line box. These actions have to be performed without referring to the QRH.

[^4]- ECAM ACTIONS : are identified by a bold solid vertical line,
- ECAM STATUS : items are identified by a bold dotted vertical line,
- Conditional actions :

■ squares symbols are used whenever several conditions (If) are possible but only one entry is to be used,

- dots are used to identify a condition or a phase (e.g. If, At, When), all questions starting by a dot must be answered.
Note : ■ and • are not displayed on ECAM.
Small underlined letters in QRH mean that the condition is not displayed on the ECAM, but this condition is managed by the aircraft system.
If the condition is displayed on the ECAM, it appears in the QRH in large letters and have to be managed by crew.

| | PROCEDURE TITLE |
| :---: | :---: |
| ACTION | |

- If condition managed by A / C system : ACTION SET
- IF CONDITION MANAGED BY CREN : ACTION ROC : EXAMPLE PROC

Note: When action requests to set a system "OFF/R", the OFF position must be selected. It is not a request for reset.

- Cross-references:
- when an other QRH procedure is cross-referenced, the procedure title is indicated after the prompt PROC :, and the associated QRH page is indicated between brackets,
- FLIGHT PHASE identifies the actions which must be delayed until indicated flight phase (e.g. FOR LANDING, FOR APPROACH...),
- Expanded information : for each procedure, an expanded information is provided in order to : - list the indications (warning light and audio warning) and / or clues associated with the prevailing abnormal condition,
- provide background information regarding the reason(s), result(s) and benefit(s) of actions (unless such reason, result and benefit are self evident). R R R R R R R R R R R R R
:

PROCEDURES INITIATION

- No action shall be taken (apart from audio warning cancel) until :
- The appropriate flight path is stabilized,
- Normal procedures are applied,
- At least 400 ft above runway, in case of failure during takeoff, approach or go-around,
- A height of 400 ft is recommended as a good compromise between :
* the time required for flight path stabilization,
* the initiation of the procedurewithoutexcessive delay.
- In some abnormal conditions, provided the appropriate flight path is established, the PF may initiate actions before reaching 400 ft AGL.
- Appropriate command by PF.

TASK SHARING

- The Pilot Flying (PF) remains PF throughout the entire procedure.
- However, when actions can only be performed from one side (e.g. landing gear gravity extension, minimum equipment bay sniffer fan activation), tasks must be redistributed accordingly.
- The PF (Pilot Flying) is responsible for :
- Throttle levers,
- Flight path and airspeed control,
- Aircraft configuration (PF orders, PNF executes),
- Navigation,
- Communications.
- The PNF (Pilot Non Flying) is responsible for :
- Reading the ECAM and QRH,
- Execution of ECAM actions and paper check-list(s), upon PF command,
- Actions on fuel levers, fire handles and guarded switches (with confirmation of PF).

During a rejected takeoff, an on-ground engine fire or an on-ground emergency / evacuation, a CAPT-F/O task sharing applies.

Note : Memory Items may be carried out by either pilot, since response time may be importantfor success. However, initiation of Memory Items must be called out by the PF.

LDG SPEED INCREMENT - LDG DISTANCE FACTOR

- Unless otherwise specified in the procedures, the minimum speed to be used for approach and landing is the VLS corresponding to the configuration requested by the procedure.

Note : VLS, when mentioned in a procedure, is the one corresponding to the configuration requested by the procedure (e.g. if the procedure requests to use $20^{\circ} / 20^{\circ}$ configuration, take VLS of $20^{\circ} / 20^{\circ}$ configuration).

- LDG SPEED INCREMENTS have to be added to the indicated $V \mathrm{LS}$.
- A V LS INCREMENT is indicated on the ECAM STATUS page and in the FCOM / QRH procedure only when the indicated V LS does not account for the abnormal condition, this is the case only in the following three conditions:
- Kruger flaps not extended when selected, or
- Loss of 4 or more roll spoilers per wing, or
- Spoiler(s) stuck in extended position.

In all other abnormal conditions, the indicated V LS accounts for the abnormal configuration.

- The SPD INCREMENT is to be added to S and F speeds, only if specified in the QRH procedure :
- Loss of krugers :
* SPD INCREMENT applicable to S, F and V LS for recovery of the stall margin.
- Loss of 4 or more roll spoilers per wing :
* SPD INCREMENT applicable to V LS only for recovery of the maneuvering capability.

- The LDG DIST factor is to be applied on the LDG DIST 30 / 40 (ORH 15.02).
- A LDG DIST factor is indicated on the ECAM STATUS page and in the FCOM / QRH procedure only in the following conditions :
- When a LDG SPD INCREMENT is applicable, and / or
- In case of loss of 3 or more ground spoilers per wing,
and / or
- In case of braking in ALTN / ON or ALTN / OFF.

ECAM

Warning Inhibition During Takeoff

Some warnings (non-inhibited) appear when the situation that prompts them occurs. Other warnings (inhibited) do not appear immediately, when the situation that prompts them occurs during takeoff.

Advisory Conditions

- In case of activation of the ADV mode on an ECAM system page, the only required action is the monitoring of the flashing parameter.
Time and situation permitting, preventive action(s) may be considered (as indicated in section 2.05.80) in order to :
- avoid the development of the prevailing condition into an abnormal condition,
or
- minimize the condition incurred by the affected equipment,
or
- ensure an optimum management of the affected system.

Crew coordination

- When performing an ECAM or non-ECAM procedure, both pilots must be fully aware of the status of the warning and system displays.
- After completing a warning page, CLEAR ... (title of the ECAM page) is proposed by the PNF but must be confirmed by the PF (after checking the status of the warning and system pages) before the PNF presses the CLR key.

AFFECTED EOUIPMENT REVIEW

- In case of Abnormal/Emergency procedure related to Electrical, Hydraulic, Auto flight systems or Servo Controls, the affected equipment have to be reviewed using the dedicated tables:
- BUS EOPT LIST (ORH 3.08-3.09-3.10)
- HYDRAULIC POWER DISTRIBUTION (QRH 8.01)
- AUTO FLIGHT SYSTEM - DISTRIBUTION (QRH 11.03)
- SERVO CONTROLS (QRH 6.12).

OPERATING ENGINEERING BULLETIN (OEB)

An OEB is issued to rapidly inform operators of any deviations from initial design objectives that have a significant operational impact. An OEB provides the operators with technical information and temporary operational procedures that address these deviations. The information in the OEB should be followed immediately.

The list of applicable OEBs is in the FCOM 2.19 and
in QRH 19.00.

In addition the OEB operational procedure(s) that the flight crew must apply are provided in the QRH (19.00).

| | ABNORMAL PROCEDURES | 2.05.10 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | INTRODUCTION | REV 27 | SEQ 001 |

Example of Crew Coordination and Cross-Confirmation

| WARNING DISPLAY | PILOT FLYING | PILOT NOT FLYING |
| :---: | :---: | :---: |
| HYD
 BLUE RSVR OVHT
 - BLUE PUMP . \qquad | - READ FAILURE TITLE
 - take atc radio ctl
 - REQUEST
 "ECAM ACTION*" | - READ FAILURE TITLE
 - READ ACTION (full line)
 - PERFORM ECAM ACTION OR request Execution by the pf |
| | - REOUEST "PAPER C/L"IF APPLICABLE | |
| HYD
 bLUE RSVR OVht BLUE PUMP OFF \qquad | | - REQUEST « CLEAR HYDRAULIC " |
| | - CHECK ECAM ACTION COMPLETED
 - CONFIRM "CLEAR » | |
| * FLT CTLSLATS SYS 1 FAULTSPLR 7 FAULT $\ldots \ldots$ OFF $\ldots \ldots$ OFFSPLR 1+4 FAULT OFFYAW DAMPER 1 OFF | | PERFORM ECAM ACTIONS FOR SECONDARY FAILURES
 CHECK NO CYAN ON ECAM REQUEST « CLEAR FLIGHT CONTROLS " |
| | - CHECKECAMWARNINGAND SYSTEM PAGES
 - CONFIRM «CLEAR " | |
| STATUS
 LAND 3 INOP
 LDG DIST: MULTIPLY BY 1.3 PROC HYD SYS LO PR BLUE HYD SYS INOP SPLR PARTIALLY INOP SLATS SLOW | | - read status line by line |
| | - REQUEST «PAPER C/L "
 Note : STATUS will be called in APPROACH C/L | |
| | | - PERFORM PAPER C/L
 - CONFIRM «PAPER C/L COMPLETED » |
| | - REQUEST
 "CONTINUE STATUS " | - READ STATUS LINE bY LINE
 - CONFIRM «STATUS COMPLETED » |
| | - REQUEST « PAPER C/L FOR (originating procedure)" | - REVIEW/PERFORM PAPER C/L FOR POSSIBLE ADDITIONAL ACTION/INFORMATION |
| | | - REQUEST « CLEAR STATUS " |
| | - CONFIRM « CLEAR 》 | |
| | | - CONFIRM «ECAM ACTIONS COMPLETED» |

[^5]| | ABNORMAL PROCEDURES | 2.05 .21 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | AIR | REV 30 | SEO 001 |

R

| BLEED LEAK | |
| :---: | :---: |
| - If WING ANTI ICE ON : | |
| AVOID ICING CONDITIONS | |
| WING SUPPLY pushbutton | OFF |
| - If AIR X FEED in line : | |
| AIR \times FEED | . MAN |
| AIR \times FEED | X LINE |
| BLEED VALVE (affected) OFF/R | |
| - If left side affected : | |
| APU BLEED . OFF/R | |
| PACK (affected side) | . OFF |

| APU BLEED LEAK |
| :---: |
| APU BLEED $~ . ~ O F F / R ~$ |

| AIR \mathbf{X} - FEED FAULT |
| :---: |
| AIR X FEED $\ldots \ldots . . . \ldots$. MAN |

BLEED LEAK

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : BLEED LEAK proc (if LH side
    affected)
    Right ECAM CRT : AIR BLEED page
    LEAK light on AIR BLEED panel.
```

- Following the detection of a leak the affected system valves will close automatically (Bleed valve, XFEED valve and APU bleed valve (if LH side affected)).
The associated actions confirm automatic operation and extinguish related warnings, allowing flight to be continued with one pack supplied.
- WING ANTI ICE valve will close due to lack of bleed air supply. SUPPLY must be selected OFF to prevent wing anti ice asymmetry.
- PACK VALVE will close due to lack of air supply.

APU BLEED LEAK

Indications:

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : BLEED LEAK proc
Right ECAM CRT : AIR BLEED page
LEAK light on AIR BLEED panel.

- APU BLEED VALVE and X FEED valve (if AUTO) close automatically.

AIR X-FEED FAULT

Indications :

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : AIR X FEED FAULT proc
Right ECAM CRT : AIR BLEED page
FAULT light on AIR BLEED panel.

| | 2.05 .21 | | |
| :--- | :--- | :--- | :---: |
| PAGE 2 | | | |
| REV 34 | SE0 100 | | |

| ENG BLEED VALVE FAULT |
| :---: |
| AIR X FEED . MAN |
| AIR X FEED . IN LINE |
| - If WING ANTI-ICE ON |
| ONE PACK . OFF |
| BLEED VALVE (affected) OFF/R |
| - If transient fault suspected, after $\mathbf{3 0}$ seconds : |
| bleed valve on |
| - If BLEED VALVE recovered : |
| AIR X FEED AUTO |
| If ENG FIRE HANDLE pulled or BLEED VALVE not recovered : |
| - If remaining bleed system subsequently lost : |
| PROC : DUAL BLEED FAULT (01.02A) APPLY |

BLEED HP VALVE FAULT

$$
\begin{aligned}
& \text { Indications : } \\
& \hline \text { Single chime } \\
& \text { ECAM activation with appropriate warning light } \\
& \text { Left ECAM CRT : HP VALVE FAULT procedure } \\
& \text { Right ECAM CRT : AIR BLEED page } \\
& \text { FAULT light on AIR BLEED panel. } \\
& \hline
\end{aligned}
$$

- If after having selected the BLEED HP VALVE to OFF the warning remains (BLEED HP VALVE jammed open) the BLEED VALVE must be closed.
- With the ENG BLEED VALVE closed, the flight can be continued with both packs supplied, however, one pack must be selected OFF, if wing anti-ice is used. This will prevent the other bleed from failing due to precooler overheat.

ENG BLEED VALVE FAULT

Indications:

Single chime
ECAM activation with appropriate warning light Left ECAM CRT : BLEED VALVE FAULT procedure Right ECAM CRT : AIR BLEED page FAULT light on AIR BLEED panel.

- Following the detection of a fault the affected ENG BLEED VALVE closes automatically and the precooler overheat threshold of the other engine bleed system is increased automatically. The related WING ANTI-ICE VALVE and the PACK VALVE will close due to lack of air supply.
- The flight can be continued with both packs supplied, however, one pack must be selected OFF, if wing anti-ice is used.
This will prevent the other bleed failing due to precooler overheat.
- Should at high altitude and low speed the second BLEED VALVE fail (precooler overheat), recovery of the second failed engine bleed system may be attempted by applying DUAL BLEED FAULT procedure.

R
R
R
R

| | ABNORMAL PROCEDURES | 2.05.21 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2A | |
| | | REV 36 | SEO 100 |

DUAL BLEED FAULT

DESCENT TO FL100/MEA INITIATE
If ENG 1 BLEED was lost due to a :
LEAK on side 1 or,
ENG 1 FIRE or,
ENG START VALVE 1 failed OPEN
DESCENT TO FL100/MEA CONTINUE
AVOID ICING CONDITIONS

- If ENG 2 BLEED was lost due to a :

LEAK on side 2 or
ENG 2 FIRE or,
ENG START VÁLVE 2 failed OPEN
AIR X-FEED Check CROSS-LINE
APU . START

- At or below FL200 :

WING SUPPLY OFF
APU BLEED . ON
MAX FL200
AVOID ICING CONDITIONS
\square In all other cases :
DESCENT TO FL100/MEA \qquad CONTINUE

- If both PACKS are available :
- If ENG 1 BLEED was lost first :

PACK 1
OFF
BLEED VALVE 2 ON

- If ENG 2 BLEED was lost first :

PACK 2 . OFF
BLEED VALVE 1 ON

- If ENG BLEED is not recovered, or if one PACK is inoperative :
AIR X-FEED MAN/IN-LINE
APU
. START
- At or below FL200 :
\qquad MAX FL200
AVOID ICING CONDITIONS
- If WING ANTI-ICE required :

PACK (1 or 2) OFF WING SUPPLY ON

DUAL BLEED FAULT

- If ENG 1 BLEED was lost due to a LEAK on side 1, an ENG 1 FIRE, or an ENG START VALVE 1 failed OPEN, descend to FL100/MEA to prevent excessive cabin altitude.
- If ENG 2 BLEED was lost due to a LEAK on side 2, an ENG 2 FIRE, or an ENG START VALVE 2 failed OPEN, descend to FL200 to recover the bleed supply from the APU.
Start the APU during descent. Best starting capability is ensured up to 37000 ft .
WING ANTI ICE SUPPLY must be selected OFF to prevent wing anti ice asymmetry.
- In other cases :
- If both packs are operative, it can be suspected that the second bleed system failed due to excessive demand. Recovery of the second failed engine bleed system may be attempted.
- If the attempt to recover the engine bleed system is not successful, descend to FL200 to recover the bleed supply from the APU. Start the APU during descent. Best starting capability is ensured up to 37000 ft .
- If WING ANTI ICE is required, one PACK must be set to OFF to be in accordance with APU operating limitations.

| | ABNORMAL PROCEDURES | 2.05 .21 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | AIR | REV 31 | SEO 100 |

| COMPT HOT AIR SUPPLY OVHT | |
| :---: | :---: |
| HOT AIR SUPPLY | OFF/R |
| COMPT TEMP (affected compartment) | MAN/COLD |
| - WHEN OVHT DISAPPEARS : | |
| HOT AIR SUPPLY . | ON |
| COMPT TEMP (affected compartment) | TEMP MAN CTL ONLY |
| - If OVHT warning reoccurs when in CO CTL : | TEMP MAN |
| HOT AIR SUPPLY | . . OFF/R |
| PACK TEMP | . MAN CTL |

AIR PACK FAULT

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : PACK FAULT procedure
    Right ECAM CRT : AIR BLEED page
    FAULT light
```

- The FAULT light may illuminate for one of the following reasons:
a) Pack valve is not in agreement with the selected (manual or automatic) position or pack is not supplied.
b) Overheat detection at the turbine inlet or compressor outlet.
- If a PACK FAULT occurs due to low bleed air supply pressure (less than 10 PSI), the ENG BLEED VALVE FAULT warning will be delayed for 60 sec (wing anti-ice ON), or inhibited (wing anti-ice OFF).
- Selecting the BLEED VALVE OFF increases the precooler overheat threshold of the remaining bleed, preventing the loss of the second bleed due to precooler overheat.

COMPT HOT AIR SUPPLY OVHT

Indications:

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : HOT AIR SUPPLY OVHT procedure
Right ECAM CRT : AIR COND page
OVHT light on COMPT TEMP panel.

- If the OVHT warning is caused by the trim air valve being jammed open, the warning will reoccur when using COMPT TEMP MAN CTL.

| VENT BLOWERS LO FLOW |
| :---: |
| VENT BLOWERS ALTN |

| VENT EXTRACT LO FLOW |
| :---: |
| VENT EXTRACT ovBd |

| VENT OVBD VALVE FAULT | |
| :---: | :---: |
| OVBD VALVE | OfF |
| - If valve not closed | |
| CAb PRESS | СнеСК |

R

| CARGO ISOL VALVES FAULT |
| :---: |
| FWD (BULK) ISOL VALVES OFF/R |
| - If transient fault suspected, after 1 minute |
| $\frac{\text { minimum }}{\text { COMPT TEMP ISOL VALVE (affected) ON }}$ |

VENT BLOWERS LO FLOW

Indications :
 Single chime

ECAM activation with appropriate warning light Left ECAM CRT : VENT BLOWERS LO FLOW proc Right ECAM CRT : Nil

FLOW light on VENT panel.

VENT EXTRACT LO FLOW

Indications:

Single chime
ECAM activation with appropriate warning light Left ECAM CRT : VENT EXTRACT LO FLOW proc Right ECAM CRT : Nil
FLOW light on VENT panel.

- VENT EXTRACT to OVBD position controls the overboard valve to partially open.

VENT OVBD VALVE FAULT

Indications

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : OVBD VALVE FAULT proc
Right ECAM CRT : CAB PRESS page
FAULT light on VENT panel.

- The VENT OVBD VALVE should automatically close after second engine start. If it remains open after OFF selection, maintenance action is due.

CARGO ISOL VALVE FAULT

```
Indications:
    Left ECAM CRT : CARGO ISOL VALVE FAULT proc
    Right ECAM CRT : AIR COND page
    FAULT light on COMPT TEMP panel.
```

| | ABNORMAL PROCEDURES | 2.05.21 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 5 | |
| | AIR/CAB PRESS | REV 33 | SEO 001 |

LEFT INTENTIONALLY BLANK

| | 2.05 .21 | |
| :---: | :---: | :---: |
| PAGE 6 | | |
| REV 29 | SEO 100 | |

| CABIN PRESS REG FAULT |
| :---: |
| CAB PRESS REG (affected) OFF
 If both REG affected :
 MAN PRESS . ON
 PROC : CAB PRESS MAN CTL (below) APPLY |

| CAB PRESS MAN CTL | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CAUTION : When both CAB PRESS REGULATORS are selected OFF, the CAB ALT warning and the cabin pressure indications on ECAM are no longer provided nor valid. | | | | | |
| MAN PRESS . on V/S CTL switch AS RORD | | | | | |
| | | | | | |
| CLIMB or CRUISE | | | | | |
| FL | 400 | 350 | 300 | 250 | 200 and BeLOW |
| tafget cab Alt (ft) | 8500 | 6800 | 5000 | 2500 | 0 |
| CAB V/S (until target CAB ALT) 500 FT/MIN | | | | | |
| BEFORE DESCENT | | | | | |
| CAB V/S (until LDG ELEVATION) $350 \mathrm{FT} / \mathrm{MIN}$ | | | | | |
| If high aircraft V / S :
 CAB V/S
 ADJUST ACCORDINGLY | | | | | |
| | | | | | |
| BEFORE LANDING, WHEN CAB ALT = LDG ELEVATION | | | | | |
| V/S CTL switch UP (full open) | | | | | |
| ON GROUND | | | | | |
| | | | | | |
| - Before doors opening | | | | | |
| \triangle P (DIFF PRESS) CHEC | | | | | |

CABIN PRESS - REG FAULT

Indications :

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : CAB PRESS REG FAULT proc
Right ECAM CRT : CAB PRESS page
FAULT light on CABIN PRESS panel.

- CABPRESS REG selection to OFF confirms the automatic transfer to the non-affected system.

CABIN PRESS - LO $\triangle \mathbf{P}$

Indications:

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : CAB PRESS LO $\triangle P$ proc
Right ECAM CRT : CAB PRESS page
LO $\triangle \mathrm{P}$ light on CAB PRESS panel.

CABIN PRESS - MAN CTL

- The table of FL against CAB ALT gives the relationship required to obtain 8 psi .
- Monitor V/S and CAB ALT frequently and adjust as necessary.
- Maintain aircraft altitude above cabin altitude.
- To avoid cabin pressure oscillations it is recommended to maintain differential pressure in the green arc.
- For descent, set $350 \mathrm{ft} / \mathrm{min}$ cabin V/S.

R

- On ground both packs are selected OFF to improve depressurization.

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ELEC | REV 29 | SEQ 300 |

| AC ENER BUS OFF |
| :---: |
| CRT AMBER CAUTIONS NOT AVAIL
 - MONITOR OVHD PANEL |
| ATC . SYS 2 |
| CAB PRESS REG 1 OFF |
| CAPT ADC INST SYS 2 |
| ATS 1 . RESET |
| CAPT EFIS SGU SYS 3 |
| - If PFD information required : |
| PFD/ND XFR (CAPT side) ON |
| NOTE 1: If affected PFD is on the PF side, consider transferring PF responsibilities to PNF. |
| NOTE 2 : Pressing the PFD/ND XFR pushbutton a second time will recover ND information on the lower CRT. |
| BUS EQPT LIST (3.08/3.09) REVIEW |

AC ESS BUS OFF

OVRD SUPPLY 1 (or 2, if GEN 1 lost).
PITCH TRIM 1 . RESET
YAW DAMPER 1 RESET

- If unsuccessful :

VENT EXTRACT OVBD
FUEL X-FEED (if CTR TK feeding) IN LINE
AFFECTED EQUIPMENT OFF

| PITCH FEEL 1 | . L INR TK PUMP 2 |
| :--- | :--- |
| RUD TRAVEL 1 | \cdot R INR TK PUMP 1 |
| | . CTR TK L PUMP |

L _ BUS EQPT LIST (3.08/3.09) REVIEW

AC EMER BUS OFF

Indications:

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : CRT AMBER CAUTIONS message
Right ECAM CRT : NIL
Local alert lights according to the secondary failures

- The ELEC/AC page on right ECAM CRT will not appear automatically.
- The AC EMER BUS failure can be identified by the illumination of CAB PRESS REG 1 FAULT light and SLATS SYS 1 FAULT light.
If these two lights are not illuminated together, check if AC BUS 2 OFF light is illuminated (which indicates failure of AC BUS 2). If AC BUS 2 OFF light is not illuminated, the warning comes from the failure of one FWC.
- The AC EMER BUS OFF warning may be caused by a failure in a sub-BUS
- Out of the listed affected equipment switch off only those items, where secondary failure is indicated or obvious.

AC ESS BUS OFF

Indications :
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : AC ESS BUS OFF proc
Right ECAM CRT : ELEC/AC page
AC EMER BUS ON INV Light
AC ESS BUS OFF light

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ELEC | REV 35 | SEO 460 |

| DC NORM BUS OFF |
| :---: |
| AVOID ICING CONDITIONS
 LAND RECOVERY . ON FUEL X-FEED (if CTR TK in use) IN LINE |
| | |
| | |
| |
| |
| |
| |
| |
| |
| |
| BUS EQPT LIST (3.08/3.09) REVIEW |
| - If ENG ANTI ICE OFF |
| I - . - THRUST_LIM PENALTY |
| - If WING ANTI ICE required : |
| MODE SEL . ALTN |
| TRIM TK MODE . FWD |
| AUTO FUEL FEED MODE IS LOST : |
| - If fuel in CTR TK |
| FUEL X-FEED IN-LINE |
| L and R INR TK PUMPS (4) OFF |
| - If/When CTR TK empty : |
| L INR 2 and R INR 1 TK PUMPS ON CTR TK PUMPS (2) OFF FUEL X-FEED CROSS-LINE |
| | |
| | |
| |
| |
| |
| CAUTION : Avoid rapid throttle movement and low or negative g-load factors. |
| MAX FL 250 (200 IF JP4/JETB USED)/MEA |
| OUTR TK ISOL VALVE (affected) . . . CHECK IN LINE |
| INR TK ISOL VALVE (affected) OFF |
| NOTE 1: On the ECAM FUEL system page : |
| - the fuel feed lines do not reflect the actual fuel feed configuration, |
| - the pump symbols correctly reflect the pump operation, for the three operative pumps (L INR 2, R INR 1 and CTR L). |
| NOTE 2: Spurious GPWS warning "TOO LOW GEAR" may occur during approach. |
| NOTE 3: The Cockpit Door Locking System (if installed) is inoperative. Consequently, the reinforced cockpit door is unlocked and can be opened from the cabin. |

DC NORM BUS OFF

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : DC NORM BUS OFF proc
    Right ECAM CRT : ELEC/DC page
    DC NORM BUS OFF light
```

Note : The DC NORM BUS OFF warning is triggered by the loss of one particular sub-bus of the DC NORM BUS. If this warning is displayed, it may be a sub BUS failure only. Switch OFF affected equipment only as indicated or obvious. The rest of DC NORM BUS remains supplied.

- Pushbutton lighting on OVHD panel is lost to a great extent. Consequently, if selecting affected equipment to OFF, be sure to identify the particular pushbutton. Action feedback is indicated on ECAM only.
- With ENG ANTI ICE OFF the nacelle anti ice valve opens due to lack of electrical supply (fail-safe position) ; this leads to a thrust limit decrease. For aircraft with two ATS, this thrust limit decrease is taken into account by the TCC. For aircraft with one ATS, the ATS is lost.
- Reverse is inoperative.
- Automatic fuel feed mode selection is lost. If fuel is remaining in CTR TK, fuel X feed should be opened to avoid fuel unbalance.
- Wipers are lost.
- The display of fuel feed lines on the ECAM Fuel System Page depends on pump pushbutton and contactor data which is partially lost with DC NORM BUS OFF.

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2A | |
| | ELEC | REV 31 | SEQ 100 |

| DC ESS BUS ON BAT | |
| :---: | :---: |
| STBY GEN | - . ovrd |
| NOTE 1: | The $\angle I N R 2$ 2, RINR 1 and \angle CTR FUEL PUMPS are supplied, but one at a time and with this priority order. |
| NOTE 2 : | With all three pump pushbuttons selected to NORM, the R INR 1 and \angle CTR PUMP FAULT lights are illuminated (pumps not supplied). |

DC ESS BUS ON BAT

Indications :

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : DC ESS BUS ON BAT proc Right ECAM CRT : ELEC/DC page DC ESS ON BAT light

- Manual selection of STBY GEN allows the DC ESS BUS to be supplied by the standby generator. AC ESS BUS and AC EMER BUS will be also supplied by the standby generator.
- Manual selection of STBY GEN leads to loss of FCC 1, FCU 1, TCC 2
- All fuel pumps remain operational and run at the same time except the L INR 2, R INR 1 and L CTR fuel pumps, which run one at a time with this priority order.

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | ELEC | REV 34 | SEO 330 |

| AC BUS 1 OFF (AC ESS BUS OFF) | |
| :---: | :---: |
| NO ACTION FEEDBACK ON CRT | |
| OVRD SUPPLY 1 (or 2, if GEN 1 lost) ON | |
| PITCH TRIM 1 . RESET | |
| YAW DAMPER 1 RESET | |
| AFFECTED EQUIPMENT OFF | |
| SPLR 2, 3, 6, 7
 L WINDOW HEAT | L OUTR TK PUMP 2
 R OUTR TK PUMP 1
 TRIM TK PUMP 1 |
| LDG DIST | MULTIPLY BY 1.3 |
| L _ BUS EQPI LIST ($3.08,3.09$ | REVIEW |

R

R

| CRT AMBER CAUTIONS NOT AVAIL | |
| :---: | :---: |
| - MONITOR OVERHEAD PANEL | |
| ■ If no FAULT light illuminated : | |
| PROC : FWS FAULT (13.13) | PPLY |
| If AC BUS 2 OFF light illuminated | |
| PROC : AC BUS 2 OFF (3.02) | PPLY |
| \square If CAB PRESS REG 1 FAULT and SLATS SYS 1 FAULT | |
| lights illuminated: | |
| PROC : AC EMER BUS OFF (3.03) | APPLY |

AC BUS 1 OFF/AC ESS BUS OFF

Indications :

Single chime
ECAM activation with appropriate warning light Left ECAM CRT : NIL
Right ECAM CRT : AC BUS 1 OFF procedure AC BUS 1 OFF + AC ESS BUS OFF lights on ELEC panel
Local alert lights according to the secondary failures.

Note: The AC BUS 1 OFF warning is triggered by the loss of one particular sub-bus of the $A C B U S 1$. If this warning is displayed without AC ESS BUS warning and no other warning on ELEC panel, it is preferable only to switch OFF secondary failures as indicated or obvious.
The rest of the AC BUS 1 remains supplied.
Depending on the kind of failure the left ECAM CRT may remain available.

- The action feedback is only partially available on warning display due to the loss of the SDAC.
- The ECAM procedure assumes the complete loss of the AC BUS 1 with the resultant loss of the AC ESS BUS, followed by the recovery of the AC ESS BUS when OVRD SUPPLY is selected to ON.
- FADEC may revert to N 1 mode on engine 1 due to loss of EPR probe heat $\mathrm{N}^{\circ} 1$.

CRT AMBER CAUTIONS NOT AVAIL

Indications:

Single chime
ECAM activation with appropriate warning light

- The ECAM message CRT AMBER CAUTIONS NOT AVAIL - MONITOR OVERHEAD PANEL is displayed in case of :
- Loss of one FWC, for any reason,
- Loss of the FWC 2 due to the loss of the AC BUS 2,
- Loss of the FWC 1 due to the loss of the AC EMER BUS.

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ELEC | REV 34 | SEO 530 |

| AC BUS 2 OFF |
| :---: |
| CRT AMBER CAUTIONS NOT AVAIL |
| - MONITOR OVERHEAD PANEL |
| - If no fuel leak : |
| FUEL X-FEED (if CTR TK feeding) IN LINE |
| ATC . SYS 1 |
| AFFECTED EQUIPMENT OFF |
| PITCH FEEL 2 . LINR TK PUMP 1 |
| RUD TRAVEL $25 . L$ OUTR TK PUMP 1 |
| SPLR 4 and 1,5 5 R OUTR TK PUMP 2 |
| |
| TRIM TK PUMP 2 |
| LDG DIST MULTIPLY BY 1.3 |
| BUS EQPT LIST (3.08/3.09) CHECK |

AC BUS 2 OFF

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : CRT AMBER CAUTIONS NOT AVAIL
    message
    Right ECAM CRT : NIL
    AC BUS 2 OFF light on ELEC panel
    Local alert lights according to the secondary
    failures.
```

- The AC BUS 2 OFF warning is triggered by the loss of one particular sub-bus of the AC BUS 2. If this warning is displayed, it may be a sub-bus failure only.
Switch OFF affected equipment only as indicated or obvious.

The remainder of the AC BUS 2 remain supplied.
Depending on kind of failure the right ECAM CRT may remain available.

- In case of complete AC BUS 2 failure, CRT amber cautions are lost.
- FADEC may revert to N1 mode on engine 2 due to loss of EPR probe heat $\mathrm{N}^{\circ} 2$.

IDG FAULT
Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : IDG OIL (LO PR or OVHT) procedure
Right ECAM CRT : ELEC/AC
FAULT light on ELEC panel

- APU (if available) should be started to replace inoperative generator. Best starting capability is ensured up to $37,000 \mathrm{ft}$.
- The PUSH TO DISC IDG pushbutton switch must be released as soon as the GEN FAULT light illuminates.
Note : If the DISC position is maintained for more than 3 seconds, damage to the disconnect solenoid may occur.

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 5 | |
| | ELEC | REV 28 | SEQ 100 |

| GEN FAULT | |
| :---: | :---: |
| GEN | OFF/R |
| L _ APU : START | |
| - If transient fault suspected | |
| GEN (affected) | . ON |

| GEN LOAD HI | |
| :---: | :---: |
| GALLEY | SHED |

| BATTERY OVERHEAT | |
| :---: | :---: |
| BAT affected | OFF/R |
| - If ECAM inoperative: | |
| ALL BAT | OFF/R |
| BAT (one by one) | ON |
| - If warning reactivated : | |
| BAT (affected) | OFF/R |

GEN FAULT

Indications:
 Single chime

ECAM activation with appropriate warning light
Left ECAM CRT : GEN FAULT procedure
Right ECAM CRT : ELEC AC page
FAULT light on ELEC panel

- APU (if available) should be started to replace inoperative generator.
Best starting capability is ensured up to 37000 ft .

GEN LOAD HI

Indications:
Single chime
ECAM activation with appropriate warning light Left ECAM CRT : GEN LOAD HI procedure Right ECAM CRT : ELEC/AC page GEN HI light on ELEC panel

- GEN LOAD HI activation indicates that the load is 10% greater than the rated output of the generator, this will normally only occur when one generator only is operating.

BATTERY OVERHEAT

Indications

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : BAT OVHT procedure
Right ECAM CRT : ELEC/DC page
BAT OVHT light on ELEC panel

- BAT OVHT activation is an indication that an excess charge rate has been detected by the battery charge limiter which, if not corrected, could lead to an increase in battery temperature.
The affected battery is automatically disconnected and the corresponding flow bar is extinguished.

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ELEC | REV 36 | SEO 300 |

ABNORMAL PROCEDURES

| | 2.05 .24 | |
| :--- | :--- | :--- |
| PAGE 7 | | |
| REV 36 | | SE0 770 |

| BUS EQPT LIST (Cont'd) | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYS | | | BUS FAILURES | | | | | | $\begin{aligned} & \text { STBY } \\ & \text { GEN } \end{aligned}$ | SMOKE
 DRILL
 OVRD
 Supply
 $1+2$ | $\begin{aligned} & \text { BAT } \\ & \text { ONLY } \end{aligned}$ |
| | | | AC BUS | | | | DC BUS | | | | |
| | | | 1 | 2 | ESS | EMER | NORM | ESS | | | |
| | LDG | EXT | | | | | | LOST | Not to be used | | |
| | RET | | | | | | $\begin{aligned} & \text { SYS } 1 \\ & \text { ONLY } \end{aligned}$ | LOST | Not to be used | SYS 1 ONLY | $\begin{aligned} & \text { SYS } 1 \\ & \text { ONLY } \end{aligned}$ |
| | GEAR | IND | | | | | OVHD panel lost | $\begin{gathered} \text { MAIN } \\ \text { panel } \\ \text { lost } \end{gathered}$ | OVHD
 panel
 lost | OVHD
 panel
 lost | $\begin{array}{\|l\|} \hline \text { OVHD } \\ \text { panel } \\ \text { lost } \end{array}$ |
| | ANTI SKID | | | | | | LOST | | LOST | LOST | LOST |
| | | | | | | | $\begin{gathered} \star \\ \text { NORM } \end{gathered}$ | | $\begin{gathered} \stackrel{\star}{\star} \\ \text { NORM } \end{gathered}$ | $\begin{gathered} \star \\ \text { NORM } \end{gathered}$ | $\begin{gathered} \star \\ \star \\ \text { NORM } \end{gathered}$ |
| | NOSE WHEELSTEER | | | | | | | LOST | Not avail. | | |
| | FUEL HP VALVE | | | | | | | LOST | | | |
| | EPR | | | | LOST | | | | | | LOST |
| | N2 | | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { ENG } \\ \text { lost } \end{array} \\ \hline \end{array}$ | $\begin{gathered} \hline \text { ENG 2 } \\ \text { lost } \end{gathered}$ | | | | | LOST | LOST | LOST |
| | OIL PRESS | | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { ENG } 1 \\ \text { lost } \end{array} \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { ENG } 2 \\ \text { lost } \\ \hline \end{array}$ | | | | | LOST | LOST | LOST |
| | OIL OTY | | | | | | LOST | | LOST | LOST | LOST |
| | N1/EGT | | | | | LOST | | | | | |
| | START | | | | | | | LOST | | | |
| | FU/FF | | | $\begin{gathered} \hline \text { ENG2 } \\ \text { lost } \end{gathered}$ | ENG1 lost | | | | LOST | $\begin{gathered} \hline \text { ENG2 } \\ \text { lost } \end{gathered}$ | LOST |
| | IGNITION | | $\begin{array}{\|c\|c\|} \text { ENG } 1 \mathrm{~A} \\ \text { lost } \end{array}$ | $\begin{gathered} \text { ENG 2A } \\ \text { lost } \end{gathered}$ | | $\underset{\text { lost }}{B}$ | | $\begin{array}{\|l\|l\|} \hline \text { CONTL } \\ \text { RELLY } \\ \hline \end{array}$ | $\begin{gathered} \text { A } \\ \text { lost } \end{gathered}$ | $\begin{gathered} \text { A } \\ \text { lost } \end{gathered}$ | $\underset{\text { lost }}{\text { A }}$ |
| | REVERSE | | | | | | LOST | | LOST | LOST | LOST |
| $\underset{\square}{\mathbf{H}}$ | QTY IND | | | $\begin{array}{\|c} \hline \mathrm{L}+\mathrm{CTR} \\ +\mathrm{TRIM} \\ \text { lost } \end{array}$ | | | | | | | |
| | $\begin{gathered} \hline \text { PUMPS } \\ \text { CTR } \end{gathered}$ | | | $\begin{gathered} \mathrm{R} \\ \text { lost } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ \text { lost } \end{gathered}$ | | $\begin{gathered} \mathrm{R} \\ \text { lost } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ \text { lost } \end{gathered}$ | $\begin{gathered} \hline \mathrm{R} \\ \text { lost } \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{R} \\ \text { lost } \\ \hline \end{gathered}$ | LOST |
| | $\begin{gathered} \hline \text { PUMPS } \\ \text { INR } \end{gathered}$ | | | $\begin{gathered} 1 \mathrm{~L}+2 \mathrm{R} \\ \text { lost } \end{gathered}$ | $\begin{gathered} 1 \mathrm{R}+2 \mathrm{~L} \\ \text { lost } \end{gathered}$ | | $\begin{gathered} 2 \mathrm{R}+1 \mathrm{LL} \\ \text { lost } \end{gathered}$ | $\begin{gathered} 1 \mathrm{R}+2 \mathrm{~L} \\ \text { lost } \end{gathered}$ | $\begin{gathered} 2 \mathrm{R}+1 \mathrm{~L}+ \\ \text { lost } \end{gathered}$ | $\begin{gathered} 2 \mathrm{R}+1 \mathrm{~L} \\ \text { lost } \end{gathered}$ | LOST |
| | PUMPS OUTR | | $\left.\begin{array}{\|c\|} \hline 1 \mathrm{R}+2 \mathrm{~L} \\ \text { lost } \end{array} \right\rvert\,$ | $\begin{gathered} 1 \mathrm{~L}+2 \mathrm{R} \\ \text { lost } \end{gathered}$ | | | LOST | | LOST | LOST | LOST |
| | PUMPS TRIM | | $\begin{gathered} 1 \\ \text { lost } \end{gathered}$ | $\stackrel{2}{\text { lost }}$ | | | LOST | | LOST | LOST | LOST |
| | ISOL VALVE | | | | | | | $\begin{array}{\|c} \hline \text { INR + }+ \\ \text { OUTR } \\ \text { lost } \end{array}$ | | | |
| $\begin{aligned} & \infty \stackrel{\infty}{\infty} \\ & \dot{\sim} \\ & \underset{\sim}{\square} \end{aligned}$ | SYS | | | $\underset{\text { SYS }}{\substack{\text { lost }}}$ | | $\begin{gathered} \text { SYS } 1 \\ \text { lost } \end{gathered}$ | $\begin{gathered} \text { SYS } 2 \\ \text { lost } \end{gathered}$ | $\begin{aligned} & \text { SYS } 1 \\ & \text { lost } \end{aligned}$ | SYS 2 | SYS 2 lost | $\begin{gathered} \text { SYS } 2 \\ \text { lost } \end{gathered}$ |
| | MAN PRESS | | | | | | | LOST | | | |
| U | WING | | | | | | $\begin{aligned} & \hline \text { ALTN } \\ & \text { only } \end{aligned}$ | | $\begin{gathered} \hline \text { ALTN } \\ \text { only } \end{gathered}$ | $\begin{aligned} & \text { ALTN } \\ & \text { only } \end{aligned}$ | $\begin{aligned} & \hline \text { ALTN } \\ & \text { only } \end{aligned}$ |
| | NAC | | | | | | OPEN | | OPEN | OPEN | OPEN |
| | $\begin{gathered} \text { WINDOW } \\ \text { HEAT } \end{gathered}$ | | $\underset{\text { lost }}{L}$ | $\begin{gathered} \mathrm{R} \\ \text { lost } \\ \hline \end{gathered}$ | | | LOST | | LOST | LOST | LOST |
| | WIPE | | | | | | LOST | | LOST | LOST | LOST |
| \star With LAND RECOVERY pushbutton selected ON | | | | | | | | | | | |

| | ABNORMAL PROCEDURES | 2.05.24 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ELEC | REV 33 | SEC 200 |

| BUS EQPT LIST (Cont'd) | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYS | | buS FAILURES | | | | | | $\underset{\text { STEN }}{\substack{\text { STBY }}}$ | SMOKE DRILL
 OVRD $\underset{1+2}{ }$ $1+2$ | - ${ }_{\text {BAI }}$ |
| | | AC BUS | | | | DC BUS | | | | |
| | | 1 | 2 | ESS | Emer | NORM | ESS | | | |
| $\begin{array}{\|l\|} \hline \mathbf{o} \\ \hline 8 \\ \hline 8 \\ \hline \end{array}$ | CDLS | | | | | Wost. | | ıost | \#s\% | \%ost: |

| CABIN SMOKE |
| :---: |
| - In case of dense smoke : |
| LAND ASAP |
| CABIN CREW . . . ADVISE TO DON OXYGEN MASKS |
| COCKPIT DOOR CLOSE |
| - If cockpit smoke removal is required |
| DESCENT INITIATEPROC : SMOKE/FUMES REMOVAL (5.02) . . APPLY |
| | |
| |
| ■ If AIR CONDITIONING SMOKE suspected |
| PROC : SMOKE/FUMES (5.04) . . A AIR COND SMOKE |
| - If GALLEYS SMOKE suspected |
| GALLEY . SHED |
| NOTE : If the affected galley is well identified, advise the cabin crew to isolate the affected galley by pulling its C / B on the galley C/B panel. Then, the GALLEY pushbutton may be restored to normal. |
| - If SEATS SMOKE suspected, as applicable : |
| CABIN CREW ADVISE TO PULL RELATED C/B |
| NOTE : If the smoke comes from the in-seat video or in-seat audio system, pul/ the C / B re/ated to the Seat Electronic Box (SEB). |
| For approach :
 SEATS CONFIGURE FOR LANDING |
| ■ If READING LIGHTS SMOKE suspected : |
| CABIN CREW \qquad ADVISE TO PULL READING LIGHT C/B (affected zone) ON 800 VU |
| If PASSENGER ENTERTAINMENT SYSTEM SMOKE suspected, as applicable : |
| CABIN CREW ADVISE TO PULL RELATED C/B |
| NOTE : Depending on the smoke origin, pull PES and/or PSS and/or VIDEO and/or TV and/or VCC C/B as appropriate. |
| CABIN REPORT OBTAIN |
| Maintain contact with the cabin crew to follow up on the status of the smoke. |

CABIN SMOKE

- This cabin smoke procedure covers the cases of smoke perceived in the cabin. It does not cover cases of cabin fire for which dedicated procedures must be developed by each operator as per company policy. Also adequate cabin crew procedures can be developed by each operator to enhance passengers quietness.
- A smoke in the cabin is reported by the cabin crew to the flight crew who decides which actions must be taken.
Therefore a good coordination and communication is essential to deal with the smoke situation.
- If a dense smoke is present, close the cockpit door to prevent the smoke from entering the cockpit and consider to initiate a descent in order to apply the smoke removal procedure.
- If the cabin crew reports a smell in the cabin without any evident smoke, suspect an air conditioning smoke and apply the appropriate procedure.
- If the cabin crew reports a smoke coming from a specific equipment, advise the cabin crew to pull the appropriate circuit breaker.
- Electrically controlled seats and passenger entertainment system are an option and may not be fitted on the aircraft.
- Passenger entertainment system related C/B names depend on the aircraft configuration.
- The 800 VU is located in the cockpit entrance area and the 811 VU is located aft of the cabin.

| | ABNORMAL PROCEDURES | 2.05.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2 | |
| | LOOP | REV 28 | SEQ 001 |

| ENG or APU LOOP FAULT |
| :---: |
| Affected LOOP $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$. |

ENG or APU LOOP FAULT

Indications :
 Single chime

ECAM activation with appropriate warning light
Left ECAM CRT : LOOP FAULT procedure Right ECAM CRT : Nil
LOOP light on overhead panel

| | ABNORMAL PROCEDURES | 2.05.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | SMOKE/LOOP | REV 32 | SEQ 100 |

| CARGO LOOP FAULT |
| :---: |
| LOOP (illuminated) . OFF |
| LOOP TEST PERFORM |

CARGO LOOP FAULT

Indications :

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : CARGO LOOP FAULT proc
Right ECAM CRT : Nil
Local LOOP warning
R
If SMOKE light illuminates for affected compartment : COMPT TEMP ISOL VALVES OFF/R then ON

- Performing the LOOPTEST enables to determine whether the CARGO LOOP FAULT warning corresponds to a CARGO SMOKE detection or just to a CARGO LOOP FAULT detection.
- The following expanded information is based on the example of an illuminated LOOP A FAULT light. There are two possible cases :
- If the LOOP A is switched OFF and the LOOP test causes no SMOKE light illumination on the overhead panel, the LOOP B does not detect the smoke simulated by the LOOP test.
The LOOP B is faulty and the LOOP A is healthy.
The FAULT condition detected by LOOP A was therefore a real SMOKE condition.

Apply the CARGO COMPT SMOKE procedure.

- If the LOOP A is switched OFF and the LOOP test causes the SMOKE light illumination on the overhead panel, the LOOP B detects the smoke simulated by the LOOP test.
The LOOP B is healthy and the LOOP A is confirmed as faulty.
The CARGO ISOL VALVES, which close during the LOOP TEST must be reopened by cycling the related pushbutton OFF then ON.

Note: When the LOOP test is performed in flight there will be no Continuous Repetive Chime or ECAM activation.

| | ABNORMAL PROCEDURES | 2.05.26 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | SMOKE/LOOP | REV 28 | SEO 100 |

LEFT BLANK INTENTIONALLY

Mod : 2254 or FDX

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | FLT CTL | REV 33 | SEQ 410 |

```
    SLATS SYS 1 AND 2 FAULT/SLATS STUCK
R
M, IfSLATS less than 15` : 
```

- If FAULT/STUCK occured during retraction :

Move the SLATS/FLAPS lever back to the notch selected before the jamming occured.

FOR APPROACH

$$
\text { LDG DIST and VREF increments }(15.02,15.04) \text {. DETERMINE }
$$

- If SLATS less than $\mathbf{2 0}^{\circ}$:

PROC : ABNORMAL SLATS/FLAPS
LANDING (6.14) APPLY

SLATS SYS 1 AND 2 FAULT/SLATS STUCK

Indications :
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : SLATS SYS 1 AND 2 FAULT proc
OR
SLATS STUCK proc
Right ECAM CRT : NIL or FUEL page
Both SLATS FAULT lights
If asymmetry : SFPI : SLATS lights

- Cycling the SLATS/FLAPS lever consists of moving back the lever to the notch selected before the jamming occured and then back to the desired position.
- Due to SFCCtransitories, a SLATS light may be illuminated FAULT, at the overhead panel, after an engine start. In that case, check the SFPI :
- If no SLATS light is illuminated AMBER at the SFPI reset the SLATS system (SYS 1 or 2) by resetting the appropriate C/B (SYS1 : T63/133 VU - SYS2 : T64/133 VU).
- If a SLATS light is illuminated AMBER at the SFPI, a maintenance action is due. The affected SFCC must be reset by pressing the RESET button on the SFCC frontpanel.
- If the jamming occured during retraction, the VFE displayed on the PFD is higher than the actual maximum speed (VFE displayed is based only on the SLATS/FLAPS lever position). Thus the SLATS/FLAPS lever has to be moved back to the notch selected before the jamming occured, in order to have VFE displayed on the PFD lower than the actual maximum speed (conservative limitation)

SLATS JAMMING

- In some cases, correct slats operation can be recovered by cycling the Slats/Flaps lever.
- SLATS SYS 1 AND 2 FAULT can be due to mechanical jamming.
- Withoutany input to the SLATS/FLAPS lever, uncommanded SLATS/FLAPS movement will not occur due to SFCC inhibition.
When SLATS/FLAPS lever is moved, the system will move to the selected position provided the source of the jamming has cleared by itself.

SLATS ASYMMETRY

- Cycling Slats/Flaps lever has no effect, but the action is applied for commonality with SLATS JAMMING.
- SLATS STUCK results from an asymmetry movement during extension or retraction caused by a broken shaft.
- Further operation is inhibited by the wing tip brakes until the end of the flight.

R
FLAPS SYS 1 AND 2 FAULT/FLAPS STUCK
GPWS FLAP OVRD
■ If FLAPS less than 20° :
LDG DIST MULTIPLY BY 1.3
FOR APPR : ATS OFF
FUEL CONSUMPTION INCREASED
■ If FLAPS 20° or more
LDG DIST MULTIPLY BY 1.1
FUEL CONSUMPTION INCREASED
'L-----.-. -

NOTE : With Flaps extended, fue/ consumption is multiplied by 2.2

- If FAULT/STUCK occured during retraction :

Move the SLATS/FLAPS lever back to the notch selected before the jamming occured.

FOR APPROACH

LDG DIST and VREF increments $(15.02,15.04)$. DETERMINE

If FLAPS less than $2 \mathbf{0}^{\circ}$:
PROC : ABNORMAL SLATS/FLAPS
LANDING (6.14)
APPLY

FLAPS SYS 1 AND 2 FAULT/ FLAPS STUCK

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : FLAPS SYS 1 AND 2 FAULT proc
                    OR
                        FLAPS STUCK proc
    Right ECAM CRT : NIL or FUEL page
    Both FLAPS FAULT lights
    If asymmetry : SFPI : FLAPS lights
```

- Cycling the SLATS/FLAPS lever consists of moving back the lever to the notch selected before the jamming occured and then back to the desired position.
- DuetoSFCC transitories, a FLAPS light may be illuminated FAULT, at the overhead panel, after an engine start. In that case, check the SFPI :
- If no FLAPS light is illuminated AMBER at the SFPI, reset the FLAPS system (SYS 1 or 2) by resetting the appropriate C/B (SYS1 : U61/133 VU-SYS2 : V61/133 VU).
- If a FLAPS light is illuminated AMBER at the SFPI, a maintenance action is due. The affected SFCC must be reset by pressing the RESET button on the SFCC front panel.
- If flaps 40 cannot be obtained, set GPWS selector to FLAP OVRD to avoid nuisance warnings.
- If the jamming occured during retraction, the VFE displayed on the PFD is higher than the actual maximum speed (VFE displayed is based only on the SLATS/FLAPS lever position). Thus the SLATS/FLAPS lever has to be moved back to the notch selected before the jamming occured, in order to have VFE displayed on the PFD lower than the actual maximum speed (conservative limitation).

FLAPS JAMMING

- In some cases, correct flaps operation can be recovered by cycling the Slats/Flaps lever.
- FLAPS SYS 1 AND 2 FAULT can be due to mechanical jamming.
- Without any inputs totheSLATS/FLAPS lever, uncommanded SLATS/FLAPS movement will not occur due to SFCC inhibition.
When SLATS/FLAPS lever is moved, the system will move to the selected position provided the source of the jamming has cleared by itself. If the source of the jamming is still present, the affected surface will not move.

FLAPS ASYMMETRY

- Cycling Flaps lever has no effect, but the action is applied for commonality with FLAPS JAMMING.
- FLAPS STUCK results from an asymmetry movement during extension or retraction caused by a broken shaft.
- Further operation is inhibited by the wing tip brakes until the end of the flight.

R
R
R
R
R
R
R
R

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | FLT CTL | REV 33 | SEO 103 |

FLAP VANE JAM

Indications :

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : FLAP VANE JAM proc
Right ECAM CRT : NIL
Both FLAPS FAULT lights on

- Cycling the SLATS/FLAPS lever consists of moving back the lever to the notch selected before the jamming occured and then back to the desired position.
Flap vane correct operation can be recovered by Slats/Flaps lever cycling.
- If flaps vane jamming occurs during retraction, flaps system is stopped in retraction.
Further flaps extension remains possible.

| | ABNORMAL PROCEDURES | 2.05 .27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | FLT CTL | REV 29 | SEO 050 |

| NO FLAPS AND NO SLATS LANDING |
| :---: |
| If electrical failure suspected :
 LAND RECOVERY
 - If unsuccessful :
 LAND RECOVERY
 If slats/flaps not recovered :
 SLATS/FLAPS LEVER 0/0
 SPEED . GREEN DOT
 MAXIMUM LANDING WEIGHT (below) . . DETERMINE
 LDG DIST \qquad MULTIPLY BY 1.8
 ATS LEVER(S)
 OFF
 TRP . SELECT TOGA GPWS
 - When VLs or VApp obtained :
 SLATS/FLAPS lever \qquad
 SPEED VLs (Vref +60) DOWN TO 300 FT
 THEN DECELERATE TO REACH Vss AT TOUCHDOWN |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

| WEIGHT LIMITED |
| :--- |
| BY MAXIMUM TIRE SPEED |
| $(195.5 \mathrm{kt})$ AT TOUCH DOWN |

NO FLAPS AND NO SLATS LANDING

```
Indications:
    No slats/flaps response to slats/flaps lever
    movement.
```

- The ATS and GPWS must be disarmed, to prevent operation of the alpha floor, and nuisance GPWS warnings on final approach.
- With slats at 0, AFS-GA mode is lost. Select TOGA on TRP. GA thrust will be obtained at full forward throttle position.
SLATS/FLAPS handle is extended one step to get GO-AROUND guidance on FD.
- Deceleration to stick shaker speed may cause stick shaker operation in the landing flare.
- Apply reverse thrust even before nosewheel touchdown. Lower nosewheel as soon as possible and select max reverse.
- Refer to following graph for maximum landing weight limited by tire speed or maximum brake energy.
- With a temperature of $20^{\circ} \mathrm{C}$ and a pressure altitude of 4000 ft the weight is limited by the maximum brake energy at 130 t or 285 lb .

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | FLT CTL | REV 29 | SEO 110 |

KRUGER FAULT CYCLE

■ KRUGER NOT RETRACTED
MAX SPD
300/.65
L - _ FUEL CONSUMPTION INCREASED
NOTE: Fue/ consumption is increased by 12%.
KRUGER NOT EXTENDED
LDG SPD INCREMENT + 10 KT
LDG DIST MULTIPLY BY 1.1

If kruger not extended :
SPEED INCREMENT ON S,F, V LS + 10 KT

KRUGER FAULT

Indications:
Single chime
ECAM activation with appropriate warning light Left ECAM CRT :
KRUGER NOT RETRACTED procedure or
KRUGER NOT EXTENDED procedure
Right ECAM CRT : NIL
KRUGER light on SFPI.

| | ABNORMAL PROCEDURES | 2.05 .27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 5 | |
| | FLT CTL | REV 35 | SEO 210 |

| SPLR FAULT |
| :---: |
| SPLR (affected) OFF/R |
| ■ If 4 or more roll spoilers per wing affected : |
| LDG CONFIG/GPWS FLAPS 20 |
| LDG SPD INCREMENT + 10 KT |
| LDG DIST MULTIPLY BY 1.8 |
| SPLR PARTIALLY INOP (or SPLRS INOP) |
| - If 3 or more spoilers per wing affected : |
| LDG DIST MULTIPLY BY 1.3 SPLR PARTIALLY INOP |
| If only one SPLR FAULT without any other warning activation : |
| SPLR (affected) ON |
| If SPLR stuck in extended position, to attempt to retract the spoiler : |
| SERVO CTL (affected spoiler) OFF |
| - After about 10 seconds |
| SERVO CTL (affected spoiler) ON |
| - If SPLR cannot be retracted |
| SPEED INCREMENT ON V LS + 20 KT LANDING SPEED . (VLS + 20 KT) OR (VREF + 20 KT) |

INADVERTANT STICK SHAKER

- If spurious stall warning activation :

STICK SHAKER C/B (affected side) PULL . WARN CAPT-STICK SHAKER (21VU-A9)
or
WARN F/O-STICK SHAKER (21VU-A10)

SPLR FAULT

Indications:

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : SPLR FAULT procedure
Right ECAM CRT : FLT CTL page
FAULT on spoiler panel.

- If more than three roll spoilers affected (more than three pairs selected OFF), landing configuration 20/20 must be selected and approach speed is increased due to reduced lateral control.

GPWS should be selected to FLAP OVRD to avoid nuisance warning.

- If a spoiler is stuck in extended position, selecting the SERVO CTL to OFF cuts off the hydraulic supply to the affected spoiler and may cause its retraction. In every case the SERVO CTL must be selected ON again to recover all the other connected systems.
- During engine start, SPLR FAULT light may illuminate on the overhead panel. The related pushbutton switch may be reset (OFF then ON) in order to reset the EFCU and to recover the affected spoiler(s).

Note : For EFCU reset using C/B, refer to the SYSTEM RESET TABLE in QRH 13.19 or in FCOM 2.02.06 p 2.

INADVERTANT STICK SHAKER
Indications:
Stick shaker
Cricket audio warning.

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 6 | |
| | FLT CTL | REV 33 | SEQ 001 |

PITCH FEEL FAULT

PITCH FEEL (affected) OFF/R

- If both PITCH FEEL set OFF and both FAULT lights extinguished :

MAX SPD . 285/. 78
ELEV WITH CARE ABV SPD 170.

- If both PITCH FEEL set OFF and both FAULT lights illuminated :
PITCH FEEL IN HIGH SPEED.
- If only one PITCH FEEL set OFF, without any other warning activation,
or
If both PITCH FEEL set OFF and both FAULT lights extinguished and no STABILIZER JAM :
PITCH FEEL(s) .
- If unsuccessful and if both PITCH FEEL affected : MAX SPD 285/. 78 USE ELEVATOR WITH CARE ABOVE SPD 170 KT.
- If PITCH FEEL in high speed configuration : PROC : HIGH PITCH FORCE (6.09) APPLY

PITCH FEEL FAULT

Indications :

Single chime (only if both systems fail)
ECAM activation with appropriate warning light
Left ECAM CRT : PITCH FEEL FAULT procedure
Right ECAM CRT : NIL
FAULT (1 OR/AND 2) on pitch feel panel.

- If both systems are affected, and if selecting both systems to OFF/R extinguishes both FAULT lights, pitch feel is in low speed configuration. Limit speed to $285 \mathrm{kt} / 0.78 \mathrm{M}$ and use pitch control with care due to reduced control forces.
- If both systems are affected and if selecting both systems to OFF/R does not extinguish either FAULT light, pitch feel is in high speed configuration. Expect higher control forces during approach and landing.
- PITCH FEEL IN HIGH SPEED message appears only when flaps are extended 20° or more.

PITCH TRIM FAULT

Indications:

Single chime (only if both systems fail)
ECAM activation with appropriate warning light
Left ECAM CRT : PITCH TRIM FAULT procedure
Right ECAM CRT : NIL
PITCH TRIM (1 OR/AND 2) levers tripped.

- If both pitch trim systems are affected, use manual pitch trim and limit speed to $285 \mathrm{kt} / 0.78 \mathrm{M}$. Altitude is limited to FL 350 to ensure acceptable longitudinal stability and sufficient margin to buffet onset.
- If manual pitch trim is not available, assume stabilizer jamming.

STABILIZER JAM

- Maintain speed at which the stabilizer jam was detected to delay onset of out of trim forces as long as possible.
- Before deceleration, select PITCH FEEL 1 + 2 OFF/R. PITCH FEEL FAULT will be displayed on ECAM CRT. Pitch control inputs should be made with care, not to overcontrol the aircraft.

| ELEVATOR JAM |
| :--- |
| or HIGH PITCH FORCE |

ססמססססססססס.סס.ססס

ELEVATOR JAM/HIGH PITCH FORCE

- If jamming occurs before V1, the takeoff must be rejected.
- If jamming occurs during takeoff above V1, both pilots may have to simultaneously operate the column control to achieve rotation.
Trim should be used as required, but with caution, to help achieve and maintain a stabilized flight path.
The two elevator surfaces can only be operated independently below 195 kt . Thus below 195 kt , one elevator is still available.
- During approach FLAPS 15 must be selected above 3000 ft , since this initial flap extension requires rapid trim adjustment and may lead to slight deviation from the flight path.
The trim changes with further flap extension are much smaller.
- The PNF may control the throttles to relieve the PF for full concentration on flight path control. Autothrottle may be used during approach.
- Manual trim is used to avoid overcontrolling.
- The landing flare should be commenced earlier than normal, by use of the manual pitch trim, but the throttle retard action should be delayed because of the pitch change associated with engine power reduction.
- At all times rapid power changes must be avoided.

ABNORMAL PITCH BEHAVIOR PITCH TRIM RUNAWAY

- An abnormal pitch behavior can be the result of :
- a large out-of-trim condition,
- a pitch trim runaway,
- an AP pitch actuator hardover.
- The procedure for PITCH TRIM RUNAWAY / ABNORMAL PITCH BEHAVIOR covers all three scenarios.

RUDDER JAM

- Rudder jam is detected by an inhability to operate the rudder pedals and may lead to AP disconnection.

| YAW DAMPER FAULT | |
| :---: | :---: |
| YAW DAMPER | RESET |
| - If both YAW DAMPERS OFF | |
| TRIM TK MODE . . . | FWD |
| DESCENT TO FL 310 | CONSIDER |

RUDDER TRAVEL FAULT

Indications:
 Single chime (only if both systems failed) ECAM activation with appropriate warning light Left ECAM CRT : RUDDER TRAVEL FAULT procedure Right ECAM CRT : NIL
 FAULT sys (1 OR/AND 2) on rudder travel panel.

- If both rudder travel systems are affected, the limitation of rudder movement at speeds in excess of 170 kt is lost. Use rudder with extreme caution.
- If both rudder travel systems are affected and if selecting both systems to OFF/R does not extinguish the FAULT lights, the rudder deflection is restricted in the high speed configuration.
- The maximum crosswind for landing is 20 kt . RUD TRAVEL IN HIGH SPEED, MAX X WIND FOR LDG ... 20KT ECAM message appear only when flaps are extended 20° or more.

RUDDER TRIM RESET FAULT

Indications:

FAULT on RUDDER TRIM panel.

- Rudder trim reset is only available through the trim knob.

RUDDER TRIM RUNAWAY

- With AP engaged in CMD, rudder trim runaway is only apparent from an increasing sideslip. Check the rudder trim and reset to zero if possible, keeping AP engaged.
- If $A P$ is disengaged with a rudder trim runaway, there may be a large sideslip and roll induced. Use opposite aileron to level wings, centralize rudder and correct sideslip as appropriate. Then reset the rudder trim to zero.

YAW DAMPER FAULT

Indications :

Single chime (only if both systems failed)
ECAM activation with appropriate warning light Left ECAM CRT : YAW DAMPER FAULT procedure Right ECAM CRT : NIL
One or both YAW DAMPER levers tripped.

- In case of dutch roll keep controls at neutral and do not use rudder.
Natural damping will stop dutch roll.
Transferring fuel forward will improve dutch roll characteristics.
- If both Yaw Dampers are inoperative, both AP are lost. Flying at or below FL 310 should improve aircraft stability.

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 10 | |
| | FLT CTL | REV 35 | SEO 001 |

| SERVO CTL JAM IN FLIGHT | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SERVO CTL (affected) OfF | | | | | | |
| AFFECTED Equipment | | | | | | |
| - BLUE: SPLR 2,3,7 - YELLOW : PITCH FEEL2 2 | | | | | | |
| - GREEN : PITCH FEEL 1 | | | | | | |
| - If BLUE or Yellow SERVO CTL affected | | | | | | |
| . . LDG DIST MULTIPLY BY 1.3 | | | | | | |
| SYSTEMS AFFECTED (below) | | | | | | |
| Affected | Flight | SPD BRK SPLRS | AP | $\begin{gathered} \text { Yaw } \\ \text { DAMPER } \end{gathered}$ | $\begin{array}{\|l\|} \hline \text { PTECH } \\ \text { PEEL } \end{array}$ | $\begin{aligned} & \text { PITCH } \\ & \text { TRIM } \end{aligned}$ |
| Blue | 1 Actuator | 2+3+7 | | ${ }^{+1}$ | | |
| Green | 1 Actuator | 5 | $\mathrm{N}^{\circ} 1$ | | N° | 1 Actuat |
| Yellow | 1 Actuator | $1+4+6$ | N^{2} | N ${ }^{2}$ | No 2 | 1 Actuator |

SERVO CTL JAM

| Indications: |
| :--- |
| Single chime |
| ECAM activation with appropriate warning light |
| Left ECAM CRT : (affected) SERVO JAM procedure |
| Right ECAM CRT : FLT CTL page after SERVO CTL |
| selected OFF |
| SERVO CTL JAM light on SERVO CTL panel. |

- The warning is activated by detection of a jam of any of the servo control unit input valves.

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | FLT CTL | REV 35 | SEQ 100 |

SERVO CTL JAM

Indications:
 Single chime
 ECAM activation with appropriate warning light Left ECAM CRT : (affected) SERVO JAM procedure
 Right ECAM CRT : FLT CTL page after SERVO CTL selected OFF
 SERVO CTL JAM light on SERVO CTL panel.

- The warning is activated by detection of a jam of any of the servo control unit input valves.
- On ground, if more than one Servo Control JAM lights are illuminated, contact maintenance.
- If the left elevator is affected, visually check that the left elevator moves symmetrically and simultaneously with the right elevator (in the same direction and same range).
- On ground during freezing conditions (typically OAT below $-10^{\circ} \mathrm{C} / 14^{\circ} \mathrm{F}$) the warning may be due to micro switch stuck (frozen) in the engaged position. Operation of control with SERVO CTL switches ON may warm hydraulic fluid and restore micro switch to normal operation.
Normal operation can be resumed.

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | FLT CTL | REV 33 | SEQ 001 |

| AILERON JAM |
| :---: |
| RUDDER USE FOR ROLL CONTROL |
| ■ If CM1 control wheel jammed : |
| SPLR 3 \& 2, 6, 7 OFF |
| Use CM2 control wheel only |
| - If CM2 control wheel jammed |
| SPLR 4 \& 1, 5 OFF |
| Use CM1 control wheel only |
| FOR APPROACH |
| FLT CTL/KRUGER C/B (133VU-T61) PULL |
| PROC : KRUGER FAULT-NOT EXTENDED (6.04) . . APPLY |

AILERON TRIM RUNAWAY

If AP is not engaged in CMD :
CONTROL WHEEL
HOLD FIRMLY

- If AP engaged in CMD :

AP KEEP ENGAGED IN CMD

FOR APPROACH

- Below 200 kt and above 3000 ft AGL :

AP DISCONNECT

AILERON JAM

- Aileron jam can be evidenced by the jamming of one control wheel. The other control wheel remains fully operative and controls the other aileron, although control forces are increased.
- If aileron jam occurs out of the neutral position this may result in the extension of the roll spoilers controlled by the affected control.

The initial action is to counteract the roll force by using opposite rudder. Then the affected spoilers must be selected OFF.

- For approach, the kruger circuit breaker must be pulled to disable the aileron droop function.

AILERON TRIM RUNAWAY

- With AP engaged in CMD, an aileron trim runaway has no effect as it is countered by the AP.
- The AP must be maintained engaged in CMD as long as manual flying is not required.
- In approach, it is advisable to disconnect the AP below 200 kt and above 3000 ft .
- When the AP is disconnected after an aileron trim runaway, the result will be an abrupt movement of the control wheel, this will also result in spoilers deployment thus increasing the roll rate.
The crew must firmly hold the control wheel and return it to the neutral position, or the position required for wings level.
- Similarly, if an aileron trim runaway occurs during manual flying, the crew must firmly hold the control wheel to keep wings level (or the required bank angle),

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 12 | |
| | FLT CTL | REV 33 | SEQ 001 |

INTENTIONALLY LEFT BLANK

LANDING WITH ABNORMAL SLATS OR FLAPS

If actual Landing Weight is at or below Max Landing Weight :

- Until SLATS/FLAPS lever in 30/40 position : SPEED VFE NEXT - 5 SLATS/FLAPS lever . EXTEND ONE STEP FURTHER
- When SLATS/FLAPS lever in $30 / 40$ position : SPEED . VAPP

If actual Landing Weight is above Max Landing Weight (overweight landing) :

- Until SLATS/FLAPS lever in 20/20 position : SPEED VFE NEXT

SLATS/FLAPS lever . EXTEND ONE STEP FURTHER

- When SLATS/FLAPS lever in 20/20 :

VFE 20/20 MAINTAIN

- When aligned with the runway:

SPEED VFE NEXT
SLATS/FLAPS lever 30/40
SPEED . VAPP
PACK VALVE 1 and 2 OFF or on APU VERTICAL SPEED AT TOUCHDOWN . . MINIMIZE

- Maximum vertical speed at touchdown : $360 \mathrm{ft} / \mathrm{mn}$.

FOR GO AROUND
SLATS/FLAPS lever 20/20
SPEED
VAPP + 10

- For immediate turn back :

SLATS/FLAPS lever MAINTAIN 20/20
SPEED
. AS RQRD

- If diversion intended :

Limit slats/flaps retraction to the position further extended than the jammed surface.

- For slats or flaps retraction :

SPEED
ACCELERATE TO VFE

- When approaching VFE :

SLATS/FLAPSlever . RETRACT ONE STEPFURTHER

LANDING WITH ABNORMAL SLATS OR FLAPS CONFIGURATION

- This procedure applies for approach only if slats are less than 20° or flaps are less than 20°. This procedure does not apply when landing with no slats and no flaps.
- Vfe Next is the placard Vfe corresponding to the next slats/flaps lever position.
For example, if the slats/flaps lever is in 15/15 position, independently of actual slats or flaps position, Vfe Next is the placard Vfe corresponding to slats/flaps lever position 20/20, i.e. 195 kt.
- The technique consists basically in reducing the speed to Vfe Next - 5 (or Vfe Next) in order to extend the surfaces. When the speed is obtained, extend the surfaces.
- The target speed is Vfe Next - 5 to avoid exceeding Vfe in case of turbulence.
Yet, in case of overweight landing, the target speed is Vfe Next to keep sufficient speed.
- When surfaces are extended, it is recommended to maintain speed.
- The landing speed is determined in accordance with the originating procedure.
- In case of overweight landing :
- If Vfe Next is lower than VLs, the slats/flaps lever can be set one notch further extended while the speed is decreased to follow VLs reduction as surfaces extend. The overspeed warning should not be triggered. In this case, disconnect the A/THR. A/THR canbere-engaged when the landing configuration is obtained.
- The S/F lever must not be placed in the 30/40 position before being aligned with the runway to avoid sharp movement in this configuration.
- Selecting packs off (or supplying packs from APU) will increase the maximum thrust available from the engines in case of a go-around.

- For go around :

- For immediate turn back, the speed can be increased up to Vfe - 5 kts (at pilot's discretion).
- For diversion, the slats/flaps lever must be maintained in the position further extended than the jammed surface (for example, $15 / 0$ if slats are jammed at 13°) to limit the Max speed on the PFD to the corresponding Vfe . This is to remind pilots of the speed limit due to the jammed surface.

| | ABNORMAL PROCEDURES | 2.05.27 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 14 | |
| | FLT CTL | REV 33 | SEQ 001 |

INTENTIONALLY LEFT BLANK

FUEL LEAK

When a FUEL LEAK is suspected

- FQI CHAN SUPPLY 1\&2 C/B PULL THEN PUSH (P60 \& P61/132 VU)
- If a FUEL LEAK is confirmed
- If LEAK FROM ENGINE/PYLON confirmed THROTTLE (affected side)
FUFL LFVFR (affected side)

NOTE : - If the leak stops, the FUEL X FEED valve can now be selected OPEN. Do not restart the engine

- If LEAK FROM WING TIP confirmed and CTR TK FEEDING
(affected side OUTR TK indication may be $60-200 \mathrm{~kg}$ (132 -440 lb) higher)
NOTE: Check that no fuel forward transfer (ACT/TT) has been requested while the CTR TK is full.
CTR TK PUMP (affected side)
INR TK PUMPS (affected side)
- When both OUTR TK fuel quantities are equal CTR TK PUMP (affected side) INR TK PUMPS (affected side)
Continue to monitor outer tanks fuel quantities and look for any increase
- If leak is not prevented
continue with LEAK FROM ENGINE/PYLON/WING TIP not confirmed or LEAK not located procedure (below).
- If LEAK FROM ENGINE/PYLON/WING TIP not confirmed or LEAK not located
FUEL X FEED
MAINTAIN CROSS LINE
CTR TK PUMPS
TRIM TK ISOL VALVE
MÓNITOR
- If one inner tank depletes faster than the other by at least 500 kg (1102 lb) in less than 30 min
THROTTLE (affected side)
FUEL LEVER (affected side)

CTR
TRIM TK ISOL VALVE …................ AUTO
TRIM TK MODE
AUTO
PROC: SINGLE ENG OPERATION (12.08) . . APPLY
NOTE : - The FUEL X FEED valve can now be selected OPEN.

- Do not restart the engine.
- If the leak continues after engine shutdown : TRIM TK ISOL VALVE
TRIM TK MODE
FIRE HANDLE

- When INR TK empty

CTR TK PUMPS
ON
CAUTION: Do not open the FUEL X FEED, even if requested by another procedure.

- If both inner tanks deplete at a similar rate :

CTR TK PUMPS

- If fuel smell in the cabin APU (if running)
TRIM TK ISOL VAIVE
- If no fuel smell in the cabin
- If trim tank not empty :

TRIM TK ISOL VALVE TRIM TK MODE

- If/When trim tank empty TRIM TK MODE AUTO

FOR LANDING

CAUTION : . Do not use reverse.
. Notify ATC

FUEL LEAK

A FUEL LEAK may be detected by :

- the sum of the FOB and the F.USED is significantly less than the FOB at departure or decreases, or
- visual check from the cabin if accessibility permits, (fuel spray from engine/pylon or from wing tip), or
- total fuel quantity decreasing at an abnormal rate, or
- fuel imbalance, or
- tank emptying too fast (leak from engine/pylon or a hole in a tank), or
- tank overflowing (due to pipe rupture in a tank), or
- excessive fuel flow (leak from engine), or
- fuel smell in the cabin.
- The FUEL X FEED valve enables to re-balance the fuel quantity, or to use the fuel from both wings.
- Although FOI malfunctions are generally indicated by blanking of digital readout, fluctuating readings, off scale readings, or indications that do not change, it is recommended to reset the FOI computers by action on FOI channels supply C/B's.
- If leak from wing tip :
- Cycling the engine feed from center/inner tank to outer tank may allow correct closure of the non-return valve.
- On aircraft fitted with a trim tank or/and ACT, fuel forward transfer while the CTR TK is full leads to have fuel vented overboard at the LH wing tip.
- If the leak from engine/pylon/wing tip is not confirmed or the leak is not located :
- Any fuel transfer has to be stopped.
- Each engine is fed via its associated inner tank.
- Fire Handle pulled closes the LP fuel valve. Any leak downstream the LP valve should stop.
- The depletion rate of each inner tank has to be monitored, to determine if the leak is from an engine or a wing, or from the trim tank or APU feeding line.
- If one inner tank depletes faster than the other by at least $500 \mathrm{~kg}(1102 \mathrm{lb})$ in less than 30 min , an engine leak may be suspected.
If the leak stops after engine shutdown, the engine leak is confirmed.
If the leak continues after engine shutdown, a leak from the wing may be suspected.
Consider engine restart in flight. If engine restart in flight is attempted, push back fire handle.
- If both inner tanks deplete at a similar rate, a leak from the trim tank or the APU, or their respective fuel line may be suspected.
- In case of unbalance, apply normal trim setting procedure, i.e. use rudder trim first. If rudder is not sufficient, use aileron trim.
- There is no special procedure for approach and landing with any fuel imbalance.

| CTR/INR/OUTR TK PUMP FAULT / LO PR |
| :---: |
| CTR TK |
| ■ If one FAULT light illuminated |
| CTR TK PUMP (affected) OFF |
| FUEL X-FEED IN-LINE |
| If both FAULT (or one FAULT/one OFF) lights illumintated: |
| CTR TK PUMPS OFF |
| PROC : FUEL FEED MAN CTL (7.04) APPLY |
| INR TK |
| - If one FAULT light illuminated |
| INR TK PUMP (affected) OFF |
| If in one INR TK both FAULT (or one FAULT/one OFF) lights illuminated : |
| INR TK PUMPS (affected TK) OFF |
| - If INR TK not empty |
| FUEL X-FEED IN LINE |
| - If INR TK above $2000 \mathrm{Kg}(\mathbf{4 4 0 0} \mathrm{lbs})$: |
| PROC : FUEL GRAVITY FEEDING FOR
 INR TK (7.05) APPLY |
| If in both INR TK both FAULT (or one FAULT/one OFF) Lts on : |
| INR TK PUMPS (all) OfF |
| PROC : FUEL FEED MAN CTL (7.04) APPLY |
| OUTR TK |
| If one PUMP LO PR:
 OUTR TK PUMP (affected) OFF |
| | |
| |
| PROC : FUEL GRAVITY FEEDING FOR
 OUTR TK (7.05) APPLY |
| AUT0 FUEL FEED FAULT |
| If both L and R CTR TK PUMP FAULT (or one FAULT/ one OFF) lights illuminated: |
| L and R CTR TK PUMPs (2) OfF |
| PROC : FUEL FEED MAN CTL (below) APPLY |
| If all four INR TK PUMP FAULT (or FAULT/OFF) lights illuminated : |
| L and R INR TK PUMPs (4) OFF |
| PROC : FUEL FEED MAN CTL (below) APPLY |

CTR TK

If one FAULT light illuminated :
CTR TK PUMP (affected) OFF

If both FAULT (or one FAULT/one OFF) lights illumintated :
CTR TK PUMPS . OFF
PROC : FUEL FEED MAN CTL (7.04) APPLY

INR TK

RR TK PUMP (afted....

If in one INR TK both FAULT (or one FAULT/one OFF) lights illuminated :
INR TK PUMPS (affected TK) IN LINE

If INR TK above 2000 Kg (4400 lbs):
PROC : FUEL GRAVITY FEEDING FOR INR TK (7.05)

APPLY
If in both INR TK both FAULT (or one FAULT/one OFF) Lts on :
NRTK PUMPS (all).
PROC : FUEL FEED MAN CTL (7.04) APPLY

OUTR TK

OUTR TK PUMP (affected) OFF TK's empty:
PROC : FUEL GRAVITY FEEDING FOR
OUTR TK (7.05)

AUTO FUEL FEED FAULT

 one OFF) lights illuminated:L and R CTR TK PUMPs (2) OFF

If all four INR TK PUMP FAULT (or FAULT/OFF) lights illuminated :
L and R INR TK PUMPs (4) OFF
PROC : FUEL FEED MAN CTL (below) APPLY

CTR/INR/OUTER TK PUMP FAULT/LO PR and or AUTO FUEL FEED FAULT

Indications:
Single chime (if two pumps fail in one tank)
ECAM activation with appropriate warning light
Left ECAM CRT : PUMP LO PR proc and/or AUTO FUEL FEED FAULT proc
Right ECAM CRT : FUEL page
FAULT (LO PR) light(s) on FUEL panel

- If one CTR TK pump fails, FUEL X-FEED is selected open to avoid OUTR TK feeding on the concerned side and resultant fuel assymetry.
- If both CTR TK pump FAULT (or FAULT/OFF) lights illuminate, the reason is either :
. Pump FAULT (low pressure) with CTR TK not empty, or
. AUTO FEED FAULT with CTR TK empty, and any CTR TK PUMP running or INR TK PUMPS not started in either TK,
or
. CTR TK empty during FUEL FEED MAN CTL.
In case of AUTO FEED FAULT the OFF selection of both CTR TK PUMPS deactivates the AUTO FEED logic and the INR TK PUMPS will start running. This action will engage FUEL FEED MAN CTL.
- If in one INR TK both PUMP FAULT (or FAULT/OFF) lights illuminate, the reason is either :
. PUMP FAULT (LO pressure) with INR TK not empty, or
. INR TK empty (LO) with pumps still running.
- If in both INR TK both PUMP FAULT (or FAULT/OFF) lights illuminate the reason is AUTO FUEL FEED FAULT. With CTR TK not empty, the CRT TK PUMPS do not run or any INR TK PUMP is running. The OFF selection of all INR TK PUMPS deactivates the AUTO FEED logic and CTR TK PUMPS will start. This action will engage FUEL FEED MAN CTL.

AUTO FUEL FEED FAULT

The ECAM message AUTO FUEL FEED FAULT, when they occur at Inner tank low level in descent or during taxi are spurious warnings.

| | ABNORMAL PROCEDURES | 2.05.28 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 2A | |
| | FUEL | REV 32 | SEQ 001 |

FUEL X-FEED IN FLIGHT (FUEL IMBALANCE)

CAUTION : In case of fuel imbalance, consider first the possibility of a fuel leak.
For this purpose, check that the sum of the fuel on board and the fuel used is consistent with the fuel on board at departure. If the sum is unusually smaller than the fuel on board at departure, suspect a fuel leak.

- If fuel leak suspected or confirmed :

FUEL X-FEED DO NOT USE
PROC : FUEL LEAK (7.02) APPLY

If fuel leak not suspected :
FUEL X-FEED IN LINE

- On the wing from which fuel will be used :

ISOL VALVES (2)
CHECK IN LINE INR TK PUMPS (2) CHECK NORM

- On the opposite wing :

INR TK PUMPS (2)

- When fuel balancing is completed

ALL INR TK PUMPS (4)

FUEL X-FEED CROSS-LINE
R

FUEL X-FEED IN FLIGHT

- This procedure is applied to correct or prevent fuel imbalance.
- When FUEL X-FEED valve is open (e.g in case of engine failure), a fuel imbalance may occur due to pump pressure difference. In this case select INR TK PUMPs OFF on the "light" side to restore the fuel balance. -

| | ABNORMAL PROCEDURES | 2.05.28 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | FUEL | REV 33 | SEC 200 |

| FUEL FEED MANUAL CONTROL |
| :---: |
| - If AUTO FUEL FEED FAULT is not displayed on ECAM |
| - If all INR TK, or both CTR TK FUEL PUMP FAULT |
| lights have illuminated simultaneously |
| AUTO FEED C/B PULL THEN PUSH |
| Affected PUMPS ON |

- If FAULT lights remain extinguished Resume normal operation
OUTR TK PUMPs (4)
CHECK ON
- For CTR TK feeding :

CTR TK PUMPs (2) NORM
INR TK PUMPs (4) OFF

- When approaching CTR TK depletion

OUTR TK's FUEL QTY
MONITOR

- When OUTR TK's start feeding

INR TK or OUTR TK FEEDING
SELECT

- When CTR TK empty :

TRIM TK MODE FWD
CONSIDER

- For INR TK feeding :

INR TK PUMPs (4) NORM
CTR TK PUMPs (2) OFF

- For OUTR TK feeding :

INR TK PUMPs (4) OFF
CTR TK PUMPs (2) OFF
TANK FEEDING MONITOR ECAM/FQI

- If tank feeding is not as desired :

OUTR TK PUMPs (4) CHECK ON
CTR TK (2) and INR TK PUMPs (4) OFF
TK PUMPs (required INR TK or CTR TK) NORM

- If unsuccessful :

AUTO FEED CTL C/B (132VU-M55) PULL

| OUTER TK LO LEVEL | |
| :---: | :---: |
| FUEL MANAGEMENT | CHECK |
| CAUTION : If a fuel leak is suspected, do not apply this procedure and refer to FUEL LEAK procedure. | |
| - If CTR TK or INR TK is not em | |
| FUEL FEED MAN CTL (7.04) | PPLY |
| - If CTR TK and INR TK are empty : | |
| FUEL X FEED | N LINE |

FUEL FEED MANUAL CONTROL

- This procedure should be used whenever the automatic fuel feed mode does not work correctly or when manual fuel feed is required.
- If all INR TK, or both CTR TK PUMP FAULT lights illuminate simultaneously, an AUTO FEED system fault should be considered. In this case, an AUTO FEED C/B reset is possible in order to recover the system.
- The manual feed sequence is to feed from the CTR TK until empty, then from INR TKs until empty, then from the OUTR TKs.
- In FUEL FEED MANUAL CONTROL, the CTR TK PUMP FAULT lights do not illuminate when reaching CTR TK depletion.
When in CTR TK feeding, when approaching CTR TK depletion, monitor the OUTR TK's fuel quantity.
When OUTR TK's start feeding, select INR TK's or OUTR TK's feeding, as desired.

OUTER TANK LO LEVEL

[^6]
FUEL GRAVITY FEEDING

- If AUTO FUEL FEED FAULT is not displayed on ECAM

- If both INR TK on same side FUEL PUMP FAULT lights have illuminated simultaneously
AUTO FEED C/B PULL THEN PUSH
Affected PUMPS ON

- If FAULT lights remain extinguished

Resume normal operation
IGNITION \qquad CONT RELIGHT

FUEL X-FEED CROSS-LINE
CAUTION : Avoid rapid throttle movement and low or negative g-load factors.

CTR TK

DO NOT CONSIDER FUEL GRAVITY FEEDING FROM CTR TK.

INR TK

- If INR TK QTY above $2000 \mathbf{~ k g ~ (4 4 0 0 ~ l b s) : ~}$

MAX FL . 200 (150 IF JP4/JETB USED) / MEA/ MORA INR TK ISOL VALVE (affected) . . . CHECK IN LINE OUTR TK ISOL VALVE (affected)
. OFF

- When INR TK below 2000 kg (4400 lbs) :

OUTR TK ISOL VALVE (affected) IN LINE INR TK ISOL VALVE (affected) OFF

■ If INR TK QTY below 2000 kg (4400 lbs) : DO NOT CONSIDER FUEL GRAVITY FEEDING FROM INR TK.

OUTR TK

- If fuel and pumps are available in CTR TK or INR TKs:
ORIGINATING PROCEDURE REFER
FUEL MANAGEMENT (originating procedure) . APPLY
- If/When CTR and INR TKs empty :

MAX FL . 250 (200 IF JP4/JETB USED) / MEA / MORA
OUTR TK ISOL VALVE (affected) . . CHECK IN LINE INR TK ISOL VALVE (affected) OFF

FUEL GRAVITY FEEDING

- If all INR TK, or both INR TK on same side, or both CTR TK PUMP FAULT lights illuminate simultaneously, an AUTO FEED system fault should be considered. In this case, an AUTO FEED C/B reset is possible in order to recover the system.
- Fuel gravity feeding with all tanks affected is not considered in this procedure. It is assumed to be required only in case of loss of all AC generation and flight on batteries only.
Refer to LOSS OF BOTH ENG GENERATORS.
- The selection of CONT RELIGHT protects the engine against flame-out caused by possible fuel supply surges.
- Descent to the specified flight level provides sufficient static pressure to supply the engine driven fuel pumps.
If fuel pressure fluctuations of 10 psi or more occur, descend to a lower altitude.
- Keeping throttle movements slow and avoiding low load factors will prevent fuel supply surges. If JP4/JET B is used, avoid fuel flow below $1150 \mathrm{~kg} / \mathrm{h}$, ($2530 \mathrm{lb} / \mathrm{h}$)
- If the CTR TK only is affected, gravity feeding is not recommended. Due to the increased consumption at the required lower altitude the recovery of CTR TK fuel does not constitute a reasonable advantage.
- If an INR TK is affected, the respective OUTR TK must be isolated to prevent OUTR TK feeding.
INR TK feeding must be stopped, when the level reaches $2000 \mathrm{~kg} / 4400 \mathrm{lb}$.
Below this level the non-return valve in the CTR TK feed line may not remain closed, resulting in fuel surges and possible air suction. Consequently the OUTR TK must be used.
- If an OUTR TK is affected and pumps in the related INR TK operate in AUTO FEED MODE, monitor INR TK OTY and select INR TK ISOL VALVES to OFF, when pumps stop.
Should pumps operate in FUEL FEED MAN CTL, select INR TK ISOL VALVES and INR TK PUMPS to OFF at first indication of PUMP FAULT (low pressure).

| TRIM TK PUMP LO PR |
| :---: |
| TRIM TK PUMP (affected) OFF |
| ■ If both TRIM TK PUMPs OFF and TRIM TK not empty: |
| TRIM TK MODE FWD |
| AUTO TRIM TK SYS INOP |
| FUEL GRAVITY FWD XFR ONLY |
| \square If TRIM TK empty and both TRIM TK PUMPs LO PR |
| TRIM TK PUMP 1 and 2 OFF |
| AUTO TRIM TK SYS INOP |
| TRIM TK MODE AUTO |

R

| TRIM TK AFT XFR NOT AVAIL | |
| :---: | :---: |
| ON GROUND | |
| TRIM TK PUM CAUTION: sw | P 1 and 2
 o not select TRIM TK MODE pushbutton . |

TRIM TK SYS INIT

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT: TRIM TK SYS INIT procedure
    Right ECAM CRT : FUEL page
```

- This warning is triggered on ground when the CGCC detects a discrepancy between the values received from the two FMS or when the crew performs a new initialization of ZFW or ZFCG in case of single FMS operation.
- In case of discrepancies between load sheet and ECAM values, trim tank system may be used manually (Refer to MMEL). TRIM TK PUMP LO PR

```
Indications:
    Single chime (if both pumps fail/off)
    ECAM activation with appropriate warning light
    Left ECAM CRT : PUMP LO PR procedure
    Right ECAM CRT : FUEL page
    LO PR light(s) on FUEL panel
```

- When TRIM TK pumps are selected OFF, and TRIM TK MODE pushbutton is selected to FWD, transfer from trim tank to center tank is by gravity only.
- When trim tank is empty select TRIM TK pumps OFF and TRIM TK MODE to AUTO to prevent CTR TK overflow during next trim tank refueling.

TRIM TK AFT XFR NOT AVAIL
Indications:
ECAM activation
Left ECAM CRT : TRIM TK AFT XFR NOT AVAIL Right ECAM CRT : FUEL page

- On ground, this warning may indicate a failure that could lead to CTR TK overflow
- Select both TRIM TK pumps OFF to avoid this overflow risk. The AUTO TRIM TK SYS becomes inoperative.
- Do not select TRIM TK MODE to FWD, otherwise fuel overflow could occur due to gravity FWD transfer.

AFT CENTER OF GRAVITY

| Indications: |
| :--- |
| Single chime |
| ECAM activation with appropriate warning light |
| Left ECAMCRT: AFT CENTER OF GRAVITY procedure |
| Right ECAM CRT: FUEL page |
| TRIM TK MODE FAULT light |

- This warning is triggered when the THS reaches a position corresponding to 41% CG. This position is computed by the FWC and depends on Mach number and N1.
- Selection of TRIM TK MODE push-button to FWD position for at least 1 minute, shifts the CGCC target 1.5 \% forward.
- This warning may be due to inaccuracy in load sheet computation which can be solved by the shift of CGCC target.
- If the CG reaches again 41% after the shift of the CGCC target, this warning will not be triggered. Only the EXCESS AFT CG warning (CG reaching 43%) remains available.

| | ABNORMAL PROCEDURES | 2.05.28 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 6 | |
| | FUEL | REV 28 | SEQ 110 |

| TRIM TK SYS FAULT | |
| :---: | :---: |
| IN FLIGHT | |
| $\text { TRIM TK PUMP } 1 \text { and } 2 \text {. CHECK ON }$ | |
| | |
| - If no FWD XFR | |
| PROC : TRIM TK FUEL UNUSABLE (7.08) | . APPLY |
| - If CTR TK above 14 T (31000 lbs) : | |
| TRIM TK PUMPS 1 and 2 OFF NOTE: TRMM TK fue/ will be transferred FWD by gravity. | |
| | |
| - When TRIM TK empty : | |
| TRIM TK PUMP 1 and 2 OFFTRIM TK MODE AUTO | |
| | |
| ON GROUND | |
| Do not select TRIM TK MODE pushbutton switch to FWD position. | |

TRIM TK SYS FAULT

Indications:
 Single chime
 ECAM activation with appropriate warning light Left ECAM CRT : TRIM TK SYS FAULT PROC Right ECAM CRT : FUEL page TRIM TK MODE FAULT light

- If CTR TK fuel quantity reaches 14 tons (31000 lbs), TRIM TK pumps are selected OFF to decrease the rate of transfer (transfer only ensured by gravity) in order to avoid overfilling of center tank.
- Forward transfer can be confirmed by checking trim tank fuel quantity decrease or transfer indications (on FUEL page of ECAM system display).
- When trim tank is empty ensure TRIM TK pumps are selected OFF and TRIM TK MODE to AUTO to prevent CTR TK overflow during next trim tank refueling.

| | ABNORMAL PROCEDURES | 2.05 .28 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 7 | |
| | FUEL | REV 29 | SEC 110 |

| TRIM TK FUEL UNUSABLE |
| :---: |
| OUTR TK isol valves Check in line |
| OUTR TK PUMPS CHECK ON |
| INR TK PUMPS (4) OFF |
| CTR TK PUMPS (2) OFF |
| - When OUTR TK LO LVL |
| INR TK PUMPS NORM |
| - If required : |
| CTR TK PUMPS NORM |
| CAUTION : Consider diversion since fuel consumption from CTR TK or from INR TKs (when below $8000 \mathrm{~kg} / 17700 \mathrm{lbs}$ in either INR TK) will move the CG aft and could lead to the exceedance of the aircraft aft $C G$ limit for landing. |
| LDG SPD INCREMENT + 5 KT |
| LDG DIST MULTIPLY BY 1.1 |

TRIM TK FUEL UNUSABLE

Indications:

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : TRIM TK ISOL VALVE NOT OPEN TRIM TK FUEL UNUSABLE PROC

Right ECAM CRT : FUEL page
TRIM TK MODE FAULT light

- To reduce the risk of center of gravity exceeding the aft limit, tanks must be emptied in the following sequence : OUTER tanks, INNER tanks and CENTER tank.
- Fuel consumption from INR TK (when either below $8000 \mathrm{~kg} / 17700 \mathrm{lbs}$) or from CTR TK will move the CG rearward of the CG value at time of failure.
Fuel consumption from the OUTER TKs and from the INR TKs when above $8000 \mathrm{~kg} / 17700 \mathrm{lbs}$ will move the CG forward, or maintain the current CG.
Diversion should be considered to avoid exceedance of aft CG limit for landing.
The graph typically shows the effect of the fuel consumption on the CG and illustrates the caution note of the procedure.
- Approach speed is increased for better manoeuvrability at aft CG.
- In case of both trim tank pumps failure and no gravity transfer, gravity transfer may be obtained by initiating a descent. Subsequently, flight may be resumed at normal cruise altitude (gravity transfer may have been prevented at high altitude by air trapped in the trim tank transfer line).

| | ABNORMAL PROCEDURES | 2.05.28 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 8 | |
| | FUEL | REV 28 | SEQ 100 |

LEFT BLANK INTENTIONALLY

| A310
 FLIGHT CREW OPERATING MANUAL | ABNORMAL PROCEDURES | 2.05.29 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | HYD | REV 28 | SEO 100 |

| HYDRAULIC POWER DISTRIBUTION | | | |
| :---: | :---: | :---: | :---: |
| SYSTEMS | BLUE | GREEN | YELLOW |
| EQUIPMENT | SERVO CTL | $\begin{array}{\|l\|} \hline \text { JAM } \\ \hline \text { OFF } \\ \hline \end{array}$
 \sum | |
| FLT CTLS | | | |
| SPLR \& SPD BRK | $\begin{gathered} 2,3 \\ 7 \end{gathered}$ | - 5 | $\mathbf{-}_{6}^{1,4}$ |
| PITCH TRIM | | | |
| A/P | | 1 | - 2 |
| YAW DAMPER | 1 | | - 2 |
| $\begin{aligned} & \text { PITCH } \\ & \text { FEEL } \end{aligned}$ | | - 1 | $\square 2$ |
| KRUGER AIL DROOP | | | |
| SLATS | | | |
| FLAPS | | | |
| STBY GEN | | | |
| L/G | | | |
| N.W. STEERING | | \star | |
| ANTI SKID | | | |
| NORM BRAKE | | | |
| ALTN BRAKE | | | |
| AUTO BRAKE | | | |
| PARKING BRAKE | | | |
| CARGO DOOR | | | |
| \star Nose wheel steering lost when L/G extended by gravity | | | |

| | ABNORMAL PROCEDURES | 2.05.29 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | 2 |
| | HYD | REV 31 | SEO 103 |

| |
| :---: |
| - If HYD RSVR LO AIR PR and If PRESSURE FLUCTUATES: or If HYD RSVR OVHT or HYD PUMP LO PR : PUMP(s) (affected system) OFF
 - If GREEN SYS affected :
 GREEN ELEC PUMPS OFF
 AFFECTED EQUIPMENT OFF
 BLUE: SPLRS 2, 3,7 YELLOW: $\begin{aligned} & \text { PITCH FEEL } 2 \\ & \text { SPLRS } 1,4,6\end{aligned}$ SPLRS 1, 4, 6
 GREEN : PITCH FEEL 1
 SPLR 5
 PROC: HYD SYS LO PR (below).
 APPLY
 - If GREEN HYD RSVR OVHT warning activated with STBY GEN operating and SAT above ISA + 30 : GREEN HYD PWR ENG PUMPS (2) ON |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |

HYD RSVR LO AIR PR

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : RSVR LO AIR PR proc
Right ECAM CRT : HYD page
AIR light on HYD panel.

- This warning is activated if the tank air pressure is below 22 psi. The warning is cleared when the air pressure increases to 25 psi .
- If the warning is activated and all system pressures are normal without abnormal fluctuation, no action is required.
- The risk of pump cavitation increases with altitude. If GREEN system is affected, use of ELEC PUMPS may cause pump damage.
Note : Following a yellow hydraulic system failure, the parking brake may be inoperative due to a yellow

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : RSVR OVHT proc
Right ECAM CRT : HYD page
OVHT light on HYD panel.

- If the GREEN system is affected each pump may be selected to ON in turn in an attempt to determine the affected pump.
- This warning may be triggered when using standby generator in temperature condition above ISA +30 . In this case, the green hydraulic pumps must not be selected OFF.

Note: Following a yellow hydraulic system failure, the parking brake may be inoperative due to a yellow accumulator low pressure.

HYD PUMP LO PR

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : PUMP LO PR proc
    Right ECAM CRT : HYD page
    PUMP LO PR light on HYD panel.
```

Note: Following a yellow hydraulic system failure, the parking brake may be inoperative due to a yellow accumulator low pressure.

| | ABNORMAL PROCEDURES | 2.05 .29 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 3 | |
| | HYD | REV 31 | SEO 001 |

| HYD SYS LO PR | |
| :---: | :---: |
| FOR APPROACH | |
| - If SYS lost by : | |
| ■ RSVR LO AIR PR | |
| PUMP(S) (affected system) ON | |
| ■ RSVR OVHT : | |
| - If OVHT light extinguished | |
| PUMP(S) (affected system) | ON |
| PUMP LO PR | |
| \square If GREEN SYS affected : | |
| HYD PWR ELEC PUMPS | |
| If BLUE or YELLOW SYS affected : | |
| PTU (affected SYS) | ON |
| If affected SYS recovered : | |
| AFFECTED EQUIPMENT | . RESTORE |
| ■ If affected SYS not recovered : | |
| HYDRAULIC POWER DISTRIBUTION (8.01) . . REVIEW | |
| ■ If BLUE or YELLOW SYS affected : | |
| LDG DIST MULTIPLY BY 1.3 | |
| \square If GREEN SYS affected : | |
| LDG SPD INCREMENT + 10 KT | |
| LDG DIST MULTIPLY BY 1.2 | |
| PROC : L/G GRAVITY EXT (10.02) APPLY | |
| - If GREEN SYS affected | |
| BRK-A/SKID | . . . ALTN-ON |

HYD SYS LO PR

> | Indications: |
| :--- |
| Single chime |
| ECAM activation with appropriate warning light |
| Left ECAM CRT : STATUS after basic failure |
| Right ECAM CRT : HYD page |
| Local alert light depending on the origine. |

- If BLUE or YELLOW system remains unpressurized, the landing distance is increased due to the partial loss of GND SPLRS.
- If GREEN system remains unpressurized, S, F, VLs must be augmented by 10 Kt due to KRUGERS inoperative (the aileron droop loss has no effect). The landing distance is increased due to augmentation of VLS and due to alternate braking (YELLOW).
The AUTO BRAKE is inoperative.
Braking is automatically transferred to YELLOW HYD system.
However, to obtain the RELEASE indication for YELLOW alternate braking it is recommended to set the A/SKID-BRK selector to ALTN/ON.

Note : Following a yellow hydraulic system failure, the parking brake may be inoperative due to a yellow accumulator low pressure.

- Due to the low flow of the ELEC PUMPS and PTU, the hydraulic pressure may drop below 130 bars leading to the closure of priority valve. HYD SYS LO PR may be triggered again. When pressure raises back to 130 bars, the priority valves re-open.
- When using the PTU, the slats, flaps and L/G must be extended in sequence in order to reduce loads on systems.
- Blue system pressurized by PTU : sequence SLATS and L/G.
- Yellow system pressurized by PTU : sequence FLAPS and L / G.

| | ABNORMAL PROCEDURES | 2.05.29 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 4 | |
| | HYD | REV 31 | SEQ 001 |

HYD RSVR LO LEVEL

Indications:
Single chime
ECAM activation with appropriate warning light Left ECAM CRT : RSVR LO LEVEL proc
Right ECAM CRT : HYD page QTY indication on HYD panel.

- The warning is triggered when tank fluid quantity is below 5 L .
- If the YELLOW tank is concerned, the respective HYD FIRE VALVE closes automatically. This does not prevent RAT operation.
- If BLUE or YELLOW system is affected, the landing distance is increased due to partial loss of GND SPLRS.
- If GREEN system is affected, S, F, VLs must be augmented by 10 Kt due to KRUGERS inoperative (the aileron droop loss has no effect). The landing distance is increased due to augmentation of VLS and due to alternate braking (YELLOW).
The AUTO BRAKE is inoperative.
Braking is automatically transferred to YELLOW HYD system.
However, to obtain the RELEASE indication for YELLOW alternate braking it is recommended to set the BRK-A/SKID selector to ALTN-ON.
Note : Following a yellow hydraulic system failure, the parking brake may be inoperative due to a yellow accumulator low pressure.

| | ABNORMAL PROCEDURES | 2.05 .30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE 1 | |
| | ANTI-ICE | REV 27 | SEO 050 |

ENG ANTI ICE FAULT

If ENG ANTI ICE selected ON (valve not open) : AVOID ICING CONDITIONS

R

- If ENG ANTI ICE selected off (valve not closed) : THRUST LIM PENALTY.

ENG ANTI ICE FAULT

```
Indications :
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : ENG ANTI ICE FAULT procedure
    Right ECAM CRT : NIL
    Local FAULT light on ANTI ICE panel
```

- ENG ANTI ICE FAULT is indicated when there is a disagreement between the valve position and the selected position.
- If a valve does not close, when selected OFF, the thrust limit penalty for ANTIICE ON remains valid. This is taken into consideration by the TCC.
- If ENG ANTI ICE FAULT occurs at idle with the valve not closed, a momentary thrust increase may lead to valve closure.

WING ANTI ICE VALVES FAULT

```
IN FLIGHT
```

If WING SUPPLY selected ON (valve not open) : WING MODE SEL

WING ANTI ICE VALVES FAULT

Indications:
 Single chime

ECAM activation with appropriate warning light
Left ECAM CRT : WING VALVE NOT OPEN/ CLOSED procedure
Right ECAM CRT : NIL
FAULT light on ANTI ICE system panel

- WING ANTI-ICE FAULT is indicated when there is a disagreement between the valve position and the selected position.
- On ground, selecting BLEED VALVES OFF will prevent a slats overheat.
- The thrust limit penalty for ANTI ICE ON remains valid. This is taken into consideration by the TCC.

| | 2.05 .30 | | |
| :--- | :--- | :--- | :---: |
| PAGE 2 | | | |
| REV 33 | SEO 060 | | |

| WINDOW HEAT FAULT |
| :---: |
| WINDOW HEAT (affected) OFF/R |
| - If transient FAULT is suspected, after 3 seconds minimum: |
| WINDOW HEAT (affected) ON |
| - If FAULT light re-illuminates |
| WINDOW HEAT (affected) OFF/R |
| If FAULT warning is triggered on ground with OAT greater than $40^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ and with PACKS OFF : |
| After 5 minutes minimum |
| | |
| |
| FOR APPROACH |
| If WINDOW HEAT not recovered :
 COCKPIT COMPT TEMP INCREASE
 - Increasing the cockpit temperature will prevent window fogging during approach and landing. |
| | |
| | |

PROBE HEAT FAULT

```
Indications:
    Single chime
    ECAM activation with appropriate warning light
    Left ECAM CRT : PROBE HEAT FAULT procedure
    Right ECAM CRT : Nil
    Corresponding local warning light on PROBE HEAT
        panel :
```

- In case of stand-by alpha probe heat fault, it is not necessary to monitor the stand-by air speed and altitude indications.
- PROBE HEAT FAILURE results in loss of FADEC EPR mode.
- Apply ENG EPR MODE and ENG ALT MODE procedures.
- The ADC indications monitoring must be done during the rest of the flight after a probe heat fault.

WINDOW HEAT FAULT

Indications:

Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : WINDOW HEAT FAULT procedure
Right ECAM CRT : Nil
FAULT light on WINDOW HEAT panel.

- If WINDOW HEAT transient FAULT is suspected (e.g. during APU start), FAULT may be cleared by reset action on the affected WINDOW HEAT pushbutton.

| | ABNORMAL PROCEDURES | 2.05.30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ANTI-ICE | REV 27 | SEQ 100 |

R

| ICE DETECTED | |
| :---: | :---: |
| IGNITION | CONT RELIGHT |
| ENG ANTI ICE (1 AND 2) | on |
| WING ANTI ICE | . . AS RORD |

ICE DETECTION

| Indications : |
| :--- |
| Single chime |
| ECAM activation with appropriate warning light |
| Left ECAM CRT : ICE DETECTION procedure |
| Right ECAM CRT : Nil |
| ICE light |

$\frac{\text { ndications: }}{\text { Single chime }}$
ECAM activation with appropriate warning light
Left ECAM CRT : ICE DET OVHT procedure
Right ECAM CRT : Nil
OVHT light

- OVHT light illuminates in case of overheat in the heating element for sensor de-icing. Heating element is automatically de-energized and the failure latched.
- Pressing the PTR switch reactivates the sensor heating R and resets the OVHT protection circuit.

| | ABNORMAL PROCEDURES | 2.05.30 | |
| :---: | :---: | :---: | :---: |
| | | PAGE | |
| | ANTI ICE | REV 29 | SEO 100 |

LEFT BLANK INTENTIONALLY

| LDG WITH NOSE L/G ABNORMAL | |
| :---: | :---: |
| PREPARATION | |
| CABIN CREW | notify |
| atc | . NOTIFY |
| TRANSPONDER | as rard |
| FUEL WEIGHT (if possible) | reduce |
| CG LOCATION (if possible) | move aft |
| $\begin{aligned} & -10 \text { pax from front to rear }=+2 \% \\ & -10 \text { pax from mid to rear }=+1 \% \end{aligned}$ | |
| Seat belts/no smoking | on |
| APPROACH | |
| GRAVITY EXTENSION handcrank | ROTATE BACK TO NORM |
| LG Lever | Down |
| GPWS | OfF |
| CABIN REPORT | obtained |
| EMER EXIT LT selector | . . on |
| trim tk isol valve | OFF |
| BRK/A/SKID. | ALTNoFF |
| max brakes pressure | 1000 PSI |
| BEFORE LANDING | |
| PACKS 1 and 2 . OFF
 RAM AIR | |
| | |
| bRace for impact order | |
| - If the external light condition is poor at landing | |
| dome light | dim |
| FLARE, TOUCH DOWN AND ROLL OUT | |
| NOTE: Engines should be shut down sufficiently early to ensure fuel is shut on before the nacilles impact but sufticiently late toensure adequate supplies for the tight contros. Engine pumps continue to supply adequate pressure for atleast 15 seconds after firist engine shutcown. | |
| | |
| reverse do not use | |
| nose . maintain up | |
| After touchdown keep the nose off the runway by use of elevator. Then, lower nose on to the runway before elevator control is lost | |
| Both fuel levers off- Shutdown the engines before nose impact. | |
| | |
| AT NOSE IMPACT | |
| FiRE HANDLES (ALL) | PULL |
| WHEN A/C STOPPED | |
| CABIN CREW (PA) Notify | |
| fuel isol valves . off | |
| AGENTS (ENG and APU) disch | |
| $\triangle \mathrm{P}$ (DIFF PRESS) сheck zero | |
| evacuation . initiate | |
| BAT (before leaving the aircraft) . | OFF/R |

LANDING WITH NOSE L/G ABNORMAL

- The procedure is intended for use when one or more landing gear fail to extend or/and lockdown following the application of either normal or gravity gear extension procedure.
It is considered preferable to use all available gear locked down rather than carry out a belly landing. Under these circumstances, a hard surface runway landing is to be recommended.
Full advantage should be taken of foam spread on the runway.
- Notify ATC of the nature of emergency encountered and state intentions.
Specify the available time.
- Notify the cabin crew of the nature of emergency encountered and state intentions and the time available.
- GPWS is selected OFF to avoid nuisance warning.
- Burn off fuel down to the minimum possible impact weight. This reduces the V REF and as a consequence the load factor for impact and the energy that must be dissipated.
- Rotating the GRAVITY EXT handcrank back to normal position may result in landing gear door(s) closure, and under certain failure conditions presssurize the landing gear actuators.
- Set the dome light to DIM in a poor external light condition to ensure that there is a light source after both engines are shut down.

TOUCH DOWN TECHNIQUES

- Reference aircraft attitude after impact

- Trim the stabilizer to nose up upon touchdown.
- Use the brakes as compatible with the elevator efficiency.
- Be aware that forward passenger doors evacuation rates are considerably reduced, due to abnormal slide slope.
- Aft passenger/crew doors should preferably not be used for evacuation.

A310

LDG WITH ONE MAIN L/G ABNORMAL PREPARATION
CABIN CREW . NOTIFY
ATC/TRANSPONDER NOTIFY/AS RORD
FUEL WEIGHT (if possible) REDUCE
FUEL IMBALANCE (if possible) ESTABLISH

- Reduce fuel on side with affected L/G
SEAT BELTS/NO SMOKING ON

APPROACH

GRAVITY EXTENSION handcrank ROTATE BACK
TO NORM
L/G LEVER . DOWN
GPWS . OFF
CABIN REPORT OBTAINED
EMER EXIT LT selector ON
TRIM TK ISOL VALVE . OFF
GND SPLRS . DO NOT ARM

BEFORE LANDING

OFF```
PACKS 1 and 2
PACKS 1 and 2
RAM AIR . ON
BRACE FOR IMPACT ORDER
FLARE, TOUCH DOWN AND ROLL OUT
NOTE: Engines should be shut down sufficiently early to ensure fue/ is shut off before the nace/les impact, but sufficiently late to ensure adequate supplies for the flight controls.
Engine pumps continue to supply adequate pressure for at least 15 seconds after first engine shutdown.

\section*{REVERSE}
DO NOT USE
FUEL LEVER (affected side)
- Shutdown the engine at touchdown before nacelle impact
AFFECTED SIDE WING
MAINTAIN UP
- Use roll control as necessary to maintain the unsupported wing up as long as possible.
DIRECTIONAL CONTROL MAINTAIN
- Use rudder and brakes to maintain runway center line as long as possible.
\begin{tabular}{|c|c|}
\hline AT NACELLE IMPACT & \\
\hline FIRE HANDLE (affected side) & LL \\
\hline WHEN A/C STOPPED & \\
\hline FUEL LEVER (opposite engine) & OFF \\
\hline FIRE HANDLES (ALL) & PULL \\
\hline CABIN CREW (PA) & NOTIFY \\
\hline fuel isol valves & . OFF \\
\hline AGENTS (ENG and APU) & DISCH \\
\hline \(\triangle \mathrm{P}\) (DIFF PRESS) & CHECK ZERO \\
\hline EVACUATION & Initiate \\
\hline BAT (before leaving the aircraf) & \\
\hline
\end{tabular}

\section*{LANDING WITH ONE MAIN L/G ABNORMAL}
- The procedure is intended for use when one or more landing gear fail to extend or/and lockdown following the application of either normal or gravity gear extension procedure.
It is considered preferable to use all available gear locked down rather than carry out a belly landing. Under these circumstances, a hard surface runway landing is to be recommended.
Full advantage should be taken of foam spread on the runway.
- Notify ATC of the nature of emergency encountered and state intentions.
Specify the available time.
- Notify the cabin crew of the nature of emergency encountered and state intentions and the time available.
- GPWS is selected OFF to avoid nuisance warning.
- Burn off fuel down to the minimum possible impact weight. This reduces the \(V\) REF and as a consequence the load factor for impact and the energy that must be dissipated.
- Rotating the GRAVITY EXT handcrank back to normal position may result in landing gear door(s) closure, and under certain failure conditions presssurize the landing gear actuators.

\section*{TOUCH DOWN TECHNIQUES}
- Reference aircraft attitude after impact

- Use control wheel input as necessary to maintain the unsupported wing up as long as possible.
- Apply rudder and brakes upon nacelle impact for directional control.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.32} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & L/G - BRAKES & REV 36 & SEC 105 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{LDG WITH BOTH MAIN L/G ABNORMAL} \\
\hline \multicolumn{2}{|l|}{PREPARATION} \\
\hline cabin crew & not \\
\hline атс & \\
\hline TRANSPONDER & As rard \\
\hline FUEL WEISHT if poss & ReDuc \\
\hline at beltsino smo & \\
\hline
\end{tabular}
APPROACH
GRAVITY EXTENSION handcrank ROTATE BACK
TO NORM
L/G LEVER . OFW
GPWS . OBTAINED
CABIN REPORT ON
EMER EXIT LT selector OFF
TRIM TK ISOL VALVE DO NOT ARM

\section*{BEFORE LANDING}
PACKS 1 and 2 OFF
RAM AIR ON
BRACE FOR IMPACT ORDER
- If the external light condition is poor at landing : DOME LIGHT DIM
FLARE, TOUCH DOWN AND ROLL OUT

NOTE: Engines should be shut down sufficient/ly ear/y to ensure fuel is shut off before the nacel/es impact, but sufficiently late to ensure adequate supplies for the fight controls.
Engine pumps continue to supply adequate pressure for at least 15 seconds after first engine shutdown.
REVERSE \(\qquad\)BOTH FUEL LEVERSOFF
- Shutdown the engines before touchdownPITCH ATTITUDE (at touchdown) NOT LESS THAN 6
AT NACELLES IMPACT
FIRE HANDLES (ALL) PULL
WHEN A/C STOPPED
CABIN CREW (PA) NOTIFY
FUEL ISOL VALVES OFF
AGENTS (ENG and APU) DISCH
\(\triangle \mathrm{P}\) (DIFF PRESS) CHECK ZERO
EVACUATION INITIATE
BAT (before leaving the aircraft) OFF/R

\section*{LANDING WITH BOTH MAIN L/G ABNORMAL}
- The procedure is intended for use when one or more landing gear fail to extend or/and lockdown following the application of either normal or gravity gear extension procedure.
It is considered preferable to use all available gear locked down rather than carry out a belly landing. Under these circumstances, a hard surface runway landing is to be recommended.
Full advantage should be taken of foam spread on the runway.
- Notify ATC of the nature of emergency encountered and state intentions.
Specify the available time.
- Notify the cabin crew of the nature of emergency encountered and state intentions and the time available.
- GPWS is selected OFF to avoid nuisance warning.
- Burn off fuel down to the minimum possible impact weight. This reduces the V REF and as a consequence the load factor for impact and the energy that must be dissipated.
- Rotating the GRAVITY EXT handcrank back to normal position may result in landing gear door(s) closure, and under certain failure conditions presssurize the landing gear actuators.
- Set the dome light to DIM in a poor external light condition to ensure that there is a light source after both engines are shut down.

\section*{TOUCH DOWN TECHNIQUES}
- Reference aircraft attitude after impact

- Touch down with approximately \(6^{\circ}\) of pitch attitude but not beyond to ensure the tail section impacts first.
- Be aware that aft passenger doors evacuation rates are considerably reduced, due to abnormal slide slope.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.32} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & L/G - BRAKES & REV 36 & SEC 200 \\
\hline
\end{tabular}

\section*{L/G DOOR NOT CLOSED}
- If amber light(s) illuminated on both panels :

MAX SPD 270
L = - FUEL CONSUMPTION INCREASED
CAUTION: Do not cycle landing gear.
- If Go-around required :

L/G
KEEP DOWN
NOTE : Fue/ consumption increased by \(30 \%\).
\begin{tabular}{|c|}
\hline L/G GRAVITY EXTENSION \\
\hline PREPARATION \\
\hline GRAVITY EXTENSION HANDCRANK INSERT \\
\hline EXTENSION \\
\hline L/G LEVER CHECK NEUTRAL \\
\hline GRAVITY EXTENSION HANDCRANK ROTATE \\
\hline L/G LEVER . DOWN \\
\hline CAUTION : Nose wheel steering is inoperative. \\
\hline GEAR DOWN INDICATIONS CHECK \\
\hline - If landing gear unsafe indication : \\
\hline VISUAL DOWN LOCK INDICATORS CHECK \\
\hline ■ If extension successful : \\
\hline Do not reset the free fall system. This will avoid undesirable effects such as further loss of fluid in the event of a leak or possible landing gear unlocking in the event of a selector valve jammed in the UP position. \\
\hline will allow the landing gear doors to be closed and the nose whee/steering to operate. However, the Flight Crew must not reset the free fall system on ground after flight. \\
\hline If extension unsuccessful or down-lock position not confirmed : \\
\hline \begin{tabular}{l}
PROC: LDG WITH NOSE L/G ABNORMAL (10.04) \\
APPLY \\
If ONE MAIN L/G affected :
\end{tabular} \\
\hline \begin{tabular}{l}
PROC: LDG WITH ONE MAIN L/G ABNORMAL (10.05) \\
If BOTH MAIN L/G affected :
\end{tabular} \\
\hline PROC : LDG WITH BOTH MAIN L/G ABNORMAL
(10.06) ..
RETURN TO ORIGATING PROCEDURE, AS REQUIRED \\
\hline
\end{tabular}

\section*{L/G LEVER INTERLOCKED}

\section*{Indications :}

ECAM activation
Left ECAM CRT : Procedure
Right ECAM CRT : Nil
Note : Speed is limited to 270 kt or M 0.65 at or above 25000 ft.

\section*{L/G DOOR NOT CLOSED}

> Indications :
> Single chime (nil if one L/G panel correct)
> ECAM activation with appropriate warning light
> Left ECAM CRT : Procedure
> Right ECAM CRT : Nil
> L/G panel

Note : Speed is limited to 270 kt or M 0.65 at or above 25000 ft.

\section*{L/G GRAVITY EXTENSION}
- The landing gear gravity extension handcrank must be rotated clockwise 20 full turns until the mechanical stop is reached. Increasing loads are to be expected beyond 16 turns, then beyond 18 turns.
- When the landing gear is down, the amber door lights remain illuminated due to the doors remaining open.
- Main gear : Positions for checking red pins on upper wing surface are marked by inverted T-symbols on cabin side walls.
Nose gear : The mechanical indicator on the nose gear drag strut is checked from the avionics compartment through viewing windows in the nose landing gear well.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05 .32} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & L/G - BRAKES & REV 31 & SEC 200 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
L/G UNSAFE INDICATION \\
L/G selected DOWN \\
Green light(s) extinguished on both panels L/G NOT DOWN LOCKED PROC : L/G GRAVITY EXTENSION (10.02) . . APPLY \\
- If unsuccessful : \\
 \\
- Green light(s) extinguished only on one panel L/G POS DET SYS 1(2) FAULT \\
L/G POS DET SYS \\
- If nose landing gear unsafe indication on overhead panel only: \\
GPWS "TOO LOW GEAR" warning DISREGARD \\
L/G selected UP \\
Red light(s) illuminated on both panels : L/G NOT UP LOCKED
\(\qquad\) L/G . DOWN \\
FUEL CONSUMPTION INCREASED \\
Red light illuminated on only one panel L/G POS DET SYS 1(2) FAULT L/G POS DET SYS andin-figg
turnback.
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{L/G UNSAFE INDICATION}

\section*{Indications:}

Single chime (only if both panel indications are identical)
ECAM activation with appropriate warning light
Left ECAM CRT : Procedure
Right ECAM CRT : Nil
L/G panel(s)

\section*{LANDING GEAR SELECTED DOWN :}
- If all green lights are illuminated on one panel, the unsafe indication on the other panel is spurious. Therefore, the L/G POSITION DET SYS switch must be set to the correct system.
- If the landing gear is extended at speeds near V LO it may be necessary to decelerate to obtain satisfactory uplock of the landing gear doors.
- If one gear remains unlocked, accelerate to Vmax, perform turns to increase the load factor and perform alternating side slips in an attempt to lock the gear.
Generate steady state sideslip on one side. If the landing gear still does not lock, return the rudder to neutral and let the aircraft stabilize to equilibrium.
Then, repeat the same maneuver on the other side.

\section*{LANDING GEAR SELECTED UP :}
- If light(s) illuminated on one indicator panel but indications are normal on the other panel, the unsafe indication is spurious.
- Flight with landing gear extended has a significant effect on fuel consumption and climb gradient (refer to ch. 2.18.40 SPECIAL OPERATIONS).
- Landing gear down selection may be delayed if performance requires.

Note: When red light(s) illuminated on both panels, the speed is limited to 270 kt or M 0.65 at or above 25000 ft.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ANTI SKID FAULT} \\
\hline BRK/ANTI SKID & ALTN/ON \\
\hline \(\square\) If warning cleared & \\
\hline LDG DIST & MULTIPLY BY 1.1 \\
\hline AUTO BRAKE INOP & \\
\hline - If warning remains activated & \\
\hline RELEASE IND . & CHECK \\
\hline MAX BRK PRESS & . . 1000 PSI \\
\hline LDG DIST & MULTIPLY BY 1.5 \\
\hline AUTO BRAKE INOP. & \\
\hline
\end{tabular}

\section*{BRAKES TEMP H}
```

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : BRK TEMP HI procedure
Right ECAM CRT : WHEEL page
BRK HOT light

```
- Delay takeoff until BRK HOT warning extinguishes if brake fans OFF or until brake temperature is below \(150^{\circ} \mathrm{C}\) if brake fans ON.
- If during taxi, the temperature difference between two brakes on the same gear is greater than \(150^{\circ} \mathrm{C}\) and the temperature of one brake is above \(600^{\circ} \mathrm{C}\) this may indicate a brake binding.
In this case the aircraft must be stopped to avoid a possible fire and taxi back should not be done as long as the BRK HOT warning is illuminated.
- In all other cases, taxiing can be continued, this will improve the brake cooling and may prevent tyre deflation until the aircraft has stopped.
- It is recommended not to set parking brake handle while the BRK HOT warning is activated.

Note : Delay landing gear retraction after takeoff unless performance requires.

\section*{ANTI SKID FAULT}

\section*{Indications: \\ Single chime}

ECAM activation with appropriate warning light
Left ECAM CRT : ANTI SKID FAULT procedure
Right ECAM CRT : WHEEL page
BRK FAIL light
- If warning remains:
. Limit brake pressure to approximately 1000 psi , and at low ground speed adjust brake pressure as required.
. Avoid landing on icy runway.
- Landing distance is increased due to reduced braking efficiency.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & NAV/ADC/INST & REV 29 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{EFIS SGU FAULT} \\
\hline \multicolumn{2}{|l|}{\(\square\) EFIS SGU 3} \\
\hline EFIS ON SYS 3 & Ot USE \\
\hline \multicolumn{2}{|l|}{EFIS SGU 1 or 2 (white diagonal line on affected PFD/ND) :} \\
\hline CAPT (F/O) EFIS & SYS 3 \\
\hline
\end{tabular}

LOSS OF PFD DISPLAY
CAUTION : In case of loss of PFD display, be alert to transition rapid/y to stand-by instruments.
NOTE : In case of excessive pitch or roll rate, both PFD and ND displays are blanked temporarily (white diagonal line on both CRT's).
- If loss of CRT suspected (CRT is blank) or when PFD information required :
PFD brightness knob (affected side) OFF
- If ND information required

PFD/ND XFR (affected side) ON
NOTE 1
If affected PFD is on the PF side, consider transferring PF responsibilities to PNF.

NOTE 2 : Pressing the PFD/ND XFR pushbutton a second time will recover ND information on the lower CRT.

\section*{LOSS OF ND DISPLAY \\ CAUTION : In case of loss of ND display, be alert to transition rapid/y to stand-by instruments.}

NOTE : In case of excessive pitch or roll rate, both PFD and ND displays are blanked temporarily (white diagonal line on both CRT's).
- If ND display saturation suspected (diagonal line on ND only) :

R
ND mode selector
PLAN
- If unsuccessful :

RANGE . REDUCE
- If loss of CRT suspected (CRT is blank) :

ND brightness knob (affected side) OFF
- If ND information required :

PFD/ND XFR (affected side)
ON
NOTE 1 : If affected ND is on the PF side, consider transferring PF responsibilities to PNF.
NOTE 2 : Pressing the PFD/ND XFR pushbutton a second time will recover PFD information on the upper CRT.

\section*{EFIS SGU FAULT}
```

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : EFIS SGU (3) FAULT proc
Right ECAM CRT : Ni

```
- If SGU 3 is used to replace SGU 2, the display selected for CAPT PFD (FD or FPV) is displayed on F/O PFD as well. Reselect as desired.
- EFIS SGU 3 FAULT is only displayed by ECAM, when not selected.

\section*{LOSS OF PFD}

\section*{Indications:}

PFD display blanking with white diagonal line or complete blanking.
- PFD information is recovered on lower CRT (replacing ND information) by switching the affected PFD OFF using the PFD brightness knob.
- ND information can be recovered on lower CRT by using PFD/ND XFR pusbutton.

\section*{LOSS OF ND}
```

Indications:
ND display blanking with white diagonal line or
complete blanking.

```
- ND information can be recovered on upper CRT (replacing PFD information).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & PAGE & \\
\hline & NAV/ADC/INST & REV 32 & SEO 110 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline LOSS OF ECAM DISPLAY \\
\hline - If white diagonal line on affected ECAM : \\
Affected SGU OFF \\
- If loss of CRT suspected (CRT is blank) : \\
ECAM brightness knob (affected side) OFF \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ADC FAULT} \\
\hline \multicolumn{2}{|l|}{■ If only one ADC FAULT :} \\
\hline ADC INST SWITCHING & SYS AVAILABLE \\
\hline ATC & SYS AVAILABLE \\
\hline ATS & RESET \\
\hline \multicolumn{2}{|l|}{\(\square\) If both ADC FAULT} \\
\hline STBY INST & USE \\
\hline MAX SPD & 285 \\
\hline MAX FL. & 310 \\
\hline ELEV WITH CARE ABV SPD 170. & \\
\hline RUD WITH CARE ABV SPD 170. & \\
\hline PITCH TRIM & . MANUAL \\
\hline AFFECTED EQUIPMENT & . OFF \\
\hline PITCH FEEL 1 and 2. & \\
\hline RUD TRAVEL 1 and 2. & \\
\hline ATS & \\
\hline TRIM TK AFT XFR NOT AVAIL & \\
\hline \multicolumn{2}{|l|}{- When Flaps are extended :} \\
\hline PITCH TRIM & . RESET \\
\hline YAW DAMPER & . RESET \\
\hline AFS DISTRIBUTION - ATS - TRP (11.03) & REVIEW \\
\hline
\end{tabular}

\section*{LOSS OF ECAM DISPLAY}

\section*{Indications :}

ECAM display blanking with white diagonal line or complete blanking.
- If SGU is affected, the remaining SGU supplies both CRTs.
- If loss of CRT is suspected, affected CRT must be switched off. The remaining CRT provides all normal functions.

\section*{ADC FAULT}

\section*{Indications: \\ Single chime \\ ECAM activation with appropriate warning light Left ECAM CRT : ADC 1 (2) FAULT procedure Right ECAM CRT : Nil \\ Fail flags on Capt or F/O instruments \\ PITCH TRIM and YAW DAMPER 1 (2) levers tripped if flaps retracted}

\section*{SINGLE ADC FAULT}
- The AP and FD on the side of the affected ADC is lost, except after GS capture (GS green or LAND green annunciated on FMA).
Select other AP if required.
To recover the FD, select the system available using the FD switching pushbutton switch.
- ATC switching is not necessary if the aircraft is equipped with an ATC mode S .
- The respective AUTO PILOT, PITCH TRIM, and YAW DAMPER will be inoperative.

\section*{DUAL ADC FAULT}

R
- In case of double ADC failure, the Mach indication is lost, each AUTO PILOT, each PITCH TRIM, each YAW DAMPER and ATS are inoperative.

Due to PITCH FEEL and PITCH TRIM FAULT, the speed is limited to 285/.78.
Since the Mach indication is lost, the FL has to be limited to 310, where 285 kt does not exceed M. 78 .
Perform descent with care.
(FL 400 - max 235 kt, FL 350 - max 265 kt).
Each YAW DAMPER and each PITCH TRIM may be reset when FLAPS are extended \(15^{\circ}\) or more.
Each AP can be re-engaged if the double failure occurs when already established on the glide slope (GS green for more than 10 sec and FD bars on).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & NAV/ADC/INST & REV 29 & SEQ 100 \\
\hline
\end{tabular}

\section*{IRS FAULT}

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : IRS FAULT proc
Right ECAM CRT : Nil
IRS WARN on OVHD panel
- The respective AP, YAW DAMPER and ATS are inoperative.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & NAV/ADC/INST & REV 36 & SEO 170 \\
\hline
\end{tabular}

R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{AUTO FLIGHT SYSTEM - DISTRIBUTION} \\
\hline \multirow{3}{*}{inoperative SYSTEM} & \multicolumn{10}{|c|}{FUNCTION LOST} \\
\hline & \multicolumn{2}{|r|}{FCC 1} & \multicolumn{2}{|r|}{FCC 2} & \multicolumn{3}{|c|}{FAC 1} & \multicolumn{3}{|c|}{FAC 2} \\
\hline & AP 1 & FD 1 & AP 2 & FD 2 & \[
\left\lvert\, \begin{gathered}
\text { YAW } \\
\text { DAMP } \\
1
\end{gathered}\right.
\] & PITCH TRIM 1 & \(\alpha\) FLOOR 1*** & \[
\begin{gathered}
\text { YAW } \\
\text { DAMP } \\
2
\end{gathered}
\] & \[
\begin{aligned}
& \text { PITCH } \\
& \text { TRIM } \\
& 2
\end{aligned}
\] & \(\alpha\) FLOOR 2*** \\
\hline HYD BLUE & & & & & INOP & & & & & \\
\hline HYD GREEN & INOP & & & & & & & & & \\
\hline HYD YELLOW & & & INOP & & & & & INOP & & \\
\hline IRS 1 & INOP & INOP & & & INOP & \[
\underset{* * * *}{\text { INOP }}
\] & INOP & & & \\
\hline IRS 2 & & & INOP & INOP & & & & INOP & INOP & INOP \\
\hline IRS \(1+2\) & INOP \\
\hline ADC 1 & \[
\underset{* *}{ }
\] & INOP & & & \[
\begin{aligned}
& \text { INOP } \\
& \text { if } \\
& \text { flaps } \\
& <15^{\circ}
\end{aligned}
\] & INOP if slats retracted & \[
\left\lvert\, \begin{gathered}
\text { INOP } \\
\text { if slats } \\
\text { extended }
\end{gathered}\right.
\] & & & \\
\hline ADC 2 & & & \[
{ }_{* *}
\] & \[
\mid \operatorname{NOP}
\] & & & & \[
\begin{gathered}
\text { INOP } \\
\text { if } \\
\text { flaps } \\
<15^{\circ} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { INOP } \\
\text { if } \\
\text { slats } \\
\text { etracted }
\end{gathered}
\] & INOP if slats extended \\
\hline \[
\begin{gathered}
\text { * PITCH TRIM } \\
1+2
\end{gathered}
\] & INOP & & INOP & & & & & & & \\
\hline * YAW DAMPER \(1+2\) & INOP & & INOP & & & & & & & \\
\hline * FAC \(1+2\) & INOP & INOP & INOP & INOP & & & & & & \\
\hline FCU & INOP & INOP & INOP & INOP & & & & & & \\
\hline
\end{tabular}
* No effect with single equipment failure.
** Except when GS green or LAND green is annunciated on the FMA.
\({ }^{* * *} \alpha\) floor protection is lost when \(\alpha\) floor 1 and \(\alpha\) floor 2 are lost.
R \(\quad * * * *\) Except if : - onside AP is in CMD, or
- Slats are extended, or
- Speedbrakes are extended.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{INOPERATIVE SYSTEM} & \multicolumn{2}{|l|}{EFFECT ON TCC} \\
\hline & ATS - A/THR & TRP \\
\hline * ADC \(1+2\) & Both ATS disarm - ATS rearming is not possible. & Inoperative \\
\hline IRS 1 (or 2) & ATS 1 (or 2) disarms if SPD/MACH mode is engaged. Rearming is not possible & \\
\hline * FAC \(1+2\) & Both ATS disarm - ATS rearming is not possible & \\
\hline ENG EPR MODE 1 (or 2) FAULT & ATS 1 and 2 are lost & \\
\hline FCU & \begin{tabular}{l}
Both ATS disarm. ATS rearming is possible \\
ATHR re-engagement is not possible \\
THR L mode is available (by go-levers activation, in clean configuration).
\end{tabular} & \\
\hline AP/FD \(1+2\) & \begin{tabular}{l}
If A/THR is engaged, the active mode remains engaged. \\
If ATHR is not engaged, A/THR engagement is possible but only in SPD/MACH mode.
\end{tabular} & \\
\hline
\end{tabular}
* No effect with single equipment failure.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & NAV/ADC/INST & REV 33 & SEO 001 \\
\hline
\end{tabular}

\section*{FMC INDEPENDENT OPERATION}
- A/C STATUS MISMATCH (NAV data base difference) : ON BOTH NDs SET IDENTICAL RANGE ON BOTH CDUs ENTER SAME INPUTS
- FMCPOSITION MISMATCH (aircraft position difference): FMC POSITION VERSUS RAW DATA .. CROSS-CHECK AIRCRAFTPOSITIONOF THEINCORRECTFMC . UPDATE FMC OPPOSITE TO ENGAGED AP . PULL/AFTER 10 SEC, (C/B : FMC 1/J11, FMC 2/J14)

PUSH
■ Resynchronization unsuccessful :
FMC OPPOSITE TO ENGAGED AP . PULL/AFTER 10 SEC,
(C/B : FMC 1/J11, FMC 2/J14)
PUSH
- After \(2 \mathbf{~ m i n}\) following FMC reset by C/B :
- If INDEPENDENT OPERATION still present : ON BOTH NDs SET IDENTICAL RANGE ON BOTH CDUs ENTER SAME INPUTS

■ If INDEPENDENT OPERATION has disappeared : NORMALDUALFMCOPERATION . CHECKRECOVERED
\begin{tabular}{|l|}
\hline LOSS OF ONE FMS \\
\hline A/THR CHECK ENGAGED \\
PROFILE MODE DISENGAGE and RE-ENGAGE \\
AP OPPOSITE TO THE FAILED FMC ENGAGE \\
NAV MODE CHECK ENGAGED \\
NAVIGATION WITH ONE FMC . . CAREFULLY MONITOR \\
- If FMS navigation is not accurate : \\
LOSS OF BOTH FMS PROCEDURE (below) . . APPLY \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline LOSS OF BOTH FMS \\
\hline AP CHECK ENGAGED \\
\hline APPROPRIATE VERTICAL MODE ENGAGE \\
\hline HDG SEL MODE ENGAGE \\
\hline A/THR CHECK ENGAGED \\
\hline ND MODE SET ARC OR ROSE \\
\hline - If aircraft is inside a NAVAID coverage area : \\
\hline APPROPRIATE RADIO NAVAID TUNE \\
\hline NAVAID RAW DATA USE \\
\hline If aircraft is outside a NAVAID coverage area : \\
\hline VOR-NAV-ILS switches SELECT VOR \\
\hline FPV (on PF side) SELECT \\
\hline FPA (in cruise) SET 0 \\
\hline VOR COURSE SET PRESENT ROUTE \\
\hline TO MAINTAIN "BIRD" IN THE "CAGE" (FPV/FPR) ADJUST HEADING \\
\hline AIRCRAFT PRESENT POSITION . . CHECK USING ISDU \\
\hline
\end{tabular}

\section*{FMC INDEPENDENT OPERATION}

\author{
Indications : Refer to 2.02.28.
}

LOSS OF ONE FMS
Indications : Refer to 2.02.28.

\section*{LOSS OF BOTH FMS}

Indications : Refer to 2.02.28.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & NAV/ADC/INST & REV 28 & SEO 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & NAV/ADC/INST & REV 35 & SEQ 100 \\
\hline
\end{tabular}

\section*{TCAS WARNINGS}

■ Traffic advisory - "TRAFFIC" messages :
- Do not maneuver based on a TA alone.
- Attempt to see the reported traffic.

Resolution Advisory - All "CLIMB" and "DESCEND" or "MAINTAIN VERTICAL SPEED" or "ADJUST VERTICAL SPEED" or "MONITOR VERTICAL SPEED" messages
- AP (if engaged) DISCONNECT
- A/THR (if engaged) DISCONNECT
- Respond promptly and smoothly to an RA by adjusting or maintaining the thrust manually and the vertical speed, as required, to reach the green arc and/or avoid the red arc of the vertical speed scale

NOTE : - The TCAS orders may require an incremental load factor that is greater than that achieved by the autopilot.
- Avoid excessive maneuvers but, if necessary use the full speed range between Vss and Vmax.
- Respect stall, GPWS or windshear warning
- Notify ATC.
- When "CLEAR OF CONFLICT" is announced :
. Resume normal navigation in accordance with ATC clearance,
. AP and A/THR can be reengaged as desired
- If a RA "CLIMB" or "INCREASE CLIMB" warning is activated on final approach (after the FAF or under 1000 ft AGL), GO AROUND must be performed.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & NAV/ADC/INST & REV 36 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{RADIO ALTIMETER(S) FAULT} \\
\hline & \multirow[t]{2}{*}{INOPERATIVE
SYSTEM} & \multicolumn{4}{|c|}{FUNCTION LOST} \\
\hline & & \multicolumn{3}{|c|}{SYSTEMS} & LANDING CAPABILITY \\
\hline R & RA 1 FAULT & \[
\begin{aligned}
& \text { AP } 1^{*} \\
& \text { FD }
\end{aligned}
\] & GPWS & & CAT 2 ONLY \\
\hline R & RA 2 FAULT & \[
\begin{aligned}
& \mathrm{AP} 2^{*} \\
& \text { FD } 2
\end{aligned}
\] & & & CAT 2 ONLY \\
\hline R & RA 1+2 FAULT & \[
\begin{aligned}
& \text { Both } \\
& \text { AP/FD* }
\end{aligned}
\] & GPWS & TCAS & CAT 1 ONLY \\
\hline
\end{tabular}

R * If in LAND mode only
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{RADIO ALTIMETER(S) FAULT} \\
\hline & \[
\begin{gathered}
\text { INOPERATIVE } \\
\text { SYSIEM } \\
\hline
\end{gathered}
\] & & SYSTE & LOST & & LANDING CAPABILITY \\
\hline R & RA 1 FAULT & \[
\begin{aligned}
& \hline \text { AP } 1^{*} \\
& \text { FD } 1
\end{aligned}
\] & GPWS & & & CAT 2 \\
\hline R & RA 2 FAULT & \[
\begin{aligned}
& \text { AP } 2^{*} \\
& \text { FD } 2
\end{aligned}
\] & & & & CAT 2 \\
\hline R & RA 1+2 FAULT & \[
\begin{gathered}
\text { Both } \\
\text { AP/FD* }
\end{gathered}
\] & GPWS & TCAS & \(\alpha\)-floor protection & CAT 1 \\
\hline
\end{tabular}

R * If in LAND mode only
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.34} \\
\hline & & PAGE & \\
\hline & NAV/ADC/INST & & JUN 08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{RADIO ALTIMETER(S) FAULT} \\
\hline \[
\begin{aligned}
& \text { INOPERATIVE } \\
& \text { SYSTEM } \\
& \hline
\end{aligned}
\] & \multicolumn{4}{|c|}{SYSTEMS LOST} & LANDING CAPABILITY \\
\hline RA 1 FAULT & \({ }_{\text {AP }}{ }_{\text {AP }} 1 \times\) & GPWS & & & CAT 2 \\
\hline RA 2 FAULT & \[
\begin{aligned}
& \text { AP } 2^{*} \\
& \text { FD } 2
\end{aligned}
\] & & & & CAT 2 \\
\hline RA 1+2 FAULT & \[
\begin{aligned}
& \text { Both } \\
& A P / F D^{*}
\end{aligned}
\] & GPWS & TCAS & \(\alpha\)-lloor protecter & CAT 1 \\
\hline
\end{tabular}
* If in LAND mode only

TR \(\mathrm{N}^{\circ}\) 606-1 Page 2 of 2
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.49} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & APU & REV 27 & SE0 001 \\
\hline
\end{tabular}

R

\begin{tabular}{|c|c|}
\hline APU FUEL LO PR \\
\hline APU FUEL PUMP ovRD \\
\hline FUEL SUPPLY CHECK \\
FUEL TK PUMPS (supplying tank) ON/NORM \\
\hline
\end{tabular}

\section*{APU AUTOMATIC SHUT DOWN}

\section*{Indications: \\ Single chime \\ ECAM activation with appropriate warning light \\ Left ECAM CRT : APU AUTO SHUT DOWN procedure \\ Right ECAM CRT: APU page \\ FAULT light on APU panel}

The APU automatically shuts down in case of :
- Overspeed,
- Abnormal EGT indication,
- Failure of the electronic control system,
- Air flow reversal,
- Incorrect automatic starting cycle,
- Abnormal oil pressure or temperature,
- Oil filter clogging.
- Overcurrent
- Loss of DC ESS BUS,
- Loss of both EGT or SPEED sensors.

\section*{APU FUEL LO PR}

\section*{Indications:}

Single Chime
ECAM activation with appropriate warning light
Left ECAM CRT : APU FUEL LO PR procedure
Right ECAM CRT : APU page
FUEL PUMP LO PR light on APU panel

\section*{APU FLAP FAULT}

\section*{Indications:}

Single Chime
ECAM activation with appropriate warning light
Left ECAM CRT : APU FLAP FAULT procedure

FAULT light on APU panel
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.49} \\
\hline & & PAGE & \\
\hline & APU & REV 28 & SEQ 001 \\
\hline
\end{tabular}

\section*{LEFT BLANK INTENTIONALLY}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & ENG & REV 34 & SEC 427 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline SINGLE ENG OPERATION \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
LAND ASAP \\
If reverser UNLK
\end{tabular}} \\
\hline \\
\hline MAX SPD . 240 \\
\hline - If WING ANTI ICE ON : \\
\hline AIR X-FEED MAN/IN LINE \\
\hline PACK (1 or 2) . OFF \\
\hline If HYD PUMP LO PR \\
\hline ENG PUMPS (affected) OFF \\
\hline PITCH FEEL and SPLR (affected) OFF \\
\hline GEN (affected) . OFF \\
\hline PACK (affected) . OFF \\
\hline AFT CG WARNING INOP \\
\hline - If SPLR not recovered \\
\hline ' - - - LDCL DIST MULTIPLY BY 1.3 \\
\hline BLEED VALVE (affected engine) OFF \\
\hline - If ENG FIRE handle not pulled and WING ANTI ICE off : \\
\hline AIR X-FEED MAN/IN LINE \\
\hline PACK (affected) AUTO \\
\hline IGNITION CONT RELIGHT \\
\hline FUEL X-FEED (if fuel leak is not suspected) . . . IN LINE \\
\hline CAUTION : If a fuel leak from wing or not located is suspected, keep andcheck Fuel X-FEED cross-/ine. \\
\hline \multirow[t]{2}{*}{APU . START
\(\square\) If ENG 1 FIRE handle pulled :} \\
\hline \\
\hline \begin{tabular}{l}
APU BLEED Check OFF/R \\
If ENG 1 FIRE handle not pulled, below FL 200 :
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
APU BLEED . ON \\
- In case of perceptible oil smell or smoke :
\end{tabular}} \\
\hline \\
\hline APU BLEED . OFF TCAS (if installed) . TA \\
\hline FOR APPROACH \\
\hline HYD PWR ELEC PUMPS ON \\
\hline PTU (affected side, unless hydraulic fluid loss is suspected) \\
\hline HYD PWR ENG PUMPS (affected side) OFF \\
\hline PITCH FEEL and SPLR (if selected OFF) RESTORE \\
\hline YAW DAMPER (if tripped OFF) RESET \\
\hline APPROACH/CLIMB LIMITATION CHECK \\
\hline PROC : OVERWEIGHT LANDING (13.13) . . REVIEW AS \\
\hline - If reverser UNLK : \\
\hline \begin{tabular}{l}
LANDING SPEED Vts or (Vref + 10 KT) \\
If SPLR recovered :
\end{tabular} \\
\hline \begin{tabular}{l}
LDG DIST MULTIPLY BY 1.1 \\
If SPLR not recovered :
\end{tabular} \\
\hline LDG DIST MULTIPLY BY 1.4 \\
\hline
\end{tabular}

\section*{SINGLE ENGINE OPERATION}

\section*{Indications}

When FUEL LEVER is selected to OFF :
- Single chime
- ECAM activation with appropriate warning light
- Left ECAM CRT : ENG SHUT DOWN procedure
- Right ECAM CRT : ENG page.
- One PACK must be closed when using WING ANTI ICE to prevent loss of engine bleed due to precooler overheat.
- Before recovery of the affected PACK, the affected BLEED VALVE must be selected OFF in order to increase the precooler overheat threshold of the remaining bleed system.
- Fuel management may be required to keep fuel in balance. Use FUEL X-FEED IN FLIGHT procedure.
- Windmilling time without positive oil pressure should be recorded for maintenance purposes.
- APU (if available) should be started to replace inoperative generator. Best starting capability is ensured up to 37000 ft .
- As N1 parameter is used in the computation of aft CG warning, this warning is inhibited in case of engine failure.
- If ENG 1 FIRE handle is pulled, to avoid possible contamination from related engine bleed, APU bleed air must bot be used and the AIR BLEED X-FEED valve must be closed.
The AIR BLEED X-FEED valve is to be opened (with possible use of APU bleed) only if wing anti-ice is required because asymmetrical wing anti-ice must be avoided.
- If installed, TCAS must be set to TA as the aircraft performance does not enable to execute the TCAS RA orders in terms of V/S command.
- For approach and landing :
a) Refer Flight Patterns section of FCOM.
b) The flap configuration to be used is dependent upon the single engine approach climb gradient requirements.
c) It is recommended that the operative engine air bleed be closed during final approach, to provide an increase in approach climb gradient. Use APU bleed air (if available).
d) Affected hydraulic equipment may be recovered for approach and landing by selecting ELEC PUMPS and the affected side PTU to ON.
- When using the PTU, the slats, flaps and L/G must be extended in sequence in order to reduce loads on systems.
- Blue system pressurized by PTU : sequence SLATS and L/G.
- Yellow system pressurized by PTU : sequence FLAPS and L/G.
- If engine shutdown was caused by REV UNLK, the landing distance is increased due to the VREF increment of 10 kt , which is taken into account by the PFD.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ENG FAIL} \\
\hline IGNITION CON & ELIGHT \\
\hline THROTTLE (affected engine) & IDLE \\
\hline - If no immediate relight & \\
\hline FUEL LEVER (affected engine) & OFF \\
\hline - IF DAMAGE: & \\
\hline FIRE HANDLE & PULL \\
\hline 1ST AGENT (after 10 sec ., if in flight) & DISCH \\
\hline PROC : SINGLE ENG OPERATION (12.08 & APPLY \\
\hline - If no damage & \\
\hline PROC : ENG RESTART IN FLIGHT (12.07) & APPLY \\
\hline
\end{tabular}

\section*{ENGINE FAIL}

\section*{Indications:}

An engine flame-out may be recognized by :
- Rapid decrease in EGT, N2, FF and EPR

Engine damage may be accompanied by :
- Loud noise
- Significant increase in A/C vibrations and/or buffeting
- Repeated or uncontrollable engine stalls,
- Associated abnormal indications such as hydraulic fluid loss, no N2 indication.
When engine failure is detected by the
FADEC :
- Single chime
- ECAM activation with appropriate warning light.
- Left ECAM CRT : ENG FAIL procedure.
- Right ECAM CRT : ENG page.
- The selection of CONT RELIGHT during rundown ensures an immediate restart attempt, and protects the non-affected engine.
- If no immediate relight or in case of a sub-idle hung condition (N2 below \(55 \%\)) shutdown the engine.
- The causes of engine flameout can generally be divided into two categories :
- External causes such as icing, very severe turbulence, heavy rain/hail/sleet, fuel mismanagement, etc. These causes, which may affect both engines, can generally be easilydetermined and an immediate restart can be attempted.
- Internal causes, such as engine stalls or failures, usually affect a single engine and are not so easily determined. In these cases the engine is shut down, then the cause of the flameout or sub-idle is investigated. If it cannot be positively determined what caused the flameout or sub-idle, the need for engine restart should be evaluated against the risk of further engine damage or fire, that may result from a restart attempt.
- If flame-out was due to an external cause (e.g. massive rain ingestion) or in case of sub-idle and if no damage is suspected, a normal windmilling or starter assisted relight should be considered, using the ENG RESTART IN FLIHT procedure.
- If damage is suspected the ENG FAIL procedure should be applied, even if ENG FAIL indications are not presented on ECAM. In this case the paper C/L must be used.
As precautionary measure the FIRE handle is pulled and the extinguishing AGENT is discharged.
ENG RESTART IN FLIGHT
CAUTION : Do not attempt to restart an engine following an in-flight engine fire or a repetitive engine stall, or if damage is suspected.
FUEL SUPPLY CHECK
THROTTLE IDLE
IGNITION CONT RELIGHT
Above 230 Kt , below FL 300 (Windmilling Restart) :FUEL LEVERON
- Below 230 Kt, below FL 200 (Starter Assisted Restart) :
BLEED AIR (from ENGor below FL 200 from APU)ESTABLISH
START PUSHBUTTON SWITCH PRESS (OPEN
FUEL LEVER (above 15 \% N2) ON
RELIGHT (within 30 seconds) MONITOR
NOTE The engine acceleration may be very slow or theENG FAlL ECAM warning may be activated, thisshould not be misinterpreted as a failure to restart.If \(E G T\) is within limit and N1/N2 are increasing,continue the start attempt.
NOTE : If EGT exceeds the ground start EGT /imit, maximum \(E G T\) and duration must be recorded for maintenance action.
ENGINE RESPONSE CHECK

\section*{- If restart unsuccessful}
FUEL LEVER OFF
- After any Starter Assisted Restart attemptSTART PUSHBUTTON SWITCH
\(\qquad\)RELEASESTART OPEN LIGHT CHECK EXTINGUISHEDPACK VALVES CHECK OPENEDSECOND RESTART ATTEMPT . CONSIDER after 30 sec
If restart successful :
IGNITION AS RQRD
AFFECTED SYSTEMS RESTORE

\section*{ENGINE RESTART IN FLIGHT}
- An airstart may be attempted above FL 300, however a successful engine restart is guaranteed (in the absence of system malfunction or engine damage) only when at FL 300 or below.
- Engine relighting in flight is only guaranteed when within this envelope :

- Monitor especially N2 and EGT to confirm successful relight within the time limit.
EGT may be extremely low during and after restart (\(\simeq 150^{\circ} \mathrm{C}\) only). It will become normal after acceleration out of idle.
- Differentiation of successful start from hung start is best achieved by observation of :
- Stabilized idle N2 level,
- Response to throttle movement.
- If the initial windmilling start is not successful either repeat the windmilling start or continue with the starter assisted procedure.
- If restart is unsuccessful after a Starter Assisted attempt, allow pack valves re-opening (START pushbutton switch released-out), for maintaining aircraft pressurization, before proceeding with a new restart attempt.
- Bleed air is established from either :
- Opposite engine BLEED by selecting the AIR X FEED to MAN/OPEN and closing the ENG BLEED VALVE of the receiving engine
or
- APU, when below FL 200, by selecting the APU BLEED, switch to ON.
- If a second restart attempt is considered, fuel lever must be left OFF for 30 seconds before new restart attempt to allow ventilation of combustion chamber.

\section*{ENGINE STALL}

Indications:
- Varying degree of abnormal engine noise (loud bang, rumbling noise)
- Rapid EGT rise,
- Rapid N2 decrease,
- Slow or no throttle response,
- Vibrations.
- An EGT limit exceedance may encounter on ground, e.g. when applying reverse thrust.
- Selecting the ENG and WING ANTI ICE will increase the engine stall margin and enhance the stall recovery.
- High N1 fluctuations or the loss of N1 indication may be an indication of excessive fan tip rub and fan instability.
- In case of a non-recoverable surge and / or a sub-idle hung condition (N2 below \(55 \%\)) shutdown the engine. A restart attempt may be considered provided sufficient evidence exists that no engine damage has been incurred.
- The FADEC surge protection system, may detect and recover from multiple surges without pilot action.
To enhance the engine stability the 2.5 bleed (low pressure compressor airflow control bleed) is opened and will remain open until the throttle is reduced to idle and then thrust is reset.

The 2.5 bleed opening is characterised by approximately \(30^{\circ}\) C EGT rise.

\section*{CAUTION}

The continued operation of an engine after a stall must be considered with extreme caution and close monitoring.
- If possible, the following engine and flight parameters (at the time of the stall) should be recorded for engineering analysis and maintenance purposes :
- FL, TAT, MN/IAS, weather conditions,
- EPR, EGT peak
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & ENG & REV 34 & SEO 020 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ENG OVER LIMIT} \\
\hline THROTTLE & LIMI \\
\hline \multicolumn{2}{|l|}{- If engine within limits} \\
\hline \multicolumn{2}{|l|}{- Normal engine operation may be resumed to next landing.} \\
\hline \multicolumn{2}{|l|}{- Record level and duration of exceedance.} \\
\hline \multicolumn{2}{|l|}{- If unable to maintain engine within limits :} \\
\hline \multicolumn{2}{|c|}{If conditions} \\
\hline \multicolumn{2}{|c|}{THROttle} \\
\hline \multicolumn{2}{|c|}{fuel lever} \\
\hline PROC & \\
\hline
\end{tabular}

\section*{ENG OVER LIMIT}

\section*{Indications:}
- Single chime
- ECAM activation with appropriate warning light
- Left ECAM CRT : OVER LIMIT procedure
- Right ECAM CRT : ENG page.

\section*{CAUTION}

Operating limits must not be deliberately exceeded.
Note : These warnings are triggered by the N1, N2 or EGT indicators.
- Before retarding the throttle lever, read and note the maximum N1/N2/EGT indication.
- Over limit conditions and primary engine parameters must be recorded for maintenance purposes.
- If conditions do not permit engine shutdown, land as soon as possible using the minimum thrust required to sustain safe flight.

\section*{Note: If an EGT-Limit exceedance is encountered on} ground, e.g. when applying reverse thrust, shut down the engine and motor the engine for 30 seconds.

\section*{ENG OVERSPEED DETECTED}

\section*{Indications :}
- Single chime
- ECAM activation with appropriate warning light
- Left ECAM CRT : ENG OVERSPEED

DETECTED procedure
- Right ECAM CRT : ENG page.
- If 117.0 \% N1 or 110.3 \% N2 is exceeded, the FADEC automatically drives the fuel flow valve of the affected engine to the minimum flow value (which corresponds to a thrust below idle).
- Over limit conditions and primary engine parameters must be recorded for maintenance purposes.
- If the engine primary parameters do not indicate that an overspeed has occurred, an engine restart may be attempted. The fuel lever must be selected OFF to reset the FADEC before performing the ENGINE RESTART procedure.

A310
a
\begin{tabular}{|c|}
\hline ENG REV UNLK \\
\hline THROTTLE (affected engine) IDLE
MAX SPEED 300 \\
\hline \begin{tabular}{l}
IF BUFFET OR BANK : \\
THROTTLE (affected engine) \\
fuel Lever \\
MAX SPEED . 240 \\
PROC : SINGLE ENG OPERATION (12.08) . . . APPLY
\end{tabular} \\
\hline ENG AT IDLE Displayed only if engine is automatically set at idle by FADEC. \\
\hline \begin{tabular}{l}
- If no buffet or bank : \\
THROTTLE (affected engine) \\
KEEP AT IDLE DIVERSION \\
. . \\
CONSIDER
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{THROTTLE LEVER JAM} \\
\hline A/THR & DISCONNECT \\
\hline - If aircraft handling affected : & \\
\hline FUEL LEVER . & . . . OFF \\
\hline PROC : SINGLE ENG OPERATION (12.08) & APPLY \\
\hline
\end{tabular}

\section*{- If throttle becomes free :}

PROC : ENGINE RESTART IN FLIGHT (12.07) . APPLY
- For Descent/Approach :
- If engine control not recovered and thrust above idle :
FUEL LEVER (affected engine) OFF PROC : SINGLE ENG OPERATION (12.08) . . APPLY
- If throttle lever above idle position :

GROUND SPOILERS DO NOT ARM SPEED BRAKES EXTEND MANUALLY LDG DIST MULTIPLY BY 1.3 AUTOBRAKE is inoperative.

\section*{ENG REV UNLK}

Indications:
Single chime
ECAM activation with appropriate warning light Left ECAM CRT : REVERSE UNLK procedure Right ECAM CRT : ENG page REV UNLK light
- The activation of the REV UNLK local warning light and ENG REVERSE UNLK ECAM procedure alone, without abnormal aircraft behaviour, may be the result of :
- either, a partial system malfunction (e.g. undue system pressurization),
- or, a spurious warning activation.
- In readiness for a possible subsequent inadvertent in-flight deployment, retard the affected engine to idle and consider continued flight to destination or diversion, as appropriate, at LRC or 300 Kts IAS (whichever is the lower) - or at Green Dot speed in case of obstacle clearance strategy - so as to minimize buffeting and rolling, in the event of a thrust reverser deployment.
Note : When the warning is triggered, the C/Bs REVERSE WARN and REVERSE CTL of the affected ENG 1(2) must not be pulled.

\section*{THROTTLE FAULT}

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : THROTTLE FAULT procedure
Right ECAM CRT : ENG page
A/THR disconnection
- The THROTTLE FAULT procedure is activated by the FADEC in the following cases :
- In flight, in case of the loss of both throttle lever resolver signals. In this case the FADEC controls the engine thrust using the last valid throttle lever position.
- On ground, in case of the loss of both throttle lever resolver signals or in case of disagreement between these two signals. In both cases the engine thrust is limited to idle.
- In flight, if excess power cannot be balanced by retarding the other engine, the affected engine should be shutdown and restarted. The FADEC will then control the engine at idle thrust, thus restoring electrical, hydraulic and bleed air services.
- In all cases of THROTTLE FAULT, the A/THR will disconnect and cannot be re-engaged.

\section*{THROTTLE LEVER JAM}

\section*{Indications}

Throttle lever positions asymmetry in excess of the normal throttle stagger.
- If undetected, throttle lever jam may result in significant thrust asymmetry and possible flight path deviation.
- In case of throttle lever jamming during thrust reduction, the A/THR may command retardaction on the non-affected throttle lever down to the idle position.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & PAGE & \\
\hline & ENG & REV 34 & SEO 020 \\
\hline
\end{tabular}

\section*{ENG OIL FILTER CLOG}

\section*{THROTTLE \\ BELOW WARN}

IF WARN AT IDLE AFTER \(3 \mathbf{M N}\) :
FUEL LEVER . OFF
R
PROC: SINGLE ENG OPERATION (12.08) APPLY
\(\qquad\)
L-=- =

\section*{ENG OIL TEMP HI}

\section*{If OIL TEMP between 163 and \(177^{\circ} \mathrm{C}\) for more than 20 minutes}
or
If OIL TEMP above \(177^{\circ} \mathrm{C}\) :
THROTTLE . IDLE
FUEL LEVER . OFF
R
PROC : SINGLE ENG OPERATION (12.08) . . . APPLY
If OIL TEMP between 163 and \(177^{\circ} \mathrm{C}\)
OIL PRESS and QTY MONITOR

ENGINE PARAMETERS MONITOR

\section*{ENG OIL FILTER CLOG}

\section*{Indications :}

Single chime
ECAM activation with appropriate warning light Left ECAM CRT : ENG OIL FILTER CLOG PROC
Right ECAM CRT: ENG page
OIL CLOG light
- During ground start and at ground idle, the activation of ENG OIL CLOG warning with OIL TEMP below \(35^{\circ} \mathrm{C}\) can be disregarded if the OIL PRESS is normal and if the warning extinguishes as the oil temperature increases.
- If conditions do not permit engine shutdown, land as soon as possible using the minimum thrust required to sustain safe flight.

\section*{ENG OIL TEMP HI}

\section*{Indications:}

Right ECAM CRT : ENG page,
- from \(163^{\circ} \mathrm{C}\) to \(177^{\circ} \mathrm{C}\) : OIL TEMP flashing green,
- above \(177^{\circ} \mathrm{C}\) : OIL TEMP steady amber

In addition to the previous indications, if OIL
TEMP between \(163^{\circ} \mathrm{C}\) and \(177^{\circ} \mathrm{C}\) for more than
20 min or OIL TEMP above \(177^{\circ} \mathrm{C}\) :
- Single chime
- ECAM activation with appropriate warning light
- Left ECAM CRT : ENG OIL TEMP HI PROC.
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{2.05 .70} \\
\hline \multicolumn{2}{|c|}{ PAGE 8 } & \\
\hline REV 29 & SEO 030 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline ENG EPR MODE FAULT \\
\hline THROTTLE (affected engine) REDUCE \\
\hline ENG MODE (affected engine) . . . RESET (N1 then EPR) \\
\hline - IF UNSUCCESSFUL : \\
\hline THROTTLE (non affected engine) REDUCE \\
\hline ENG 1 MODE N1 \\
\hline ENG 2 MODE N1 \\
\hline PROC : ENG ALTN MODE (below) APPLY \\
\hline
\end{tabular}

R

\begin{tabular}{|c|}
\hline FADEC OVHT \\
\hline ENG PARAMETERS \(\ldots \ldots\). \\
\hline
\end{tabular}

\section*{ENG EPR MODE FAULT}

\section*{Indications :}
- Single chime
- ECAM activation with appropriate warning light
- Left ECAM CRT : ENG EPR MODE FAULT procedure
- Right ECAM CRT : ENG page
- EPR MODE FAULT light
- In case of EPR MODE fault, the FADEC of the affected engine automatically reverts to the N 1 mode.
- If the reset is unsuccessful, both engines should be controlled in N1 mode.

\section*{CAUTION}

Before selection of N1 mode, throttles should be reduced to 1.1 EPR (or \(70 \% \mathrm{~N} 1\)) in order to prevent an overspeed.

\section*{ENG ALTN MODE}

\section*{Indications:}
-N1 light illuminated on both ENG MODE pushbutton
- Autothrottle is lost.
- Set engine power manually, using cruise N1 thrust setting tables provided in FCOM THRUST SETTING chapter - ALTN MODE or in QRH chapter 14.

R

\section*{FADEC OVHT}

\section*{Indications:}
- Single chime
- ECAM activation with appropriate warning light
- Left ECAM CRT : FADEC OVHT procedure
- Right ECAM CRT : ENG page.
- Monitor engine parameters as an abnormal engine behaviour may occur following a FADEC OVHT.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & PAGE & 9 \\
\hline & ENG & REV 32 & SEQ 020 \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline ENG OIL TEMP LO \\
\hline \begin{tabular}{l}
THROTTLE \\
WARM UP BEFORE T.O.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline ENG FUEL FILTER CLOG \\
\hline ENG PARAMETERS \(\ldots \ldots \ldots \ldots \ldots\) MONITOR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ENG START (VALVE) & OPEN (IN FLIGHT) \\
\hline Avoid iling conditions & \\
\hline bleed Valve (affected side) & . . OfF/R \\
\hline - If left side affected & \\
\hline APU bleed . . . & . . . off/R \\
\hline PACK VALVE (affected side) & off \\
\hline - If WING ANTI-ICE off: & \\
\hline AIR X-FEED & . . CHECK CROSS-LINE \\
\hline - If WING ANTI ICE ON & \\
\hline AIR X-FEED & man/IN-LINE \\
\hline
\end{tabular}

\section*{ENG OIL TEMP LO}
```

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : ENG OIL TEMP LO procedure
Right ECAM CRT : ENG page

```
- The ENG OIL TEMP LO warning is activated at T.O power application or by pressing the T.OCONFIG TEST pushbutton if the oil temperature is below \(50^{\circ} \mathrm{C}\). In this condition it is necessary to warm up the engine until the oil temperature reaches at least \(50^{\circ} \mathrm{C}\).
- Oil temperature above \(50^{\circ} \mathrm{C}\) will prevent fuel icing under take off conditions.

\section*{ENG FUEL FILTER CLOG}
```

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : ENG FUEL FILTER CLOG procedure
Right ECAM CRT : ENG page
FUEL CLOG light

```

\section*{ENG START (VALVE) OPEN (IN FLIGHT)}

\section*{Indication}

START 1 or 2 OPEN light on ENG START panel
- This procedure applies only if wing anti-ice is not required.
- In case of engine start valve opening in flight, all bleed air sources should be removed from the starter.
- If wing anti-ice is required, starter may be damaged.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & PAGE & \\
\hline & ENG & REV 29 & SEC 025 \\
\hline
\end{tabular}

\section*{ENGINE FAILURE ON TAKEOFF}
```

Indications:
Engine fire or severe damage
Loss of thrust

```

\section*{Aborted takeoff. Engine failure before V1}
- If an engine failure occurs before reaching V1, the takeoff should be aborted.
- Immediately when the engine failure is recognized, simultaneously select the throttles to idle and monitor autobrake system or apply full pedals braking.
Note : 1 If the takeoff is rejected above 100 kt it is recommended that maximum reverse thrust is selected on both engines.
2 The autobrake system is initiated by the same logic which operates the ground spoilers.
Continued takeoff with engine failure between V1 and V2.
- If an engine failure occurs after passing V1 the takeoff must be continued.
- At VR rotate to the safe pitch attitude (or the attitude commanded by the Speed Reference System).
- At 50 ft and with positive rate of climb select the landing gear up.
- Maintain the airspeed at V2.

Note: In the case where flexible takeoff thrust was used, the performance may be improved if required, by setting the operative engine to the go-around thrust.
- Use sufficient rudder to hold a constant heading whilst maintaining the control wheel at about neutral.
Note: If a change of heading is required, aileron application should be limited to avoid an increase in drag due to rol/ spoiler deployment.
- At acceleration height, level off and allow the speed to increase.
- At F speed retract the flaps
- At S speed retract the slats.
- At 0 -speed (engine out operating speed in clean configuration - green dot) resume the climb using maximum continuous thrust and maintain 0 speed.

Note: MAXIMUM TAKEOFF THRUST IS ONLY ALLOWED FOR 10 MINUTES.
R - If a turn after takeoff is required, the same procedure applies except that the bank angle is limited to \(15^{\circ}\) up to green dot speed (or as published in RTOLW charts).

\section*{Engine failure after takeoff or at go around}
- Speed must be closely monitored,
- If speed is decreasing, and before the speed trend reaches \(\mathrm{V}_{2}-5 \mathrm{kt}\) (take-off case) or VAPP - 5 kt (go around case) :
- disconnect the A.P, if engaged,
- set an initial pitch attitude of \(12.5^{\circ}\). Then, adjust pitch attitude to fly at or above \(\mathrm{V}_{2}\) (take-off) or VAPP (go around),
- disregard the FD pitch bar order,
- maintain thrust of operative engine at Go Around thrust as long as required.
Immediate VMC landing following engine failure on takeoff

For an immediate VMC landing following an engine failure on takeoff :
- At the acceleration height, maintain takeoff slats/flaps configuration and accelerate to \(F\) (if flaps \(15^{\circ}\)) or \(S\) (if flaps \(0^{\circ}\)) speed.
- Maintain this configuration and speed until the preparation for the approach in the downwind leg.
- In the downwind leg, determine the landing slats/flaps configurationaccording totheapproach/climbrequirements. Prepare the aircraft and continue the approach as for a standard visual approach.

ABNORMAL PROCEDURES
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{2.05 .70} \\
\hline \multicolumn{2}{|c|}{ PAGE 10A } & \\
\hline \multicolumn{3}{|c|}{ REV 36 } \\
\hline
\end{tabular}

\section*{CIRCLING APPROACH WITH ONE ENGINE INOPERATIVE}
- Refer to Flight Pattern 2.03.20 p3.
- Landing weight : check.
- If the aircraft weight is above the maximum weight for circling in configuration Slats 20/Flaps 20 (given in the table below) :

The aircraft cannot maintain flight level with CONF 20/20 and landing gear down.
A diversion is recommended.
- If diversion is not possible :
- Consider delaying gear extension.
- Consider increasing altitude minima to 800 ft , to avoid triggering the warning "L/G NOT DOWN".

Note: 1) If the approach is flown at less than 750 ft RA, the warning "L/G NOT DOWN" will be triggered. This warning is to be disregarded. The aural signal is to be cancelled using the "EMERG CANCEL" pushbutton.
2) "TOO LOW GEAR" warning is to be expected, if the landing gear is not downlocked at 500 ft RA.

R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|l|}{MAXIMUM WEIGHT FOR CIRCLING SLATS 20 FLAPS 20 (1000 KG)} \\
\hline \multicolumn{5}{|l|}{AIR CONDITIONING ON} & \multicolumn{5}{|l|}{ANTI-ICING OFF} \\
\hline \multirow[b]{2}{*}{OAT (\(\mathrm{C}^{\circ}\))} & \multicolumn{9}{|l|}{AIRPORT ELEVATION (feet)} \\
\hline & 0 & 1000 & 2000 & 3000 & 4000 & 5000 & 6000 & 7000 & 8000 \\
\hline 0 & 154 & 152 & 151 & 149 & 146 & 143 & 140 & 137 & 133 \\
\hline 5 & 154 & 152 & 151 & 149 & 146 & 143 & 140 & 137 & 133 \\
\hline 10 & 154 & 152 & 151 & 149 & 146 & 143 & 140 & 137 & 133 \\
\hline 15 & 154 & 152 & 151 & 149 & 146 & 143 & 140 & 137 & 133 \\
\hline 20 & 154 & 152 & 151 & 149 & 146 & 143 & 138 & 133 & 128 \\
\hline 25 & 154 & 152 & 151 & 148 & 143 & 138 & 133 & 128 & 124 \\
\hline 30 & 154 & 150 & 146 & 142 & 138 & 133 & 128 & 124 & 119 \\
\hline 35 & 148 & 140 & 140 & 137 & 133 & 128 & 123 & 118 & 114 \\
\hline 40 & 140 & 139 & 135 & 131 & 127 & 122 & 118 & 113 & \\
\hline 45 & 136 & 132 & 129 & 125 & 121 & 117 & & & \\
\hline 50 & 129 & 126 & 122 & & & & & & \\
\hline 55 & 123 & & & & & & & & \\
\hline
\end{tabular}

R WEIGHT CORRECTION FOR ANTI-ICING
R ENGINE ANTI-ICE ON -1\%
R TOTAL ANTI-ICE ON - \(2 \%\)
R WEIGHT CORRECTION FOR ICE ACCRETION : \(-3 \%\)
R WEIGHT CORRECTION FOR FTDM (Fan Thrust Deterioration Mode) : -3000 kg
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & PAGE & \\
\hline & ENG & REV 36 & SEQ 070 \\
\hline
\end{tabular}

\section*{START VALVE FAILS TO OPEN}

ENG START selector
- Advise ground crew to prepare for manual start valve operation :
GRND SERVICE INTPH
ON
- When ground crew member is ready, order «START 1 or 2 : :
ENG START selector START A (or B)
ENG START button PRESS
START VALVE
ORDER OPENING
- Continue the normal engine start procedure.
- When N2 at 45 \% :

START VALVE
ORDER CLOSURE
- Continue the normal procedure.

\section*{PREMATURE START VALVE CLOSURE}

\section*{FUEL LEVER}
- When N2 at/or below 30 \% :

ENG START button PRESS and HOLD
- Motor the engine for 30 seconds.

FUEL LEVER
ON
- When N2 at 45 \%

ENG START button
RELEASE
- Continue the normal procedure.

\section*{START VALVE FAILS TO CLOSE (GROUND)}
```

ENG START selector
OPEN light

``` \(\qquad\)
``` CHECK EXTINGUISHED
```

- If OPEN light remains illuminated :

■ If APU supply :
ENG 1 and 2 BLEED VALVES OFF
APU BLEED VALVE OFF

- If crossbleed supply :

BLEED VALVE (supplying engine) OFF
■ If external pneumatic power supply :
External pneumatic power . . . ORDER SHUT OFF

- When BLEED PRESS (affected side ECAM indication) at zero :

FUEL LEVER

- Maintenance action is due to verify START VALVE POSITION.
- If start valve confirmed closed :
- Apply appropriate MELitem(OPEN lightinoperative)
- If start valve confirmed open :
- Apply appropriate MEL item (START VALVE inoperative)
- If OPEN light is extinguished :

Continue normal operation.
Automatic closure of the start valve will not occur at 45\%
N2. The start valve will be closed when the ENG START selector is selected OFF.

ARM LIGHT OR START BUTTON FAILURE

NOTE : Start engine with affected ARM light first
ENG START pushbutton
. PRESS and HOLD
OPEN light
CHECK ILLUMINATED

- At 15 \% N2 minimum :

FUEL LEVER
ON

- When N2 at 45 \% :

ENG START pushbutton RELEASE OPEN light CHECK EXTINGUISHED.
NOTE : After second engine start, both ARM lights will illuminate until ENG START selector is set to OFF.

	2.05 .70	
PAGE 12		
REV 34		SEO 050

N0 « N2 » DURING ENGINE START (GROUND)

| HYD ENG PUMP LO PR lights (affected side) . . . CHECK |
| :--- | :--- |
| ENG START Selector OFF |

- If HYD ENG PUMP LO PR lights were extinguished :

ENGINE START WITH N2 INDICATION
FAILED (12.17)
APPLY

- If HYD ENG PUMP LO PR lights were illuminated :
- Maintenance action is due.
(suspect starter motor failure)

ENGINE START WITH « N2 » INDICATION FAILED

NOTE: Be aware that the starter cut-out circuit may be inoperative.

GEN (affected side) CHECK ON
ENG START selector START A/B

ENG START pushbutton
PRESS and HOLD

- Confirm startermotor operation by checking the extinguishing of the onside HYD LO PR lights.

CLOCK
START

FUEL LEVER ON
CAUTION : be alert for a possible hot start

- When GEN FAULT light extinguishes : ENG START pushbutton RELEASE START OPEN light CHECK EXTINGUISHED

NORMAL ENGINE START PROCEDURE . . . CONTINUE

N0 « N1 » DURING ENGINE START (GROUND)

Request ground crew to visually check for fan rotation.

- Fan rotation :

■ If confirmed :

- Continue the normal engine start procedure.

■ If not confirmed :
FUEL LEVER OFF

- Continue motoring the engine for at least 30 seconds, extend to 3 minutes if desired.
- Fan rotation within the maximum 3-minute period :

\square If confirmed :

FUEL LEVER ON

- Continue the normal engine start procedure

If not confirmed :
FUEL LEVER(s) OFF
ENG START selector OFF

- When the engine rotors have come to a complete stop, instruct ground crew to manually rotate the fan one or two turns in the reverse direction, after which another engine start can be attempted.

	ABNORMAL PROCEDURES	2.05.70	
		PAGE 13	
	ENG	REV 36	SEQ 070

NO LIGHT UP DURING ENGINE START (GROUND)

```
FUEL FLOW . . . . . . . . . . . . . . . . . . . . . CHECK
FUEL LEVER . . . . . . . . . . . . . . . . . . . . . . . OFF
ENGINE MOTORING . . . . . . . . . . . . . }30\mathrm{ SECONDS
If Fuel Flow (FF) satisfactory and for non-ETOPS
    flight :
    ENG START selector . SELECT OTHER « START »IGNITER
```ENG START selectorOFF
- When N2 below \(30 \%\) :

SECOND START ATTEMPT PERFORM
- If unsuccessful :
- Maintenance action is due
- If OPEN light remains illuminated (start valve open) :
FUEL LEVER ON

SECOND START ATTEMPT MONITOR
- If unsuccessful :

FUEL LEVER(S) OFF
ENG START selector OFF
- Maintenance action is due

If Fuel Flow (FF) satisfactory and for ETOPS flight :
ENG START selector
NOTE : Refer to MEL.

If Fuel Flow (FF) low or zero :
ENG START selector
-

\section*{HUNG START (GROUND)}
```

Indications

- Abnormally slow engine acceleration after light-up,
- N2 hanging below idle,
- FF normal or low,
- EGT within limit.

```
NOTE : Record engine primary parameters for analysis.
- If start pressure was low :
PROC: CROSSBLEED ENGINE START (12.23) . CONSIDER
When N2 below 5 \% :
ENG START selector CONT RELIGHT
- Manually select ECAM ENG page.
SECOND ENGINE START PERFORM
- If unsuccessful :
FUEL LEVER
ENG START selector
- Maintenance action is due.
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ HUNG START (GROUND) } \\
\hline \begin{tabular}{l}
Indications: \\
- Abnormally slow engine acceleration after light-up, \\
- N2 hanging below idle, \\
- FF normal or low, \\
- EGT within limit.
\end{tabular} \\
\hline
\end{tabular}

NOTE : Record engine primary parameters for analysis.
```

FUEL LEVER . . . . . . . . . . . . . . . . . . . . . . . OFF

- If starter disengaged (valve closed),
when N2 below 30% :
ENG START pushbutton . . . . . . . . . . . . . PRESS
ENGINE MOTORING . . . . . . . . . . . . . 30 SECONDS
ENG START selector . . . . . . . . . . . . . . . . . . OFF
FUEL LEVEROFF
If starter disengaged (valve closed),
ENG START pushbutton
ENG START selectorOFF

```
- If start pressure was low :

PROC: CROSSBLEED ENGINE START (12.23) . CONSIDER

When N2 below 5 \% :
ENG START selector CONT RELIGHT
- Manually select ECAM ENG page.

SECOND ENGINE START PERFORM
- If unsuccessful :

FUEL LEVER
ENG START selector
FF
- Maintenance action is due.
\begin{tabular}{|c|}
\hline HOT START \\
\hline \begin{tabular}{l}
Indications: \\
- Rapid EGT rise likely to exceed the starting EGT limit or starting EGT limit exceedance. \\
- N2 hanging at approximately \(\mathbf{3 0}\) \% N2. \\
- FF normal or high. \\
- Tailpipe burning may be reported by ground crew.
\end{tabular} \\
\hline \begin{tabular}{l}
NOTE : To prevent EGT from exceeding the starting limit of \(535^{\circ} \mathrm{C}\), observe \(\mathrm{N} 1, \mathrm{~N} 2\), and EGT closely during engine start. \\
If EGT reaches \(400^{\circ}\) C before N 2 has reached \(30 \%\), anticipate a possible hot start and be prepared to select FUEL lever to OFF to prevent a hot start.
\end{tabular} \\
\hline \begin{tabular}{l}
FUEL LEVER \\
If starter disengaged (valve closed), \\
when N 2 below \(\mathbf{3 0} \%\) : \\
ENG START pushbutton \(\qquad\) PRESS \\
ENGINE MOTORING \(\qquad\) 30 SECONDS
\end{tabular} \\
\hline \begin{tabular}{l}
Starting EGT limit \(\left(535^{\circ} \mathrm{C}\right)\) : \\
Exceeded : \\
ENG START selector OFF \\
- Perform normal engine(s) shutdown procedure \\
- Maintenance action is due. \\
Not exceeded : \\
ENG START selector CONT RELIGHT \\
- Manually select ECAM ENG page. \\
- When N2 below 5 \% : \\
- Perform second start attempt. \\
- Record hot start occurence in logbook.
\end{tabular} \\
\hline
\end{tabular}

\section*{ENG TAIL PIPE FIRE - ENG START}

\section*{Indications:}
- EGT increases rapidly when FUEL lever is set to ON.
- Internal tailpipe fire reported by ground crew.
\[
\begin{aligned}
& \text { CAUTION : Except as a last resort, do not use ground fire } \\
& \text { extinguisher, as serious engine damage may } \\
& \text { result. }
\end{aligned} \begin{aligned}
& \text { FUEL LEVER . OFF } \\
& \hline \text { AIR X FEED MAN/IN LINE } \\
& \text { ENG FIRE handle . PULL }
\end{aligned}
\]
- If starter disengaged (valve closed), when N2 below 30 \% :

ENG START pushbutton
PRESS
- Continue motoring the engine for 30 seconds or until the evidence of burning has ceased.

> IGNITION selector . OFF
- Maintenance action is due.

\section*{ENG TAIL PIPE FIRE - ENG SHUTDOWN}

\section*{Indications :}
- EGT fails to decrease when FUEL lever is set to OFF
- Internal tailpipe fire reported by ground crew.
CAUTION : Except as a last resort, do not use ground fire
\begin{tabular}{c}
extinguisher, as serious engine damage may \\
result.
\end{tabular}
\begin{tabular}{|l}
FUEL LEVER CHECK OFF \\
AIR X FEED MAN/IN LINE \\
ENG FIRE handle . PULL \\
IGNITION selector CRANK \\
AIR BLEED ESTABLISH
\end{tabular} .
- When below 30 \% N2 :

NOTE : If N2 inoperative wait for 20 seconds after FUEL lever is set to OFF before re-engaging starter.

START pushbutton
PRESS
- Continue motoring the engine for 30 seconds or until the evidence of burning has ceased.
IGNITION selector OFF
- Maintenance action is due.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 15} \\
\hline & ENG & REV 34 & SEO 001 \\
\hline
\end{tabular}

\section*{LACK OF THROTTLE RESPONSE (IN FLIGHT)}

If engine fails to accelerate upon throttle advance :
- If no N1 response but N2 and EGT increasing : THROTTLE
- If engine operation/parameters normal :

IDLE OPERATION MAINTAIN
END OF PROC
- If engine operation/parameters abnormal :

FUEL LEVER (affected engine) OFF
PROC : SINGLE ENG OPERATION (12.08) . APPLY
- If no N1, N2 and EGT response :

ENG BLEED VALVE OFF CONSIDER
GALLEY SHED CONSIDER
REDUCING ALTITUDE CONSIDER
- If during idle descent : INCREASING AIRSPEED CONSIDER ENGINE RESPONSE

CHECK
- If engine response not recovered :

ENGINE OPERATION . AT PILOT DISCRETION ENGINE PARAMETERS MONITOR FOR APPROACH
- If engine above idle :

FUEL LEVER (affected engine) OFF
PROC : SINGLE ENG OPERATION
(12.08) APPLY

END OF PROC
- If during approach :

CONFIGURATION CHANGES ANTICIPATE END OF PROC
- If engine fails to decelerate upon throttle retard :

ENGINE ANTI-ICE ON
WING ANTI-ICE . ON
ECON FLOW . OFF
ENGINE RESPONSE CHECK
- If engine response not recovered :

ENGINE OPERATION AT PILOT DISCRETION ENGINE PARAMETERS MONITOR FOR APPROACH
- If engine above idle :

FUEL LEVER (affected engine) OFF PROC : SINGLE ENG OPERATION (12.08) . APPLY END OF PROC

\section*{LACK OF THROTTLE RESPONSE (IN FLIGHT)}
- If engine fails to accelerate upon throttle advance :
- If no N1 response but N2 and EGT increasing :
- The most likely cause is the failure of the Variable Stator Vanes to open upon engine acceleration.
- Increasing the thrust above idle may result in overstress of the high pressure compressor and consequent severe engine damage.
- If no N1, N2 and EGT response :
- The most likely cause is engine deterioration combined with high bleed air demand or a shift in the engine fuel control acceleration schedule.
- Such an engine behaviour may also be the result of massive water ingestion in heavy rain.
- Reducing the bleed air demand and electrical loads and, condition permitting, the altitude will increase the engine acceleration capability.
- If engine fails to decelerate upon throttle retard :
- The most likely cause is a shift in the engine fuel control deceleration schedule.
- Increasing the bleed air demand will increase the engine deceleration capability.
- If engine response not recovered :
- In case of lack of throttle response in an idle or above idle condition, the engine can be kept operating (so as to take benefit of the available electrical, hydraulic and pneumatic power services), unless certified operating limits are exceeded.

\section*{FOR APPROACH}
- Should the engine control be not recovered and the engine be in an out-of-idle condition, the engine should be shutdown for the approach and the SINGLE ENG OPERATION procedure applied.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.70} \\
\hline & & PAGE & \\
\hline & ENG & REV 28 & SEQ 001 \\
\hline
\end{tabular}

\section*{LEFT BLANK INTENTIONALLY}

\section*{BOMB ON BOARD}

From experience, explosives brought on board of aircraft are fitted with time or altitude fuses.
For that reason a suspicious article considered to be an explosive, may be transported to a location in the aircraft where, in case of detonation, the least damage to aircraft structure and systems is expected.

This Least Risk Bomb Location (LRBL) is the right hand aft cabin door (DOOR 3R).
IF POSSIBLE, DESCEND, LAND, TAXITO A REMOTE SITE AND EVACUATE THE AIRCRAFT IMMEDIATELY.
If it is not possible to land and evacuate the aircraft within 30 minutes, apply the following procedures:
COCKPIT PROCEDURES
Note : Asprecautionary measure, the application of cockpit procedures is recommended, even if Bomb on Board is not confirmed, but a founded serious BOMB THREAT is received.
CABIN CREW NOTIFY
ATC/COMPANY OPERATIONS NOTIFY
- To obtain expert advice from explosive specialists.

LANDING ELEVATION SET INDICATED CABIN ALTITUDE

\section*{FUEL RESERVES} DETERMINE
- With L/G and slats extended, fuel consumption (kg/NM) is multiplied by 3 .
NEXT SUITABLE AIRPORT DETERMINE
SPD/MACH SELECTION KNOB PULL
- Select the most appropriate speed, taking into account the time to destination, the fuel consumption and the fact that low speed could reduce the consequences of possible structural damage, if the "bomb" exploded.
DESCENT TO CAB ALT + 2500FT OR MEA/MORA. INITIATE
- Avoid any increase of cabin altitude and g-loads.

Avoid any sharp maneuvers which might result in a displacement of the suspicious article.
- By descending to 2500 ft above the cabin altitude and respective setting of LANDING ELEVATION selector, a cabin \(\triangle P\) of approximately 1 PSI is obtained. This reduces the structural load on the fuselage, as far as possible, but maintains a small positive differential pressure in the cabin to ensure that any explosion and subsequent debris will be directed out of the cabin.
- When at CAB ALT + 2500 FT OR MEA/MORA :

GALLEY SHED
- Electrical power in the vicinity of the least risk bomb location is considerably reduced by selecting GALLEY SHED to reduce the risks of an electrical fire in case of damage.
- Fuel permitting :

SLATS . EXTEND
- Slats are extended as a precautionary measure, should any damage occur. The associated speed reduction reduces aerodynamic loads and allows the extension of the landing gear. For approach and landing, use normal flap configuration.
L/G (except for overwater operation) DOWN
Note : With gear down, fue/ consumption is multiplied by 3.
- When cleared to lower FL or altitude :

DESCENT TO CLEARED FL (ALTITUDE)
INITIATE
- Before landing :

MAN PRESS . ON
V/S CTL . FULL UP
OUTFLOW VALVES CHECK FULL OPEN
- When aircraft on ground and stopped in a remote area (if possible) :
\(\triangle \mathrm{P}\) (DIFF PRESS).
CHECK ZERO
EVACUATION/DISEMBARKATION . . . INITIATE ASAP

\section*{CABIN PROCEDURES}

EOD PERSONNEL ON BOARD
- Announce "Are there any EOD personnel on board ?". By using the initials, only persons familiar with EOD will be made aware of the problem.

SUSPICIOUS ARTICLE DO NOT OPEN, DO NOT CUT WIRES, SECURE, AVOID SHOCKS
- Secure in the attitude found and do not lift before having checked for an anti-lift ignition device.
PASSENGERS LEAD AWAY FROM SUSPICIOUS ARTICLE
- Move passengers at least 4 seat rows away from the "bomb". The passengers must be seated with their seat belts fastened and seat backs and tray tables in their full upright position.
SUSPICIOUS ARTICLE CHECK FOR NO ANTI-LIFT DEVICE
- To check for an anti-lift switch or lever, slide a string or stiff card, such as the emergency information card under the "bomb" without disturbing the "bomb".
If the string or card cannot be slipped under the "bomb" it may indicate that an anti-lift switch or lever is present and that the "bomb" cannot be moved.
If a card is used and can be slid under the "bomb" leave it under the "bomb" and move together with the "bomb".
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & MISC & REV 32 & SEO 001 \\
\hline
\end{tabular}

\section*{BOMB ON BOARD CONT'D}

If it is indicated that an anti-lift device is present, it may be possible to move the "bomb" together with the surface on which the "bomb" is located, such as a shelf or seat cushion.
If it is not possible to move the "bomb" then it should be surrounded with a single thin sheet of plastic and with wetted materials and other blast attenuation material such as seat cushions and soft carry-on baggage.
Move passengers as far from the "bomb" location as possible.
- If suspicious article can be moved :

PASSENGERS
MOVE/ADVISE
Move passengers at least 4 seat rows away from the least risk bomb location (RH aft cabin door). If other seats are full these passengers should sit on the floor in protected areas towards the front of the aircraft.
Passengers seated the nearest to the "bomb" should protect their heads with pillows, blankets, etc... or sit in the brace position.
All passengers must remain seated with seat belts fastened and, if possible, with the head below the top of the head rest.

The seat backs and tray tables throughout the cabin should be placed in their full, upright positions.
RH AFT CABIN DOOR SLIDE DISARM LEAST RISK BOMB LOCATION PREPARE
- Build up a platform of solid baggage against the door up to about 25 cm (10 in .) below the middle of the door
On top of this, build up at least 25 cm (10 in.) of wetted material such as blankets and pillows.
Place a single thin sheet of plastic (e.g. trash bag) on top of the wetted materials. This prevents any possible short circuit.
SUSPICIOUS ARTICLE MOVE TO LRBL
- Carefully carry the suspicious article in the attitude found and place on top of the wetted material in the same attitude and as close to the door structure as possible.
LEAST RISK BOMB LOCATION SET UP. . COMPLETE
- Place an additional single thin sheet of plastic over the "bomb".
- Build up at least 25 cm (10 in .) of wetted material around the sides and on top of the "bomb".
- Do not place anything between the "BOMB" and the door and minimize airspace around the "BOMB".
- The objective is to build up a protective surrounding of the "bomb" so that the explosive force is directed in the only non protected area i.e. into the door structure.
- Fill the area around the "bomb" with seat cushions and other soft material such as hand baggage (saturated with water or any other non flammable liquid) up to the cabin ceiling, compressing as much as possible.
Secure the LRBL stack in place using belts, ties, or other appropriate materials. The more material stacked around the "bomb", the less the damage can be.
- Use only soft material. Avoid using materials containing any flammable liquid and any metal objects which could become dangerous projectiles.
- When aircraft on ground and stopped, and when cabin evacuation/disembarkation signal is received from the cockpit :

EVACUATION/DISEMBARKATION
EXECUTE
- Use available airport facilities to disembark without delay.
- Evacuate passengers through normal and emergency exits on the opposite side of the "bomb" location. Do not use the door just in front of the "bomb".
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & MISC & REV 30 & SEQ 200 \\
\hline
\end{tabular}

\section*{DOOR NOT CLOSED IN FLIGHT}

Indications:
Single chime
ECAM activation with appropriate warning light
Left ECAM CRT : DOOR warning procedure
Right ECAM CRT : DOOR page with DOOR and identification in amber
- If a door is confirmed unlocked or if the DOOR warning is accompanied by abnormal increase of cabin altitude, the \(\triangle \mathrm{P}\) cabin must be reduced by increasing the landing elevation selection and initiating a descent.
\begin{tabular}{|l|}
\hline OVERWEIGHT LANDING \\
\hline APPROACH/CLIMB LIMITATION (TGA) CHECK \\
LANDING CONFIGURATION DETERMINE \\
LANDING DIST CHECK \\
PACK VALVE 1 and \(2 \ldots \ldots\). OFF or on APU \\
VERTICAL SPEED AT TOUCHDOWN MINIMIZE \\
- Maximum vertical speed at touchdown : 360 ft/mn. \\
\hline
\end{tabular}

\section*{OVERWEIGHT LANDING}
- When an overweight landing has to be performed following an operational turnback, refer to corresponding RTLOW chart, or to FCOM, to determine the approach and landing configuration as a function of the approach-climb limiting weight.
- Selecting packs off (or supplying packs from APU) will increase the maximum thrust available from the engines in case of a go-around.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & PAGE & \\
\hline & MISC & REV 30 & SEO 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{COCKPIT WINDOW CRACKED} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{3}{*}{WINDOW HEAT (if arcing) OFF Max FL . 250 LDG ELEVATION SET ACCORDING TO TABLE}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline MAX & FL & 100 & 120 & 150 & 180 & 200 & 230 & 250 \\
\hline =
5
PSII & LDG ELEV SETTING & 0 & 1000 & 3000 & 5000 & 6000 & 8000 & 9200 \\
\hline
\end{tabular}
- When starting the descent : LDG ELEVATION SET DESTINATION ELEVATION

\section*{COCKPIT WINDOW CRACKED}
- Max. flight level is restricted to FL 250 in order to obtain \(\triangle \mathrm{P} 5\) PSI without excessive cabin altitude and resultant CAB ALT warning.
- In case of a one ply failure, whichever the one may be, the windshield is still able to sustain the maximum differential pressure. Nevertheless, because the pilot is unable to accurately determine how many plies have failed, the differential pressure must be reduced to 5 PSI.
\begin{tabular}{|c|}
\hline COCKPIT WINDOW ARCING \\
\hline WIndow HEAT off \\
\hline
\end{tabular}

\section*{COCKPIT WINDOW ARCING}
- Arcing may be identified by brown marks on the window.
- Arcing occurs when a powered heating element is defective.
- Continuous arcing in a windshield can result in cracking of the adjacent glass plies.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & PAGE & \\
\hline & MISC & REV 30 & SEQ 001 \\
\hline
\end{tabular}

\section*{FWS FAULT \\ סקססספסס \\ \begin{tabular}{|l}
\hline \multicolumn{1}{c}{ FWS FAULT } \\
\hline\(\square \underline{\text { SINGLE FWS FAULT }}\) \\
\begin{tabular}{l}
FWS \\
CRT AMBER CAUTIONS NOT AVAIL \\
- MONITOR OVERHEAD PANEL
\end{tabular} \\
\hline
\end{tabular}}

NOTE : . Red warnings are not affected.
- Amber cautions processed by the affected FWS are lost, but local warnings are available.
. For the following faults and systems, no local warning is available :
- A/SKID selected OFF
- L/G Lever interlocked
- Radio altimeter fault
- EFIS SGU 3 FAULT
- Automatic call out
- DOOR (DOOR page on CRT avai/ab/e)
- AC EMER BUS OFF
- Ground spoilers not extended

R
DUAL FWS FAULT
FWS FAULT MONITOR SYS
NOTE : . All red warnings and amber cautions are lost, but local warnings are available.
For the following faults and systems and in addition to the systems affected by the loss of one FWS (see list above), no local warning is available :
- O/SPEED (Vmax strip available on PFD)
- STALL (Vss strip available on PFD)
- LDG GEAR (3 green lights available on L/G panels)
- EXCESS CAB ALT (CAB ALT indicator avai/able)
- HYD TANK LO LEVEL (QTY indicators available)
- ALTITUDE ALERT
- DOOR (DOOR page on CRT available)
- AP OFF
- AFS capacity change (tripple click lost)

FWS FAULT

\section*{Indications:}

Single chime (if single FWS FAULT only)
ECAM activation with appropriate warning light Left ECAM CRT :
- CRT AMBER CAUTIONS NOT AVAIL or
- FWS FAULT (on MEMO page)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & MISC & REV 31 & SEQ 001 \\
\hline
\end{tabular}

\section*{SPEED CONTROL WITH UNRELIABLE AIRSPEED}

\section*{INDICATION}

\section*{GENERAL}
- The following section provides background information and operational recommendations regarding the speed control with an unreliable airspeed indication or in case of the total loss of all airspeed indications.
- An unreliable airspeed indication or the loss of all airspeed indications may be the result of :
- a radome burst,
- heavy rain,
- severe icing,
- the loss of probe heating,
- volcanic ash, dust, insect or contamination by other types of debris.
- The purpose of the procedure is to provide the flight crews with three levels of information and guidance :
- clues for the recognition of an unreliable airspeed condition,
- memory items for the short term control of the flight path,
- additional read-and-do items and pitch / N1 data for the long term control of the flight path down to landing.
- The procedure for flight with unreliable airspeed is split into two parts, as follows :
- FCOM 2.05.80 Page 6 thru 10 :
- Background information and expanded procedural information,
- ORH Page 13.01, 13.02 and 13.03 and FCOM 2.05.80 Page 10 thru 11 :
- Memory items, read-and-do items and Pitch / N1 data for climb, level flight, descent, approach and landing.

\section*{BACKGROUND INFORMATION}
- An unreliable airspeed condition or the loss of airspeed indication is usually the result of the partial or total obstruction of the pitot probe(s) or static ports.
- Whatever the nature of the contamination, two possibilities have to be considered :
- the blockage of the pitot tubes, with or without blockage of the drain holes,
- the blockage of the static ports.
- Blockage resulting from contamination by dust, insects or leaf clips usually affects only one pitot tube or static port,
- Blockage resulting from the failure to remove the maintenance protective covers or from severe weather conditions usually affects all three pitot- static systems.

\section*{UNDERSTANDING THE IAS RESPONSE TO}

\section*{PITOT PROBE OR STATIC PORT OBSTRUCTION}
- The Indicated Air Speed (IAS) is a direct function of the difference between the Total Pressure (Pt) measured by the pitot probe and the Ambient / Static Pressure (Ps) measured by the static ports.
\[
I A S=f(P t-P s)
\]
- Whenever a pitot probe is blocked, two scenarios can be considered :
- the pitot probe drain holes are free and the trapped Pt drops progressively or quickly towards the ambient pressure (Ps),
or
- the pitot drain holes are also blocked and the trapped Pt remains constant.
- In the same manner, should the static ports be blocked, the ambient pressure is trapped and Ps remains constant.
- A good understanding of the above basic facts is of a paramount importance for the recognition and understanding of an unreliable airspeed condition.

\section*{PITOT PROBE DESIGN}
- The illustration hereafter provides a cutaway view of the pitot probe :

\section*{IAS RESPONSE TO PITOT PROBE OR STATIC PORTS OBSTRUCTION}
- The following paragraph provides a review of the main modes of pitot probe or static ports obstruction.
Heavy rain :

In heavy rain, the amount of water to be drained may temporarily exceed the draining capability of the drain holes.

Such heavy rain conditions are usually being encountered during climb, descent and approach.
The IAS may fluctuates or exhibit a gradual or step decrease to very low values.
As water drains, the IAS returns to a normal reading. If drain holes are obstructed, the IAS remains affected.

\section*{Severe icing :}

In severe icing, the ice build-up rate may temporarily exceed the anti-icing / de-icing capability of the pitot heater.

Such severe icing conditions are usually being encountered in ice crystal areas (e.g. cirrus clouds or on the downwind side of a Cb) or in severe storms.

The IAS behavior depends on the conditions of the pitot probe drain holes.

\section*{Drain holes free :}

The IAS may fluctuate or drop quickly towards the stick shaker speed.
The IAS remains affected for a few seconds, until the pitot heater overcomes the ice build-up but this phenomenon may repeat itself over several minutes until exiting the severe icing area.

\section*{Drain holes blocked :}

If the drains holes are blocked, the sensed Pt is trapped and remains constant, whatever the changes in airspeed or altitude.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & PAGE & \\
\hline & MISC & REV 27 & SEQ 001 \\
\hline
\end{tabular}

In level flight (constant Ps), the IAS is constant and the pitot condition may go undetected.
In climb, the IAS increases (with decreasing Ps), possibly resulting in the activation of the overspeed warning.
In descent, the IAS decreases (with increasing Ps).

Loss of pitot probe heating :

In case of loss of pitot probe heating, the IAS upset is identical to the IAS behavior in severe icing conditions (with drain holes free or blocked) but, in this case, the upset lasts as long as icing conditions exist.

\section*{Volcanic ash, insects, leaf clips, dust.....}

In case of pitot probe obstruction by volcanic ash, dust, insects or leaf clips, the Pt may be trapped (i.e. remains constant) or may drop towards the ambient static pressure Ps.
The IAS upset depends upon the behavior of the sensed Pt and on the flight phase.

\section*{STATIC PORTS OBSTRUCTION}
- Static ports enroute icing is very unlikely.
- Static ports obstruction is usually present on the ground (as the result of contamination) or because of protective covers being left in place.
- During the takeoff roll, the IAS indication is normal.
- After lift-off, the static pressure is trapped and remains frozen at the airfield elevation :
- The indicated altitude remains also equal to the airfield elevation,
- The IAS decreases as the Pt decreases with increasing altitude (at constant actual air speed).
- In case of accumulated water in static ports tubbing, the water freezes when reaching freezing level, resulting in an altitude and IAS behavior similar to that described hereabove.

\section*{COCKPIT INDICATIONS}
- Only thefollowing cockpitinformation and their correlation are available for the recognition of an unreliable airspeed indication :
- Main and standby IAS,
- Main and standby altimeters,
- Overspeed warning,
- Stall warning and stick-shaker activation.
- The stall warning and the stick-shaker activation are solely based on defined angle-of-attack thresholds.

The activation of these warning is therefore not linked in any manner to the pitot-static system.
The activation of the Stall Warning and Stick Shaker shall be trusted at all times.
Conversely, the overspeed warning may be untimely activated in case of unreliable airspeed indication.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05 .80} \\
\hline & & PAGE & \\
\hline & MISC & REV 28 & SEO 001 \\
\hline
\end{tabular}

\section*{RECOGNITION OF AN UNRELIABLE AIRSPEED}
- Detecting an unreliable airspeed indication presents two main difficulties :
- Allairspeed indications may be consistent but equally unreliable,
- Indications may differ but attempting to assess the correct indication may be hazardous.
- The following aspects are important contributors to the timely detection of an unreliable airspeed condition :
- Instrument scanning (as adapted as a function of the flight phase),
- Awareness of the IAS / pitch attitude / thrust / climb rate relationships.
- Any one of the following observations can be considered as an indication of an unreliable airspeed :
- Abnormally large IAS fluctuations,
- CAPT-to-F/O IAS discrepancy,
- IAS-to-target speed discrepancy,
- AbnormalA/THR or AP/FD behavior, when respectively in SPD mode,
- IAS increasing with large nose-up pitch attitude,
- IAS decreasing with large nose down pitch attitude,
- Constant indicatedaltitude while climbing or descending,
- Positive or negative vertical speed indication while in level flight,
- Unanticipated stall warning and stick shaker activation
- Unexpected and undue overspeed warning (e.g. in climb with high nose-up pitch attitude,
- Simultaneous activation of overspeed warning and stall warning / stick shaker.

\section*{PROCEDURE - EXPANDED INFORMATION}
- The procedure for flight with UNRELIABLE AIRSPEED, as provided in the QRH 13.01, 13.02 and 13.03, consists of three successive phases as follows :

\section*{- Memory Items :}

The Memory Items enables the PF to ensure the short-term control of the flight path while the PNF is reaching over for the QRH and for the UNRELIABLE AIRSPEED procedure.
The Memory Items have been developed based on extensive simulator testing in order to provide a, typically, 20 seconds period without accelerating beyond Vmax or decelerating below VLS.

The Memory Items are only concerned with maintaining or acquiring a given flight path (climb, level flight or descent).

\section*{- Read-and-do Items :}

The read-and-do items complement the initial memory actions and provide data for the adjustment of the pitch attitude and thrust.
The following aircraft systems may also be affected by the airspeed indication upset, should any abnormal behavior be observed or suspected, the affected system must be selected OFF and the associated ECAM or QRH procedure must be applied :
- Pitch Feel,
- Rudder Travel,
- Yaw Damper,
- Pitch Trim,
- AP/FD and A/THR, when engaged in SPD mode.

The TRP thrust limit computation may also be affected.
Setting 100 \% N1 (GE engines) / 90 \% N1 (PW engines) provides a thrust setting close to the maximum CL rating, for all climb phases.

Note 1: If the baro altitude indication is unreliable, the following alternate altitude indications can be used:
- Radio altitude (when below 2500 ft RA). The use of RA reading implies an awareness of the elevation and profile of the terrain being overflown.
- CABALT, after selecting the CABINPRESS MAN mode and selecting the V/S CTL switch to UP (for opening the outflow valves).

Note 2: If the landing runway is ILS equipped, a coupled ILS approach can be performed but with manual thrust setting.

Pitch / N1 data :
The QRH provides pitch attitude and N1 data for : - level flight (cruise, holding, approach), . slats / flaps configuration setup and landing.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10} \\
\hline & MISC & REV 31 & SEQ 070 \\
\hline
\end{tabular}
- During the slats / flaps configuration setup (which should be anticipated and performed in level flight), in order to transition from one configuration to the next one, the following deceleration technique must be applied.
Starting from a stabilized configuration (given configuration, pitch attitude and N1):
- select the next configuration,
- maintain the altitude (initially the pitch attitude will be lower than the initial pitch attitude prior to changing the configuration),
increase progressively the pitch attitude to the next tabulated target (in order to maintain the altitude while the aircraft decelerates),
- when the pitch attitude is close to reach the next target, set the next tabulated N1 target.
- Repeat the above sequence for each slats / flaps configuration change.
- Extend the landing gear only when intercepting the Glide Slope or when reaching the Visual Descent Point, as applicable.
- Select flaps 40 as soon as the landing gear is down locked.
- Set the target N1 for the final approach and maintain the desired flight path angle (or follow the FD bars, if an ILS approach is available).

\section*{ADDITIONAL INFORMATION}
- If the loss of airspeed indication is the result of a radome burst, the target N1 must be increased by 10 \% N1.
- Due to the increased N1, the fuel consumption is increased by approximately \(30 \%\).
- In case of engine-out condition, the tabulated N1 must be increased by \(20 \%\) N1 (this increment is valid for all flight phases and configurations).

ABNORMAL PROCEDURES
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{2.05 .80} \\
\hline \multicolumn{2}{|c|}{ PAGE 11} & \\
\hline \multicolumn{2}{|c|}{ REV 31} & SEO 070 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & \multicolumn{2}{|l|}{PAGE 12} \\
\hline & MISC & REV 33 & SEQ 100 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline COCKPIT DOOR FAULT \\
\hline CKPT DOOR CONT PANEL СHECK \\
\hline
\end{tabular}
- If at least one STRIKE status light is illuminated :
- Select and maintain the toggle switch to UNLOCK position on the COCKPIT DOOR control panel ;
- Fully open the door ;
- Release the toggle switch to NORM position ;
- Close the door ;
- If two or more STRIKE status lights are illuminated :

The cockpit door is no more intrusion-proof.
- If the two CHAN status lights are illuminated :

Automatic latch release is unavailable in case of rapid cockpit decompression.
- If no status light on the CKPT DOOR CONT panel is illuminated :
The CDLS control unit is faulty ; therefore, the cockpit door might unlock automatically. If it does not, consider using the mechanical override system to unlock the door.

NOTE: In case of a DC NORM BUS fault, no FAULT indication appears on the overhead COCKPIT DOOR pane/. The Cockpit Door Locking System is no more electrically-supplied, and is inoperative. Then the reinforced cockpit door is unlocked and can be opened from the cabin.

\section*{COCKPIT DOOR FAULT}

\section*{Indications:}

COCKPIT DOOR FAULT light

The CKPT DOOR CONT panel is used to identify the faulty CDLS item, and to verify the status of the pressure sensors and the three electrical latches (referred too as strikes).
If the COCKPIT DOOR FAULT light, and one or more of the associated status lights come on, then, one or more of the cockpit door's electric-locking latches (those corresponding to the status light(s) that are on) may be jammed. If this situation lasts longer than 5 to 15 minutes, the internal thermal fuse of the electric-locking latches will trigger due to the overheating of the unit.
If only one STRIKE status light is on, the cockpit door is still intrusion-proof.
If two STRIKE status lights are on (i.e. one electric-locking latch remains operational), the cockpit door may still be locked, but will no longer meet intrusion requirements.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & \multicolumn{2}{|l|}{PAGE 13} \\
\hline & MISC & REV 33 & SEO 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline SUSPECTED STUCK PTT IN TRANSMIT POSITION \\
\hline PTT selector (affected) RELEASE \\
- If unsuccessful \\
ACP affected channel DESELECT \\
ACP (affected side) . . . USE IN RECEPTION ONLY \\
\hline
\end{tabular}

If any Push To Talk (PTT) transmission selector (control Wheels INT/RAD switch, hand mike selector, or ACP PTT switch) is jammed in the transmit position, try to release it in order to stop the transmit mode (communication can be received on the selected channel).
If unsuccessful, deselect the identified failed VHF/HF transmission keys on the associated Audio Control Panel (ACP) to neutralize the onside ACP. This ACP should only be used in reception mode, the associated PTT transmission selector must not be used.
Note : In this case, the ACP of the unaffected side may be used to recover the deselected VHF/HF channel.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.80} \\
\hline & & \multicolumn{2}{|l|}{PAGE 14} \\
\hline & & REV 33 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline AFTER TAILSTRIKE \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
LAND ASAP \\
MAN PRESS . ON V/S CTL \(\qquad\) FULL UP \\
If immediate return is not possible \\
MAX FL \\
100 or MSA \\
Refer to FLIGBT WITHOUT CABIN PRESSURIZATION (FCOM 2.18.20) \\
Note : For the comfort of the people on board, consider \\
- Climb at a rate of about 500 feet/minute \\
- descent at a rate of about 300 feet/minute, except for the final approach, which must be performed normally. \\
Notify ATC of the aircraft rate of climb.
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{AFTER TAILSTRIKE}
- Observation/confirmation of tailstrike may be obtained from the cabin crew, ATC or any other source available.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.90} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & ADVISORY & REV 28 & SEC 100 \\
\hline
\end{tabular}

R
\begin{tabular}{|c|c|c|}
\hline SYSTEM & CONDITION & RECOMMENDED ACTION \\
\hline \multirow[t]{2}{*}{AIR BLEED} & Pack LO flow indication & Compare pack 1 and 2 Turbine Inlet Temperatures and Pack Discharge Temperatures: if respective temperatures do not differ by more than \(10^{\circ} \mathrm{C}\), ignore LO flow indication \\
\hline & TURBINE INLET TEMP
\[
\geqslant 95^{\circ} \mathrm{C} \text { to } \leqslant 120^{\circ} \mathrm{C}
\] & PACK VALVE. (for a cooling period) \\
\hline APU & EGT \(\geqslant 540^{\circ} \mathrm{C}\) & \\
\hline \multirow[t]{3}{*}{CAB PRESS} & CAB DIFF PRESS \(\geqslant 8.6\) PSI & \begin{tabular}{l}
In level flight : \\
Other CABIN PRESS SYS. . . .SELECT \\
In Climb : \\
RATE LIM SEL. MAX \\
If required : \\
AIRCRAFT V/S REDUCE
\end{tabular} \\
\hline & \begin{tabular}{l}
CAB VERTICAL SPEED \\
\(\mathrm{V} / \mathrm{S} \geqslant \mathrm{V} / \mathrm{S}\) selected \(+50 \%\)
\end{tabular} & Other CABIN PRESS SYS. SELECT \\
\hline & FWD and AFT OUTFLOW VALVE position difference \(>40 \%\) & Other CABIN PRESS SYS. SELECT \\
\hline ELEC - AC & IDG Outlet Oil Temp \(\geqslant 142^{\circ} \mathrm{C}\) & \begin{tabular}{l}
Reduce electrical load, if possible (GALLEY OFF or GENOFF) \\
Observe OIL TEMP evolution. \\
If required, restore load when temperature has dropped. \\
Restrict use of generator to short duration, if temperature rises again excessively. \\
Note : - IfIDG is connected, reduced power setting may increase the OIL TEMP due to the decreased fuel flowandcorrespondingheatexchange across the fuel/oil heatexchanger : \\
- IfIDG DISC, this advisory may be activated due to : \\
- low cooling effect \\
- highnacelletemperatureaffecting IDG temperature bulb
\end{tabular} \\
\hline ELEC - DC & TR Current \(\leqslant 6 \mathrm{~A}\) & No crew action required. \\
\hline FUEL & Fuel imbalance in wing tanks: (INR + OUTR TK) \(>3000 \mathrm{~kg}(6700 \mathrm{lb})\) & FUEL management.CHECK
If FUEL LEAK suspected :
PROC : FUEL LEAK (7.02) . . . APPLY \\
\hline FLT CTL & SPLRS Extended at WHEEL SPD
\(\gg 0 \mathrm{KT}\)
\[
>70 \mathrm{KT}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.90} \\
\hline & & PAGE & \\
\hline & ADVISORY & REV 32 & SEO 170 \\
\hline
\end{tabular}

R
\begin{tabular}{|c|c|c|}
\hline SYSTEM & CONDITION & RECOMMENDED ACTION \\
\hline \multirow[t]{6}{*}{ENGINE} & OIL TEMP \(\geqslant 163^{\circ} \mathrm{C}\) & \begin{tabular}{l}
- Refer to ENG OIL TEMP HI procedure. \\
- Monitor OIL PRESS, OIL QTY and other engine parameters for associated abnormal indication (s), such as shift, fluctuation, mismatch.
\end{tabular} \\
\hline & OIL TEMP \(\leqslant 50^{\circ} \mathrm{C}\) & - Refer to ENG OIL TEMP LO procedure \\
\hline & OIL PRESS \(\leqslant 75 \mathrm{PSI}\) & \begin{tabular}{l}
- If the OIL LO PRESS local warning light and associated ENG OIL LO PR ECAM procedure are not activated, continue normal engine operation (an oil pressure transmitter defect may be suspected). \\
- Monitor the OIL PRESS and other engine parameters, particularly the OIL TEMP, OIL QTY and OIL FILTER CLOG light. \\
- Reduce power setting, as practical, if OIL TEMP is not in normal range.
\end{tabular} \\
\hline & OIL QTY \(\leqslant 4\) qt & \begin{tabular}{l}
- Monitor OIL PRESS, OIL TEMP and other engine parameters. \\
- If OIL QTY is low at high power setting, expect oil level to increase after power reduction (oil gulping effect). \\
- Only if the low OIL QTY is associated with a fluctuating or decreasing OIL PRESS, a precautionary engine shutdown may be considered.
\end{tabular} \\
\hline & OIL DELTA TEMP \(\geqslant 44^{\circ} \mathrm{C}\) & - Record maximum differential oil temperature for maintenance purposes \\
\hline & NAC TEMP \(\geqslant 230^{\circ} \mathrm{C}\) & \begin{tabular}{l}
- Monitor engine parameters and cross-check with other engine parameters. \\
- Bleed air leakage has usually a short term effect on EGT, N2 and F/F (bleed air extraction effect) and a longer term effect on EGT and OIL TEMP (increased temperature exposure). \\
- Conditions permitting, the following may be considered: \\
- Checking NAC TEMP response to BLEED VALVE closure, \\
- Checking NAC TEMP response to thrust level reduction, \\
- If NAC TEMP drop confirms the bleed air leakage condition and all engine parameters are normal, engine operation can be continued, as follows (at pilot's discretion) : \\
- In normal configuration, while monitoring NAC TEMP and other engine parameters, \\
- With BLEED VALVE closed (refer to ENG BLEED VALVE FAULT procedure), \\
- At reduced thrust level. \\
- Only if NAC TEMP remains high in conjunction with abnormal engine indication, a precautionary engine shutdown may be considered, conditions permitting.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.90} \\
\hline & & PAGE & \\
\hline & ADVISORY & REV 28 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline SYSTEM & CONDITION & RECOMMENDED ACTION \\
\hline ENGINE & \begin{tabular}{l}
VIBRATION \\
\((\mathrm{N} 1) \geqslant 3\) units \\
\((\mathrm{N} 2) \geqslant 5\) units
\end{tabular} & \begin{tabular}{l}
- Check engine parameters and cross-check with other engine. \\
- Validate VIB level by checking for : \\
- VIB level response to throttle lever movement, \\
- engine rumbling noise (N1 VIB), \\
- aircraft structure vibration (N1 VIB), \\
- engine parameters shift or mismatch (N2 VIB). \\
- If engine parameters normal, continue engine operation at normal or reduced thrust level, at pilot's discretion. \\
- Only if engine parameters and/or behaviour is abnormal, a precautionary engine shutdown may be considered, conditions permitting. \\
- If icing conditions exist, N1 vibrations may be due to fan blades and/or spinner icing. \\
Select IGNITION on CONT RELIGHT and increase thrust on affected engine with power setting compatible with flight phase (70 \% N1 minimum). Resume normal operation when VIB level normal.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ABNORMAL PROCEDURES} & \multicolumn{2}{|r|}{2.05.90} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & ADVISORY & REV 28 & SEQ 001 \\
\hline
\end{tabular}

\section*{LEFT BLANK INTENTIONALLY}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
CONTENTS} & \multicolumn{3}{|c|}{2.06.00} \\
\hline & & \multicolumn{2}{|l|}{PAGE \(1 / 2\)} & \\
\hline & & REV 04 & SEO & 001 \\
\hline
\end{tabular}
2.06.10 DEFINITIONS 1
2.06.20 CARGO LOADING
General 1
FWD cargo compartment 1
AFT cargo compartment 2
BULK cargo compartment 3
2.06.30 FUEL LOADING
General information 1-2
Refueling procedure 2-3
Overwing filling 3
Use of manual (magnetic) indicators 3 to 6
Defuelling procedure 7
Fuel transfer procedure 7
2.06.40 WEIGHT and BALANCELoad and trim sheet1 to 4
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
DEFINITIONS} & \multicolumn{3}{|c|}{2.06.10} \\
\hline & & \multicolumn{3}{|l|}{PAGE \(1 / 2\)} \\
\hline & & REV 04 & SEO & 001 \\
\hline
\end{tabular}

\section*{1. BASIC WEIGHT}

It is the aircraft weight without any load. This means a weight not including crew members, pantry load, fuel load and traffic load but including the commercial arrangement of the corresponding version and the not expendable fuel.

\section*{2. DRY OPERATING WEIGHT}

It is the weight of the aircraft in operating configuration. It is obtained by addition of the BASIC WEIGHT, crew members and pantry load.

\section*{3. TAKE-OFF FUEL}

It is the weight of the inboard fuel at take-off.

\section*{4. OPERATING WEIGHT}

It is the weight obtained by addition of the DRY OPERATING WEIGHT and the TAKE-OFF FUEL.

\section*{5. TOTAL TRAFFIC LOAD}

It is the weight of the payload including cargo loads, passengers and passengers bags.

\section*{6. ZERO FUEL WEIGHT}

It is the weight obtained by addition of the TOTAL TRAFFIC LOAD and the DRY OPERATING WEIGHT.

\section*{7. TAKE-OFF WEIGHT}

It is the weight at take-off. It is equal to the addition of the ZERO FUEL WEIGHT and TAKE-OFF FUEL.

\section*{8. TRIP FUEL}

It is the weight of the fuel necessary to cover the normal leg without reserves.

\section*{9. LANDING WEIGHT}

It is the weight at landing. It is equal to TAKE-OFF WEIGHT minus TRIP FUEL.

\section*{10. REFERENCE DATA :}

Datum line STA 0 (\(26.67 \mathrm{~m}(87.50 \mathrm{ft})\) forward of \(25 \%\) MAC
Leading edge of MAC STA \(25.2132 \mathrm{~m}(82.72 \mathrm{ft})\)
Length of MAC 5.8287 m (19.124 ft)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & REV 05 & SEO 001 \\
\hline
\end{tabular}

\section*{1. GENERAL}

The cargo is loaded in three underfloor cargo holds designated FWD, AFT and BULK, and designed category C as defined by FAR.
Doors for the forward and aft cargo hold are hydraulically powered. The bulk cargo door is manually operated from outside or inside the aircraft.

\section*{2. FWD CARGO COMPARTMENT}

The FWD cargo is provided with a semi automatic loading system as is designed to carry containers and pallets. It is prohibited to carry bulk freight in this cargo. FWD cargo is divided in 2 zones (1 and 2).

R
R
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{ MAX CONTAINER WEIGHT } \\
\hline IATA V3 & IATA V1 & IATA W3 \\
\hline 1587 kg & 1587 kg & 3175 kg \\
\((3500 \mathrm{lb})\) & \((3500 \mathrm{lb})\) & \((7000 \mathrm{lb})\) \\
\hline
\end{tabular}

R
R

R
R
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ MAX PALLET WEIGHT } \\
\hline IATA A2 \((88 \times 125 \mathrm{in})\) & IATA W2 \((60.4 \times 125 \mathrm{in})\) \\
\hline 4627 kg & 3175 kg \\
\((10200 \mathrm{lb})\) & \((7000 \mathrm{lb})\) \\
\hline
\end{tabular}

R MAXIMUM CUMULATIVE LOAD (1+2): 12700 kg
R (28 000 lbs)
Non certified containers are limited to 1284 kg (2830 lb) for half size containers and to 2568 kg (5660 lb) for full size containers.

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
CARGO LOADING} & \multicolumn{2}{|r|}{2.06 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 05 & SEQ 001 \\
\hline
\end{tabular}

\section*{3. AFT CARGO COMPARTMENT}

The AFT cargo is provided with a semi automatic loading system and is designed to carry containers. It is prohibited to carry bulk freight in this cargo.

Non certified containers have the same limitations.

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
cher} & \multicolumn{2}{|r|}{2.06.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & & REV 07 & SEQ 001 \\
\hline
\end{tabular}

\section*{4. BULK CARGO COMPARTMENT}

This compartment is provided for bulk freight loading and the transportation of livestock.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Zone & A & B1 & B2 & \(C\) & TOTAL \\
\hline \begin{tabular}{c}
BULK \\
CARGO
\end{tabular} & \begin{tabular}{c}
MAX \\
WEIGHT
\end{tabular} & \begin{tabular}{c}
1840 kg \\
\((4055 \mathrm{lb})\)
\end{tabular} & \begin{tabular}{c}
656 kg \\
\((1445 \mathrm{lb})\)
\end{tabular} & \begin{tabular}{c}
274 kg \\
\((600 \mathrm{lb})\)
\end{tabular} & \begin{tabular}{c}
door \\
area
\end{tabular} & \begin{tabular}{c}
2770 kg \\
\((6100 \mathrm{lb})\)
\end{tabular} \\
\hline \multicolumn{6}{|c|}{ Max distributed unit load on the floor: \(732 \mathrm{~kg} / \mathrm{m} 2(150 \mathrm{lb} / \mathrm{ft} 2)\)} \\
Max local load on the floor : \(272 \mathrm{~kg} / \mathrm{ft} 2(600 \mathrm{lb})\)
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
CARGO LOADING} & \multicolumn{2}{|r|}{2.06.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 29 & SEO 001 \\
\hline
\end{tabular}

\section*{LEFT INTENTIONALLY BLANK}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
FUEL LOADING} & \multicolumn{2}{|r|}{2.06.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & REV 33 & SEQ 040 \\
\hline
\end{tabular}

\section*{1 - GENERAL INFORMATION}

A - MAXIMUM TOTAL FUEL CAPACITY :
CUMULATIVE FUEL CAPACITY
\begin{tabular}{|l|c|c|}
\hline & LITERS & US GAL \\
\hline OUTER TANKS & 7400 & 1955 \\
\hline INNER TANKS & 27900 & 7371 \\
\hline CENTER TANK & 19640 & 5189 \\
\hline TRIM TANK & 6150 & 1625 \\
\hline TOTAL & 61090 & 16140 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|c|}
\hline & LITERS & US GAL \\
\hline INN + OUT & 35300 & 9326 \\
\hline CTR + INN + OUT & 54940 & 14515 \\
\hline ALL TANKS & 61090 & 16140 \\
\hline
\end{tabular}

\section*{B - MAXIMUM FUEL WEIGHT :}

C - REFUEL/DEFUEL CONTROL PANEL

- During automatic refueling all tanks receive fuel simultaneously.
Tanks become full in the order outers, inners center and trim. For manual refueling the tanks must be filled : outers, inners, center and trim.
- With the tanks filled to the maximum nominal total fuel capacity, there is sufficient space in each tank to allow a \(2 \%\) thermal expansion of fuel without spillage through the vent system.
- The vent tank in each wing has a volume of 190 liters (50 US GAL). The vent tank in trim tank has a volume of 120 liters. (32 US GAL).
- If necessary during refueling procedures, close relevantrefuel/defuel valves(s) to isolate associated tank(s) as required.

\section*{2 - REFUELING PROCEDURE}
- Position access platform for access to refuel/defuel couplings. Observe the safety precautions and make certain that tanker and aircraft are properly grounded. Connect tanker-to-aircraft grounding cable to grounding point on main landing gear.

CAUTION
Do not use fuel pump 1 of left inner tank or/and fuel pump 2 of right inner tank, because of the risk of overfueling the inner tank through the refueling drain valve. If a pump is required use pump 2 of left inner tank or pump 1 of right inner tank.
On overhead panel, check TRIM TK MODE p/b is in AUTO position. Selection of TRIM TK MODE p/b in FWD position prevents refueling of TRIM TK and may lead to fuel spillage.

\section*{FUELING PANEL}
- Set PWR SUPPLY switch to BAT if aircraft electrical network is to be powered by aircraft on-board batteries, otherwise check that NORM position is selected.
- Press TEST pb and check:
. six HIGH LEVEL plus three OVERFLOW lights come on,
- within 2 seconds all 8's are displayed on FUEL OTY, PRESELECTED and ACTUAL indicators.
- Check TRANSF VALVE switch is at CLOSED position and guarded. OPEN light is off.

\section*{AUTOMATIC REFUELING}
- Check REFUEL/DEFUEL VALVE switch are at NORMAL position and guarded
- Pull preselector knob and rotate to set required fuel quantity
- Push preselector knob

Note: Whenpreselectorknob is pulled ACTUAL contents displaygoes off
- Place MODE SELECTOR switch in REFUEL position.
- Start refueling.

Note : No further action is necessary until refueling is completed.

\section*{MANUAL REFUELING}

Raise REFUEL/DEFUEL VALVE switch guards and place all switches in SHUT position
Place MODE SELECTOR switch in REFUEL position

Place appropriate tank REFUEL/DEFUEL VALVES switch(es) in OPEN position. Start refueling

Monitor individual tank contents on FUEL QTY indicator and select appropriate tank REFUEL/DEFUEL VALVE switch(es) to SHUT as tank contents reach required fuel.

Notes : 1. Totaltime to fillwing tanks is approximately 19 minutes.
2. Total time to fill all the tanks is approximately 27 minutes.
3. As tanks become full, refuel valves will be automatically closed by high level sensors, and appropriate tank H/GH LEVEL light will illuminate.
4. CGCC goes to alternate mode at the end of refueling if aircraft is only electrically powered by batteries or maintenance buses (due to fue) tank calibration sensors not powered during refueling).
5. If any REFUEL/DEFUEL VALVE switch is selected out of NORMAL position during AUTOMATIC refueling, the preselected fuel quantity may not be reached.
6. During manual refueling the TRIM TANK can only be refueled if either 1) both inner tanks are at high levelor 2) the CTR TKREFUEL/DEFUEL VALVE switch is also selected OPEN.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & & REV 36 & SEX 212 \\
\hline
\end{tabular}
- After refueling, check that ACTUAL quantity is within 100 kg (or 220 lbs) of PRESELECTED quantity.
- Place FUEL QTY switch in CTR position and then in TT position and check that disposition of fuel in center and trim tanks is correct.
- Place MODE SELECTOR switch in OFF position and guarded.
- Check/set all REFUEL/DEFUEL VALVE sw in NORM position and guarded.
- If applicable, place PWR SUPPLY sw in NORM position and guarded.

Note: APUStarts or shutdowns are permitted during refuel procedures. If it is necessary to operate the APU, the following limits apply :
1. An APU start is not permitted during a refuel procedure if the APU has failed to startor an automatic shutdown has occurred.
2. An APU shutdown must be completed if a fuel spill has occurred during the refuel procedure.

\section*{3 - OVERWING (GRAVITY) FILLING}

Note : The inner and outer tanks may be gravity filled. The center and trim tanks are replenished by transferring fuel from the wing tanks using the aircraft transfer system.
- Position access platform for access to overwing refueling caps and attach refueling hose grounding cable to grounding connection at overwing refueling cap. Remove overwing refueling cap.
- Commence filling, monitor quantity of fuel delivered on FOl, and observe the HIGH LEVEL indicator lights on refuelling panel.
Stop filling when required fuel level is reached or when HIGH LEVEL indicator light(s) come on.
- Replenish center and trim tanks by transferring fuel from inner tanks. Complete replenishment of inner tanks.

\section*{4 - USE OF MANUAL (MAGNETIC) INDICATORS}

Note : Indicators are disposed as follows :
- Three in each outer tank.
- four in each inner tank.
- one in center tank.
- one in trim tank (used only to check trim tank empty).

- Read and note attitude of aircraft pitch and roll axes on clinometers in main landing gear bay
- Position access platform
- Unlock indicator rod with screwdriver and slowly withdraw rod until magnetic attraction between rodand float magnets is felt.
Note: Do not use force when withdrawing indicator rod as this will disengage float magnet from rod magnet and bring rod down on to mechanical stop.
- Note the graduation on rod which aligns with wing bottom surface.
- Compare reading with fuel Quantity Chart, using fuel specific gravity and aircraft attitude readings noted previously.
- Replace indicator rod and lock with screwdriver.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
FUEL LOADING} & \multicolumn{2}{|r|}{2.06.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3A} \\
\hline & & REV 33 & SEQ 040 \\
\hline
\end{tabular}

\section*{II. Increase in loading flexibility by manual refuelling}

The manual refuelling procedures given hereafter are applicable when the following conditions are met all together :
- Fuel planning does not require total fuel capacity (full trim tank capacity not necessary).
- Fuel planning requires more than 28 tons (both inner tanks full).
- TOCG is outside the TO limit and therefore dispatch is not allowed.

In these conditions, the dispatch can become possible by filling partially the trim tank (even if the center tank is not full). First of all, using trim tank CG correction, determine how much fuel must be filled in trim tank to get the TOCG inside the TO limit.

Then apply one of the two procedures described hereafter:
a) First procedure
- Lift REFUEL/DEFUEL VALVE switch guards and place all switches in SHUT position.
- Place MODE SELECTOR switch in REFUEL position.
- Refuel OUTER and INNER TANKS by selecting corresponding REFUEL/DEFUEL VALVE switches in OPEN position and then in SHUT position when reaching HIGH LEVEL. (HIGH LEVEL light illuminated for both INNER TKs).
- Place CTR and TRIM TK REFUEL/DEFUEL VALVE switches in OPEN position.
- Refuel CTR and TRIM TANKS. When reaching required fuel quantity, set corresponding REFUEL/DEFUEL VALVE switches in SHUT position.
Note: Make sure that at least 500 kg of fuel goes through the cadensicon (Right Inner tank).
b) Second procedure
- Perform the refuelling as usually by selecting the required fuel quantity on the preselector.
- Transfer the required fuel quantity from center tank to trim tank as follow :
- On overhead panel select both CTR TK PUMPS ON and select FUEL X-FEED valve IN LINE.
- On refuel/defuel panel :
- keep MODE selector on REFUEL position
- set TRANSFER VALVE to OPEN position
- raise TRIM TK REFUEL/DEFUEL VALVE switch guard
- set TRIM TK REFUEL/DEFUEL VALVE switch to OPEN
- when reaching required fuel quantity in trim tank, set REFUEL/DEFUEL VALVE switch to SHUT
- set TRANSFER VALVE to CLOSED position
- set MODE selector on OFF position
- set TRIM TK REFUEL/DEFUEL VALVE switch to NORM
- On overhead panel select both CTR TK PUMPS OFF and select FUEL X-FEED valve CROSS-LINE.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06.30} \\
\hline & & PAGE & 4 \\
\hline & fuel loading & REV 04 & SEQ 001 \\
\hline
\end{tabular}

\section*{SECONDARY FUEL GAUGING SYSTEM - MANUAL (MAGNETIC) LEVEL INDICATORS CTR TANK}
FB2.0630.004-AA. 001

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & FUEL LOADING & REV 04 & SEO 001 \\
\hline
\end{tabular}

SECONDARY FUEL GAUGING SYSTEM
- MANUAL (MAGNETIC) LEVEL INDICATORS INNER TANKS

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & FUEL LOADING & REV 04 & SEO 001 \\
\hline
\end{tabular}

SECONDARY FUEL GAUGING SYSTEM
- MANUAL (MAGNETIC) LEVEL INDICATORS OUTER TANKS

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\underbrace{\text { a }}\)} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & fuel loading & REV 36 & SEQ 040 \\
\hline
\end{tabular}

\section*{5 - DEFUELLING PROCEDURE}
- Position platform for access to refuel/defuel couplings. Observe the safety precautions and make certain that tanker and aircraft are properly grounded. Connect tanker-to-aircraft grounding cable to grounding point on main landing gear.
- For suction defuelling set PWR SUPPLY switch to BAT if aircraft electrical network is to be powered by aircraft on board batteries, otherwise check that NORM position is selected.
For defuelling by means of tank pumps, electrical supply by EXT PWR or APU is required.

\section*{DEFUELLING BY MEANS OF SUCTION}
- Check TRANS VALVE is closed, the switch is guarded, OPEN light is off.
- Set the MODE

SELECTOR switch to DEFUEL position.
- SettheREFUEL/DEFUEL VALVE switch of the tank to be defuelled to OPEN position.
- Start defuelling by applying suction.

DEFUELLING BY MEANS OF TANK PUMPS
CAUTION : TRIM TANK MUST BE DEFUELLED BEFORE DEFUELLING OTHER TANKS

\section*{a) Trim tank}
- Set the MODE SELECTOR switch to DEFUEL position. Set the TRIM TK
REFUEL/DEFUEL VALVE sw to OPEN.
On the overhead panel : Set one or two TRIM TK PUMP to NORM.
- Check the pumps of the other tanks are OFF.
Reset the REFUEL/DEFUEL panel to normal configuration.
b) Outer, inner and center tanks.
- CheckREFUEL/DEFUELVALVE switches are in NORMAL position.
- Check the MODE SELECTOR switch is in the OFF position.
- Set the TRANSFER VALVE sw to OPEN position. Check OPEN light is on.
On the overhead panel:
- Set the X-FEED switch to OPEN position (pressed-in, flowbar in line).
- In each tank to be defuelled set one or two PUMPS to NORM.
Checks the pumps of the tanks not to be defuelled are OFF.
Note : For INR tanks use only PUMP 2 ofleft tank and PUMP 1 of right tank.
Note: Switch OFFPUMPS when corresponding tank becomes empty (Fuel qty indications, PUMP FAULT lights, ECAM LO PRESS indication).
- After defuelling, reset overhead FUEL panel and REFUEL/DEFUEL panel to NORMAL configuration.

Note : APU Starts or shutdowns are permitted during defuel procedures. If it is necessary to operate the \(A P U\), the following limits apply :
1. An APU start is not permitted during a defuel procedure if the APU has failed to start or an automatic shutdown has occurred.
2. An APU shutdown must be completed if a fuel spill has occurred during the defuel procedure.

\section*{6 - FUEL TRANSFER PROCEDURE}

On the REFUEL/DEFUEL panel :
a) Transfer from outer, inner or center tanks.
- Set the MODE SELECTOR switch to REFUEL position.
- Set the REFUEL/DEFUEL VALVE switches of the tanks to be filled to OPEN position.
- Set the REFUEL/DEFUEL VALVE switches of the tanks not to be filled to SHUT.
- Set the TRANSF VALVE switch to OPEN. Check the OPEN light is on.
On the overhead FUEL panel :
- Set the X-FEED pb switch to OPEN (pressed in flowbar in line).
- Check the PUMPS of the tanks not to be defuelled are OFF.
- Set one or two PUMPS for each tank to be defuelled ON.
Note: For inner tank defuelling, use only pump 2 of left tank or/and pump 1 of right tank.
b) Transfer from trim tank to center tank.
- Check sufficient space is available in the center tank.

On the overhead FUEL panel :
- Set trim tk Mode pushbutton to Fwd. - Set one or two TRIM TK PUMPS ON.
- Monitor the center Tank Fuel quantity to ensure it is not overfilled.
c) Transfer from trim tank to inner or outer tanks
- Check sufficient space is available in the tank to receive fuel
On the REFUEL/DEFUEL panel
- Set MODE SELECTOR switch to DEFUEL position
- Set the REFUEL/DEFUEL VALVE switches of the tanks to be filled to OPEN.
- Set the REFUEL/DEFUEL VALVE switches of the tanks not to be filled to SHUT.
- Set the TRIM TK REFUEL/DEFUEL VALVE switch to OPEN
On the overhead FUEL Panel :
- Set one or two TRIM TK PUMPS ON.

After fuel transfer, reset overhead FUEL panel and REFUEL/DEFUEL panel to NORMAL configuration, as follows:
- ALL FUEL PUMPS OFF unless required
- TRIM TK MODE . AUTO
- All REFUEL/DEFUEL VALVES . . . Set/Check NORM
- TRANSF. VALVE Set CLOSED and check amber OPEN light off
- FUEL quantity/distribution Check
- REFUEL PANEL . . . check NORMAL configuration and close door.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & FUEL LOADING & REV 23 & SEO 100 \\
\hline
\end{tabular}

\section*{7 - REFUELLING WITH ONE ENGINE RUNNING}
A. Particular requirements
- Obtain airport authorization.
- Refuelling with one engine running is only permitted at such airports where no external ground pneumatic power is available while APU is unserviceable.
- The refuelling system must be fully operational.
- The overwing fuelling is not permitted.
B. Procedure
- Keep the left hand engine (\(\mathrm{n}^{\circ} 1\)) running.
- The aircraft shall be positioned into the wind and at a position where the slope is negligible.
- Parking brakes must be set and pressure checked.
- Passengers must be disembarked. Disembarkation must be done on the right side of the aircraft.
- The airport Fire Department must be alerted to standby at the aircraft during the entire refuelling procedure.
- Position the fuel truck under the extremity of the right hand wing. Its pressure will be limited to 30 psi . The monitoring of the fuel truck shut off valve is performed during all the refuelling.
- Engines may not be started (\(\mathrm{n}^{\circ}\) 2) or shutdown (\(\mathrm{n}^{\circ} 1\)) and no attempt to start the inoperative APU should be made before the refuelling operation has been terminated and all fuelling operation has been performed by the fuelling company.
- Refuelling operation should only be commenced after having ensured that permanent control of the emergency fuel shut off device during the entire fuelling operation is performed by the fuelling company.
- A flight crew member has to monitor from the cockpit all systems and the running engine, for the entire duration of the operation.
- A qualified ground crew member has to be present at the fuelling station to operate the refuel valve switches.
- Filling of fuel tanks shall be discontinued before the HIGH LEVEL DETECTORS are operative, to ensure that spillage does not occur from the vent outlets.
- The following fuel quantities must not be exceeded. Therefore it is necessary to monitor the refuelling and be prepared to close the REFUEL DEFUEL VALVES.

DENSITY (KG/L)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & 0.76 & 0.77 & 0.78 & 0.79 & 0.80 & 0.81 & 0.82 & 0.83 & 0.84 \\
\hline L OUTR (KG) & 2700 & 2740 & 2775 & 2810 & 2845 & 2880 & 2915 & 2950 & 2985 \\
\hline L INR (KG) & 10090 & 10220 & 10355 & 10485 & 10620 & 10750 & 10885 & 11020 & 11150 \\
\hline CTR (KG) & 14195 & 14380 & 14565 & 14755 & 14940 & 15125 & 15315 & 15500 & 15685 \\
\hline R INR (KG) & 10090 & 10220 & 10355 & 10485 & 10620 & 10750 & 10885 & 11020 & 11150 \\
\hline R OUTR (KG) & 2700 & 2740 & 2775 & 2810 & 2845 & 2880 & 2915 & 2950 & 2985 \\
\hline TRIM TK (KG) & 4370 & 4425 & 4485 & 4540 & 4600 & 4655 & 4715 & 4770 & 4830 \\
\hline ACT 1 or 2 (IF INSTALLED) & 5035 & 5100 & 5165 & 5230 & 5300 & 5365 & 5430 & 5495 & 5565 \\
\hline
\end{tabular}

\section*{LOAD and TRIM SHEET}

This chart allows the determination of the CG location (MAC) of the aircraft function of dry operating weight, pantry adjustments, cargo load, passengers and fuel on board.
To allow dispatch of the aircraft, it must be checked that ZFCG and TOCG are within corresponding limits.
The operational limits shown on the load and trim sheet are more restrictive than the certified limits because error margins have been taken into account.
The load and trim sheet needs to be updated when :
- a modification which changes the aircraft certified limit is included.
or
- a modification (cabin layout, cargo arrangement) which influences the operational limist is made.
It is the airline responsibility to define a load and trim sheet and to keep it to date.

\section*{UTILIZATION}
1) Example 1 (see 2.06.40, page 3).

DRY OPERATING WEIGHT 83000 kg and H-ARM \(=26.7\)
DEVIATION OR ADJUSTMENTS :
+200 kg in the FWD galley (zone D)
+100 kg in the AFT galley (zone F)
CARGO
8000 kg (2000 kg in CARGO \(1,2000 \mathrm{~kg}\) in CARGO 2
2000 kg in CARGO 4, 2000 kg in CARGO 5)
PASSENGERS
160 PAX (75 kg)
ZERO FUEL WEIGHT
103300 kg
FUEL
38000 kg
TOTAL WEIGHT
141300 kg
a) Carry forward the master data in 1
b) Compute the DRY OPER. WT INDEX using the corresponding formulae and carry forward it in 2.
c) Apply index corrections according to weight deviations entered in 3 and write index correction in 5.
\[
\begin{aligned}
& 200 \mathrm{~kg} \text { in zone D : }-0.8 \times 2=-1.6 \\
& 100 \mathrm{~kg} \text { in zone } \mathrm{F}:+0.7 \times 1=+0.7 \\
& \text { TOTAL }
\end{aligned}
\]
d) Compute corrected index : 51.23-0.9 = 50.33 and enter corresponding figure in 6.
e) Enter index scale with corrected index in 7 and apply corresponding index variations according to CARGO and passenger loading through 8 scales and draw from the final point (cabin C) a vertical line down to the zero fuel weight determined on table 9 .
f) Check that the intersection is within the corresponding ZFW limit. If not it is necessary to rearrange cargo loading. g) With table 10 determine fuel index correction:-9 and apply corresponding correction on scale 11 to determine intersection of TAKE OFF weight line and take off weight index.
Check that the intersection is within the corresponding T.O limit. Read corresponding CG \(\rightarrow 22.0 \%\).
h) On scale 12 enter with take off CG and determine corresponding T/O TRIM SETTING \(=2\) UP.
Notes: 1. The ZFW and T.O limits take into account : . seating variations

\section*{. in flight movements}
. asymmetric loading on pallets/containers
. Unit Load Device (ULD) variations
. fuel consumption
landing gear and flap movement
2. For fuel economy it is recommended to distribute the loads in order to obtain a CG position as rear as possible. 2) Example 2
(see 2.06.40 pages 5 and 6).
2) Example 2 (see 2.06 .40 pages 5 and 6)

Same conditions as for example 1 except :
Cargo 4 empty Cargo 5: 1000 kg
Fuel : 42000 kg
Total weight : 142300 kg
Proceed as described in example 1 up to take off weight determination.
In this example, the take off weight is out of the T.O limit. It is possible to get the TOCG inside the T.O limit (and therefore to allow the dispatch) by filling partially the trim tank.
a) Refuelling already performed (see 2.06 .40 page 5) Determine the minimum fuel quantity in trim tank to get the TOCG inside the operational limit : 600 kg .
Apply a manual refuelling procedure to transfer 600 kg from center tank to trim tank.
Read corresponding CG \(\rightarrow 20.5 \%\).
b) Refuelling not performed (see 2.06.40 page 6)

Apply a manual refuelling procedure to fill the trim tank with 1000 kg of fuel.
Note: Whatever the take off CG is, filling 1000 kg of fuel in the trim tank ensures that the take off CG moves enough rearward to be inside the T.O limit.
Read corresponding CG \(\rightarrow 21.5\) \%
3) Example 3 (see 2.06 .40 page 2 B)

Determination of Fuel Correction Index with Trim Tank Fuel.
a) Required Fuel Weight is 43000 kg

Fuel Density \(=0.79\)
Read from FUEL INDEX TABLE (TRIM TANK ASSUMED EMPTY) Index \(=-15.4\), no fuel inTrim Tank.
But after refuelling, due to systems inaccuracy, wings are full and 300 kg are in fact in Trim Tank.
Read from FUEL INDEX CORRECTION (TRIM TANK NOT EMPTY) Index \(=-12.9\)
So T.O. C.G. should be corrected using this value in the FUEL CORRECTION.
b) Required Fuel Weight is 45000 kg , density \(=0.8\)

Read ASSUMED FUEL WEIGHT IN TRIM TANK \(=1048 \mathrm{~kg}\).
For 1048 kg , FUEL INDEX CORRECTION \(=-5.2\).
But after refuelling, due to systems inaccuracy, wings are full and 1500 kg are in fact in trim tank.
Read from FUEL INDEX CORRECTION, for 1500 kg Index \(=-0.5\)
So T.O. C.G. should be corrected using this value in the FUEL CORRECTION.

\section*{CAUTION}

If the trim sheet on 2.06.40 page 2 is not customized to your airline you must not use it for day to day operation as margins and load C.G. vary with cabin and cargo layout.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & WEIGHT and BALANCE & REV 33 & SEO 100 \\
\hline
\end{tabular}

> BEFORE USING THIS LOAD AND TRIM SHEET, CHECK THAT IT CORRESPONDS TO THE ACTUAL CONFIGURATION OF THF AIRCRAFT

R Code: 0364
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2B} \\
\hline & WEIGHT and BALANCE & REV 33 & SEQ 100 \\
\hline
\end{tabular}

FUEL INDEX CORRECTION (FOR FUEL WEIGHT GREATER THAN 41000 KG)
Note: This table is valid only when used with the following formulae for the index :
\[
\begin{array}{ll}
\text { or } & I=[(H-A R M-26.6704) \times W / 2000]+K \\
& I=[(C G-25) \times W \times 0.029] / 1000+K
\end{array}
\]
\(W\) in \(\mathrm{kg} \mathrm{H}-A R M\) in meters.

FUEL INDEX TABLE (TRIM TANK ASSUMED EMPTY)

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & & REV 33 & SEQ 100 \\
\hline
\end{tabular}

PURPOSE : DO NOT USE FOR OPERATIONAL PURPOSE.
Code : 0364
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LOADING / FUEL / LOAD and TRIM SHEET
WEIGHT and BALANCE} & \multicolumn{2}{|r|}{2.06.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 29 & SEO 001 \\
\hline
\end{tabular}

THIS PAGE LEFT INTENTIONALLY BLANK
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LOADING / FUEL / LOAD and TRIM SHEET} & \multicolumn{2}{|r|}{2.06 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & WEIGHT and BALANCE & REV 33 & SEO 100 \\
\hline
\end{tabular}

EXAMPLE : DO NOT USE FOR OPERATIONAL PURPOSE
Code : 036
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.06 .40} \\
\hline \multicolumn{2}{|c|}{ PAGE 6} & \\
\hline REV 33 & SEO 100 \\
\hline
\end{tabular}

EXAMPLE : DO NOT USE FOR OPERATIONAL PURPOSE

R Code : 0364
\(\square\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{OPERATING DATA} & \multicolumn{3}{|c|}{2.08.00} \\
\hline & & \multicolumn{3}{|l|}{PAGE 1 / 2} \\
\hline & CONTENTS & REV 20 & SEC & 001 \\
\hline
\end{tabular}
2.08.10 OPERATING DATA Pages
Mach - Z - IAS - TAS - SAT
- TAT 1
International Standard
Atmosphere (ISA) 2
QNH And True Altitude \(\rightarrow\) QFE And Pressure Altitude 3
True \(\quad\) Altitude \(\rightarrow\) Pressure
Altitude (Function of SAT) 4
Conversion Meters \(\rightarrow\) Feet 5
Conversion Feet \(\rightarrow\) Meters 6
Differential PressureVersus Aircraft AltitudeAnd Cabin Altitude7
Conversion QFEmb - IN HG - Press. Alt. FT 8
TAT Versus SAT and Mach Number 9
R Conversion \({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) and \({ }^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{C}\). 10
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{OPERATING DATA} & \multicolumn{2}{|r|}{2.08.10} \\
\hline & & PAGE & \\
\hline & MACH - Z - IAS - TAS - SAT - TAT & REV 04 & SEQ 001 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
OPERATING DATA \\
INTERNATIONAL STANDARD ATMOSPHERE \\
(ISA)
\end{tabular}} & \multicolumn{2}{|r|}{2.08.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 04 & SEO 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ALTITUDE Feet} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TEMP. } \\
& 0^{\circ} \mathrm{C}
\end{aligned}
\]} & \multicolumn{3}{|c|}{PRESSURE} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { PRESSURE } \\
\text { RATIO } \\
\delta: P / P O
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { DENSITY } \\
& \sigma=P / P_{0}
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\sqrt{\text { DENSITY }}\)} & \multirow[t]{2}{*}{SPEED of SOUND (a) \(k t\)} & \multirow[t]{2}{*}{Altitude METRES} \\
\hline & & Mb & P.S.I. & In Hg . & & & & & \\
\hline 45,000 & - 56.5 & 147 & 2.14 & 4.36 & 0.1455 & 0.1936 & 0.440 & 573 & 13,716 \\
\hline 44,000 & - 56.5 & 155 & 2.24 & 4.57 & 0.1527 & 0.2031 & 0.451 & 573 & 13,411 \\
\hline 43,000 & - 56.5 & 162 & 2.35 & 4.79 & 0.1602 & 0.2131 & 0.462 & 573 & 13.106 \\
\hline 42,000 & - 56.5 & 170 & 2.47 & 5.03 & 0.1681 & 0.2236 & 0.473 & 573 & 12.802 \\
\hline 41,000 & - 56.5 & 179 & 2.59 & 5.28 & 0.1764 & 0.2346 & 0.484 & 573 & 12.497 \\
\hline 40,000 & - 56.5 & 188 & 2.72 & 5.54 & 0.1851 & 0.2462 & 0.496 & 573 & 12.192 \\
\hline 39,000 & - 56.5 & 197 & 2.85 & 5.81 & 0.1942 & 0.2583 & 0.508 & 573 & 11.887 \\
\hline 38,000 & - 56.5 & 206 & 2.99 & 6.10 & 0.2038 & 0.2710 & 0.521 & 573 & 11.582 \\
\hline 37,000 & - 56.5 & 217 & 3.14 & 6.40 & 0.2138 & 0.2844 & 0.533 & 573 & 11.278 \\
\hline 36,000 & - 56.3 & 227 & 3.30 & 6.71 & 0.2243 & 0.2981 & 0.546 & 573 & 10.973 \\
\hline 35,000 & - 54.3 & 238 & 3.46 & 7.04 & 0.2353 & 0.3099 & 0.557 & 576 & 10.668 \\
\hline 34,000 & - 52.4 & 250 & 3.63 & 7.38 & 0.2467 & 0.3220 & 0.567 & 579 & 10.363 \\
\hline 33,000 & - 50.4 & 262 & 3.80 & 7.74 & 0.2586 & 0.3345 & 0.578 & 581 & 10.058 \\
\hline 32,000 & - 48.4 & 274 & 3.98 & 8.11 & 0.2709 & 0.3473 & 0.589 & 584 & 9.754 \\
\hline 31,000 & - 46.4 & 287 & 4.17 & 8.49 & 0.2837 & 0.3605 & 0.600 & 586 & 9.449 \\
\hline 30,000 & - 44.4 & 301 & 4.36 & 8.89 & 0.2970 & 0.3741 & 0.611 & 589 & 9.144 \\
\hline 29,000 & - 42.5 & 315 & 4.57 & 9.30 & 0.3107 & 0.3881 & 0.623 & 591 & 8.839 \\
\hline 28,000 & - 40.5 & 329 & 4.78 & 9.73 & 0.3250 & 0.4025 & 0.634 & 594 & 8.534 \\
\hline 27,000 & - 38.5 & 344 & 4.99 & 10.17 & 0.3398 & 0.4173 & 0.646 & 597 & 8.230 \\
\hline 26,000 & - 36.5 & 360 & 5.22 & 10.63 & 0.3552 & 0.4325 & 0.658 & 599 & 7.925 \\
\hline 25,000 & - 34.5 & 376 & 5.45 & 11.10 & 0.3711 & 0.4481 & 0.669 & 602 & 7.620 \\
\hline 24,000 & - 32.5 & 393 & 5.70 & 11.60 & 0.3876 & 0.4642 & 0.681 & 604 & 7.315 \\
\hline 23,000 & - 30.6 & 410 & 5.95 & 12.11 & 0.4046 & 0.4806 & 0.693 & 607 & 7.010 \\
\hline 22,000 & - 28.6 & 428 & 6.21 & 12.64 & 0.4223 & 0.4976 & 0.705 & 609 & 6.706 \\
\hline 21,000 & - 26.6 & 446 & 6.47 & 13.18 & 0.4406 & 0.5150 & 0.718 & 611 & 6.401 \\
\hline 20,000 & - 24.6 & 466 & 6.75 & 13.75 & 0.4595 & 0.5328 & 0.730 & 614 & 6.096 \\
\hline 19,000 & - 22.6 & 485 & 7.04 & 14.34 & 0.4791 & 0.5511 & 0.742 & 616 & 5.791 \\
\hline 18,000 & - 20.7 & 506 & 7.34 & 14.94 & 0.4994 & 0.5699 & 0.755 & 619 & 5.406 \\
\hline 17,000 & - 18.7 & 527 & 7.65 & 15.57 & 0.5203 & 0.5892 & 0.768 & 621 & 5.182 \\
\hline 16,000 & - 16.7 & 549 & 7.97 & 16.22 & 0.5420 & 0.6090 & 0.780 & 624 & 4.877 \\
\hline 15,000 & - 14.7 & 572 & 8.29 & 16.89 & 0.5643 & 0.6292 & 0.793 & 626 & 4.572 \\
\hline 14,000 & - 12.7 & 595 & 8.63 & 17.58 & 0.5875 & 0.6500 & 0.806 & 628 & 4.267 \\
\hline 13,000 & - 10.8 & 619 & 8.99 & 18.29 & 0.6113 & 0.6713 & 0.819 & 631 & 3.962 \\
\hline 12,000 & - 8.8 & 644 & 9.35 & 19.03 & 0.6360 & 0.6932 & 0.833 & 633 & 3.658 \\
\hline 11,000 & - 6.8 & 670 & 9.72 & 19.79 & 0.6614 & 0.7156 & 0.846 & 636 & 3.353 \\
\hline 10,000 & - 4.8 & 697 & 10.10 & 20.58 & 0.6877 & 0.7385 & 0.859 & 638 & 3.048 \\
\hline 9,000 & - 2.8 & 724 & 10.51 & 21.39 & 0.7148 & 0.7620 & 0.873 & 640 & 2.743 \\
\hline 8,000 & - 0.8 & 753 & 10.92 & 22.22 & 0.7428 & 0.7860 & 0.887 & 643 & 2.438 \\
\hline 7,000 & + 1.1 & 782 & 11.34 & 23.09 & 0.7716 & 0.8106 & 0.900 & 645 & 2.134 \\
\hline 6,000 & + 3.1 & 812 & 11.78 & 23.98 & 0.8014 & 0.8359 & 0.914 & 647 & 1.829 \\
\hline 5,000 & \(+5.1\) & 843 & 12.23 & 24.90 & 0.8320 & 0.8617 & 0.928 & 650 & 1.524 \\
\hline 4,000 & \(+7.1\) & 875 & 12.69 & 25.84 & 0.8637 & 0.8881 & 0.942 & 652 & 1.219 \\
\hline 3,000 & + 9.1 & 908 & 13.17 & 26.82 & 0.8962 & 0.9151 & 0.957 & 654 & 914 \\
\hline 2,000 & \(+11.0\) & 942 & 13.67 & 27.82 & 0.9298 & 0.9428 & 0.971 & 656 & 610 \\
\hline 1,000 & + 13,0 & 977 & 14.17 & 28.86 & 0.9644 & 0.9711 & 0.985 & 659 & 305. \\
\hline 0 & + 15.0 & 1013 & 14.70 & 29.92 & 1.0000 & 1.0000 & 1.000 & 661 & 0 \\
\hline - 1.000 & + 17.0 & 1050 & 15.23 & 31.02 & 1.0366 & 1.0295 & 1.015 & 664 & -305 \\
\hline
\end{tabular}
alight crew operating manual
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
OPERATING DATA \\
ALTITUDE TEMPERATURE CORRECTION (FUNCTION OF SAT)
\end{tabular}} & \multicolumn{2}{|r|}{2.08.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 31 & SEQ 001 \\
\hline
\end{tabular}

\section*{FOR HIGH ALTITUDE USE}

R Values to be added by the pilot to minimum promulgated heights/altitude (ft)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{8}{*}{\(R\)
\(R\)
\(R\)} & \multirow[t]{2}{*}{Aerodrome Temperature \({ }^{\circ} \mathrm{C}\)} & \multicolumn{9}{|c|}{Height above the elevation of the altimeter setting source (feet)} \\
\hline & & 200 & 300 & 400 & 500 & 1000 & 2000 & 3000 & 4000 & 5000 \\
\hline & 0 & 20 & 20 & 30 & 30 & 60 & 120 & 170 & 230 & 280 \\
\hline & -10 & 20 & 30 & 40 & 50 & 100 & 200 & 290 & 390 & 490 \\
\hline & -20 & 30 & 50 & 60 & 70 & 140 & 280 & 420 & 570 & 710 \\
\hline & -30 & 40 & 60 & 80 & 100 & 190 & 380 & 570 & 760 & 950 \\
\hline & -40 & 50 & 80 & 100 & 120 & 240 & 480 & 720 & 970 & 1210 \\
\hline & -50 & 60 & 90 & 120 & 150 & 300 & 590 & 890 & 1190 & 1500 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline DATA & RESULT \\
\hline \(2,211 \mathrm{~m}\) & \(2,200 \mathrm{~m}: 7217.8 \mathrm{ft}\) \\
\hline & \(2,211 \mathrm{~m}:+36.09 \mathrm{ft}: 7253.89 \mathrm{ft}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Multiply & by & to get \\
\hline m & 3.281 & ft \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline m & 0 & [1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 0 & 0. & 3.28 & 6.56 & 9.84 & 13.12 & 16.40 & 19.68 & 22.97 & 26.25 & 29.53 \\
\hline 10, & 32.81 & 36.09 & 39.37 & 42.65 & 45.93 & 49.21 & 52.49 & 55.77 & 59.05 & 62.34 \\
\hline 20 & 65.62 & 68.90 & 72.18 & 75.46 & 78.74 & 82.02 & 85.30 & 88.58 & 91.86 & 95.14 \\
\hline 30 & 98.42 & 101.70 & 104.99 & 108.27 & 111.55 & 114.83 & 118.11 & 121.39 & 124.67 & 127.95 \\
\hline 40 & 131.23 & 134.51 & 137.79 & 141.07 & 144.36 & 147.64 & 150.92 & 154.20 & 157.48 & 160.76 \\
\hline 50 & 164.04 & 167.32 & 170.60 & 173.88 & 177.16 & 180.44 & 183.72 & 187.01 & 190.29 & 193.57 \\
\hline 60 & 196.85 & 200.13 & 203.41 & 206.69 & 209.97 & 213.25 & 216.53 & 219.81 & 223.09 & 226.38 \\
\hline 70 & 229.60 & 232.94 & 236.22 & 239.50 & 242.78 & 246.06 & 249.34 & 252.62 & 255.90 & 259.18 \\
\hline 80 & 262.46 & 265.74 & 269.03 & 272.31 & 275.59 & 278.87 & 282.15 & 285.43 & 288.71 & 291:99 \\
\hline 90 & 295.27 & 298.55 & 301.83 & 305.11 & 308.40 & 311.96 & 314.96 & 318.24 & 321.52 & 324.80 \\
\hline & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 \\
\hline 100 & 328.08 & 360.89 & 393.70 & 426.50 & 459.31 & 492.12 & 524.93 & 557.74 & 590.54 & 623.35 \\
\hline 200 & 656.16 & 688.97 & 721.78 & 754.58 & 787.39 & 820.20 & 853.01 & 885.52 & 918.62 & 951.43 \\
\hline 300 & 984.24 & 1017.0 & 1049.9 & 1082.7 & 1115.5 & 1148.3 & 1181.1 & 1213.9 & 1246.7 & 1279.5 \\
\hline 400 & 1312.3 & 1345.1 & 1377.9 & 1410.7 & 1443.6 & 1476.4 & 1509.2 & 1542.0 & 1574.8 & 1607.6 \\
\hline 500 & 1640.4 & 1673.2 & 1706.0 & 1738.8 & 1771.6 & 1804.4 & 1837.2 & 1870.1 & 1902.9 & 1935.7 \\
\hline 600 & 1968.5 & 2001.3 & 2034.1 & 2066.9 & 2099.7 & 2132.5 & 2165.3 & 2198.1 & 2230.9 & 2263.8 \\
\hline 700 & 2296.6 & 2329.4 & 2362.2 & 2395.0 & 2427.8 & 2460.6 & 2493.4 & 2526.2 & 2559.0 & 2591.8 \\
\hline 800 & 2624.6 & 2657.4 & 2690.3 & 2723.1 & 2755.9 & 2788.7 & 2821.5 & 2854.3 & 2887.1 & 2919.9 \\
\hline 900 & 2952.7 & 2985.5 & 3018.3 & 3051.1 & 3084.0 & 3116.8 & 3149.6 & 3182.4 & 3215.2 & 3248.0 \\
\hline & 0 & 100 & F200 & 300 & 400 & 500 & 600 & 700 & 800 & 900 \\
\hline 1000 & 3280.0 & 3608.9 & 3937.0 & 4265.0 & 4593.1 & 4921.2 & 5249.3 & 5577.4 & 5905.4 & 6233.5 \\
\hline 2000, & 6561.6 & 6889.7 & 7217.8 & 7545.8 & 7873.9 & 8202.0 & 8530.1 & 8858.2 & 9186.2 & 9514.3 \\
\hline 3000 & 9842.4 & 10170 & 10499 & 10827 & 11155 & 11483 & 11811 & 12139 & 12467 & 12795 \\
\hline 4000 & 13123 & 13451 & 13779 & 14107 & 14436 & 14764 & 15092 & 15420 & 15748 & 16076 \\
\hline 5000 & 16404 & 16732 & 17060 & 17388 & 17716 & 18044 & 18372 & 18701 & 19029 & 19357 \\
\hline 6000 & 19685 & 20013 & 20341 & 20669 & 20997 & 21325 & 21653 & 21981 & 22309 & 22638 \\
\hline 7000 & 22966 & 23294 & 23622 & 23950 & 24278 & 24606 & 24934 & 25262 & 25590 & 25918 \\
\hline 8000 & 26246 & 26574 & 26903 & 27231 & 27559 & 27887 & 28215 & 28543 & 28871 & 29199 \\
\hline 9000 & 29527 & 29855 & 30183 & 30511 & 30840 & 31168 & 31496 & 31824 & 32152 & 32480 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{OPERATING DATA} & \multicolumn{2}{|r|}{2.08.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & CONVERSION FEET \(\rightarrow\) METERS & REV 04 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline DATA & RESULT \\
\hline & \begin{tabular}{r}
\(400 \mathrm{ft}: 121.92 \mathrm{~m}\) \\
\(3 \mathrm{ft}:+0.91 \mathrm{~m}\)
\end{tabular} \\
\hline 403 ft & \(403 \mathrm{ft}: 122.83 \mathrm{~m}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Multiply & by & to get \\
\hline ft & 0.3048 & m \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
OPERATING DATA \\
DIFFENTIAL PRESSURE VERSUS AIRCRAFT \\
ALIITUDE AND CABIN ALTITUDE
\end{tabular}} & \multicolumn{2}{|r|}{2.08.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & & REV 04 & SEQ 001 \\
\hline
\end{tabular}
\(\qquad\) positive differential pressure limitation 8.40 PSI safety relief max differential pressure 8.85 PSI

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
AIRBCG TRAINING \\
\()^{2310}\) \\
FLIGHT GREW OPERATING MANUAL
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
OPERATING DATA \\
CONVERSION
\end{tabular}} & \multicolumn{2}{|r|}{2.08 .10} \\
\hline & & PAGE & \\
\hline & & REV 04 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { QFE } \\
& \text { mb }
\end{aligned}
\] & in. HG & PRESS. ALT. ft & \[
\begin{gathered}
\mathrm{QFE} \\
\mathrm{mb}
\end{gathered}
\] & in.HG & \[
\begin{gathered}
\text { PRESS } \\
\text { ALT. } \\
\text { ft }
\end{gathered}
\] & \[
\begin{gathered}
Q F E \\
\mathrm{mb}
\end{gathered}
\] & in. HG & \begin{tabular}{l}
PRESS \\
ALT \\
ft
\end{tabular} & \[
\begin{gathered}
\mathrm{QFE} \\
\mathrm{mb}
\end{gathered}
\] & in. HG & PRESS. ALT. ft \\
\hline 1050 & 31.01 & -989 & & & & & & & & & \\
\hline 1048 & 30.95 & -936 & 958 & 28.29 & 1543 & 868 & 25.63 & 4219 & 778 & 22.97 & 7131 \\
\hline 1046 & 30.89 & -883 & 956 & 28.23 & 1601. & 866 & 25.57 & 4281 & 776 & 22.92 & 7199 \\
\hline 1044 & 30.83 & -830 & 954 & 28.17 & 1658 & 864 & 25.51 & 4343 & 774 & 22.86 & 7267 \\
\hline 1042 & 30.77 & -776 & 952 & 28.11 & 1715 & 862 & 25.45 & 4405 & 772 & 22.80 & 7335 \\
\hline 1040 & 30.71 & -723 & 950 & 28.05 & 1773 & 860 & 25.40 & 4468 & 770 & 22.74 & 7402 \\
\hline 1038 & 30.65 & -669 & 948 & 27.99 & 1831 & 858 & 25.34 & 4531 & 768 & 22.68 & 7470 \\
\hline 1036 & 30.59 & -615 & 946 & 27.94 & 1889 & 856 & 25.28 & 4593 & 766 & 22.62 & 7538 \\
\hline 1034 & 30.53 & -562 & 944 & 27.88 & 1947 & 854 & 25.22 & 4656 & 764 & 22.56 & 7607 \\
\hline 1032 & 30.47 & -508 & 942 & 27.82 & 2005 & 852 & 25.16 & 4718 & 762 & 22.50 & 7676 \\
\hline 1030 & 30.42 & -454 & 940 & 27.76 & 2062 & 850 & 25.10 & 4781 & 760 & 22.44 & 7745 \\
\hline 1028 & 30.36 & -400 & 938 & 27.70 & 2120 & 848 & 25.04 & 4844 & 758 & 22.38 & 7815 \\
\hline 1026 & 30.30 & -346 & 936 & 27.64 & 2178 & 846 & 24.98 & 4907 & 756 & 22.32 & 7885 \\
\hline 1024 & 30.24 & -292 & 934 & 27.58 & 2236 & 844 & 24.92 & 4970 & 754 & 22.27 & 7955 \\
\hline 1022 & 30.18 & -238 & 932 & 27.52 & 2294 & 842 & 24.86 & 5033 & 772 & 22.21 & 8025 \\
\hline 1020 & 30.12 & -184 & 930 & 27.46 & 2353 & 840 & 24.81 & 5097 & 770 & 22.15 & 8095 \\
\hline 1018 & 30.06 & -129 & 928 & 27.40 & 2412 & 838 & 24.75 & 5161 & 748 & 22.09 & 8161 \\
\hline 1016 & 30.00 & -74 & 926 & 27.34 & 2471 & 836 & 24.69 & 5225 & 746 & 22.03 & 8231 \\
\hline 1014 & 29.94 & -20 & 924 & 27.29 & 2530 & 834 & 24.63 & 5289 & 744 & 21.97 & 8301 \\
\hline 1012 & 29.88 & 34 & 922 & 27.23 & 2589 & 832 & 24.57 & 5353 & 742 & 21.91 & 8371 \\
\hline 1010 & 29.83 & 89 & 920 & 27.17 & 2647 & 830 & 24.51 & 5417 & 740 & 21.85 & 8442 \\
\hline 1008 & 29.77 & 144 & 918 & 27.11 & 2707 & 828 & 24.45 & 5481 & 738 & 21.79 & 8512 \\
\hline 1006 & 29.71 & 199 & 916 & 27.05 & 2767 & 826 & 24.39 & 5545 & 736 & 21.73 & 8583 \\
\hline 1004 & 29.65 & 254 & 914 & 26.99 & 2826 & 824 & 24.33 & 5610 & 734 & 21.68 & 8654 \\
\hline 1002 & 29.59 & 309 & 912 & 26.93 & 2885 & 822 & 24.27 & 5675 & 732 & 21.62 & 8725 \\
\hline 1000 & 29.53 & 364 & 910 & 26.87 & 2944 & 820 & 24.21 & 5740 & 730 & 21.56 & 8796 \\
\hline 998 & 29.47 & 419 & 908 & 26.81 & 3004 & 818 & 24.16 & 5805 & 728 & 21.50 & 8867 \\
\hline 996 & 29.41 & 475 & 906 & 26.75 & 3064 & 816 & 24.10 & 5870 & 726 & 21.44 & 8939 \\
\hline 994 & 29.35 & 530 & 904 & 26.70 & 3124 & 814 & 24.04 & 5935 & 724 & 21.38 & 9010 \\
\hline 922 & 29.29 & 586 & 902 & 26.64 & 3183 & 812 & 23.98 & 6000 & 722 & 21.32 & 9082 \\
\hline 990 & 29.23 & 641 & 900. & 26.58 & 3243 & 810 & 23.92 & 6065 & 720 & 21.26 & 9154 \\
\hline 988 & 29.18 & 697 & 898 & 26.52 & 3303 & 808 & 23.86 & 6131 & 718 & 21.20 & 9226 \\
\hline 986 & 29.12 & 753 & 896 & 26.46 & 3363 & 806 & 23.80 & 6197 & 716 & 21.14 & 9298 \\
\hline 984 & 29.06 & 809 & 894 & 26.40 & 3424 & 804 & 23.74 & 6263 & 714 & 21.08 & 9371 \\
\hline 982 & 29.00 & 865 & 892 & 26.34 & 3484 & 802 & 23.68 & 6329 & 712 & 21.03 & 9443 \\
\hline 980 & 28.94 & 921 & 890 & 26.28 & 3545 & 800 & 23.62 & 6394 & 710 & 20.97 & 9516 \\
\hline 978 & 28.88 & 977 & 888 & 26.22 & 3606 & 798 & 23.56 & 6461 & 708 & 20.91 & 9589 \\
\hline 976 & 28.82 & 1033 & 886 & 26.16 & 3667 & 796 & 23.51 & 6528 & 706 & 20.85 & 9662 \\
\hline 974 & 28.76 & 1089 & 884 & 26.10 & 3728 & 794 & 23.45 & 6595 & 704 & 20.79 & 9735 \\
\hline 972 & 28.70 & 1145 & 882 & 26.05 & 3789 & 792 & 23.39 & 6661 & 702 & 20.73 & 9809 \\
\hline 970 & 28.64 & 1202 & 880 & 25.99 & 3850 & 790 & 23.33 & 6727 & 700 & 20.67 & 9882 \\
\hline 968 & 28.59 & 1259 & 878 & 25.93 & 3911 & 788 & 23.27 & 6794 & 698 & 20.61 & 9956 \\
\hline Y66 & 28.53 & 1316 & 876 & 25.87 & 3973 & 786 & 23.21 & 6861 & 696 & 20.55 & 10030 \\
\hline 964 & 28.47 & 1373 & 874 & 25.81 & 4034 & 784 & 23.15 & 6928 & 694 & 20.49 & 10104 \\
\hline 962 & 28.41 & 1430 & 872 & 25.75 & 4096 & 782 & 23.09 & 6995 & 692 & 20.43 & 10179 \\
\hline 960 & 28.35 & 1486 & 870 & 25.69 & 4157 & 780 & 23.03 & 7063 & 690 & 20.38 & 10253 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{OPERATING DATA} & \multicolumn{2}{|r|}{2.08 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10} \\
\hline & CONVERSION \({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) and \({ }^{\circ} \mathrm{F} /{ }^{\circ} \mathrm{C}\) & REV 20 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{ENTER} & \multicolumn{3}{|c|}{ENTER} & \multicolumn{3}{|c|}{ENTER} \\
\hline \({ }^{\circ} \mathrm{C}\) & \(\leftarrow{ }^{\circ} \mathrm{F}\) or \({ }^{\circ} \mathrm{C} \rightarrow\) & \({ }^{\circ} \mathrm{F}\) & \({ }^{\circ} \mathrm{C}\) & \(\leftarrow{ }^{\circ}{ }^{\circ}\) or \({ }^{\circ} \mathrm{C} \rightarrow\) & \({ }^{\circ} \mathrm{F}\) & \({ }^{\circ} \mathrm{C}\) & \(\leftarrow{ }^{\circ}{ }^{\text {or }}{ }^{\circ} \mathrm{C} \rightarrow\) & \({ }^{\circ} \mathrm{F}\) \\
\hline -60 & -76 & - 104.8 & - 26.11 & - 15 & + 5 & 7.78 & 46 & 114.8 \\
\hline - 59.44 & - 75 & - 103 & - 25.55 & - 14 & + 6.8 & 8.33 & 47 & 116.6 \\
\hline - 58.59 & - 74 & - 101.2 & - 25 & - 13 & + 8.6 & 8.89 & 48 & 118.4 \\
\hline - 58.33 & - 73 & - 99.4 & - 24.44 & - 12 & +10.4 & 9.44 & 49 & 120.2 \\
\hline - 57.78 & - 72 & - 97.6 & - 23.89 & - 11 & +12.2 & 10.0 & 50 & 122 \\
\hline - 57.22 & - 71 & - 95.8 & - 23.33 & - 10 & +14 & 10.55 & 51 & 123.8 \\
\hline - 56.67 & - 70 & - 94 & - 22.78 & - 9 & +15.8 & 11.11 & 52 & 125.6 \\
\hline - 56.11 & -69 & - 92.2 & - 22.22 & - 8 & +17.6 & 11.67 & 53 & 127.4 \\
\hline - 55.55 & -68 & - 90.4 & - 21.67 & - 7 & +19.4 & 12.22
12 & 54 & 129.2 \\
\hline - 55 & -67 & - 88.6 & - 21.11 & - 6 & +21.2 & 12.78
13.33 & 55
56 & 131
132.8 \\
\hline - 54.44 & -66 & - 86.8 & - 20.55 & - 5 & +23 & 13.89 & 57 & 134.6 \\
\hline - 53.89 & -65 & - 85 & - 20 & - 4 & +24.8 & 14.44 & 58 & 136.4 \\
\hline - 53.33 & -64 & - 83.2 & - 19.44 & - 3 & +26.6 & 15.0 & 59 & 138.2 \\
\hline - 52.78 & -63 & - 81.4 & - 18.89 & - 2 & +28.4 & 15.55 & 60 & 140 \\
\hline -52.22
-51.67 & - 62 & - 79.6 & - 18.33 & - 1 & +30.2 & 16.11 & 61 & 141.8 \\
\hline -51.67
-51.11 & -61 & - 77.8 & - 17.78 & 0 & +32 & 16.67 & 62 & 143.6 \\
\hline -51.11
-50.55 & - 60 & - 76 & - 17.22 & + 1 & +33.8 & 17.22 & 63 & 145.4 \\
\hline -50.55
-50 & - 59 & - 74.2 & - 16.67 & 2 & 35.6 & 17.78 & 64 & 147.2 \\
\hline - 50.44 & - 57 & - 72.4 & - 16.11 & 4 & 37.4 & 18.33 & 65 & 149 \\
\hline - 48.89 & - 56 & - 68.8 & - 15.5 & 5 & 41.2 & 18.89 & 66 & 150.8 \\
\hline - 48.33 & -55 & - 67 & - 14.44 & 6 & 42.8 & 19.44
20.0 & 67 & 152.6 \\
\hline - 47.78 & - 54 & - 65.2 & - 13.89 & 7 & 44.6 & 20.55 & 69 & 156.2 \\
\hline - 47.22 & - 53 & - 63.4 & - 13.33 & 8 & 46.4 & 21.11 & 70 & 158 \\
\hline - 46.67 & - 52 & - 61.6 & - 12.78 & 9 & 48.2 & 21.67 & 71 & 159.8 \\
\hline - 46.11 & - 51 & - 59.8 & - 12.22 & 10 & 50 & 22.22 & 72 & 161.6 \\
\hline - 45.55 & - 50 & - 58 & - 11.67 & 11 & 51.8 & 22.78 & 73 & 163.4 \\
\hline - 45 & -49 & - 56.2 & - 11.11 & 12 & 53.6 & 23.33 & 74 & 165.2 \\
\hline - 44.44 & -48 & - 54.4 & - 10.55 & 13 & 55.4 & 23.89 & 75 & 167 \\
\hline - 43.89 & -47 & - 52.6 & - 10 & 14 & 57.2 & 24.44 & 76 & 168.8 \\
\hline - 43.33 & -46 & - 50.8 & - 9.44 & 15 & 59 & & 77 & 170.6
172.4 \\
\hline - 42.78 & -45 & - 49 & - 8.89 & 16 & 60.8 & 25.55
26.11 & 78 & 172.4 \\
\hline - 42.22 & -44 & - 47.2 & - 8.33 & 17 & 62.6
64.4 & 26.67 & 80 & 176 \\
\hline - 41.11 & -42 & - 43.6 & - 7.22 & 19 & 66.2 & 27.22 & 81 & 177.8 \\
\hline - 40.55 & -41 & - 41.8 & - 6.67 & 20 & 68 & 27.78
28 & 82 & 179.6
181.4 \\
\hline - 40 & -40 & - 40 & - 6.11 & 21 & 69.8 & 28.33
28.89 & 88 & 181.4 \\
\hline - 39.44 & - 39 & - 38.2 & - 5.55 & 22 & 71.6 & 28.89
29.44 & 84 & 183.2 \\
\hline - 38.89 & -38
-37 & \(-\quad 36.4\)
\(-\quad 34.6\) & -5
-4.44 & 23
24 & 73.4
75.2 & 30 & 86 & 186.8 \\
\hline - 37.78 & - 36 & - \(\begin{aligned} & \text { - } 32.6 \\ & -\quad 32.8\end{aligned}\) & - 4.44 & 25 & 77. & 30.55 & 87 & 188.6 \\
\hline - 37.22 & - 35 & - 31. & - 3.33 & 26 & 78.8 & 31.11
31.67 & 88 & 190.4 \\
\hline - 36.67 & - 34 & - 29.2 & - 2.78 & 27 & 80.6 & 31.67
32.22 & 89
90 & 192.2 \\
\hline - 36.11 & -33 & - 27.4 & - 2.22 & 28 & 82.4 & 32.78 & 91 & 195.8 \\
\hline -35.55
-35 & -32 & - 25.6 & - 1.67 & 29 & 84.2 & 33.33 & 92 & 197.6 \\
\hline - 35 & -31 & - 23.8 & - 1.11 & 30 & 86 & 33.89 & 93 & 199.4 \\
\hline - 34.44 & - 30
-29 & - 22 & -0.55 & 31 & 87.8 & 34.44 & 94 & 201.2 \\
\hline - 33.33 & - 28 & - 20.2 & +0.55 & 33 & 89.6
91.4 & & 95 & 203 \\
\hline - 32.78 & -27 & - 16.6 & 1.11 & 34 & 93.2 & 35.55
36.11 & 97 & 204.8 \\
\hline - 32.22 & - 26 & - 14.8 & 1.67 & 35 & 95 & 36.67 & 98 & 208.4 \\
\hline - 31.67 & - 25 & - 13 & 2.22 & 36 & 96.8 & 37.22 & 99 & 210.2 \\
\hline - 31.11 & - 24 & - 11.2 & 2.78 & 37 & 98.6 & 37.78 & 100 & \\
\hline -30.55
-30 & - 23 & - 9.4 & 3.33 & 38 & 100.4 & 40.55 & 105 & 221 \\
\hline - 30.48 & - 22 & - \(\quad 7.6\)
\(-\quad 5.8\) & 3.89
4.44 & 39
40 & 102.2
104 & 43.33
46.11 & 110
115 & 230 \\
\hline - 28.89 & - 20 & - 4 & 5.0 & 41 & 105.8 & 48.89 & 120 & 248 \\
\hline - 28.33 & - 19 & - 2.2 & 5.55 & 42 & 107.6 & 51.67 & 125 & 257 \\
\hline - 27.78 & - 18 & - 0.4 & 6.11 & 43 & 109.4 & 54.33 & 130 & 266 \\
\hline - 27.22 & - 17 & + 1.4 & 6.67 & 44 & 111.2 & 57.22 & 135 & 275 \\
\hline - 26.67 & - 16 & \begin{tabular}{l}
\(+\quad 3.2\) \\
\hline
\end{tabular} & 7.22 & 45 & 113 & 60 & 140 & 284 \\
\hline
\end{tabular}

Examples:
\(15^{\circ} \mathrm{C}=59^{\circ} \mathrm{F}\),
\(32^{\circ} \mathrm{F}=0^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09.00} \\
\hline & & PAGE 1 & \\
\hline & CONTENTS & REV 25 & SEO 050 \\
\hline
\end{tabular}

Pages

\subsection*{2.09.00 CONTENTS}
2.09.10 GENERAL

General 1
Engine Ratings 1
FADEC Operating Modes
Overview
1 and 2
Thrust setting for Takeoff . . . 3/4
Thrust setting in Flight 3/4
2.09.20 THRUST SETTING EPR MODE

Takeoff EPR - M. 100
1 and 2
Go Around EPR - M. 225 3 and 4
Maximum Continuous EPR
- IAS = 230 Kt 5

Maximum Climb EPR - IAS
250/300Kt/M. 80 6

Maximum Cruise EPR - IAS 250/300Kt/M. 80 7 / 8
2.09.30 THRUST SETTING ALTN MODE

Takeoff N1 - M. 100
1 and 2

Go Around N1 - M. 225 and 4
Maximum Continuous N1
- IAS = 230 Kt 5

Maximum Climb N1 - IAS
300 Kt/M. 78 6
Maximum Cruise N1 - IAS
250/340 KT/M. 80 7
Cruise N1 - M. 80 8
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09.10} \\
\hline & & PAGE & \\
\hline & GENERAL & REV 29 & SEO 040 \\
\hline
\end{tabular}

\section*{1. GENERAL}
- The PW 4000 Thrust Management is based on a Full Authority Digital Engine Control (FADEC) concept.
- TheFADEC concept involves several engine components such as the Electronic Engine Control (EEC) and the Fuel Metering Unit (FMU). The airframe interface involves the throttle lever angle (TLA), the Thrust Control Computer (TCC) and discrete signals.

\section*{2. ENGINE RATINGS}

\section*{A - Max Take off}

This is the maximum thrust certified for take off and is normally time limited to five minutes.
This time limit is extended to 10 minutes for engine out contingency as authorized by the approved AFM.

\section*{B - Flex Take off}

It is a derated take off thrust as compared to the max permissible. The calculation of the related EPR is a function of the flex temperature set on the thrust rating panel. The flex temperature is a function of the aircraft weight and environmental conditions and guarantees that the regulatory performances requirements are met.

\section*{C - Maximum Continuous}

The Maximum Continuous rating is the maximum thrust certified for continuous use. To prolong engine life, this rating should not be used under normal operating conditions to increase aircraft speed or rate of climb. This rating should be used at the pilot's discretion and is intended for use in an engine out situation and will allow the airplane to continue operating, but at a lower altitude and fly to an alternate airfield, if necessary.

\section*{D - Maximum Climb}

The Maximum climb rating is the maximum thrust approved for normal climb operation.

E - Maximum Cruise
The maximum cruise rating is the maximum thrust approved for normal cruise operation.

\section*{F - Maximum Go Around}

It is the maximum permissible thrust during go-around. Selection on thrust rating panel is identical to the selection of maximum take off rating.

TLA-RATINGS RELATION (EPR MODE-NO BLEED)

\section*{3. FADEC OPERATING MODES OVERVIEW}
- The FADEC is able to operate under two possible control modes :
- EPR mode :
* The EPR mode is the FADEC primary control mode.
* This is a "rated" mode, which translates into :
- EPR (thrust) is proportional to throttle lever position (linear relationship),
- Flat ratings concept :

* Ratings (TO, GA, MCT, CL) are computed, based on Total Temperature, Pressure Altitude, MN and Bleeds status, by both EEC and TTC.
* Operational aspects :
- Same rating is always obtained at same throttle lever position,
- No overboost potential,
- Throttles stagger potential is minimized,
- ATS can be used,
- EPR is the thrust setting parameter : EPR CMD (EPR Command) can be used for manual thrust setting.
N1 mode:
* The N1 mode is the FADEC alternate control mode.
* Automatic reversion to N1 mode will occur in case of unability to close the loop on EPR or in case of loss of input data necessary for power management in EPR mode:
- N1 mode reversion will occur only if both channels are unable to close the loop on EPR (channel switch-over will occur if other channel is capable of control in EPR mode).
* This is a "non-rated" mode, which translates into :
- Thrust is not proportional to throttle lever position (non linear relationship).
- Flat rating concept is not applicable.
* Required N 1 is computed by EEC only as a function of throttle lever position (TT2 considered only for N1 reverse schedule).
* Operational aspects :
- The automatic reversion to N1 mode is "bumpless" : thrust is maintained and parameters are unchanged, this bumpless transfer is known as the "lock-up" logic.
- Upon manual selection of N1 mode, the "lock-up" logic is removed and the N1 schedule is followed.
- EPR CMD (EPR Command) is not available for thrust setting.
- EPR actual may be still available and valid.
- N1 becomes the thrust setting parameter.
- ATS cannot be used.
- Overboost is possible, as shown on figure below.
- Throttles stagger is possible.

MODE SWITCHING - STEADY STATE CONTROL

PW Eng. : 4000
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09.10} \\
\hline & & PAGE & \\
\hline & GENERAL & REV 20 & SEQ 040 \\
\hline
\end{tabular}

\section*{4. THRUST SETTING FOR TAKE-OFF}

Four cases have to be considered, as follows :
- Thrust setting in EPR mode, without EPR MODE FAULT before or after power set :
* This configuration corresponds to the normal system operation and is covered by normal procedures and performance data.
- Thrust setting in EPR mode, with EPR MODE FAULT occurring prior to power set :
* The take-off phase should be abandonned, as no reference is available for thrust setting: EPR CMD lost, ATS lost and EPR actual not to be used - even if available - (reference § "Thrust setting in N1 mode").
- Thrust setting in EPR mode, with EPR MODE FAULT occuring after power set :
* The take-off phase can be continued, the "lock-up" logic (T / O mode) will assure a bumpless transfer to the N1 mode and, by design, will provide a thrust at least equivalent to that achieved in EPR mode at the time of reversion.
* ENG EPR MODE FAULT procedure can be delayed until flight conditions permit.
- Thrust setting in N1 mode:
* The aircraft dispatch, under MMEL, with both FADEC in N1 mode implies the following :
- Usage of N1 power management tables,
- Max take-off, Final take-off and Go-around weight limitations.
* Eventhough the EPR actual parameter may be still available and valid, it should not be used for thrust setting as thrust evolution - in N1 mode - (as a function of MN and TT2) after power set would not guarantee the certified AFM performances.

\section*{5. THRUST SETTING IN FLIGHT}
- In case of automatic reversion to the N1 mode during steady state flight, the lock-up logic maintains the thrust and parameters constant until the crew applies the ENG EPR MODE FAULT procedure.
- Should the reset/recovery of EPR mode be unsuccessful, both FADEC's should be manually reverted to the N1 mode, and the ENG ALTN MODE procedure applied.
- Manual engine thrust setting is to be performed, using the N1 power management tables provided in section 2.09.30.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & TAKE OFF EPR & REV 31 & SEO 040 \\
\hline
\end{tabular}

THRUST SETTING
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.09 .20} \\
\hline \multicolumn{2}{|c|}{ PAGE 2} & \\
\hline \multicolumn{2}{|c|}{ REV 21 } & SEO 040 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & GO AROUND EPR & REV 31 & SEO 040 \\
\hline
\end{tabular}

R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PW4 152 & & \multicolumn{4}{|l|}{GO AROUND EPR} & \multicolumn{3}{|c|}{RIR COND ON} & \multicolumn{3}{|l|}{MACH \(=.225\)} \\
\hline \multicolumn{8}{|l|}{EPR CORRECTIONS FOR AIR BLEED (APPLICABLE TCC OFF)} & \multicolumn{2}{|l|}{SAT<8 (C)} & \multicolumn{2}{|l|}{SAT>8 (C)} \\
\hline \multicolumn{8}{|l|}{RIR CONDItIoNing off} & \multicolumn{2}{|l|}{. 017} & \multicolumn{2}{|l|}{. 017} \\
\hline \multicolumn{8}{|l|}{Engine rnti-lce on} & \multicolumn{2}{|l|}{. 000} & \multicolumn{2}{|l|}{-. 006} \\
\hline \multicolumn{8}{|l|}{Engine rnti-ICE AND WING RNTI-ICE ON} & \multicolumn{2}{|l|}{-. 008} & \multicolumn{2}{|l|}{-. 014} \\
\hline \multirow[b]{2}{*}{\(\underset{\text { (C) }}{\text { SAT }}\)} & \multicolumn{11}{|c|}{ALTITUDE (FT)} \\
\hline & -1000. & 0. & 1000. & 2000. & 3000. & 4000. & 5000. & 6000. & 7000. & 8000. & 8500. \\
\hline -40.0 & 1.445 & 1.4P2 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & \({ }^{1.633}\) & 1.636 & 1.639 & 1.640 \\
\hline -30.0 & 1. 445 & 1. 472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline -20.0 & 1. 445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline -10.0 & 1.445 & 1. 472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1. 639 & 1. 640 \\
\hline -5.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline . 0 & 1.445 & 1.472 & 1. 500 & 1.531 & 1. 563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline 2.0 & 1. 445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline 4.0 & 1. 445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline 6.0 & 1. 445 & 1. 472 & 1. 500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline 8.0 & 1.445 & 1.422 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.635 & 1.639 & 1.640 \\
\hline 10.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1.639 & 1.640 \\
\hline 12.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.536 & 1.639 & 1.640 \\
\hline 14.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.636 & 1. 639 & 1.640 \\
\hline 16.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & \({ }^{1.633}\) & 1.636 & 1.639 & 1.640 \\
\hline 18.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.633 & 1.536 & 1.639 & 1.640 \\
\hline 20.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.630 & 1.631 & 1. 630 & 1.630 & 1.630 \\
\hline 22.0 & 1.445 & 1. 472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.616 & 1.615 & 1.615 & 1.615 & 1.615 \\
\hline 24.0 & 1. 445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.597 & 1.600 & 1.600 & 1.600 & 1.599 & 1.599 \\
\hline 26.0 & 1.445 & 1. 472 & 1.500 & 1.531 & 1.563 & 1.585 & 1.585 & 1.585 & 1.584 & 1.584 & 1.584 \\
\hline 28.0 & 1.445 & 1.472 & 1.500 & 1.531 & 1.563 & 1.570 & 1.570 & 1.570 & 1.569 & 1.569 & 1.569 \\
\hline 30.0 & 1.445 & 1.422 & 1.500 & 1.531 & 1.555 & 1.555 & 1.555 & 1.555 & 1. 554 & 1.554 & 1.554 \\
\hline 32.0 & 1. 445 & 1.472 & 1.500 & 1.531 & 1.541 & 1.540 & 1.540 & 1.540 & 1.539 & 1.539 & 1. 539 \\
\hline 34.0 & 1.445 & 1. 472 & 1.500 & 1.526 & \({ }^{1.526}\) & 1.526 & 1.526 & 1.525 & 1.524 & 1.525 & \\
\hline 36.0 & 1.445 & 1. 472 & 1. 500 & 1.512 & 1.512 & 1.512 & 1.511 & 1.510 & 1.510 & & \\
\hline 38.0 & 1.445 & 1.472 & 1.499 & 1.498 & 1.498 & 1.497 & 1.496 & 1.495 & & & \\
\hline 40.0 & 1.445 & 1. 472 & 1. 485 & 1.485 & 1.483 & 1.482 & 1.481 & & & & \\
\hline 42.0 & 1.445 & 1. 472 & 1. 473 & 1.471 & 1.469 & 1.468 & & & & & \\
\hline 45.0 & 1.445 & 1. 453 & 1. 450 & 1. 449 & & & & & & & \\
\hline 50.0
55.0 & 1.419 & 1.417 & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & GO AROUND EPR & REV 21 & SEO 040 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & MAXIMUM CONTINUOUS EPR & REV 31 & SEC 060 \\
\hline
\end{tabular}
PW4000 MAXIMUM CONT INUOUS EPR air cono on VC=230KT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{EPR CORRECTIONS FOR AIR BLEED (APPLICABLE TCC OFF)} \\
\hline \multicolumn{10}{|l|}{air conditioning off} & \multicolumn{2}{|l|}{. 019} \\
\hline \multicolumn{10}{|l|}{ENGINE ANTI-ICE ON} & \multicolumn{2}{|l|}{-. 008} \\
\hline \multicolumn{10}{|l|}{ENGINE ANTI-ICE AND WING PNTI -ICE ON} & \multicolumn{2}{|l|}{-. 030} \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
TAT \\
(C)
\end{tabular}} & \multicolumn{11}{|c|}{ALTITUDE (FT)} \\
\hline & \multicolumn{2}{|r|}{0. 4000} & \multicolumn{2}{|l|}{8000. 12000} & 6000 & 20000 & 24000. & 28000. & 32000. & \multicolumn{2}{|l|}{36000. 40000.} \\
\hline -40.0 & 1.361 & 1.422 & 1.471 & 1.519 & 1. 570 & 1.626 & 1. 634 & 1.643 & 1. 652 & 1.675 & 1. 652 \\
\hline -35. 0 & 1.361 & 1.422 & 1.471 & 1.519 & 1. 570 & 1.625 & 1. 634 & 1.643 & 1.652 & 1.675 & 1. 652 \\
\hline -30.0 & 1. 361 & 1.422 & 1.471 & 1.519 & 1.570 & 1.626 & 1. 634 & 1.643 & 1. 652 & 1.675 & 1. 652 \\
\hline -25. 0 & 1. 361 & 1.422 & 1.471 & 1.519 & 1.570 & 1.626 & 1.634 & 1.643 & 1. 652 & 1.675 & 1. 652 \\
\hline -20.0 & 1.361 & 1. 422 & 1.471 & 1.519 & 1.570 & 1. 626 & 1. 634 & 1.643 & 1.652 & 1.675 & 1. 652 \\
\hline -15.0 & 1. 361 & 1. 422 & 1.471 & 1.519 & 1. 570 & 1. 626 & 1.634 & 1.643 & 1.652 & 1.661 & 1. 652 \\
\hline -10.0 & 1. 361 & 1.422 & 1.471 & 1.519 & 1.570 & 1.626 & 1.634 & 1.643 & 1.635 & 1.638 & 1. 637 \\
\hline -8. 0 & 1.361 & 1.422 & 1.471 & 1.519 & 1.570 & 1.626 & 1. 634 & 1.642 & 1. 625 & 1. 621 & 1. 630 \\
\hline -6. 0 & 1. 361 & 1. 422 & 1.471 & 1.519 & 1.570 & 1.626 & 1. 634 & 1.631 & 1.615 & 1.603 & 1. 621 \\
\hline -4.0 & 1. 361 & 1.422 & 1.471 & 1.519 & 1.570 & 1. 626 & 1. 634 & 1.620 & 1. 601 & 1.585 & 1. 605 \\
\hline -2.0 & 1. 361 & 1.422 & 1.471 & 1.519 & 1.570 & 1.626 & 1.632 & 1.609 & 1.582 & 1.567 & 1. 588 \\
\hline . 0 & 1. 361 & 1.422 & 1.471 & 1. 519 & 1.570 & 1.626 & 1.620 & 1.598 & 1.563 & 1.549 & 1. 571 \\
\hline 2.0 & 1.361 & 1.422 & 1.471 & 1.519 & 1.570 & 1.626 & 1.607 & 1. 580 & 1.545 & 1.530 & 1.554 \\
\hline 4.0 & 1. 361 & 1. 422 & 1.471 & 1.519 & 1.570 & 1.625 & 1.595 & 1. 562 & 1. 527 & & 1.536 \\
\hline 6.0 & 1. 361 & 1.422 & 1.471 & 1.519 & 1.570 & 1.611 & 1. 582 & 1.544 & 1. 508 & & 1.518 \\
\hline 8.0 & 1. 361 & 1.422 & 1.481 & 1.519 & 1.570 & 1.597 & 1. 565 & 1. 527 & 1.490 & & \\
\hline 10.0 & 1. 361 & 1. 422 & 1.471 & 1.519 & 1.570 & 1.583 & 1.548 & 1.508 & & & \\
\hline 12.0 & 1. 361 & 1.422 & 1.471 & 1.519 & 1.555 & 1.569 & 1. 531 & 1.490 & & & \\
\hline 14.0 & 1. 361 & 1. 422 & 1.471 & 1.519 & 1.541 & 1.554 & 1.514 & & & & \\
\hline 16.0 & 1. 361 & 1. 422 & 1.471 & 1.519 & 1.526 & 1.538 & 1.497 & & & & \\
\hline 18.0 & 1. 361 & 1.422 & 1.471 & 1.510 & 1.512 & 1.522 & 1.479 & & & & \\
\hline 20.0 & 1.361 & 1.422 & 1.471 & 1.496 & 1.498 & 1.505 & & & & & \\
\hline 22.0 & 1.361 & 1. 422 & 1.471 & 1. 482 & 1. 484 & 1. 488 & & & & & \\
\hline 24.0 & 1. 361 & 1. 422 & 1.467 & 1.468 & 1.469 & 1.471 & & & & & \\
\hline 26.0 & 1. 361 & 1.422 & 1.454 & 1.456 & 1. 454 & & & & & & \\
\hline 28. 0 & 1.361 & 1.422 & 1.442 & 1.443 & 1. 438 & & & & & & \\
\hline 30.0 & 1. 361 & 1.422 & 1.429 & 1.431 & 1. 422 & & & & & & \\
\hline 32.0 & 1. 361 & 1.412 & 1.417 & 1.418 & & & & & & & \\
\hline 34.0 & 1. 361 & 1.400 & 1. 407 & 1. 405 & & & & & & & \\
\hline 36.0 & 1.361 & 1.389 & 1.397 & 1. 392 & & & & & & & \\
\hline 38.0 & 1.358 & 1.379 & 1.386 & & & & & & & & \\
\hline 40.0 & 1.348 & 1.369 & 1.374 & & & & & & & & \\
\hline 45.0 & 1.324 & 1. 347 & & & & & & & & & \\
\hline 50.0 & 1.306 & 1. 321 & & & & & & & & & \\
\hline 55.0 & 1. 284 & & & & & & & & & & \\
\hline
\end{tabular}

R
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & MAXIMUM CLIMB EPR - IAS 250 / 300 / M. 80 & REV 21 & SEO 050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PW4000} & \multicolumn{5}{|l|}{MAXIMUM CLIMB EPR} & \multicolumn{2}{|l|}{AIR COND ON} & \multicolumn{3}{|l|}{250/300/.80} \\
\hline \multicolumn{12}{|l|}{EPR CORRECTIONS FOR AIR BLEED} \\
\hline \multicolumn{10}{|l|}{GIR CuNUITIONING OfF} & \multicolumn{2}{|l|}{. 030} \\
\hline \multicolumn{10}{|l|}{ENGINE RNTI-ICE ON} & \multicolumn{2}{|l|}{-. 010} \\
\hline \multicolumn{10}{|l|}{ENGINE RNTI-ICE AND WING RNTI -ICE On} & \multicolumn{2}{|l|}{-. 023} \\
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TAT } \\
& \text { (C) }
\end{aligned}
\]} & \multicolumn{11}{|c|}{ALTITUDE (FT)} \\
\hline & \multicolumn{2}{|r|}{0. 4000.} & \multicolumn{2}{|l|}{8000. 12000.} & \multicolumn{2}{|l|}{16000. 20000.} & \multicolumn{2}{|l|}{24000. 28000.} & 32000. & \multicolumn{2}{|l|}{36000.40000.} \\
\hline -40.0 & 1.330 & 1. 357 & 1.387 & 1.363 & 1.387 & 1.417 & 1. 451 & 1.483 & 1.520 & 1.560 & 1.556 \\
\hline -30.0 & 1.330 & 1.357 & 1.387 & 1.363 & 1.387 & 1.417 & 1. 451 & 1.483 & 1.520 & 1.560 & 1.556 \\
\hline -20.0 & 1. 330 & 1. 357 & 1.367 & 1. 363 & 1.387 & 1.417 & 1.451 & 1.483 & 1.520 & 1.560 & 1. 556 \\
\hline -10.0 & 1. 330 & 1.357 & 1.387 & 1.363 & 1.387 & 1.417 & 1. 451 & 1.483 & 1.520 & 1.534 & 1.529 \\
\hline -5.0 & 1.330 & 1. 357 & 1.387 & 1.363 & 1.387 & 1.417 & 1.451 & 1.483 & 1.504 & 1.510 & 1. 505 \\
\hline . 0 & 1.330 & 1.357 & 1.387 & 1.363 & 1.387 & 1.417 & 1. 451 & 1.468 & 1.476 & 1. 482 & 1.478 \\
\hline 2.0 & 1.330 & 1. 357 & 1.387 & 1.363 & 1.38? & 1.417 & 1. 451 & 1.456 & 1. 464 & 1.470 & 1. 466 \\
\hline 4.0 & 1.330 & 1. 357 & 1.382 & 1.363 & 1.387 & 1.417 & 1.440 & 1.443 & 1.452 & 1.458 & 1. 453 \\
\hline 6.0 & 1.330 & 1. 357 & 1.387 & 1.363 & 1.387 & 1.417 & 1. 426 & 1.430 & 1.439 & 1. 445 & 1. 440 \\
\hline 8.0 & 1.330 & 1.357 & 1.387 & 1.363 & 1.387 & 1. 413 & 1.413 & 1.416 & 1.426 & 1.432 & 1.427 \\
\hline 10.0 & 1.330 & 1.357 & 1.387 & 1.363 & 1.387 & 1.399 & 1.400 & & 1.412 & 1.418 & 1.413 \\
\hline 12.0 & 1.330 & 1. 357 & 1.387 & 1.363 & 1.387 & 1.386 & 1. 386 & 1.389 & 1.358 & & \\
\hline 14.0 & 1.330 & 1.357 & 1.387 & 1.363 & 1.379 & 1.373 & 1.373 & 1.375 & 1.384 & & \\
\hline 16.0 & 1.330 & 1.357 & \({ }^{1.387}\) & 1.363 & 1.366 & 1.350 & 1.360 & 1.362 & 1.370 & & \\
\hline 18.0 & 1.330 & 1.357 & 1.387 & 1.363 & 1. 354 & 1.347 & 1.346 & 1.348 & 1.355 & & \\
\hline 20.0 & 1. 330 & 1.357 & 1.387 & 1.353 & 1.341 & 1.334 & 1.333 & 1.334 & & & \\
\hline 22.0 & 1.330 & 1.357 & 1.375 & 1.341 & 1.329 & 1.321 & 1. 320 & 1.320 & & & \\
\hline 24.0 & 1.330 & 1.357 & 1.364 & 1. 329 & 1.317 & 1.309 & 1.308 & 1.306 & & & \\
\hline 26.0 & 1. 330 & 1. 357 & 1.352 & 1.318 & 1. 305 & 1. 296 & 1. 295 & & & & \\
\hline 28.0 & 1.330 & 1.350 & 1.342 & 1.306 & 1.293 & 1. 284 & 1. 282 & & & & \\
\hline 30.0 & 1.330 & 1.340 & 1.331 & 1. 295 & 1.281 & 1.272 & & & & & \\
\hline 32.0 & 1.330 & 1.329 & 1.321 & 1.284 & 1.270 & 1.261 & & & & & \\
\hline 34.0 & 1.328 & 1.319 & 1.310 & 1.273 & 1.259 & 1. 249 & & & & & \\
\hline 36. 0 & 1.318 & 1.310 & 1.301 & 1.262 & 1.248 & & & & & & \\
\hline 38.0 & 1.309 & 1.300 & 1.291 & 1.252 & 1.237 & & & & & & \\
\hline 40.0 & 1.300 & 1.291 & 1.282 & 1.242 & & & & & & & \\
\hline 42.0 & 1.291 & \({ }^{1.282}\) & 1.273 & 1.233 & & & & & & & \\
\hline 45.0 & 1.279 & 1. 278 & 1.260 & 1.219 & & & & & & & \\
\hline 50.0
55.0 & 1.259
1.241 & 1. 250 & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING} & \multicolumn{2}{|r|}{2.09 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7 / 8} \\
\hline & MAXIMUM CRUISE EPR - IAS 250 / 300 / M. 80 & REV 21 & SEC 060 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\()^{\text {a }}\) A \({ }^{\text {a }}\)} & \multirow[t]{2}{*}{THRUST SETTING ALTN MODE} & \multicolumn{2}{|r|}{2.09.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & TAKE OFF N1 - M. 100 & REV 18 & SEC 025 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PW4152} & \multicolumn{4}{|l|}{TAKE DFF N1} & \multicolumn{3}{|l|}{NO AIR ELEED} & \multicolumn{3}{|l|}{\(M A C H=.100\)} \\
\hline \multicolumn{2}{|l|}{N1 CORRECTIONS} & \multicolumn{3}{|l|}{FOR ARR ELEED} & & & & \multicolumn{2}{|l|}{SAT< 8 (C)} & \multicolumn{2}{|l|}{SAT 78 (C)} \\
\hline \multicolumn{8}{|l|}{AIR CONDITIOSNS ON} & \multicolumn{2}{|l|}{-. 450} & \multicolumn{2}{|l|}{-. 450} \\
\hline \multicolumn{8}{|l|}{NACELLE ANTITCE OII} & \multicolumn{2}{|l|}{0.000} & \multicolumn{2}{|l|}{-. 300} \\
\hline \multicolumn{8}{|l|}{nacelle anthice and wing anti-ice on} & \multicolumn{2}{|l|}{-. 350} & \multicolumn{2}{|l|}{-. 550} \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
SAT \\
(C)
\end{tabular}} & \multicolumn{11}{|c|}{ALTITUDE (FT)} \\
\hline & -1000. & 0. & 1000. & 2000. & 3000. & 4000. & 5000. & 6000. & 7000. & 8000. & 8500. \\
\hline -40.0 & 80.5 & 81.9 & 83.4 & 84.9 & 66.3 & 87. 6 & 87.4 & 87.9 & 88.3 & 88.8 & 89.0 \\
\hline -30.0 & 82.1 & 83.5 & 85.0 & 86.6 & 88.0 & 89.4 & 90.0 & 90.3 & 90.6 & 90.9 & 97.0 \\
\hline -20.0 & 83.7 & 85.2 & 86.7 & 88.2 & 89.7 & 91.2 & 32.6 & 92.7 & 92.8 & 93.0 & 93.0 \\
\hline -10.0 & 85, 4 & 85.8 & 88.4 & 89.9 & 91.4 & 92.9 & 94.4 & 94.5 & 94.7 & 94.8 & 94.8 \\
\hline -5.0 & 86.2 & 87.7 & 89.2 & 90.8 & 92.3 & 93.8 & 95.3 & 95.5 & 95.6 & 95.7 & 95.8 \\
\hline 0.0 & 87.1 & 83.5 & 90.1 & 91.6 & 93.2 & 94.7 & 95.3 & 96.4 & 96.5 & 96.6 & 96.7 \\
\hline 2.0 & 87.4 & 88.8 & 90.4 & 92.0 & 93.5 & 95.0 & 96.4 & 95.6 & 96.7 & 96.9 & 97.0 \\
\hline 4.0 & 87.7 & 89.2 & 50.7 & 92.3 & 93.9 & 95.4 & 95.6 & 96.8 & 97.0 & 97.2 & 97.2 \\
\hline 6.0 & 88.0 & 89.5 & 91.1 & 92.7 & 94.2 & 95.7 & 96.7 & 97.0 & 97.2 & 97.4 & 97.5 \\
\hline 8.0 & 88.4 & 89.9 & 91.4 & 93.0 & 94.5 & 96.1 & 95.9 & 97.2 & 97.4 & 97.7 & 97.8 \\
\hline 10.0 & 88.7 & 90.2 & 91.8 & 93.4 & 94.9 & 95.4 & 92.1 & 97.4 & 97.7 & 98.0 & 98.1 \\
\hline 12.0 & 89.0 & 90.5 & 92.1 & 93.7 & 95.2 & 95.7 & 97.3 & 97.5 & 98.0 & 98.3 & 98.4 \\
\hline 14.0 & 89.3 & 90.8 & 92.4 & 93.9 & 95.5 & 97.0 & 92.9 & 98.2 & 98.4 & 98.7 & 98.8 \\
\hline 16.0 & 89.7 & 91.2 & 92.7 & 94.3 & 95.8 & 97.4 & 98.6 & 98.8 & 99.0 & 99.2 & 99.2 \\
\hline 18.0 & 90.0 & 91.5 & 93.1 & 94.6 & 96.2 & 97.7 & 99.3 & 99.4 & 99.5 & 99.6 & 99.7 \\
\hline 20.0 & 90.3 & 91.8 & 93.4 & 95.0 & 95.5 & 98.1 & 99.6 & 99.6 & 99.6 & 99.6 & 99.6 \\
\hline 22.0 & 90.6 & 92.2 & 93.7 & 95.3 & 96. 8 & 98.4 & 99.2 & 99.2 & 99.2 & 99.2 & 99.2 \\
\hline 24.0 & 90.8 & 92.5 & 94.0 & 95.5 & 97.1 & 98.7 & 98.8 & 98.8 & 98.8 & 98.8 & 98.8 \\
\hline 26.0 & 92.1 & 92.8 & 94.3 & 95.8 & 92.1 & 98.4 & 98.4 & 98.4 & 98.4 & 98.4 & 98.4 \\
\hline 28.0 & 91.4 & 93.0 & 54.5 & 96.1 & 97.1 & 98.0 & 98.0 & 98.0 & 98.0 & 98.0 & 98.0 \\
\hline 30.0 & 91.7 & 93.3 & 94.9 & 96.4 & 97.0 & 97.6 & 97.6 & 97.5 & 97.6 & 97.6 & 97.6 \\
\hline 32.0 & 92.0 & 93.5 & 95.2 & 95.7 & 97.0 & 97.2 & 97.2 & 97.2 & 97.2 & 97.2 & 97.2 \\
\hline 34.0 & 92.3 & 93.9 & 95.3 & 96.8 & 95.8 & 96.8 & 96.8 & 95.8 & 96.8 & 95.8 & 95.8 \\
\hline 36.0 & 82.6 & 94.0 & 95.1 & 96.2 & 96.2 & 96.2 & 95.2 & 96.2 & 96.2 & 96.2 & 96.2 \\
\hline 38.0 & 92.9 & 94.2 & 94.9 & 95.6 & 95. 6 & 95.6 & 95.5 & 95. 5 & 95.6 & 95.6 & 95.6 \\
\hline 40.0 & 93.3 & 94.3 & 94.7 & 95.1 & 95.1 & 95.1 & 95.1 & 95.1 & 95.1 & & \\
\hline 42.0 & 93.6 & 94.5 & 94.5 & 94.5 & 94.5 & 94.5 & 94.5 & 94.5 & & & \\
\hline 45.0 & 94.0 & 94.3 & 94.3 & 94.3 & 94.3 & 94.3 & 94.3 & & & & \\
\hline 50.0 & 93.2 & 93.2 & 93.2 & 93.2 & & & & & & & \\
\hline 55.0 & 91.9 & 91.9 & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING ALTN MODE} & \multicolumn{2}{|r|}{2.09.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & TAKE OFF N1 & REV 21 & SEQ 025 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING ALTN MODE} & \multicolumn{2}{|r|}{2.09 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & G0 AROUND N1 - M. 225 & REV 21 & SEC 025 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING ALTN MODE} & \multicolumn{2}{|r|}{2.09.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & G0 AROUND N1 & REV 21 & SEQ 025 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|}
\hline PW4000 & MAXIMUM CONTINUOUS N1 AR COND on \(\mathrm{VC}=230 \mathrm{KT}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{CORRECTIONS FOR AIR BLEED} \\
\hline \multicolumn{10}{|l|}{AIR CONDITIONNG OFF} & \multicolumn{2}{|l|}{. 700} \\
\hline \multicolumn{10}{|l|}{NACELLE ANTL-ICE ON} & \multicolumn{2}{|l|}{-. 300} \\
\hline \multicolumn{10}{|l|}{nacelle anti-ice and wing anti-ICE ON} & \multicolumn{2}{|l|}{-1.000} \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
TAT \\
(C)
\end{tabular}} & \multicolumn{11}{|c|}{ALTITUDE (FT)} \\
\hline & \multicolumn{2}{|r|}{0.4000} & 8000. & 2000. & 6000. & 20000. & 24000. & \multicolumn{2}{|l|}{28000. 32000.} & \multicolumn{2}{|l|}{6000. 40000.} \\
\hline -40.0 & 79.5 & 82.7 & 85.4 & 87.6 & \(89 . ?\) & 92.1 & 92. 5 & 93.2 & 93.6 & 93.6 & 93.9 \\
\hline -30.0 & 81.1 & 84.4 & 87.1 & 89.4 & 91.6 & 93.9 & 94.5 & 95.0 & 95.4 & 95.6 & 95.7 \\
\hline -20.0 & 82.7 & 85.0 & 88.7 & 91.2 & 93.6 & 95.8 & 96.4 & 96.9 & 97.2 & 97.4 & 97.6 \\
\hline -10.0 & 84.5 & 87.8 & 90.8 & 93.1 & 95.3 & 97.7 & 98.1 & 98.7 & 99.0 & 99.0 & 99.0 \\
\hline -5. 0 & 85. 3 & 88.? & 91.5 & 94.0 & 95.3 & 98.7 & 99.1 & 99.2 & 99.3 & 99.3 & 99.3 \\
\hline 0.0 & 85. 1 & 89.4 & 92.2 & 94.8 & 97.1 & 99.4 & 99.6 & 99.7 & 99.7 & 99.7 & 99.7 \\
\hline 2.0 & 86.4 & 89.7 & 92.5 & 95.1 & 92.4 & 99. \(\overline{\text { r }}\) & 99.8 & 99.9 & 99.9 & 99.9 & 99.9 \\
\hline 4.0 & 86. \(\overline{7}\) & 90.0 & 92.8 & 95.4 & 97.6 & 100.0 & 100.0 & 100.0 & 100.0 & & 100.0 \\
\hline 6. 0 & Br. 0 & 90.4 & 93.2 & 95.7 & 98.0 & 99.7 & 99.7 & 99.7 & 99.7 & & 99.7 \\
\hline 8.0 & 87.3 & 90.7 & 93.6 & 95.1 & 98.3 & 99.5 & 99.5 & 99.5 & 99.5 & & \\
\hline 10.0 & 87.6 & 91.1 & 93.9 & 96.4 & 98.5 & 99.3 & 99.3 & 99.3 & & & \\
\hline 12.0 & 88.0 & 91.5 & 94.3 & 96.8 & 99.0 & 99.0 & 99.0 & 99.0 & & & \\
\hline 14.0 & 88.3 & 91.8 & 94.5 & 97.0 & 98.8 & 98.8 & 98.8 & & & & \\
\hline 16.0 & 88. 6 & 92.0 & 94.8 & 92.3 & 98.5 & 98.5 & 98.5 & & & & \\
\hline 18.0 & 88.9 & 92.3 & 95.1 & 97.3 & 98.2 & 98.2 & 98.2 & & & & \\
\hline 20.0 & 89.2 & 92.6 & 95.4 & 97.2 & 97.8 & 97.8 & & & & & \\
\hline 22.0 & 89.5 & 92.9 & 95.8 & 97.2 & 92.4 & 97.4 & & & & & \\
\hline 24.0 & 89.8 & 93.3 & 95.8 & 97.0 & 97.0 & 97.0 & & & & & \\
\hline 26.0 & 90.1 & 93.6 & 95.7 & 95.6 & 95.5 & & & & & & \\
\hline 28.0 & 90.4 & 93.9 & 95.6 & 96.2 & 96.2 & & & & & & \\
\hline 30.0 & 90.7 & 94.2 & 95.5 & 95.8 & 95.8 & & & & & & \\
\hline 32.0 & 91.0 & 94.5 & 95.4 & 95.4 & & & & & & & \\
\hline 34.0 & 91.3 & 94.3 & 95.0 & 95.0 & & & & & & & \\
\hline 36.0 & 91.6 & 94.1 & 94. б & 94.6 & & & & & & & \\
\hline 38.0 & 91.8 & 93.9 & 94.1 & & & & & & & & \\
\hline 40.0 & 92.1 & 93.7 & 93.7 & & & & & & & & \\
\hline 42.0 & 92.4 & 93.3 & 93.3 & & & & & & & & \\
\hline 45.0 & 92.8 & 92.8 & & & & & & & & & \\
\hline 50.0 & 92.2 & & & & & & & & & & \\
\hline 55.0 & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING ALTN MODE} & \multicolumn{2}{|r|}{2.09.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & MAXIMUM CLIMB N1 - IAS \(300 \mathrm{KT} / \mathrm{M} .78\) & REV 32 & SEQ 025 \\
\hline
\end{tabular}

R Note: Values to be applied for \(I A S=250\) kt below 10000 ft pressure altitude.

\section*{PW4000 MAXIMUM CRUISE N1 AR Cono on 250/340/.80}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{N1 CORRECTIONS FOR AIR BLEED} \\
\hline \multicolumn{10}{|l|}{AIR CONDITIGNiNg off} & \multicolumn{2}{|l|}{. 200} \\
\hline \multicolumn{10}{|l|}{NACELLE ANTHICE ON} & \multicolumn{2}{|l|}{-. 300} \\
\hline \multicolumn{10}{|l|}{nacelle anti-ice and wing anti-ce on} & \multicolumn{2}{|l|}{-. 650} \\
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
TAT \\
(C)
\end{tabular}} & \multicolumn{11}{|c|}{ALTITUDE (FT)} \\
\hline & \multicolumn{2}{|r|}{0.4000.} & \multicolumn{2}{|l|}{8000. 12000.} & 6000. & 20000. & 4000. & 8000. & 2000. & \multicolumn{2}{|l|}{6000. 40000.} \\
\hline -40. 0 & 72.9 & 75.7 & P8. 1 & 80.6 & 80.6 & 81.6 & 82.6 & 84.5 & 86. 6 & 89.0 & 91.4 \\
\hline -30.0 & 34.5 & 27.2 & 79.7 & 81.8 & 82.3 & 83. 3 & 84.3 & 85.2 & 88.4 & 90.8 & 93.1 \\
\hline -20.0 & 76. 1 & 78.8 & 81.3 & 83.0 & 83.9 & 85.1 & 86.0 & 82.9 & 90.2 & 92.5 & 94.8 \\
\hline -10.0 & 37.5 & 80.3 & 82.8 & 84.3 & 85.6 & 86.7 & 87.7 & 89.6 & 91.9 & 92.4 & 92.8 \\
\hline -5. 0 & P8.2 & 81.1 & 83.7 & 85.2 & 86.5 & 8 F .2 & 88.6 & 90.5 & 91.9 & 91.9 & 91. 9 \\
\hline 0.0 & 29.0 & 81.8 & 84.5 & 85.0 & 87.3 & 87.5 & 89. 4 & 91.2 & 91.5 & 91.5 & 91.5 \\
\hline 2.0 & 79.3 & 82.2 & 84.8 & 85.4 & 87.7 & 87.9 & 89.8 & 91.3 & 91.3 & 91.3 & 91.3 \\
\hline 4. 0 & 79.5 & 82.5 & 85.2 & 86.7 & 88.0 & 88.4 & 90.0 & 91.2 & 91.2 & 91.2 & 91.2 \\
\hline 6.0 & 79.8 & 82.8 & 85.5 & 87.0 & 88.3 & 88.9 & 90.3 & 91.0 & 91.0 & 91.0 & 91.0 \\
\hline 8.0 & 80.1 & 83.1 & 85.8 & 87.3 & 88.5 & 89.4 & 90.6 & 90.9 & 90.9 & 90.9 & 90.9 \\
\hline 10.0 & 80.4 & 83.3 & 86.0 & 87.6 & 88.9 & 89.8 & 90.7 & 90.7 & 90.7 & 90.7 & 90.7 \\
\hline 12.0 & 80.7 & 83.6 & 86.3 & 87.9 & 89.2 & 90.1 & 90.5 & 90.5 & 90.5 & & \\
\hline 14.0 & 81.0 & 84.0 & 85.7 & 68.2 & 89.5 & 90.4 & 90.4 & 90.4 & 90.4 & & \\
\hline 16.0 & 81.3 & 84.3 & \(8{ }^{8} .0\) & 88.5 & 89.8 & 90.2 & 90.2 & 90.2 & 90.2 & & \\
\hline 18.0 & 81.6 & 84.6 & 87.4 & 88.8 & 90.1 & 90.1 & 90.1 & 90.1 & 90.1 & & \\
\hline 20.0 & 81.5 & 84.9 & 87.5 & 89.1 & 90.0 & 90.0 & 90.0 & 90.0 & & & \\
\hline 22.0 & 82.2 & 85.2 & 87.2 & 89.4 & 89.9 & 89.9 & 89.9 & 89.9 & & & \\
\hline 24.0 & 82.5 & 85.4 & 86.9 & 89.7 & 89.7 & 89.7 & 89.7 & 89.7 & & & \\
\hline 26.0 & 82.8 & 85.8 & 85.5 & 89.6 & 89.6 & 89.6 & 89.6 & 89.6 & & & \\
\hline 28.0 & 83.1 & B5. 1 & 85.1 & 89. б & 89.5 & 89. б & 89.6 & 89.6 & & & \\
\hline 30.0 & 83.4 & 85.8 & 85.8 & 89.5 & 89.5 & 89.5 & 89.5 & & & & \\
\hline 32.0 & 83.6 & 85.5 & 85.5 & 89.4 & 89.4 & 89.4 & 89.4 & & & & \\
\hline 34.0 & 83.9 & 85.2 & 85.2 & 89.3 & 89.3 & 89.3 & 89.3 & & & & \\
\hline 35.0 & 84.2 & 84.8 & 84.8 & 89.2 & 89.2 & 89.2 & 89.2 & & & & \\
\hline 38.0 & 84.5 & 84.5 & 84.5 & 89.1 & 89.1 & 89.1 & & & & & \\
\hline 40.0 & 84.2 & 84.2 & 84.2 & 89.1 & 89.1 & 89.1 & & & & & \\
\hline 42.0 & 83.9 & 83.9 & 83.9 & 89.0 & 89.0 & & & & & & \\
\hline 45.0 & 83.4 & 83.4 & 83.4 & 89.0 & 89.0 & & & & & & \\
\hline 50.0 & 82.7 & 82.7 & & 88.9 & & & & & & & \\
\hline 55.0 & 81.9 & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{THRUST SETTING ALTN MODE} & \multicolumn{2}{|r|}{2.09 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & CRUISE N1 - M. 80 & REV 25 & SEQ 070 \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|}
\hline PW 4000 & CRUISE N1 & M. 80 \\
\hline \multicolumn{5}{|c|}{ Air Conditioning: ECON } & \(-\quad\) Typical CG & - ISA \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \multicolumn{8}{c|}{ Flight Level } \\
\hline \begin{tabular}{c|c|c|c|c|c|c|}
WEIGHT \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 270 & 290 & 310 & 330 & 350 & 370 & 390 & 410 \\
\hline 95 & 80.4 & 80.3 & 80.1 & 80.0 & 80.1 & 80.6 & 81.9 & 83.5 \\
100 & 80.7 & 80.4 & 80.4 & 80.4 & 80.5 & 81.3 & 82.6 & 86.4 \\
105 & 80.9 & 80.7 & 80.7 & 80.8 & 81.0 & 81.8 & 83.4 & 84.8 \\
110 & 81.1 & 81.0 & 81.0 & 81.2 & 81.5 & 82.4 & 84.7 & 83.5 \\
115 & 81.3 & 81.2 & 81.3 & 81.5 & 82.1 & 83.2 & 86.1 & \\
120 & 81.6 & 81.6 & 81.8 & 82.1 & 82.6 & 84.3 & 88.0 & \\
125 & 81.8 & 81.9 & 82.1 & 82.6 & 83.3 & 85.5 & & \\
130 & 82.1 & 82.3 & 82.6 & 83.1 & 84.1 & 87.1 & & \\
135 & 82.4 & 82.7 & 83.0 & 83.7 & 85.2 & 88.8 & & \\
140 & 82.7 & 83.0 & 83.5 & 84.4 & 86.5 & & & \\
145 & 83.0 & 83.4 & 84.0 & 85.2 & 88.0 & & & \\
150 & 83.4 & 83.8 & 84.5 & 86.2 & & & & \\
155 & 83.8 & 84.3 & 85.2 & 87.5 & & & & \\
160 & 84.2 & 84.8 & 86.0 & 88.9 & & & & \\
165 & 84.6 & 85.3 & 87.0 & 89.8 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{TEMPORARY REVISION \({ }^{\circ} 218\)} & \multicolumn{2}{|r|}{2.10.00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & & DEC 91 \\
\hline
\end{tabular}

This Temporary Revision has been issued after REV 20.
Do not remove this Temporary Revision until instructed to do so by the "Temporary Revision Filing Instructions".

VALIDITY : A310 with PW Eng. 4152 with modification 5443 (in kilogrammes).

SUBJECT : SHORTFALL IN MAXIMUM TORQUE CAPABILITY OF THE MHB CARBON BRAKES.

Insert the following pages in volume 2 and update the list of Temporary Revisions.
TR \(N^{\circ} 218\) page 1 of 10 at the beginning of chapter 2.10
TR \(N^{\circ} 218\) page 2 of 10 facing 2.10 .40 page 3
TR \(\mathrm{N}^{\circ} 218\) page 3 of 10 facing 2.10 .40 page 4
TR \(N^{\circ} 218\) page 4 of 10 facing 2.10 .40 page 5
TR \(N^{\circ} 218\) page 5 of 10 facing 2.10 .40 page 6
TR \(N^{\circ} 218\) page 6 of 10 facing 2.10 .40 page 7
TR \(N^{\circ} 218\) page 7 of 10 facing 2.10 .40 page 8
TR \(N^{\circ} 218\) page 8 of 10 facing 2.10 .40 page 9
TR \(N^{\circ} 218\) page 9 of 10 facing 2.10 .40 page 10
TR \(N^{\circ} 218\) page 10 of 10 facing 2.10 .40 page 11
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{TEMPORARY REVISION \({ }^{\circ} 248\)} & \multicolumn{2}{|r|}{2.10.00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & & MAR 94 \\
\hline
\end{tabular}

This TR has been issued after REV 24.
Do not remove this Temporary Revision until instructed to do so by the "Temporary Revision Filing Instructions".

VALIDITY : A310 without modification 10848 or without modification 10849.

\section*{SUBJECT: SHORTFALL IN MAXIMUM TORQUE CAPABILITY OF THE MHB CARBON BRAKES.}

Bulletin Services has been issued to cure the above mentioned problem.
As soon as B.S. 32-2084 (modification 10848)
or B.S. 32-2082 (modification 10849)
has been installed and Flight Manual updated, you can disregard the temporary revisions 213 to 221 if incorporated in FCOM volume 2 chapter 10.

Insert this page in volume 2 at beginning of chapter 2.10 and update the list of Temporary Revisions.

TR \(N^{\circ}\) 535-2 Page 4 of 6
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{3}{|c|}{2.10.00} \\
\hline & & PAGE & & \\
\hline & CONTENTS & REV 33 & \multicolumn{2}{|l|}{SE0 070} \\
\hline
\end{tabular}

Pages
Pages
2.10.10 TAKE OFF SPEEDS

2.10.20
FLEXIBLE TAKE OFF

THRUST \(1 / 2\)
2.10.30 REGULATORY TAKE OFF
AND LANDING WEIGHT
CHARTS (RTOLW CHARTS) . . 1 to \(7 / 8\)
2.10.40 QUICK REFERENCE TABLES

Introduction 1
Example 2
NOMINAL THRUST
\(\begin{array}{lll}\text { SLATS 15/FLAPS } & 0- \\ 0 \text { FT } & \end{array}\)
NOMINAL THRUST
SLATS \(15 / F L A P S ~\)
1000 FT 4
NOMINAL THRUST
SLATS 15/FLAPS 0 -
2000 FT 5

NOMINAL THRUST
SLATS 15/FLAPS 15 -
1000 FT 7
NOMINAL THRUST
SLATS 15/FLAPS 15 -
2000 FT 8
NOMINAL THRUST
SLATS
0 FT 9
NOMINAL THRUST
SLATS 20/FLAPS 20 -
1000 FT 10

NOMINAL THRUST
\begin{tabular}{|c|c|}
\hline NOMINAL THRUST & \\
\hline SLATS 20/FLAPS 20 - & \\
\hline 2000 FT & 11/12 \\
\hline Net take-off flight path & \\
\hline Close obstacle clearance & \\
\hline SLATS 15/FLAPS 0 & 13 \\
\hline Net take-off flight path & \\
\hline Remote obstacle clearance & \\
\hline SLATS 15/FLAPS 0 & 14 \\
\hline Net take-off flight path & \\
\hline Close obstacle clearance & \\
\hline SLATS 15/FLAPS 15 & 15 \\
\hline Net take-off flight path & \\
\hline Remote obstacle clearance & \\
\hline SLATS 15/FLAPS 15 & 16 \\
\hline Net take-off flight path & \\
\hline Close obstacle clearance & \\
\hline SLATS 20/FLAPS 20 & 17 \\
\hline Net take-off flight path & \\
\hline Remote obstacle clearance & \\
\hline SLATS 20/FLAPS 20 & 18 \\
\hline FTDM SLATS 15/FLAPS 0 & \\
\hline 0 FT & 19 \\
\hline FTDM SLATS 15/FLAPS 0 & \\
\hline 1000 FT & 20 \\
\hline FTDM SLATS 15/FLAPS 0 & \\
\hline 2000 FT & 21 \\
\hline FTDM SLATS 15/FLAPS 15 & \\
\hline 0 FT & 22 \\
\hline FTDM SLATS 15/FLAPS 15 & \\
\hline 1000 FT & 23 \\
\hline FTDM SLATS 15/FLAPS 15 & \\
\hline 2000 FT & 24 \\
\hline FTDM SLATS 20/FLAPS 20 & \\
\hline 0 FT & 25 \\
\hline FTDM SLATS 20/FLAPS 20 & \\
\hline 1000 FT & 26 \\
\hline FTDM SLATS 20/FLAPS 20 & \\
\hline 2000 FT & 27/28 \\
\hline
\end{tabular}

Net take-off flight path Close obstacle clearance SLATS 15/FLAPS 0........ Net take-off flight path Remote obstacle clearance SLATS 15/FLAPS 0........ Net take-off flight path Close obstacle clearance SLATS 15/FLAPS \(15 \ldots . .\). Remote obstacle clearance SLATS 15/FLAPS \(15 \ldots . .\). Close obstacle clearance SLATS 20/FLAPS 20
Net take-off flight path Remote obstacle clearance SLATS 20/FLAPS \(20 \ldots . .\).FTDM SLATS 15/FLAPS 02000 FTFTDM SLATS 15/FLAPS 15FTDM SLATS 15/FLAPS 151000 FTFTDM SLATS 15/FLAPS 152000 FT24
FTDM SLATS 20/FLAPS 20FTDM SLATS 20/FLAPS 201000 FTFTDM SLȦTS 20/FLAPS 202000 FT
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & TAKE OFF SPEEDS & REV 35 & SEQ 003 \\
\hline
\end{tabular}

\section*{V2 VERSUS WEIGHT AND V2/Vs RATIO - SLATS 15/FLAPS 0 V2 (KT IAS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline WEIGHT & \multicolumn{15}{|c|}{V2/VS} \\
\hline (1000kg) & 1.21 & 1.22 & 1.23 & 1.24 & 1.25 & 1.26 & 1.27 & 1.28 & 1.29 & 1.30 & 1.31 & 1.32 & 1.33 & 1.34 & 1.35 \\
\hline 164 & 175 & 176 & 178 & 179 & 181 & 182 & 183 & 185 & 186 & 188 & 189 & 191 & 192 & 193 & 195 \\
\hline 162 & 174 & 175 & 177 & 178 & 179 & 181 & 182 & 184 & 185 & 187 & 188 & 189 & 191 & 192 & 194 \\
\hline 160 & 173 & 174 & 175 & 177 & 178 & 180 & 181 & 183 & 184 & 185 & 187 & 188 & 190 & 191 & 192 \\
\hline 158 & 172 & 173 & 174 & 176 & 177 & 179 & 180 & 181 & 183 & 184 & 186 & 187 & 188 & 190 & 191 \\
\hline 156 & 171 & 172 & 173 & 175 & 176 & 177 & 179 & 180 & 182 & 183 & 184 & 186 & 187 & 189 & 190 \\
\hline 154 & 169 & 171 & 172 & 174 & 175 & 176 & 178 & 179 & 181 & 182 & 183 & 185 & 186 & 187 & 189 \\
\hline 152 & 168 & 170 & 171 & 172 & 174 & 175 & 177 & 178 & 179 & 181 & 182 & 183 & 185 & 186 & 188 \\
\hline 150 & 167 & 169 & 170 & 171 & 173 & 174 & 175 & 177 & 178 & 180 & 181 & 182 & 184 & 185 & 186 \\
\hline 148 & 166 & 168 & 169 & 170 & 172 & 173 & 174 & 176 & 177 & 178 & 180 & 181 & 182 & 184 & 185 \\
\hline 146 & 165 & 166 & 168 & 169 & 170 & 172 & 173 & 174 & 176 & 177 & 179 & 180 & 181 & 183 & 184 \\
\hline 144 & 164 & 165 & 167 & 168 & 169 & 171 & 172 & 173 & 175 & 176 & 177 & 179 & 180 & 181 & 183 \\
\hline 142 & 163 & 164 & 165 & 167 & 168 & 169 & 171 & 172 & 173 & 175 & 176 & 177 & 179 & 180 & 181 \\
\hline 140 & 161 & 162 & 164 & 165 & 166 & 168 & 169 & 170 & 172 & 173 & 174 & 175 & 177 & 178 & 179 \\
\hline 138 & 160 & 161 & 162 & 164 & 165 & 166 & 168 & 169 & 170 & 172 & 173 & 174 & 176 & 177 & 178 \\
\hline 136 & 159 & 160 & 161 & 163 & 164 & 165 & 166 & 168 & 169 & 170 & 172 & 173 & 174 & 176 & 177 \\
\hline 134 & 158 & 159 & 160 & 161 & 163 & 164 & 165 & 167 & 168 & 169 & 170 & 172 & 173 & 174 & 176 \\
\hline 132 & 156 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 167 & 168 & 169 & 170 & 172 & 173 & 174 \\
\hline 130 & 155 & 156 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 167 & 168 & 169 & 170 & 172 & 173 \\
\hline 128 & 154 & 155 & 157 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 167 & 168 & 169 & 170 & 172 \\
\hline 126 & 153 & 154 & 155 & 157 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 167 & 168 & 169 & 170 \\
\hline 124 & 152 & 153 & 154 & 155 & 157 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 166 & 168 & 169 \\
\hline 122 & 150 & 152 & 153 & 154 & 155 & 157 & 158 & 159 & 160 & 161 & 163 & 164 & 165 & 166 & 168 \\
\hline 120 & 149 & 150 & 152 & 153 & 154 & 155 & 157 & 158 & 159 & 160 & 161 & 163 & 164 & 165 & 166 \\
\hline 118 & 148 & 149 & 150 & 152 & 153 & 154 & 155 & 156 & 158 & 159 & 160 & 161 & 162 & 164 & 165 \\
\hline 116 & 147 & 148 & 149 & 150 & 152 & 153 & 154 & 155 & 156 & 158 & 159 & 160 & 161 & 162 & 163 \\
\hline 114 & 145 & 147 & 148 & 149 & 150 & 151 & 153 & 154 & 155 & 156 & 157 & 158 & 160 & 161 & 162 \\
\hline 112 & 144 & 145 & 147 & 148 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 160 & 161 \\
\hline 110 & 143 & 144 & 145 & 146 & 148 & 149 & 150 & 151 & 152 & 153 & 155 & 156 & 157 & 158 & 159 \\
\hline 108 & 142 & 143 & 144 & 145 & 146 & 147 & 149 & 150 & 151 & 152 & 153 & 154 & 156 & 157 & 158 \\
\hline 106 & 140 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 150 & 151 & 152 & 153 & 154 & 155 & 156 \\
\hline 104 & 139 & 140 & 141 & 142 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 152 & 153 & 154 & 155 \\
\hline 102 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 \\
\hline 100 & 136 & 137 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 149 & 150 & 151 & 152 \\
\hline 98 & 135 & 136 & 137 & 138 & 139 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 \\
\hline 96 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 145 & 146 & 147 & 148 & 149 \\
\hline 94 & 132 & 133 & 134 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 \\
\hline 92 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 142 & 143 & 144 & 145 & 146 \\
\hline 90 & 129 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 \\
\hline 88 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 140 & 141 & 142 & 143 \\
\hline 86 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 \\
\hline 84 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 \\
\hline 82 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 \\
\hline 80 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 \\
\hline
\end{tabular}

R
THE ABOVE V2 VALUES DO NOT TAKE INTO ACCOUNT VMU AND VMCA LIMITATIONS
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10.10} \\
\hline & & PAGE & \\
\hline & TAKE OFF SPEEDS & REV 24 & SEQ 003 \\
\hline
\end{tabular}

\section*{V2 VERSUS WEIGHT AND V2/Vs RATIO - SLATS 15/FLAPS 15 V2 (KT IAS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline WEIGHT & \multicolumn{15}{|c|}{V2/VS} \\
\hline (1000kg) & 1.21 & 1.22 & 1.23 & 1.24 & 1.25 & 1.26 & 1.27 & 1.28 & 1.29 & 1.30 & 1.31 & 1.32 & 1.33 & 1.34 & 1.35 \\
\hline 164 & 163 & 164 & 166 & 167 & 168 & 170 & 171 & 172 & 174 & 175 & 176 & 177 & 179 & 180 & 181 \\
\hline 162 & 162 & 163 & 165 & 166 & 167 & 169 & 170 & 171 & 173 & 174 & 175 & 176 & 178 & 179 & 180 \\
\hline 160 & 161 & 162 & 164 & 165 & 166 & 167 & 169 & 170 & 171 & 173 & 174 & 175 & 177 & 178 & 179 \\
\hline 158 & 160 & 161 & 163 & 164 & 165 & 166 & 168 & 169 & 170 & 172 & 173 & 174 & 176 & 177 & 178 \\
\hline 156 & 159 & 160 & 161 & 163 & 164 & 165 & 167 & 168 & 169 & 171 & 172 & 173 & 174 & 176 & 177 \\
\hline 154 & 158 & 159 & 160 & 162 & 163 & 164 & 166 & 167 & 168 & 169 & 171 & 172 & 173 & 175 & 176 \\
\hline 152 & 157 & 158 & 159 & 161 & 162 & 163 & 165 & 166 & 167 & 168 & 170 & 171 & 172 & 173 & 175 \\
\hline 150 & 156 & 157 & 158 & 160 & 161 & 162 & 163 & 165 & 166 & 167 & 169 & 170 & 171 & 172 & 174 \\
\hline 148 & 155 & 156 & 157 & 159 & 160 & 161 & 162 & 164 & 165 & 166 & 167 & 169 & 170 & 171 & 172 \\
\hline 146 & 154 & 155 & 156 & 158 & 159 & 160 & 161 & 163 & 164 & 165 & 166 & 168 & 169 & 170 & 171 \\
\hline 144 & 153 & 154 & 155 & 157 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 166 & 168 & 169 & 170 \\
\hline 142 & 152 & 153 & 154 & 155 & 157 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 167 & 168 & 169 \\
\hline 140 & 151 & 152 & 153 & 154 & 156 & 157 & 158 & 159 & 161 & 162 & 163 & 164 & 166 & 167 & 168 \\
\hline 138 & 150 & 151 & 152 & 153 & 155 & 156 & 157 & 158 & 159 & 161 & 162 & 163 & 164 & 166 & 167 \\
\hline 136 & 149 & 150 & 151 & 152 & 153 & 155 & 156 & 157 & 158 & 160 & 161 & 162 & 163 & 164 & 166 \\
\hline 134 & 147 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 160 & 161 & 162 & 163 & 164 \\
\hline 132 & 146 & 148 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 160 & 161 & 162 & 163 \\
\hline 130 & 145 & 146 & 148 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 160 & 161 & 162 \\
\hline 128 & 144 & 145 & 147 & 148 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 160 & 161 \\
\hline 126 & 143 & 144 & 145 & 147 & 148 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 159 \\
\hline 124 & 142 & 143 & 144 & 145 & 147 & 148 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 \\
\hline 122 & 141 & 142 & 143 & 144 & 145 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 155 & 156 & 157 \\
\hline 120 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 148 & 149 & 150 & 151 & 152 & 153 & 155 & 156 \\
\hline 118 & 138 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 148 & 149 & 150 & 151 & 152 & 153 & 154 \\
\hline 116 & 137 & 138 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 149 & 150 & 151 & 152 & 153 \\
\hline 114 & 136 & 137 & 138 & 139 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 150 & 151 & 152 \\
\hline 112 & 135 & 136 & 137 & 138 & 139 & 140 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 \\
\hline 110 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 144 & 145 & 146 & 147 & 148 & 149 \\
\hline 108 & 132 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 146 & 147 & 148 \\
\hline 106 & 131 & 132 & 133 & 134 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 \\
\hline 104 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 139 & 140 & 141 & 142 & 143 & 144 & 145 \\
\hline 102 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 143 & 144 \\
\hline 100 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 \\
\hline 98 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 135 & 136 & 137 & 138 & 139 & 140 & 141 \\
\hline 96 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 \\
\hline 94 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 \\
\hline 92 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 \\
\hline 90 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 \\
\hline 88 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 129 & 130 & 131 & 132 & 133 \\
\hline 86 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 \\
\hline 84 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 127 & 128 & 129 & 130 \\
\hline 82 & 116 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 \\
\hline 80 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 123 & 124 & 125 & 126 & 127 \\
\hline
\end{tabular}

R CAUTION: THE ABOVE V2 VALUES DO NOT TAKE INTO ACCOUNT VMU AND VMCA LIMITATIONS
Code: 1010B

\section*{V2 VERSUS WEIGHT AND V2/Vs RATIO - SLATS 20/FLAPS 20 V2 (KT IAS)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline WEIGHT & \multicolumn{16}{|c|}{V2/VS} \\
\hline (1000kg) & 1.20 & 1.21 & 1.22 & 1.23 & 1.24 & 1.25 & 1.26 & 1.27 & 1.28 & 1.29 & 1.30 & 1.31 & 1.32 & 1.33 & 1.34 & 1.35 \\
\hline 164 & 158 & 159 & 160 & 162 & 163 & 164 & 165 & 167 & 168 & 169 & 171 & 172 & 173 & 175 & 176 & 177 \\
\hline 162 & 157 & 158 & 159 & 161 & 162 & 163 & 164 & 166 & 167 & 168 & 170 & 171 & 172 & 173 & 175 & 176 \\
\hline 160 & 156 & 157 & 158 & 160 & 161 & 162 & 163 & 165 & 166 & 167 & 169 & 170 & 171 & 172 & 174 & 175 \\
\hline 158 & 155 & 156 & 157 & 159 & 160 & 161 & 162 & 164 & 165 & 166 & 167 & 169 & 170 & 171 & 172 & 174 \\
\hline 156 & 154 & 155 & 156 & 158 & 159 & 160 & 161 & 163 & 164 & 165 & 166 & 168 & 169 & 170 & 171 & 173 \\
\hline 154 & 153 & 154 & 156 & 157 & 158 & 160 & 161 & 162 & 163 & 165 & 166 & 167 & 168 & 169 & 170 & 172 \\
\hline 152 & 152 & 153 & 155 & 156 & 157 & 159 & 160 & 161 & 162 & 164 & 165 & 166 & 167 & 168 & 169 & 170 \\
\hline 150 & 151 & 152 & 154 & 155 & 156 & 158 & 159 & 160 & 161 & 163 & 164 & 164 & 166 & 167 & 168 & 169 \\
\hline 148 & 150 & 151 & 153 & 154 & 155 & 157 & 158 & 159 & 160 & 162 & 163 & 163 & 165 & 166 & 167 & 168 \\
\hline 146 & 149 & 150 & 152 & 153 & 154 & 156 & 157 & 158 & 159 & 161 & 162 & 162 & 164 & 165 & 166 & 167 \\
\hline 144 & 148 & 149 & 151 & 152 & 153 & 154 & 156 & 157 & 158 & 159 & 161 & 161 & 162 & 164 & 165 & 166 \\
\hline 142 & 147 & 148 & 150 & 151 & 152 & 153 & 155 & 156 & 157 & 158 & 160 & 160 & 161 & 162 & 164 & 165 \\
\hline 140 & 146 & 147 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 163 & 164 \\
\hline 138 & 145 & 146 & 148 & 149 & 150 & 151 & 152 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 163 \\
\hline 136 & 144 & 145 & 147 & 148 & 149 & 150 & 151 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 \\
\hline 134 & 143 & 144 & 146 & 147 & 148 & 149 & 150 & 152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 \\
\hline 132 & 142 & 143 & 144 & 146 & 147 & 148 & 149 & 150 & 152 & 153 & 154 & 154 & 156 & 157 & 158 & 159 \\
\hline 130 & 141 & 142 & 143 & 145 & 146 & 147 & 148 & 149 & 150 & 152 & 153 & 153 & 154 & 156 & 157 & 158 \\
\hline 128 & 140 & 141 & 142 & 143 & 145 & 146 & 147 & 148 & 149 & 150 & 152 & 152 & 153 & 154 & 156 & 157 \\
\hline 126 & 139 & 140 & 141 & 142 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 & 156 \\
\hline 124 & 137 & 139 & 140 & 141 & 142 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 & 154 \\
\hline 122 & 136 & 138 & 139 & 140 & 141 & 142 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151 & 152 & 153 \\
\hline 120 & 135 & 136 & 138 & 139 & 140 & 141 & 142 & 144 & 145 & 146 & 147 & 147 & 149 & 150 & 151 & 152 \\
\hline 118 & 134 & 135 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 145 & 146 & 146 & 147 & 148 & 150 & 151 \\
\hline 116 & 133 & 134 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 \\
\hline 114 & 132 & 133 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 & 148 \\
\hline 112 & 131 & 132 & 133 & 134 & 135 & 137 & 138 & 139 & 140 & 141 & 142 & 143 & 144 & 145 & 146 & 147 \\
\hline 110 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 139 & 140 & 141 & 141 & 142 & 143 & 144 & 146 \\
\hline 108 & 128 & 129 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 140 & 140 & 141 & 142 & 143 & 144 \\
\hline 106 & 127 & 128 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 & 140 & 141 & 142 & 143 \\
\hline 104 & 126 & 127 & 128 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 137 & 138 & 140 & 141 & 142 \\
\hline 102 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 133 & 134 & 135 & 136 & 136 & 137 & 138 & 139 & 140 \\
\hline 100 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 136 & 137 & 138 & 139 \\
\hline 98 & 122 & 123 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 133 & 133 & 134 & 135 & 136 & 138 \\
\hline 96 & 121 & 122 & 124 & 125 & 126 & 127 & 128 & 129 & 130 & 131 & 132 & 132 & 133 & 134 & 135 & 136 \\
\hline 94 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 128 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 \\
\hline 92 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 129 & 129 & 130 & 131 & 132 & 133 \\
\hline 90 & 117 & 118 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 128 & 129 & 130 & 131 & 132 \\
\hline 88 & 116 & 117 & 118 & 120 & 120 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 128 & 128 & 129 & 130 \\
\hline 86 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 125 & 126 & 127 & 128 & 129 \\
\hline 84 & 114 & 114 & 116 & 117 & 118 & 119 & 120 & 121 & 121 & 122 & 123 & 124 & 125 & 126 & 127 & 127 \\
\hline 82 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 122 & 123 & 124 & 125 & 126 \\
\hline 80 & 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 120 & 121 & 122 & 123 & 124 & 124 \\
\hline
\end{tabular}

R CAUTION : THE ABOVE V2 VALUES DO NOT TAKE INTO ACCOUNT VMU AND VMCA LIMITATIONS
Mod. : 4863
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & TAKE OFF SPEEDS & REV 29 & SEO 100 \\
\hline
\end{tabular}

R
OPERATING SPEEDS: (KT IAS)
F-S - « GREEN DOT " - Vref
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
SPEED \\
WEIGHT (1000 KG)
\end{tabular} & \[
\stackrel{\stackrel{F}{F}}{(1.25 \mathrm{Vs} 15 / 0)}
\] & \[
\underset{(1.25 \mathrm{Vs} \mathrm{0/0})}{\text { S }}
\] & \[
\begin{aligned}
& \text { " GREEN DOT " } \\
& \text { SPEED } \\
& \text { below } 20000 \text { FT }
\end{aligned}
\] & Vref
(1.3 Vs 30/40) \\
\hline 164 & 180 & 226 & 264 & 160 \\
\hline 162 & 179 & 224 & 262 & 159 \\
\hline 160 & 178 & 223 & 260 & 158 \\
\hline 158 & 177 & 222 & 258 & 157 \\
\hline 156 & 175 & 220 & 256 & 156 \\
\hline 154 & 174 & 219 & 254 & 155 \\
\hline 152 & 173 & 217 & 252 & 154 \\
\hline 150 & 172 & 216 & 250 & 153 \\
\hline 148 & 171 & 215 & 248 & 152 \\
\hline 146 & 170 & 213 & 246 & 151 \\
\hline 144 & 169 & 212 & 244 & 150 \\
\hline 142 & 167 & 210 & 242 & 149 \\
\hline 140 & 167 & 209 & 240 & 147 \\
\hline 138 & 166 & 207 & 238 & 146 \\
\hline 136 & 164 & 206 & 236 & 145 \\
\hline 134 & 163 & 204 & 234 & 144 \\
\hline 132 & 162 & 203 & 232 & 143 \\
\hline 130 & 161 & 201 & 230 & 142 \\
\hline 128 & 159 & 200 & 228 & 141 \\
\hline 126 & 158 & 198 & 226 & 140 \\
\hline 124 & 157 & 197 & 224 & 139 \\
\hline 122 & 156 & 195 & 222 & 138 \\
\hline 120 & 154 & 193 & 220 & 137 \\
\hline 118 & 153 & 192 & 218 & 135 \\
\hline 116 & 152 & 190 & 216 & 134 \\
\hline 114 & 151 & 189 & 214 & 133 \\
\hline 112 & 149 & 187 & 212 & 132 \\
\hline 110 & 148 & 185 & 210 & 131 \\
\hline 108 & 147 & 184 & 208 & 129 \\
\hline 106 & 145 & 182 & 206 & 128 \\
\hline 104 & 144 & 180 & 204 & 127 \\
\hline 102 & 142 & 178 & 202 & 126 \\
\hline 100 & 141 & 177 & 200 & 125 \\
\hline 98 & 140 & 175 & 198 & 123 \\
\hline 96 & 138 & 173 & 196 & 122 \\
\hline 94 & 137 & 171 & 194 & 121 \\
\hline 92 & 135 & 170 & 192 & 120 \\
\hline 90 & 134 & 168 & 190 & 118 \\
\hline
\end{tabular}

Mod. : 4863

\section*{1. DEFINITION OF FLEXIBLE TAKEOFF}

In many cases, the aircraft takes off at a weight lower than the maximum permissible weight. In consequence, it is possible to continue to meet the performance requirements (Runway, 2nd segment, obstacle) with a decreased thrust that is adapted to the weight : this is called FLEXIBLE TAKEOFF and the thrust is called FLEXIBLE THRUST.

\section*{2. UTILIZATION OF FLEXIBLE TAKEOFF}

Flexible takeoff can be used when the actual takeoff weight is lower than the maximum permissible takeoff weight for the actual temperature. As this weight decreases when temperature increases, it is possible to assume a temperature at which the actual takeoff weight would be the limiting one. This temperature is called FLEXIBLE TEMPERATURE.

\section*{3. AIRWORTHINESS REQUIREMENTS}
(A) Thrust reduction:

Thrust reduction must not exceed \(25 \%\) of the full rated takeoff thrust. To meet this requirement the flexible temperature must not be higher than ISA + \(57^{\circ} \mathrm{C}\).
(B) Flexible takeoff is not recommended on contaminated runways.
(C) The operator should check the maximum thrust at regular intervals in order to detect any possible engine deterioration, or maintain an adequate engine performance monitoring program to follow up the engine parameters.

\section*{4. DETERMINATION OF FLEXIBLE TEMPERATURE AND CORRESPONDING EPR}
(A) Flexible temperature

See in section 2.10.30 how to determine flexible temperature.
Flexible temperature must not be higher than ISA + \(57^{\circ} \mathrm{C}\).

\section*{(B) Corresponding EPR}

This can be determined :
- either by inserting flexible temperature on Thrust Rating Panel then selecting FLX TO
- or with chart TO EPR of chapter 2.09 THRUST SETTING.

\section*{5. DETERMINATION OF ASSOCIATED SPEEDS}

See how to determine these speeds in section 2.10.30.

\section*{6. CLIMB FOLLOWING A FLX TO}
- Without profile mode:

Before takeoff, compare FLX TO EPR and CL EPR. If FLX TO EPR is lower than CL EPR, select CR at thrust reduction altitude. When rate of climb becomes lower than \(1000 \mathrm{ft} / \mathrm{mn}\), select CL.
- With profile mode:

At thrust reduction altitude, CL is automatically selected. If FLX TO EPR is lower than CL, the FMS will gradually increase the thrust from FLX TO to reach CL before 20000 ft .

\section*{7. RECOMMENDATION WHEN PERFORMING FLEXIBLE TAKEOFF}

In order to extend engine life and save maintenance costs our recommendation is to use flexible thrust reduction.

However, to improve the takeoff performance, the thrust can be increased by selecting a lower flex temperature.
Using the same takeoff chart, it is possible for a given weight :
1) To select a temperature lower than the maximum one and keep the speeds defined at maximum temperature.
or
2) To move towards the left side of the takeoff chart. This introduces a lower maximum temperature and in general lower takeoff speeds \(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{R}}\) and \(\mathrm{V}_{2}\).
or
3) To select a temperature lower than the maximum one and to decrease the \(\mathrm{V}_{1}\) decision speed by 1 kt per \(1.5^{\circ}\) C decremented from maximum temperature.
The \(V_{1}\) decrement should be limited to a maximum of 5 kt.

Using one of the three above possibilities, do not forget to check that the selected temperature is greater than the actual temperature and greater than flat rating temperature.

\section*{8. CONCLUSION}

Depending on environmental takeoff conditions, we recommend the following procedure :
\begin{tabular}{|c|c|c|}
\hline CONDITIONS & PROCEDURE & REASON \\
\hline Dry, well paved runway & \begin{tabular}{l}
- Use flaps configuration giving the highest flexible temperature. \\
- When flexible temperature difference between two flaps configurations is low (less than 5 degrees), use the configuration giving the lowest speeds.
\end{tabular} & Extend engine life and save maintenance costs. \\
\hline High altitude takeoff & - Use flaps \(15^{\circ}\) & Add comfort \\
\hline \begin{tabular}{l}
Badly paved runway or \\
Accelerate stop distance limited runway and warm brakes
\end{tabular} & \begin{tabular}{l}
- Use flaps \(15^{\circ}\) \\
or \\
- Move towards left side of takeoff chart \\
- Select a flex temperature lower than the maximum one and decrease V1 by 1 kt per \(1.5^{\circ} \mathrm{C}\) decremented from flexible temperature with a maximum of 5 kt reduction.
\end{tabular} & Add comfort Improve stopping distance \\
\hline Wet runway & - Use flaps configuration giving the lowest speeds & Improve stopping distance \\
\hline Contaminated runway & - Use maximum thrust & Improve stopping distance Decrease time on runway \\
\hline Windshear expected along takeoff path & - Use maximum thrust & Maintain acceleration capability \\
\hline
\end{tabular}

TAKE OFF

\section*{1. INTRODUCTION}

These charts enable the crew to determine for the corresponding runway:
- the maximum permissible take-off weight for the ambient pressure, temperature and surface wind conditions, or :
- for a given aircraft weight, the maximum temperature at which a take-off would be permitted. This temperature (corrected for QNH and airbleeds) is called the flexible Temperature.

The flexible temperature may be selected on the Thrust Rating Panel or used in the T/O EPR Chart to obtain the corresponding flexible EPR (Refer to chapter 09). This reduced power setting provides performance in compliance with regulations in the event of engine failure at V1.

A specific chart is established for each runway. It is based on standard atmospheric pressure and takes account of the significant obstacles along the specified flight path.

\section*{What does the crew know ?}
- runway
- reference pressures
- actual temperature and / or T/O weight
- wind

\section*{What does the crew need to know ?}
- maximum take-off weight for the actual temperature, wind and QNH
- maximum temperature corresponding to the actual weight, wind and QNH, becoming the flexible temperature when reduced thrust take-off is possible.

\section*{What are the entries into the chart ?}

For the given runway, enter the corresponding chart with :
- wind and actual temperature to determine maximum take-off weight
- wind and weight to determine maximum temperature.

\section*{What are the outputs?}

After making corrections due to QNH variations and bleeds, the outputs are:
- maximum take-off weight or maximum temperature
- nature of the performance limitation
- V1, VR and V2

In addition, maximum go-around temperature for both approach configurations is indicated.
Single engine climb out procedure may be indicated.

\section*{2. EXPLANATION OF THE OUTPUTS OF THE CHART}

\section*{A. Flap setting}

The flap setting is indicated on top of the chart in the right corner.

\section*{B. Maximum take-off weight}

For each line an entry weight is given. For each Box a weight increment/decrement is given. The weight corresponding to any box is the sum of entry weight and weight increment or decrement. A decrement is shown in the upper boxes of the chart when the take-off weight at the lowest computed temperature is lower than the highest entry weight. It is the maximum permissible T/O weight corresponding to the temperature shown in the box.

\section*{C. Maximum temperature (\({ }^{\circ} \mathrm{C}\))}

The temperature shown in the box is the maximum temperature at which the maximum weight determined as above can be lifted.

\section*{D. Limitation}

This indicates the nature of the limitation or the balance between two limitations as resulting from the optimization. Limitation codes are as follows :
1 - Maximum structural weight
2 - Second segment
3 - Runway
4 - Obstacle
5 - Tire speed
6 - Brake energy
7 - Runway 2 engines operative (if applicable)
8 - Final take-off.
E. V1 : decision speed (IAS)
F. VR : rotation speed (IAS)
G. V2 : safety speed (IAS)

This speed is to be maintained up to the acceleration height (or altitude) in case of engine failure to obtain the expected performance associated with the given configuration and data.
Note: The SRS provides automatically the correct pitch guidance. In the absence of SRS indication, it is recommended to initially set a safe pitch attitude of \(12.5^{\circ}\).

\section*{3. CORRECTIONS. Refer to page 2.10 .30 page 6}

In order to get the most out of the chart, there are two kinds of corrections :
- either on weight when determining maximum take-off weight
- or on maximum temperature when determining the flexible or limiting temperature.
Any QNH variation from the standard, for which the chart is calculated, will affect either the maximum temperature or the weight. The air bleeds will affect the maximum temperature or the weight in the same manner.

A310
mulator
TAKE OFF

FLIGHT CREW OPERATING MANUAL
REGULATORY TAKE OFF AND LANDING WEIGHT CHARTS (RTOLW CHARTS)
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.10 .30} \\
\hline \multicolumn{2}{|c|}{ PAGE 2 } & \\
\hline REV 33 & SEO 020 \\
\hline
\end{tabular}

\section*{A. Corrections on weight}

The effect of QNH variations or bleed compensation consists of an addition or substraction to the weight as specified on each chart.

\section*{1st step}

In order to avoid a weight penalty when the actual temperature does not appear in the chart, the weight gradients on both sides of the flat rating temperature are given on top of the chart (Grad 1/Grad 2). Flat rating temperature is given as Tref. Using the data, weight and temperature given in the upper box of the wind column, add the weight increment determined by multiplying the weight gradient by the difference of temperature between actual temperature and that given in the box.
When these two temperatures (actual and max.) are on either side of flat rating temperature, two steps are necessary. First multiply the weight gradient given above Tref by the difference between max. temp. and flat rating temperature. Then multiply the weight gradient given below Tref by the difference between flat rating temperature and actual temperature. Add these two values to the max. weight of the first box.
Note: Weight gradients must only be used to extrapolate above the maximum weight shown in the RTOLW chart (upper box of the chart). They do not allow to interpolate between two boxes, neither between two filled boxes, nor between one filled and one blank box.

\section*{2nd step}

From this maximum weight, subtract or add the weight increment equivalent to the QNH variation from standard as indicated on the chart. Subtract bleed effect if any. The final weight is the max. permissible TOW for the actual environmental conditions.

\section*{B. Corrections on temperature}

Variations in QNH and bleeds affect the maximum temperature corresponding to a given weight. The resulting temperature called flexible temperature must be checked on the chart as shown in order to avoid:
- either a take-off at a higher weight than allowed by the maximum available level of thrust when the flexible temperature is lower than Tref or actual temperature.
- or setting a thrust derated by more than allowed : maximum derated thrust: maximum thrust at ISA \(+57^{\circ} \mathrm{C}\) for the actual conditions.

This maximum derating corresponds to a maximum flexible temperature of ISA \(+57^{\circ} \mathrm{C}\).
This final temperature (called corrected temperature (CT)) will be set on the THRUST RATING PANEL (TRP).
Any temperature below Tref should not be set on the TRP.
The maximum value of CT which may be set is ISA \(+57^{\circ} \mathrm{C}\).

The setting of a temperature lower than actual will result in dashes being displayed on the TRP.
Note: Take-off charts for wet runways, when based on the use of reverse thrust, may show for some conditions a weight higher than on dry runway. It is then necessary to compare both charts (dry and wet) and to retain the lowest weight and the associated speeds determined on wet runway

\section*{4. ADDITIONAL INFORMATION}

\section*{A. Single engine climb out procedure}

The performance given in the chart is consistent with the specified flight path in case of engine failure, and takes account of significant obstacles.

When the procedure to follow is not the standard instrument departure, a specific procedure is described.

When the specified procedure requires a turn, except if otherwise stated on the RTOLW chart, the turn will be performed with a \(15^{\circ}\) bank angle maximum until 1500 ft or green dot speed is reached.
The acceleration height (or altitude) ensures that the highest obstacle will be cleared by the net flight path by at least 35 ft when accelerating in level flight to green dot speed after an engine failure, in the most adverse conditions.

\section*{B. Speeds (IAS)}

F - Flaps retraction speed, one engine out (1.25 Vs slats out)
S - Slats retraction speed, one engine out (1.25 Vs clean)
Green dot - Optimum climb out speed, one engine out (1.45 Vs clean).

\section*{C. Supplementary operating instructions for take-off}
(1) Contaminated runway

Refer to 2.18
(2) Wet runway

Refer to 2.18.
(3) Antiskid failure

Refer to MMEL
(4) Spoilers inoperative

Refer to MMEL

\section*{D. Landing information}

Tga is the maximum temperature at which the approach climb gradient condition is satisfied as a function of weight. Two TGA and flap settings are presented in order to choose the most appropriate as a function of the scheduled landing weight and temperature. The configurations \(15 / 15\) and \(20 / 20\), specified under TGA, are the configurations in which the required gradient of \(2.1 \%\) is satisfied, with one engine failed. The single engine approach is normally performed with one step of flaps further down until overshoot is decided, while the 2 engines approach is performed with up to two steps (if applicable) beyond the indicated flaps position. In both cases, one step of flaps is retracted when the Go-Around is decided

The required gradient of \(2.1 \%\) is considered at the airport reference altitude. The power setting is «GoAround» thrust with the air conditioning ON. The speed is 1.3 Vs of the specified flap setting.
The temperature TgA is also published for weight higher than the maximum landing weight in order to cover the overweight landing condition.
If the OAT is greater than the temperature TGA, follow the overweight landing procedure requiring to land in configuration 20/20.
Again, the indicated setting is one step of flaps below the approach configuration.
Note: If no bleed for air conditioning is extracted from the engines, the minimum gain to be expected is :
\(-2^{\circ} \mathrm{C}\) on the temperature
- or 1,5 ton (3300 lb) on the weight.

\section*{5. INTERPOLATION}

It is allowed to interpolate weight, temperature and speeds between two consecutive boxes of a column, or of a line.

\section*{6. METHOD OF APPLICATION}
A. Maximum take-off weight determination
(1.)

\section*{B. Flexible temperature determination}
(1.)

Enter with actual weight and actual wind.
Read max. temperature of the box or interpolate.
(2.)

Apply temperature corrections.
Determine corrected temperature (CT)
MAX TEMP. + CORRECTION = CT.

7. RESEARCH OF OPTIMUM USE OF THE CHART (valid only when flexible take-off is possible) :

On some airports, the runway structure is not perfect and it may be advisable to take-off as soon as possible. On some others, particularly in altitude, maximum performance is often limited by tire speed. In this case, actual T/0 weight or temperature permitting, it may be interesting to take-off with a lower speed.
The chart offers the possibility of trading a lower take-off speed against the unnecessary temperature margin (which is the temperature above max. permissible CT) or even against some thrust reduction.
For this purpose, move to the left of the actual wind until :
- either the maximum for flexible temperature is met (ISA \(+57^{\circ} \mathrm{C}\)) to take the full advantage of the unused temperature above that figure.
- or a temperature, which, as a compromise, represents less than the maximum permissible thrust reduction.

TAKE OFF
REGULATORY TAKE OFF AND LANDING
WEIGHT CHARTS (RTOLW CHARTS)
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.10 .30} \\
\hline \multicolumn{2}{|c|}{ PAGE 4 } & \\
\hline REV 35 & SE0 025 \\
\hline
\end{tabular}
8. RTOLW CHARTS - COMPLEMENTARY INFORMATION : EFFECT OF ONH OR/AND BLEEDS

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
TAKE OFF \\
REGULATORY TAKE OFF AND LANDING WEIGHT CHARTS (RTOLW CHARTS)
\end{tabular}} & \multicolumn{2}{|r|}{2.10.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & & REV 22 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline R
R
R & XXXX AIR & ORT & RWY ** & FAR & \multirow[t]{2}{*}{\[
\underset{\substack{3 * * *}}{30 / 03 / 92}
\]} & \[
\begin{array}{cc}
\hline \text { ELEV. } & 79 . \mathrm{FT} \\
\text { TORA } & 3658 . \mathrm{M}
\end{array}
\] & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \text { CONF } \\
15 / 15
\end{array}
\]} \\
\hline R
R & & & & & & SDA 3658.M & \\
\hline R & \multicolumn{2}{|l|}{A310-***/AA/*} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TODA 3658.M}} & \multirow[b]{4}{*}{TGA 15/15 20/20} \\
\hline R & \multicolumn{2}{|l|}{TREF \(=43 / \mathrm{TMAX}=* *\) GRAD \(1=110 / \mathrm{GRAD} 2=700\)} & & & & & \\
\hline R & WEIGHT & & & & & & \\
\hline R & 1000KG & -10 & -5 & 0 & 10 & 20 & \\
\hline R & & & 6 4-4 & 32 2-4 & 44 2-4 & 45 2-4 & 45 \\
\hline R & 157.0 & & . 1 & . 0 & . 0 & . 6 & \\
\hline R & & & 165-165-169 & 164-165-169 & 166-167-171 & 170-171-174 & \\
\hline R
R & & -2 4-4 & 23 2-4 & 43 2-4 & 45 2-4 & \(47 \quad 2-4\) & 46 \\
\hline R & 155.0 & -1. & . 1 & . 7 & 1.0 & . 4 & \\
\hline R & & 161-161-165 & 160-161-165 & 162-163-167 & 166-167-171 & 172-172-175 & \\
\hline R & & 16 4-4 & 43 2-4 & 46 2-4 & 48 2-4 & 49 2-4 & 48 \\
\hline R & 152.5 & . 0 & . 0 & . 7 & . 1 & . 3 & \\
\hline R & & 156-156-160 & 155-157-161 & 162-163-167 & 167-167-171 & 171-171-174 & 43 \\
\hline R & & 35 4-4 & 46 2-4 & 48 2-4 & 50 2-4 & 51 2-4 & 50 \\
\hline R & 150.0 & . 0 & . 2 & 1.0 & . 1 & . 2 & \\
\hline R & & 151-153-157 & 156-157-161 & 163-164-167 & 167-167-170 & 170-170-173 & 45 \\
\hline R & & 43 4-4 & 48 2-4 & \(50 \quad 2-4\) & 52 2-4 & 53 2-4 & 51 \\
\hline R & 147.5 & 1.4 & . 7 & 1.1 & . 1 & . 0 & \\
\hline R & & 149-152-156 & 157-157-161 & 163-163-166 & 166-166-169 & 169-169-172 & 47 \\
\hline R & & 47 4-4 & 50 4-4 & 52 4-4 & 53 2-4 & 54 2-2 & 53 \\
\hline R & 145.0 & . 8 & 1.0 & 1.1 & 1.3 & 1.1 & \\
\hline R & & 151-151-156 & 158-158-162 & 162-162-166 & 166-166-169 & 168-168-171 & 49 \\
\hline R & & 50 4-4 & 52 4-4 & 54 4-4 & 55 2-4 & 56 2-2 & 55 \\
\hline R & 142.5 & . 4 & 1.2 & 1.0 & 1.2 & . 8 & \\
\hline R & & 152-152-156 & 160-160-163 & 162-162-166 & 165-165-168 & 166-167-170 & 51 \\
\hline R & & 52 4-4 & 54 4-4 & 56 4-4 & \(57 \quad 2-4\) & 58 2-2 & 55 \\
\hline R & 140.0 & . 9 & 1.2 & 1.0 & 1.1 & . 5 & \\
\hline R & & 153-153-157 & 159-159-162 & 162-162-165 & 164-164-167 & 164-165-168 & 53 \\
\hline R & & 55 4-4 & 56 4-4 & 58 4-4 & 59 2-4 & 60 2-2 & 55 \\
\hline R & 137.5 & . 1 & 1.2 & 1.0 & 1.1 & . 3 & \\
\hline R & & 155-155-159 & 158-158-161 & 160-160-164 & 163-163-166 & 162-163-166 & 54 \\
\hline R & & 57 4-4 & 58 4-4 & \(60 \quad 4-4\) & 61 2-4 & 62 2-2 & 55 \\
\hline R & 135.0 & . 2 & 1.2 & 1.0 & 1.0 & . 1 & \\
\hline R & & 155-155-159 & 157-157-160 & 159-159-162 & 161-161-164 & 160-162-165 & 55 \\
\hline R & & 59 4-4 & 61 4-4 & 62 4-4 & 63 2-4 & 63 2-2 & 55 \\
\hline R
R & 132.5 & . 2 & . 0 & 1.0 & 1.0 & 1.2 & \\
\hline R & & 154-154-157 & 156-156-159 & 158-158-161 & 160-160-163 & 159-161-164 & 55 \\
\hline R & & 61 4-4 & 63 4-4 & 64 2-4 & 65 2-2 & 65 2-2 & 55 \\
\hline R & 130.0 & . 3 & . 1 & 1.0 & . 9 & . 9 & \\
\hline R & & 152-152-156 & 155-155-158 & 156-156-159 & 159-159-162 & 157-159-162 & 55 \\
\hline R & & 63 4-4 & 65 4-4 & 66 2-4 & 67 2-2 & 67 2-2 & 55 \\
\hline R & 127.5 & . 4 & . 1 & 1.0 & . 7 & . 7 & \\
\hline R & & 151-151-155 & 154-154-157 & 155-155-158 & 157-158-161 & 155-158-161 & 55 \\
\hline R & & 65 4-4 & 67 4-4 & 68 2-4 & 69 2-2 & 69 2-2 & 55 \\
\hline R & 125.0 & . 5 & . 2 & . 9 & . 5 & . 5 & \\
\hline R & & 151-151-154 & 153-153-156 & 154-154-157 & 155-156-159 & 153-156-159 & 55 \\
\hline R & & & & & & 7-B0-02-10 & 0-005-0 \\
\hline
\end{tabular}

\section*{9. EXAMPLES}

See chart on previous page to follow examples.

\section*{A. Determination of maximum take-off weight.}

DATA
\(\mathrm{OAT}=10^{\circ}\)
QNH \(=1003 \mathrm{mb}\)
20 kt head wind
Air conditioning on
(1) Enter in 20 kt head wind column and read temperature and weight, in first line at \(45^{\circ}\)

157600 kg
(2) Use weight gradients for increase in weight capability between \(45^{\circ}\) and \(10^{\circ}\) :
between \(45^{\circ}\) and Tref \(=43^{\circ} .2 \times 700 \quad 1400 \mathrm{~kg}\) between \(43^{\circ}\) and \(10^{\circ} \ldots . . .33 \times 110 \quad 3630 \mathrm{~kg}\)
Total weight
\(162 \overline{630 \mathrm{~kg}}\)
(3) Effect of QNH \(10 \times 190\)
- 1900 kg \(160 \overline{730 \mathrm{~kg}}\)
(4) Effect of air conditioning - 2500 kg Maximum capability \(158 \overline{230 \mathrm{~kg}}\) Maximum permissible take off weight depending on version, for example : 157000 kg
(5) Read Take-off parameters in 157000 kg line for 20 kt head wind Flaps \(15^{\circ}\)
\[
\begin{array}{ll}
V 1=170 \mathrm{kt} & \\
\mathrm{VR}=171 \mathrm{kt} & \text { Limitation : obstacles } \\
\mathrm{V} 2=174 \mathrm{kt} & \text { and second segment }
\end{array}
\]
B. Determination of flexible temperature.

OAT \(=15^{\circ}\)
DATA
Take-off weight : 130000 kg
QNH \(=1026 \mathrm{mb}\)
No wind
Air conditioning OFF
(1) Enter with 130000 kg and no wind and read temperature . \(64{ }^{\circ}\)
(2) Effect of QNH . + \(1^{\circ}\) Corrected temperature \(\overline{=65^{\circ}}\)
(3) Check CT is lower than \(72^{\circ}\left(\right.\) ISA \(\left.+57^{\circ}\right)\). Flex temperature to be set on THRUST CONTROL COMPUTER : . \(65^{\circ}\)
(4) Read take-off parameters in 130000 kg line for no wind
\(\mathrm{V} 1=156 \mathrm{kt}\)
\(\mathrm{VR}=156 \mathrm{kt}\)
\(\mathrm{V} 2=159 \mathrm{kt}\)

\section*{10. EXPLANATION OF TAKE-OFF PERFORMANCE CALCULATION}

The performance calculation is optimized. This means that
considering the runway, the obstacles (if any) and the environmental conditions, the maximum take-off weight, associated to the optimum flap setting is the resulting parameter. Conversely, a max. TO temperature will result if the chart is entered with the actual TO weight.

\section*{A. Engine thrust}

\section*{B. Airplane performance}

Considering a given runway and wind, given temperature and pressure conditions, given flap setting, the max. weight that can be lifted varies with the V2/Vs ratio.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
TAKE OFF \\
REGULATORY TAKE OFF AND LANDING WEIGHT CHARTS (RTOLW CHARTS)
\end{tabular}} & \multicolumn{3}{|c|}{2.10.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7/8} & \\
\hline & & REV 04 & & 001 \\
\hline
\end{tabular}

If the same calculation is done for all temperature at the same pressure altitude and on same runway, the resulting graph is :

This graph is converted into a tabular form in one column of the take-off chart.

If we enter more deeply in details, the column of a chart represents the optimization line as presented below.

Between (D) and (E), i.e. below Tref, the thrust remains constant. However the weight which can be lifted increases when the temperature decreases. This is due to the TAS decreasing along with the temperature for the same IAS, which in turn allows an acceleration to a higher IAS on the same runway length and consequently leads to a higher weight being lifted.

Between (D) and (C), the thrust decreases, and, consequently, the weight, when the temperature increases.

Between (C) and (B), the thrust remains constant at the level delivered at ISA \(+57^{\circ}\). The optimization line follows the climb limiting weight, until the minimum V2/Vs value is reached. Then, towards (A), the V2/Vs ratio remains constant.

\section*{C. Effect of wind, runway length and bleeds}

As a general rule, the optimization leads to balance ASD and TOD, which means having a single V1. However, on very long runway, the airplane being limited by the second segment climb gradient, it is possible to have a wide range of V1, V1 min. being limited by TOD and V1 max. by ASD.

Concerning the wind effect, it must be noted that a tail wind makes the runway "shorter» and a head wind makes the runway «longer», which in the last case leads to a lower V1 min.

In case of air bleed, it is interesting to note that the available max. thrust decreases, and, consequently, the weight for a given temperature.

In addition, for a given weight W , with or without bleed, the take-off speeds are the same.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Referring to procedure presented in 2.03 .12 page 1 the associated takeoff performance can be determined with one of both following methods.} \\
\hline \multicolumn{2}{|l|}{BASIC METHOD, DRY and WET RUNWAY TAKEOFF DISTANCE PENALTY} \\
\hline \multicolumn{2}{|l|}{Use a dedicated RTOW chart, computed with PEP/TLO or equivalent software, which takes into account a takeoff distance penalty by either :} \\
\hline \multicolumn{2}{|l|}{- reducing the available runway distances (ASDA, TORA, TODA), or} \\
\hline \multicolumn{2}{|l|}{- increasing the ASD, TOR, TOD.} \\
\hline \multicolumn{2}{|l|}{Distance Penalty : 30 m} \\
\hline \multicolumn{2}{|l|}{Flexible takeoff is permitted.} \\
\hline \multicolumn{2}{|l|}{ALTERNATE METHOD, DRY and WET RUNWAY MAXIMUM TAKEOFF WEIGHT PENALTY} \\
\hline \multicolumn{2}{|l|}{When the above method cannot be used, decrease the Maximum Takeoff Weight, deduced from the current available data, by the following value :} \\
\hline & Weight Penalty \\
\hline RWY LGTH > 3000 m & \(700 \mathrm{~kg} / 1600 \mathrm{lb}\) \\
\hline 2500 m < RWY LGTH < 3000 m & \(900 \mathrm{~kg} / 2000 \mathrm{lb}\) \\
\hline 2000 m < RWY LGTH < 2500 m & \(1100 \mathrm{~kg} / 2500 \mathrm{lb}\) \\
\hline \multicolumn{2}{|l|}{Use the associated speeds corresponding to the decreased weight.} \\
\hline \multicolumn{2}{|l|}{Flexible takeoff is possible : no change in weight and Takeoff speeds, decrease the flexible temperature by :} \\
\hline & Delta TFlex \\
\hline RWY LGTH > 3000 m & \(-1^{\circ} \mathrm{C}\) \\
\hline 2500 m < RWY LGTH < 3000 m & \(-1.5^{\circ} \mathrm{C}\) \\
\hline 2000 m < RWY LGTH < 2500 m & \(-2^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CONTAMINATED RUNWAY R
The takeoff is performed with full thrust. Consider the crosswind limitations recommendations presented in 2.02.13 page 18.

If the performance computation software is used for direct determination of takeoff performance on contaminated runway, the basic method can be applied with the same distance penalty for a dedicated computation.

If the FCOM method for contaminated runway, described in 2.18.50, is used, determine firstly the MTOW on dry runway with crosswind, with one of both above methods ; apply to this crosswind corrected MTOW the FCOM method 2.18.50.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{TAKE OFF
QUICK REFERENCE TABLES} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & & FEB 07 \\
\hline
\end{tabular}

Note: For crosswind component greater than R 20 knots, refer to 2.10.35.

TR \(N^{\circ}\) 535-2 Page 6 of 6

\section*{INTRODUCTION :}

These tables enable the crew to quickly determine take off performance out of an airport, for which no take off chart has been established. They are obviously conservative.

\section*{USE OF TABLES :}

A first table gives the corrections to be applied to the runway length versus wind and runway slope. For each flap setting three other tables give, for three different pressure altitudes (0,1000 and 2000 ft) function of temperature and corrected runway length, maximum take off weight, limitation codes and associated speeds. At the top of the table TrEF and TMAX are given. For pressure altitude above 2000 ft the flight manual has to be used. Two graphs give for each configuration the penalty to apply in case of obstacles on the flight path.
NOMINAL THRUST. The Quick reference tables are on pages 3 to 11/12.
FAN THRUST DETERIORATION MODE (FTDM). The FTDM phenomenon, which occurs after 500 to 1250 flight cycles since the last fan blade overhaul, produces a thrust decrease of approximately \(2.5 \%\).

The French DGAC Airworthiness Directive AD 2001-086(B) R2 stipulates that a restoration of the leading edge contour of fan blades must be achieved every 450 engine cycles, in order to recover the nominal thrust.
R The quick reference tables for the FTDM affected aircraft R are in pages 19 to \(27 / 28\).

\section*{HOW TO PROCEED ?}

Enter the first table with runway length, slope and wind data. Determine the corrected runway length by applying the corrections due to slope and wind data. Select then the configuration as a function of this corrected runway length and enter the table(s) corresponding to the proper configuration and airport pressure altitude. As far as airport pressure altitude is concerned, two methods may be applied :
- either interpolate the take off performance by using the two tables enclosing the airport pressure altitude,
- or, if one only need a conservative figure, use the table corresponding to the pressure altitude immediately above the one of the considered airport.
Enter then the proper column of the table(s) with the corrected runway length as criteria. Once again, two methods may be applied :
- either interpolate the take off performance between the two columns enclosing the corrected runway length
- or, if one only need a conservative figure, use the column corresponding to the foregoing value of the corrected runway length.

\section*{A. DETERMINATION OF MAXIMUM TAKE OFF WEIGHT}

Enter the proper table(s) and column(s) as explained above with the actual OAT and read maximum take off weight, limitation codes, V1, VR and V2. If necessary interpolate weight and speeds.
In case of obstacles refer to pages 13 to 18 and apply the corresponding weight and speed decrements.

\section*{B. DETERMINATION OF FLEXIBLE TEMPERATURE}

Determination of flexible temperature is only possible without any obstacle on the flight path.
Enter the proper table(s) and column(s) with the actual take off weight and determine flexible temperature.

\section*{C. LIMITATION CODES :}

2 : second segment
3 : runway
5 : tirespeed
6 : brake energy
Note: Limitation codes 1 (structural weight) and 4 (obstacles) do not appear in quick reference tables.

\section*{D. CORRECTIONS FOR WIND AND RUNWAY SLOPE}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Runway length (m)} & 1500 & 2000 & 2500 & 3000 & 3500 & 4000 \\
\hline \multirow{2}{*}{Effect of wind} & per kt of tail \({ }^{*}\) wind subtract (meters) & 30 & 40 & 50 & 60 & 75 & 85 \\
\hline & per kt of head wind add (meters) & 7 & 9 & 11 & 12 & 14 & 16 \\
\hline \multirow{2}{*}{\[
\begin{array}{|l}
\text { Effect } \\
\text { of } \\
\text { runway } \\
\text { slope }
\end{array}
\]} & per percent uphill slope subtract (meters) & 85 & 165 & 215 & 310 & 360 & 450 \\
\hline & per percent downhill slope add (meters) & 30 & 40 & 60 & 75 & 110 & 135 \\
\hline
\end{tabular}

\footnotetext{
* For runway length above 2750 m
reduce Max. Take-off weight by 2.5 tons (5500 lb)/kt tail wind
. reduce \(\mathrm{V}_{1}\) by \(2 \mathrm{kt} / \mathrm{kt}\) tail wind
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & PAGE & \\
\hline & QUICK REFERENCE TABLES & REV 36 & SEO 040 \\
\hline
\end{tabular}

\section*{E. PENALTIES IN CASE OF OBSTACLES}

Use the proper graph as explained below.
- Position the obstacle by entering its distance from end of runway and its height above the end of runway (No 35 ft margin is required as this is already included).
In case of ascending runway, increase the obstacle height by an additional value as indicated below each graph.
- Read the associated weight correction. Interpolate if necessary. The second segment gradient is given for information only.
- Decrease the takeoff speeds by 0.5 knot per 1000 kg weight decrement. Limit the final speeds to the minimum values as given in 2.10.10.

\section*{F. EXAMPLE}

Pressure altitude : 1400 FT
Temperature : \(36^{\circ} \mathrm{C}\)
Runway length : 3500 m
Wind : 10 kt head
Slope : \(1 \%\) up
1. Determination of corrected runway length :

Runway length . 3500
Correction due to wind \(10 \times 15=+150\)
Correction due to slope - 365
Corrected runway length \(=3285\) m
Take-off configuration : 15/0
2. Determination of a conservative figure as maximum take-off weight :
Pressure altitude: 1400 FT; Use the table corresponding to 2000 FT (2.10 .40 page 5) Corrected runway length : 3285 m ; enter the column corresponding to 3250 m
Read the maximum take-off weight on the line corresponding to the temperature \(35^{\circ} \mathrm{C}\) : 150000 kg \(\mathrm{V}_{1}=151 \mathrm{kt}, \mathrm{Vr}=165 \mathrm{kt}, \mathrm{V} 2=169 \mathrm{kt}\).
3. Determination of a precise figure as flexible temperature for the actual take-off weight of 125000 kg
- Interpolate the temperature corresponding to 125 tons for the corrected runway length of 3285 m at 1000 and 2000 ft pressure altitude. Results :
\(1000 \mathrm{FT}: 68^{\circ} \mathrm{C}, \mathrm{V}_{1}=160 \mathrm{kt}, \mathrm{Vr}=162 \mathrm{kt}, \mathrm{V}_{2}=164 \mathrm{kt}\) \(2000 \mathrm{FT}: 65^{\circ} \mathrm{C}, \mathrm{V}_{1}=158 \mathrm{kt}, \mathrm{Vr}=160 \mathrm{kt}, \mathrm{V}_{2}=163 \mathrm{kt}\)
- Interpolate between these two values to get the flexible temperature at 1400 FT pressure altitude : \(66^{\circ} \mathrm{C}, \mathrm{V}_{1}=159 \mathrm{kt}, \mathrm{V}_{\mathrm{R}}=161 \mathrm{kt}, \mathrm{V}_{2}=163 \mathrm{kt}\)
4. Determination of a conservative figure as maximum take-off weight in case of a 930 ft height obstacle located at 15 km from runway end. From 2.10.40 page 5, as in paragraph 2, find TOW and associated speeds without obstacle :
\(150000 \mathrm{~kg} \mathrm{~V}_{1}=151 \mathrm{kt}, \mathrm{Vr}=165 \mathrm{kt}, \mathrm{V} 2=169 \mathrm{kt}\) 2.10.40 page 14 :

Corrected obstacle height for uphill runway :
\(930+70=1000 \mathrm{ft}\)
Weight decrement : 10000 kg .
Maximum takeoff weight
\(150000-10000=140000 \mathrm{~kg}\)
\(\mathrm{V}_{1}=151-6=145 \mathrm{kt}\)
\(\mathrm{Vr}=165-6=159 \mathrm{kt}\)
\(\mathrm{V}_{2}=169-6=163 \mathrm{kt}\)

R

TEMPORARY REVISION № 218
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE \(=0 \mathrm{FT}\)} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=42^{\circ} \mathrm{C} \\
& \text { TMAX }=55^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0.0 \%
\] & \multicolumn{3}{|l|}{IAS(KT) V1 - VR - V2} \\
\hline \multirow[t]{2}{*}{TEMP. (\({ }^{\circ} \mathrm{C}\))} & \multicolumn{5}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -18 & \[
\begin{array}{lr}
\hline 165.6 & 2-6 \\
165-174-179 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
167.0 & 2-6 \\
164-177-182 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
168.3 & 2-6 \\
163-180-184 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
169.5 & 2-6 \\
162-183-187 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
170.7 & 2-6 \\
162-185-190 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{aligned}
& 164.2 \quad 2-6 \\
& 163-172-177 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
\hline 165.6 & 26 \\
162-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
167.0 & 2-6 \\
161-177-182 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 168.2 & 2-6 \\
160-180-184 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
169.5 & 2-6 \\
159-183-187 \\
\hline
\end{array}
\] \\
\hline 2 & \(161.96-6\)
\(161-170-175\) & \[
\begin{array}{cc}
164.3 \quad 2-6 \\
159-172-177
\end{array}
\] & \[
\begin{array}{cc}
165.6 & 2-6 \\
158-175-179
\end{array}
\] & \[
\begin{array}{lr}
167.0 & 2-6 \\
158-177-182
\end{array}
\] & \[
\begin{array}{cc}
\hline 168.2 \quad 2-6 \\
157-180-184 \\
\hline
\end{array}
\] \\
\hline 12 & \[
\begin{aligned}
& 159.3 \quad 6-6 \\
& 159-169-174
\end{aligned}
\] & \[
\begin{gathered}
162.066 \\
157-170-175
\end{gathered}
\] & \[
\begin{aligned}
& 164.3 \quad 2-6 \\
& 156-172-177 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
\hline 165.6 & 2-6 \\
155-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
167.0 \quad 2-6 \\
154-178-182 \\
\hline
\end{array}
\] \\
\hline 22 & \[
\begin{array}{lr}
156.8 & 6-6 \\
158-167-172 \\
\hline
\end{array}
\] & \[
\begin{gathered}
159.66-6 \\
156-169-174
\end{gathered}
\] & \[
\begin{aligned}
& \hline 162.26-6 \\
& 154-171-175 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
164.4 & 2-6 \\
153-172-177 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
165.7 & 2-6 \\
152-175-179
\end{array}
\] \\
\hline 32 & \(154.4 \quad 6-6\)
\(156-166-171\) & \[
\begin{gathered}
157.1 \quad 6-6 \\
154-168-172
\end{gathered}
\] & \[
\begin{array}{cc}
159.8 & 6-6 \\
153-169-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 162.46-6 \\
151-171-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.5 & 2-6 \\
150-173-177 \\
\hline
\end{array}
\] \\
\hline 42 & \[
\begin{aligned}
& 151.9 \quad 6-6 \\
& 154-165-170 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
154.7 & 6-6 \\
153-166-171 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
157.4 & 6-6 \\
151-168-173 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
160.16-6 \\
149-169-174 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 162.6 \quad 6-6 \\
& 148-171-175 \\
& \hline
\end{aligned}
\] \\
\hline 44 & \[
\begin{aligned}
& \hline 150.86-6 \\
& 155-164-169 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 153.6 \quad 6-6 \\
& 153-166-170 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 156.36-6 \\
& 151-168-172 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cr}
158.96-6 \\
150-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
161.3 \quad 2-6 \\
148-171-175 \\
\hline
\end{array}
\] \\
\hline 46 & \[
\begin{array}{lr}
\hline 149.6 & 6-6 \\
155-164-168
\end{array}
\] & \[
\begin{array}{cc}
152.3 & 6-6 \\
153-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.0 & 6-6 \\
152-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 157.6 & 6-6 \\
150-168-173 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
159.1 \quad 2-6 \\
149-171-175 \\
\hline
\end{array}
\] \\
\hline 48 & \[
\begin{aligned}
& \hline 148.4 \quad 6-6 \\
& 155-164-168 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
\hline 151.1 & 6-6 \\
154-165-169 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 153.76-6 \\
& 152-166-171 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
155.6 & 2-6 \\
151-168-172 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 156.9 \quad 2-6 \\
& 150-171.175 \\
& \hline
\end{aligned}
\] \\
\hline 50 & \[
\begin{array}{ll}
\hline 147.3 & 6-6 \\
156-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
149.96-6 \\
154-165-168
\end{array}
\] & \[
\begin{array}{ll}
152.2 & 2-6 \\
153-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.4 & 2-6 \\
152-168-173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
154.6 & 2-6 \\
151-171-175 \\
\hline
\end{array}
\] \\
\hline 52 & \[
\begin{aligned}
& 146.16-6 \\
& 156-163-166
\end{aligned}
\] & \[
\begin{array}{lr}
\hline 148.6 & 6-6 \\
154-164-168
\end{array}
\] & \[
\begin{array}{lr}
149.9 & 2-6 \\
154-166-170
\end{array}
\] & \[
\begin{array}{cr}
\hline 151.1 & 2-6 \\
153-168-173
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.3 & 2-6 \\
152.171-175 \\
\hline
\end{array}
\] \\
\hline 54 & \[
\begin{aligned}
& 144.9 \quad 6-6 \\
& 156-162-166
\end{aligned}
\] & \[
\begin{array}{lr}
146.5 & 2-6 \\
155-164-168
\end{array}
\] & \[
\begin{array}{cc}
147.7 & 2-6 \\
155-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
148.8 & 2-6 \\
154-168-172
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.9 & 2-6 \\
153-171-175 \\
\hline
\end{array}
\] \\
\hline 56 & \[
\begin{array}{lr}
143.0 & 2-3 \\
157-162-165
\end{array}
\] & \[
\begin{array}{cc}
144.3 & 2-6 \\
156-164-168
\end{array}
\] & \[
\begin{array}{ll}
145.4 & 2-6 \\
156-166-170
\end{array}
\] & \[
\begin{array}{cc}
146.5 & 2-6 \\
155-168-172
\end{array}
\] & \[
\begin{array}{cr}
\hline 147.5 & 2-6 \\
155.171-175 \\
\hline
\end{array}
\] \\
\hline 58 & \[
\begin{array}{cc}
140.4 \quad 2-3 \\
156-161-164
\end{array}
\] & \[
\begin{array}{lr}
142.1 & 2-6 \\
158-164-168
\end{array}
\] & \[
\begin{aligned}
& 143.1 \quad 2-6 \\
& 157-166-170
\end{aligned}
\] & \[
\begin{array}{cc}
144.1 \quad 2-6 \\
156-168-172
\end{array}
\] & \[
\begin{array}{ll}
145.0 & 2-6 \\
156-170-174
\end{array}
\] \\
\hline 60 & \begin{tabular}{ll}
137.8 & \(2-3\) \\
\(156-160-163\)
\end{tabular} & \[
\begin{array}{cc}
139.8 & 2-6 \\
159-164-168
\end{array}
\] & \[
\begin{array}{ll}
140.8 & 2-6 \\
158-166-170
\end{array}
\] & \[
\begin{array}{cc}
141.7 & 2-6 \\
158-168-172
\end{array}
\] & \[
\begin{array}{cc}
\hline 142.6 & 2-6 \\
157.170-174 \\
\hline
\end{array}
\] \\
\hline 62 & \[
\begin{array}{lr}
135.3 & 2-3 \\
156-160-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
137.5 & 2-3 \\
160-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
138.5 & 2-6 \\
160-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
139.3 \quad 2-6 \\
159-168-172 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 140.2 \quad 2-6 \\
& 158-170-174 \\
& \hline
\end{aligned}
\] \\
\hline 64 & \[
\begin{array}{lr}
132.8 & 2-3 \\
155-159-162
\end{array}
\] & \[
\begin{array}{cr}
134.9 & 2-3 \\
160-164-167
\end{array}
\] & \[
\begin{array}{cc}
136.2 & 2-6 \\
161-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
137.0 & 2-6 \\
160-169-172
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.7 & 2-6 \\
160.171-174 \\
\hline
\end{array}
\] \\
\hline 66 & \[
\begin{array}{lr}
130.2 & 2-3 \\
155-158-161
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.2 & 2-3 \\
159-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
133.8 & 2-6 \\
162-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.6 & 2-6 \\
162-169-172 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
\hline 135.3 & 2-6 \\
161-171-174 \\
\hline
\end{array}
\] \\
\hline 68 & \[
\begin{array}{lr}
127.7 & 2-3 \\
155-158-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
129.6 & 2-3 \\
159-163-165 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
131.3 & 2-3 \\
163-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
132.1 \quad 2-6 \\
163-169-172 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
132.8 & 2-6 \\
163-171-174 \\
\hline
\end{array}
\] \\
\hline 70 & \[
\begin{array}{lr}
125.2 \quad 2-3 \\
154-157-160
\end{array}
\] & \[
\begin{array}{cr}
127.0 & 2-3 \\
159-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
128.7 & 2-3 \\
163-166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
129.7 & 2-6 \\
165-169-172
\end{array}
\] & \[
\begin{aligned}
& 130.2,2-2 \\
& 163-171-174 \\
& \hline
\end{aligned}
\] \\
\hline 72 & \[
\begin{array}{lr}
122.6 & 2-3 \\
154-157-159
\end{array}
\] & \[
\begin{array}{lr}
124.4 & 2-3 \\
159-162-164
\end{array}
\] & \begin{tabular}{ll}
126.0 & \(2-3\) \\
\(163-166-169\)
\end{tabular} & \[
\begin{array}{cc}
126.9 & 2-2 \\
165-169-171
\end{array}
\] & \[
\begin{aligned}
& 126.9 \quad 2-2 \\
& 163-169-171
\end{aligned}
\] \\
\hline
\end{tabular}

A310-324/AAPW-4152 T15/00-EE-CM72-1-A
FCOM-80-02-10-40-003-000
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & PAGE & \\
\hline & QUICK REFERENCE TABLES & REV 33 & SEQ 090 \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|c|}{PRESSURE ALTITUDE 0 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=42^{\circ} \mathrm{C} \\
& \text { TMAX }=55^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY SLOPE \(=0 \%\) & \multicolumn{3}{|l|}{\[
\operatorname{IAS}(\mathrm{KT}): \mathrm{V} 1-\mathrm{VR}-\mathrm{V} 2
\]} \\
\hline \multicolumn{6}{|l|}{(tal} \\
\hline \(\left.{ }^{\circ} \mathrm{C}\right)\) & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -18 & \[
\begin{array}{lr}
\hline 165.6 & 2-6 \\
165-174-179 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
167.02-6 \\
164-177-182 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 168.3 & 2-6 \\
163-180-184 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 169.5 & 2-6 \\
162-183-187 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 170.7 & 2-6 \\
162-185-190 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{aligned}
& 164.2 \quad 2-6 \\
& 163-172-177
\end{aligned}
\] & \[
\begin{array}{ll}
165.6 & 2-6 \\
167-175-179
\end{array}
\] & \[
\begin{array}{ll}
\hline 167.0 & 2-6 \\
161-177-187
\end{array}
\] & \[
\begin{aligned}
& 168.2 \quad 2-6 \\
& 160-180-184
\end{aligned}
\] & \[
\begin{array}{lr}
\hline 169.5 \quad 2-6 \\
159-183-187
\end{array}
\] \\
\hline 2 & \[
\begin{aligned}
& 161.96-6 \\
& 161-170-175
\end{aligned}
\] & \[
\begin{aligned}
& 164.3 \quad 2-6 \\
& 159-172-177
\end{aligned}
\] & \[
\begin{array}{ll}
165.6 & 2-6 \\
158-175-170
\end{array}
\] & \[
\begin{array}{ll}
167.0 & 2-6 \\
158-177-182
\end{array}
\] & \[
\begin{array}{ll}
168.2 \quad 2-6 \\
157-180-184
\end{array}
\] \\
\hline 12 & \[
\begin{aligned}
& 159.36-6 \\
& 159-169-174
\end{aligned}
\] & \[
162.0 \quad 6-6
\] & \[
\begin{aligned}
& 164.3 \quad 2-6 \\
& 156-172-177
\end{aligned}
\] & \[
165.6 \quad 2-6
\] & \[
167.0 \quad 2-6
\] \\
\hline 22 & \[
156.866
\] & \[
159.6 \quad 6-6
\] & \[
162.2 \quad 6-6
\] & 165-4
164-4-6
\(153-172-177\) & \(165.78-62\)
\(162-175-179\) \\
\hline & 154.4 6-6 & 157.1 6-6 & 159.8 6-6 & 162.4 6-6 & \(164.5 \quad 2\)-6 \\
\hline 32 & 156-166-171 & 154-168-172 & 153-169-174 & 151-171-175 & 150-173-177 \\
\hline 42 & \[
\begin{aligned}
& 151.966 \\
& 154-165-170
\end{aligned}
\] & \[
\begin{aligned}
& 154.7666 \\
& 153-166-171
\end{aligned}
\] & \[
\begin{aligned}
& 157.4 \quad 6-6 \\
& 151-168-173
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 160.166-6 \\
149-169-174
\end{array}
\] & \[
\begin{aligned}
& 162.6 \quad 6-6 \\
& 148-171-175
\end{aligned}
\] \\
\hline 44 & \[
150.8 \quad 6-6
\] & \[
153.6 \quad 6-6
\] & \[
\begin{aligned}
& 156.3 \quad 6-6 \\
& 151-168-172 \\
& \hline
\end{aligned}
\] & \[
158.9 \quad 6-6
\] & \[
1401.3 \quad 2-6
\] \\
\hline 46 & \[
\begin{aligned}
& 149.6 \quad 6-6 \\
& 155-164-162
\end{aligned}
\] & \[
\begin{aligned}
& 152.3 \quad 6-6 \\
& 153-166-170
\end{aligned}
\] & \[
\begin{aligned}
& 155.06-6 \\
& 152-167-171
\end{aligned}
\] & \[
\begin{aligned}
& 157.6 \quad 6-6 \\
& 150-168-173
\end{aligned}
\] & \[
\begin{array}{lr}
159.1 & 2-6 \\
149-171-175
\end{array}
\] \\
\hline 48 & \[
148.466
\] & \[
151.16-6
\] & \[
153.7 \quad 6-6
\] & \[
155.6 \quad 2-6
\] & \[
156.92-6
\] \\
\hline 50 & \[
\begin{aligned}
& 147.3 \quad 6-6 \\
& 156-163-167
\end{aligned}
\] & \[
149.9 \quad 6-6
\] & \[
\begin{array}{ll}
152.2 \quad 2-6 \\
153-166-170
\end{array}
\] & \[
153.42-6
\] & \[
154.6 \quad 2-6
\] \\
\hline 52 & 146.1 6-6 & 148.6 6-6 & 149.9 2-6 & \(151.12{ }^{2-6}\) & 152.3 2-6 \\
\hline & 156-163-166 & 154-164-168 & 154-166-170 & 153-168-173 & 152-171-175 \\
\hline 54 & 156-162-166 & 155-164-168 & 155-166-170 & 154-168-172 & 153-171-175 \\
\hline 56 & \[
143.2 \quad 2-6
\] & 144.3
\(156-164-168\) & 145.4
\(156-166-170\) & 146.5
\(155-168-172\) & \[
\frac{103-1 / 1-1 / 0}{147.5 \quad 2-6}
\] \\
\hline & \(140.9 \quad 2-6\) & 142.1 2-6 & 143.1 2-6 & 144.1 2-6 & 145.0 2-6 \\
\hline 58 & 158-162-165 & 158-164-168 & 157-166-170 & 156-168-172 & 156-170-174 \\
\hline 60 & \(138.4{ }^{2-3}\) & \(139.8{ }^{2-6}\) & 140.8 - \(2-6\) & \(141.7{ }^{2-6}\) & \(142.6{ }^{2-6}\) \\
\hline & 158-161-165 & 159-164-168 & 158-166-170 & 158-168-172 & 157-170-174 \\
\hline 62 & \[
\begin{aligned}
& \hline 135.9 \\
& 158-161-164
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 137.6 & 2-6 \\
160-164-168
\end{array}
\] & \[
\begin{array}{lr}
\hline 138.5 & 2-6 \\
160-166-170 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 139.38-6 \\
& 159-168-172
\end{aligned}
\] & \[
\begin{aligned}
& 140.2 \quad 2-6 \\
& 158-170-174
\end{aligned}
\] \\
\hline 64 & \(133.4 \quad 2.3\) & \(135.3{ }^{2-6}\) & \(136.2 \quad 2-6\) & \(137.0{ }^{2-6}\) & \(137.7{ }^{2-6}\) \\
\hline & 130.8 - 2 -3 & 132.8 2-3 & 133.8 2-6 & 134.6-172 & 130-171-174 \\
\hline 66 & 157-160-163 & 162-164-168 & 162-167-170 & 162-169-172 & 161-171-174 \\
\hline 68 & 128.2 2-3 & \(130.2{ }^{2-3}\) & \(131.4{ }^{16-6}\) & 132.1 2-6 & \(132.81{ }^{2-6}\) \\
\hline & 125.7-162-3 & 127.6-12-3 & 164-167-170 & 163-169-172 & 163-171-174 \\
\hline 70 & 157-159-161 & 162-164-166 & 165-168-170 & 165-169-172 & 163-171-174 \\
\hline 72 & \[
\begin{array}{lr}
123.1 & 2-3 \\
157-158-161
\end{array}
\] & \[
\begin{aligned}
& 165.0 \quad 2-3 \\
& 167-163-166
\end{aligned}
\] & \[
\begin{array}{rr}
126.6 & 2-3 \\
166-168-170
\end{array}
\] & \[
\begin{aligned}
& 126.9 \quad 2-2 \\
& 165-169-171
\end{aligned}
\] & \[
\begin{array}{cc}
126.9 & 2-2 \\
163-169-171
\end{array}
\] \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE 1000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{TREF}=37^{\circ} \mathrm{C} \\
& \operatorname{TMAX}=53^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MAX T.O. WEIGHT(1000KG) } \\
& \qquad \text { IAS(KT) : V1 - VR - V2 }
\end{aligned}
\]} & CODES \\
\hline \multicolumn{6}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -23 & \[
\begin{array}{lr}
\hline 164.6 & 2-6 \\
164-174-178 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 166.0 & 2-6 \\
163-176-181 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 167.3 & 2-6 \\
162-179-183 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 168.5 & 2-6 \\
162-182-186 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 169.7 & 2-6 \\
161-184-189
\end{array}
\] \\
\hline -13 & \[
\begin{array}{lr}
\hline 163.26-6 \\
162-171-176 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 164.6 & 2-6 \\
161-174-178 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
166.0 & 2-6 \\
160-176-181 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
167.3 & 2-6 \\
159-179-183 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
168.5 & 2-6 \\
158-182-186 \\
\hline
\end{array}
\] \\
\hline -3 & \[
\begin{array}{cr}
\hline 160.6 & 6-6 \\
160-169-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.26-6 \\
159-171-176 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.6 & 2-6 \\
158-174-178 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 165.9 & 2-6 \\
157-176-181
\end{array}
\] & \[
\begin{array}{lr}
\hline 167.2 \quad 2-6 \\
156-179-183 \\
\hline
\end{array}
\] \\
\hline 7 & \[
\begin{array}{lr}
\hline 157.9 & 6-6 \\
159-168-173 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 160.6 \quad 6-6 \\
157-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.3 & 2-6 \\
155-171-176
\end{array}
\] & \[
\begin{array}{cc}
\hline 164.6 & 2-6 \\
154-174-178 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 165.9 & 2-6 \\
153-176-181
\end{array}
\] \\
\hline 17 & \[
\begin{array}{lr}
\hline 155.3 & 6-6 \\
157-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
158.1 & 6-6 \\
155-168-173 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
160.8 & 6-6 \\
154-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.3 & 2-6 \\
152-171-176 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
164.6 & 2-6 \\
151-174-178 \\
\hline
\end{array}
\] \\
\hline 27 & \[
\begin{array}{lr}
\hline 152.9 & 6-6 \\
155-165-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.7 & 6-6 \\
154-167-172
\end{array}
\] & \[
\begin{array}{cr}
\hline 158.46-6 \\
152-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 161.0 & 6-6 \\
150-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 163.4 \quad 2-6 \\
149-172-176 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{array}{lr}
\hline 150.2 & 6-6 \\
154-164-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.06-6 \\
152-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.76-6 \\
151-167-172
\end{array}
\] & \[
\begin{array}{cc}
\hline 158.3 \quad 6-6 \\
149-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
160.8 & 6-6 \\
148-170-174
\end{array}
\] \\
\hline 39 & \[
\begin{array}{ll}
\hline 149.46-6 \\
154-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.1 \quad 6-6 \\
152-165-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.8 & 6-6 \\
151-167-171 \\
\hline
\end{array}
\] & \[
\begin{gathered}
157.46-6 \\
149-168-173 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 160.06-6 \\
& 148-170-174 \\
& \hline
\end{aligned}
\] \\
\hline 41 & \[
\begin{array}{lr}
\hline 148.4 & 6-6 \\
154-163-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.2 & 6-6 \\
152-165-169
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.9 & 6-6 \\
151-166-171
\end{array}
\] & \[
\begin{array}{cc}
156.5 & 6-6 \\
149-168-172 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.06-6 \\
148-169-173
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
\hline 147.4 & 6-6 \\
154-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.0 & 6-6 \\
153-164-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.7 & 6-6 \\
151-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.26-6 \\
150-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 157.0 & 2-6 \\
149-169-173
\end{array}
\] \\
\hline 45 & \[
\begin{array}{lr}
\hline 146.2 \quad 6-6 \\
154-162-166
\end{array}
\] & \[
\begin{array}{cr}
\hline 148.9 & 6-6 \\
153-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.5 & 6-6 \\
151-165-169
\end{array}
\] & \[
\begin{array}{lr}
153.7 & 2-6 \\
150-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 154.9 & 2-6 \\
149-169-173
\end{array}
\] \\
\hline 47 & \[
\begin{array}{lr}
\hline 145.1 \quad 6-6 \\
155-162-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.7 & 6-6 \\
153-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.3 & 6-6 \\
152-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
151.6 & 2-6 \\
151-167-171
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.8 & 2-6 \\
150-169-173
\end{array}
\] \\
\hline 49 & \[
\begin{array}{ll}
144.0 & 6-6 \\
155-161-165
\end{array}
\] & \[
\begin{array}{ll}
146.5 & 6-6 \\
154-163-167
\end{array}
\] & \[
\begin{array}{cc}
148.4 & 2-6 \\
153-165-169
\end{array}
\] & \[
\begin{array}{cc}
149.5 & 2-6 \\
152-167-171
\end{array}
\] & \[
\begin{array}{ll}
\hline 150.7 & 2-6 \\
151-169-173
\end{array}
\] \\
\hline 51 & \[
\begin{array}{lr}
\hline 142.9 & 6-6 \\
155-161-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.0 & 2-6 \\
154-163-166
\end{array}
\] & \[
\begin{array}{rr}
\hline 146.2 & 2-6 \\
153-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
147.4 & 2-6 \\
153-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 148.4 & 2-6 \\
152-169-173 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
\hline 141.8 & 6-6 \\
156-161-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
143.0 & 2-6 \\
155-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
144.1 & 2-6 \\
154-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.2 & 2-6 \\
154-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.2 & 2-6 \\
153-169-173 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
\hline 139.7 & 2-6 \\
157-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.8 & 2-6 \\
156-163-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.9 & 2-6 \\
156-165-168
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.9 & 2-6 \\
155-167-171
\end{array}
\] & \[
\begin{array}{lr}
\hline 143.9 & 2-6 \\
154-169-173
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
137.3 & 2-3 \\
157-160-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.7 & 2-6 \\
157-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.6 & 2-6 \\
157-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
140.6 & 2-6 \\
156-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.5 & 2-6 \\
156-169-172 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
134.8 & 2-3 \\
156-159-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.5 & 2-6 \\
159-163-166
\end{array}
\] & \[
\begin{array}{lr}
137.4 & 2-6 \\
158-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
138.3 & 2-6 \\
157-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.2 & 2-6 \\
157-169-172
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
\hline 132.4 & 2-3 \\
156-159-162
\end{array}
\] & \[
\begin{array}{lr}
134.4 \quad 2-6 \\
160-163-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 135.2 & 2-6 \\
159-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
136.0 & 2-6 \\
159-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 136.8 & 2-6 \\
158-169-172
\end{array}
\] \\
\hline 63 & \[
\begin{array}{lr}
\hline 129.9 & 2-3 \\
156-158-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
132.0 & 2-3 \\
160-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.9 & 2-6 \\
160-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
133.7 & 2-6 \\
160-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
134.4 \quad 2-6 \\
159-169-172
\end{array}
\] \\
\hline 65 & \[
\begin{array}{lr}
127.4 & 2-3 \\
155-158-160
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.4 & 2-3 \\
160-162-165
\end{array}
\] & \[
\begin{array}{lr}
\hline 130.7 & 2-6 \\
162-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
131.4 & 2-6 \\
161-167-170
\end{array}
\] & \[
\begin{array}{cr}
\hline 132.1 \quad 2-6 \\
161-169-172
\end{array}
\] \\
\hline 67 & \[
\begin{array}{lr}
\hline 124.9 & 2-3 \\
155-157-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 126.9 & 2-3 \\
160-162-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 128.4 r & 2-6 \\
163-166-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 129.1 r & 2-6 \\
163-168-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.7 & 2-6 \\
162-169-172
\end{array}
\] \\
\hline 69 & \[
\begin{array}{lr}
122.5 & 2-3 \\
155-157-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
124.4 & 2-3 \\
160-162-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
126.0 & 2-3 \\
164-166-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 126.7 & 2-6 \\
164-168-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.0 & 2-2 \\
163-169-171 \\
\hline
\end{array}
\] \\
\hline 70 & \[
\begin{array}{lr}
\hline 121.3 & 2-3 \\
155-156-159
\end{array}
\] & \[
\begin{array}{lr}
123.1 & 2-3 \\
160-161-164
\end{array}
\] & \[
\begin{array}{lr}
124.7 & 2-3 \\
164-166-168
\end{array}
\] & \[
\begin{array}{lr}
125.5 & 2-2 \\
164-168-170
\end{array}
\] & \[
\begin{array}{lr}
125.5 & 2-2 \\
162-168-170
\end{array}
\] \\
\hline
\end{tabular}

A310-324/AA/PW-4152 T15/00-EE-CIM72-1---A
FCOM-B0-02-10-40-004-090

\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.10 .40} \\
\hline \multicolumn{2}{|c|}{ PAGE 4 } & \\
\hline & DEC 91 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE \(=1000\) FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=37^{\circ} \mathrm{C} \\
& \text { TMAX }=53^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0.0 \%
\] & \multicolumn{3}{|l|}{IAS(KT) V1 - VR - V2} \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -23 & \[
\begin{array}{lr}
\hline 164.6 & 2-6 \\
164-174-178
\end{array}
\] & \[
\begin{array}{lr}
166.0 & 2-6 \\
163-176-181 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 167.3 \quad 2-6 \\
162-179-183 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 168.5 & 2-6 \\
162-182-186 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 169.7 & 2-6 \\
161-184-189 \\
\hline
\end{array}
\] \\
\hline -13 & \[
\begin{gathered}
163.2 \quad 6-6 \\
162-171-176
\end{gathered}
\] & \[
\begin{array}{cc}
164.6 & 26 \\
161-174-178 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
166.0 & 2-6 \\
160-176-181
\end{array}
\] & \[
\begin{array}{lr}
167.3 & 2-6 \\
159-179-183 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
168.5 \quad 2-6 \\
158-182-186 \\
\hline
\end{array}
\] \\
\hline -3 & \[
\begin{aligned}
& 160.6 \quad 6-6 \\
& 160-169-174 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
163.2 \quad 6-6 \\
159-171.176
\end{array}
\] & \[
\begin{array}{ll}
164.6 & 2-6 \\
158-174-178 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 165.9 \quad 2-6 \\
& 157-176-181 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
167.2 \quad 2-6 \\
156-179-183 \\
\hline
\end{array}
\] \\
\hline 7 & \[
\begin{array}{lr}
157.9 & 6-6 \\
159-168-173
\end{array}
\] & \[
\begin{gathered}
160.6 \quad 6-6 \\
157-170-174
\end{gathered}
\] & \[
\begin{array}{lr}
163.3 & 2-6 \\
155-171-176 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
164.6 \quad 2-6 \\
154-174-178 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
165.9 & 2-6 \\
153-176-181 \\
\hline
\end{array}
\] \\
\hline 17 & \[
\begin{aligned}
& 155.36-6 \\
& 157-167-171 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
158.1 \quad 6-6 \\
155-168-173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
160.8 & 6-6 \\
154-170-174 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 163.3 \quad 2-6 \\
& 152-171-176 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
164.6 & 2-6 \\
151-174-178 \\
\hline
\end{array}
\] \\
\hline 27 & \[
\begin{aligned}
& 152.96-6 \\
& 155-165-170 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
155.7 & 6-6 \\
154-167-172 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
158.4 & 6-6 \\
152-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
161.0 \quad 6-6 \\
150-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
163.4 & 2-6 \\
149-172-176 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{aligned}
& 150.2 \quad 6-6 \\
& 154-164-169
\end{aligned}
\] & \[
\begin{array}{ll}
153.0 & 6-6 \\
152-166-170 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 155.76-6 \\
& 151-167-172 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
158.36-6 \\
149-169-173 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 160.8 \quad 6-6 \\
& 148-170-174 \\
& \hline
\end{aligned}
\] \\
\hline 39 & \[
\begin{array}{ll}
149.46-6 \\
154-164-168 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 152.1 \quad 6-6 \\
& 152-165-170
\end{aligned}
\] & \[
\begin{array}{cr}
154.8 & 6-6 \\
151-167-171 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 157.4 \quad 6-6 \\
& 149-168-173 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
160.0 & 6-6 \\
148-170-174
\end{array}
\] \\
\hline 41 & \[
\begin{aligned}
& 148.4 \quad 6-6 \\
& 154-163-168 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lc}
151.2 \quad 6-6 \\
152-165-169 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 153.96-6 \\
& 151-166-171 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
\hline 156.5 & 6-6 \\
149-168-172 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
159.06-6 \\
148-169-173 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{aligned}
& 147.4 \quad 6-6 \\
& 154-163-167 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
150.0 & 6-6 \\
153-164-169
\end{array}
\] & \[
\begin{array}{cc}
152.7 & 6-6 \\
151-166-170
\end{array}
\] & \[
\begin{aligned}
& 155.2 \quad 6-6 \\
& 150-167-171 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
157.0 & 26 \\
149-169-173
\end{array}
\] \\
\hline 45 & \(146.26-6\)
\(154-162-166\) & \[
\begin{gathered}
148.9 \quad 6-6 \\
153-164-168
\end{gathered}
\] & \[
\begin{array}{lr}
151.5 & 6-6 \\
151-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.7 & 2-6 \\
150-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.9 & 2-6 \\
149-169-173 \\
\hline
\end{array}
\] \\
\hline 47 & \(145.1 \quad 6-6\)
\(155-162-166\) & \(147.7 \quad 6-6\)
\(153-163-167\) & \[
\begin{aligned}
& 150.36-6 \\
& 152-165-169
\end{aligned}
\] & \[
\begin{array}{cc}
151.6 & 2-6 \\
151-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
152.8 & 2-6 \\
150-169-173
\end{array}
\] \\
\hline 49 & \begin{tabular}{ll}
144.0 & \(6-6\) \\
\(155-161-165\)
\end{tabular} & \[
\begin{array}{lr}
\hline 146.5 & 6-6 \\
154-163-167
\end{array}
\] & \[
\begin{array}{lr}
148.4 & 2-6 \\
153-165-169
\end{array}
\] & \[
\begin{array}{cr}
\hline 149.5 & 2-6 \\
152-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.7 & 26 \\
151-169-173 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{cc}
142.9 & 6-6 \\
155-161-164
\end{array}
\] & \[
\begin{array}{ll}
145.0 & 2-6 \\
154-163-166
\end{array}
\] & \[
\begin{array}{lc}
146.2 & 2-6 \\
153-165-168
\end{array}
\] & \[
\begin{array}{cr}
147.4 & 2-6 \\
153-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
148.4 \quad 2-6 \\
152-169.173
\end{array}
\] \\
\hline 53 & \begin{tabular}{ll}
141.4 & \(3-3\) \\
\(155-160-164\)
\end{tabular} & \[
\begin{array}{lr}
143.0 & 2-6 \\
155-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
144.1 & 2-6 \\
154-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.2 & 2-6 \\
154-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
146.2 & 2-6 \\
153-169-173 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
139.2 & 2-3 \\
155-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.8 & 2-6 \\
156-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
141.9 & 2-6 \\
156-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
142.9 & 2-6 \\
155-167-171 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 143.9 \quad 2-6 \\
& 154-169-173 \\
& \hline
\end{aligned}
\] \\
\hline 57 & \[
\begin{array}{lr}
136.7 & 2-3 \\
154-159-162
\end{array}
\] & \[
\begin{array}{lr}
138.7 & 2-6 \\
157-163-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.6 & 2-6 \\
157-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.6 & 2-6 \\
156-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
141.5 & 2-6 \\
156-169-172 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
134.3 & 2-3 \\
154-158-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.4 & 2.3 \\
158-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
137.4 & 2-6 \\
158-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
138.3 & 26 \\
157-167-170 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 139.2 \quad 2-6 \\
& 157-169-172 \\
& \hline
\end{aligned}
\] \\
\hline 61 & \[
\begin{array}{lr}
131.8 & 2-3 \\
154-157-160
\end{array}
\] & \[
\begin{array}{lr}
133.9 & 2-3 \\
158-162-165
\end{array}
\] & \[
\begin{array}{cc}
135.2 & 2-6 \\
159-165-168
\end{array}
\] & \[
\begin{array}{cc}
136.0 & 2-6 \\
159-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
136.8 & 2-6 \\
158-169-172
\end{array}
\] \\
\hline 63 & \[
\begin{array}{cc}
129.3 & 2-3 \\
153-157-160
\end{array}
\] & \[
\begin{array}{cr}
131.4 & 2-3 \\
158-162-164
\end{array}
\] & \[
\begin{array}{cc}
132.9 & 2-6 \\
160-165-168
\end{array}
\] & \[
\begin{array}{cr}
\hline 133.7 & 2-6 \\
160-167.170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 134.4 & 2-6 \\
159-169-172 \\
\hline
\end{array}
\] \\
\hline 65 & \[
\begin{array}{ll}
126.9 & 2-3 \\
153-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
128.9 & 2-3 \\
157-161-164
\end{array}
\] & \[
\begin{array}{cc}
130.6 & 2-3 \\
161-165-168
\end{array}
\] & \[
\begin{array}{cc}
131.4 & 2-6 \\
161-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.1 \quad 2-6 \\
161-169-172
\end{array}
\] \\
\hline 67 & \(124.4 \quad 2-3\)
\(153-156-158\) & \[
\begin{array}{ll}
126.3 & 2-3 \\
157-160-163
\end{array}
\] & \[
\begin{array}{cc}
128.0 & 2-3 \\
161-165-167
\end{array}
\] & \[
\begin{array}{cc}
129.1 \quad 2-6 \\
163-168-170
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.7 & 2-6 \\
162-169-172
\end{array}
\] \\
\hline 69 & \[
\begin{array}{ll}
122.0 \quad 2-3 \\
153-155-158
\end{array}
\] & \[
\begin{array}{lr}
123.8 & 2-3 \\
157-160-162
\end{array}
\] & \[
\begin{array}{lr}
125.4 & 2-3 \\
161-164-167
\end{array}
\] & \[
\begin{array}{cc}
126.7 & 26 \\
164-168-171
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.0 & 2-2 \\
163-169-171 \\
\hline
\end{array}
\] \\
\hline 70 & \begin{tabular}{ll}
120.8 & \(2-3\) \\
\(152-155-157\)
\end{tabular} & \[
\begin{array}{lr}
122.6 & 2-3 \\
157-160-162
\end{array}
\] & \[
\begin{array}{cr}
124.1 & 2-3 \\
161-164-166
\end{array}
\] & \[
\begin{array}{cr}
125.5 & 2-2 \\
164-168-170
\end{array}
\] & \[
\begin{array}{lr}
125.5 & 2-2 \\
162-168-170 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

\begin{tabular}{|l|l|ll|}
\hline \multicolumn{3}{|c|}{ CONFIGURATION 15/0 } & \multicolumn{1}{c|}{ PRESSURE ALTITUDE \(=2000 \mathrm{FT}\)} \\
\hline TREF \(=33^{\circ} \mathrm{C}\) & DRY RUNWAY & MAX T.O. WEIGHT(1000KG) & CODES \\
\hline
\end{tabular}
TMAX \(=51^{\circ} \mathrm{C} \quad\) SLOPE \(=0.0 \%\)

IAS(KT) V1 - VR - V2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TEMP. (\({ }^{\circ} \mathrm{C}\))} & \multicolumn{5}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -27 & \[
\begin{array}{cr}
163.5 & 2-6 \\
163-172-177 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 164.8 & 2.6 \\
162-175.179 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
166.2 & 2-6 \\
161-178-182 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 167.4 & 2-6 \\
160-180-185 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 168.6 \quad 2-6 \\
160.183-187 \\
\hline
\end{array}
\] \\
\hline .17 & \[
\begin{array}{lc}
161.6 \quad 6-6 \\
161-170-175 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
163.5 & 2-6 \\
160-172-177
\end{array}
\] & \[
\begin{array}{cc}
164.8 & 2-6 \\
159-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
166.1 & 2-6 \\
158-178-182 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
167.3 & 2-6 \\
157.180-185
\end{array}
\] \\
\hline .7 & \[
\begin{array}{cc}
159.0 & 6-6 \\
160-169-173
\end{array}
\] & \[
\begin{array}{lc}
161.6 & 6-6 \\
158-170-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.5 & 2-6 \\
157-173-177 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
164.8 & 2-6 \\
156-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
166.1 & 2-6 \\
155-178-182 \\
\hline
\end{array}
\] \\
\hline 3 & \[
\begin{array}{cc}
156.3 & 6-6 \\
158-167-172 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
159.0 & 6-6 \\
156-169-173
\end{array}
\] & \[
\begin{array}{cc}
161.7 & 6-6 \\
154-170-175
\end{array}
\] & \[
\begin{array}{lr}
163.5 & 2-6 \\
153-173-177 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.7 & 2-6 \\
152-175-179 \\
\hline
\end{array}
\] \\
\hline 13 & \[
\begin{aligned}
& 153.6 \quad 6-6 \\
& 156-166-171
\end{aligned}
\] & \[
\begin{aligned}
& 156.4 \quad 6-6 \\
& 154-167-172
\end{aligned}
\] & \[
\begin{gathered}
159.1666 \\
153-169-173 \\
\hline
\end{gathered}
\] & \[
\begin{array}{lr}
161.7 & 6-6 \\
151-170-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.5 & 2-6 \\
150-173-177 \\
\hline
\end{array}
\] \\
\hline 23 & \[
\begin{aligned}
& 151.2 \quad 6-6 \\
& 154-165-169
\end{aligned}
\] & \[
\begin{aligned}
& 154.0 \quad 6-6 \\
& 153-166-171 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
156.7 & 6-6 \\
151-168-172
\end{array}
\] & \[
\begin{aligned}
& 159.36-6 \\
& 150-169-174 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
161.8 & 6-6 \\
148-171-175 \\
\hline
\end{array}
\] \\
\hline 33 & \begin{tabular}{ll}
148.7 & \(6-6\) \\
\(153-163-168\)
\end{tabular} & \[
\begin{array}{lr}
151.5 & 6-6 \\
151-165-169 \\
\hline
\end{array}
\] & \[
\begin{gathered}
154.2 \quad 6-6 \\
149-166-171 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
156.96-6 \\
148-168-172
\end{gathered}
\] & \[
\begin{array}{cc}
\hline 159.5 & 6-6 \\
146-169-174 \\
\hline
\end{array}
\] \\
\hline 35 & \[
\begin{array}{ll}
147.7 & 6-6 \\
153-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
150.5 & 6-6 \\
151-164-169
\end{array}
\] & \[
\begin{aligned}
& 153.2 \quad 6-6 \\
& 150-166-170 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
155.8 & 6-6 \\
148-167-172 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 158.466 \\
& 147-169-173 \\
& \hline
\end{aligned}
\] \\
\hline 37 & \[
\begin{array}{lr}
146.7 & 6-6 \\
153-162-167 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 149.4 \quad 6-6 \\
& 151-164-168
\end{aligned}
\] & \[
\begin{array}{cr}
152.0 & 6-6 \\
150-165-170
\end{array}
\] & \[
\begin{array}{cr}
154.6 & 6-6 \\
148-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 157.2 \quad 6-6 \\
147-168-172 \\
\hline
\end{array}
\] \\
\hline 39 & \[
\begin{array}{lr}
145.6 & 6-6 \\
153-162-166
\end{array}
\] & \[
\begin{array}{cc}
\hline 148.3 & 6-6 \\
152-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 150.9 & 6-6 \\
150-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.5 & 6-6 \\
149-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.7 \quad 2-6 \\
147-168-172 \\
\hline
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
144.6 & 6-6 \\
+154-162-165 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 147.2 \quad 6-6 \\
& 152-163-167
\end{aligned}
\] & \[
\begin{array}{cc}
149.8 & 6-6 \\
150-165-168 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 152.3 \quad 6-6 \\
& 149-166-170 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
153.9 & 2-6 \\
148-168-172
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
\hline 143.5 & 6-6 \\
154-161-165
\end{array}
\] & \[
\begin{aligned}
& \hline 146.1 \quad 6-6 \\
& 152-163-166
\end{aligned}
\] & \[
\begin{array}{cc}
148.7 & 6-6 \\
151-164-168
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.7 & 2-6 \\
150-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.9 \quad 2-6 \\
149-168-172 \\
\hline
\end{array}
\] \\
\hline 45 & \[
\begin{array}{ll}
142.5 & 6-6 \\
154-161-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.0 & 6-6 \\
153-162-166
\end{array}
\] & \[
\begin{array}{cc}
147.5 & 6-6 \\
151.164-167
\end{array}
\] & \[
\begin{aligned}
& 148.8 \quad 2-6 \\
& 150-166-169 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{rr}
149.9 & 2-6 \\
150-168-172
\end{array}
\] \\
\hline 47 & \[
\begin{array}{ll}
141.5 & 6-6 \\
154-160-164
\end{array}
\] & \[
\begin{array}{lr}
143.9 & 6-6 \\
153-162-165
\end{array}
\] & \[
\begin{array}{ll}
145.7 & 2-6 \\
152-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
146.8 & 2-6 \\
151-166-169 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 147.9 \quad 2-6 \\
& 150-168-172
\end{aligned}
\] \\
\hline 49 & \[
\begin{array}{ll}
140.2 & 3-3 \\
154-160-163
\end{array}
\] & \[
\begin{array}{lr}
142.5 & 2-6 \\
153-161-165
\end{array}
\] & \[
\begin{array}{lr}
143.7 & 2-6 \\
153.163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
144.8 & 2-6 \\
152-166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
145.8 \quad 2-6 \\
151-168-172 \\
\hline
\end{array}
\] \\
\hline 51 & \(138.63-3\)
\(154-159-162\) & \[
\begin{array}{lr}
140.6 & 2-6 \\
154-161-165
\end{array}
\] & \[
\begin{array}{cc}
141.7 & 2-6 \\
154.164-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.8 & 2-6 \\
153.166-169
\end{array}
\] & \[
\begin{array}{lr}
\hline 143.8 & 2-6 \\
152-168-171 \\
\hline
\end{array}
\] \\
\hline 53 & \begin{tabular}{lr}
136.6 & \(3-3\) \\
\(153-158-161\)
\end{tabular} & \[
\begin{array}{cr}
138.5 & 2-6 \\
155-161-165
\end{array}
\] & \[
\begin{array}{lr}
139.6 \quad 2-6 \\
155-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.5 & 2-6 \\
154-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.5 & 2-6 \\
153.167-171 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
134.3 & 2-3 \\
153-157-160
\end{array}
\] & \[
\begin{array}{cc}
136.4 \quad 2-6 \\
156-161-164
\end{array}
\] & \[
\begin{array}{lr}
137.4 & 2-6 \\
156-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.3 & 2-6 \\
155-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.2 \quad 2-6 \\
155-167-171 \\
\hline
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
132.0 & 2-3 \\
152-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
134.1 & 2-3 \\
157-161-164
\end{array}
\] & \[
\begin{array}{lc}
\hline 135.3 & 2-6 \\
157-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.1 & 2-6 \\
156-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.9 & 2-6 \\
156-167.171 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
129.6 & 2-3 \\
152-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
131.7 & 2-3 \\
156-160-163
\end{array}
\] & \[
\begin{array}{lr}
133.1 & 2-6 \\
158-164-167
\end{array}
\] & \[
\begin{array}{cc}
133.9 & 2-6 \\
157.166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
134.7 & 2-6 \\
157-167.171
\end{array}
\] \\
\hline 61 & \[
\begin{aligned}
& 127.2 \quad 2-3 \\
& 152-155-158 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
129.3 & 2-3 \\
156-160-163 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
130.9 & 2-6 \\
159-164-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
131.7 & 2-6 \\
159-166-169 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 132.4 \quad 2-6 \\
& 158.167-170 \\
& \hline
\end{aligned}
\] \\
\hline 63 & \[
\begin{array}{lr}
124.9 & 2-3 \\
151-154-157 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
126.8 & 2-3 \\
156-159-162
\end{array}
\] & \[
\begin{array}{lr}
\hline 128.6 & 2-3 \\
160-164-166 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
129.4 & 2-6 \\
160-166-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
130.1 & 2-6 \\
160-168-170 \\
\hline
\end{array}
\] \\
\hline 65 & \[
\begin{array}{lr}
122.5 & 2-3 \\
151-154-157
\end{array}
\] & \[
\begin{array}{lr}
124.4 & 2-3 \\
155-159-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
126.0 & 2-3 \\
159-163-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.2 & 2-6 \\
162-166.169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.8 & 2-6 \\
161-168-170 \\
\hline
\end{array}
\] \\
\hline 67 & \[
\begin{array}{lr}
120.1 & 2-3 \\
151-154-156
\end{array}
\] & \[
\begin{array}{lr}
122.0 & 2-3 \\
155-158-160
\end{array}
\] & \[
\begin{array}{lr}
\hline 123.5 & 2-3 \\
159-163-165
\end{array}
\] & \[
\begin{array}{ll}
125.0 & 2-3 \\
163-167-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.5 & 2-2 \\
162-168-170
\end{array}
\] \\
\hline 68 & \[
\begin{array}{lr}
119.0 & 2-3 \\
151-153-156
\end{array}
\] & \[
\begin{array}{lr}
120.8 & 2-3 \\
155-158-160
\end{array}
\] & \[
\begin{array}{lr}
122.3 & 2-3 \\
159-162-164
\end{array}
\] & \[
\begin{array}{lr}
123.7 & 2-3 \\
163.166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 123.9 & 2-2 \\
162-167-169
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & QUICK REFERENCE TABLES & REV 33 & SEQ 090 \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE 2000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=33^{\circ} \mathrm{C} \\
& \text { TMAX }=51^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MAX T.O. WEIGHT(1000KG) } \\
& \qquad \text { IAS(KT) : V1 - VR - V2 }
\end{aligned}
\]} & CODES \\
\hline \multicolumn{6}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -27 & \[
\begin{array}{lr}
\hline 163.5 & 2-6 \\
163-172-177 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.8 & 2-6 \\
162-175-179
\end{array}
\] & \[
\begin{array}{cr}
\hline 166.2 \quad 2-6 \\
161-178-182 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 167.4 \quad 2-6 \\
160-180-185
\end{array}
\] & \[
\begin{array}{lr}
\hline 168.6 & 2-6 \\
160-183-187 \\
\hline
\end{array}
\] \\
\hline . 17 & \[
\begin{array}{lr}
\hline 161.6 & 6-6 \\
161-170-175
\end{array}
\] & \[
\begin{array}{lr}
\hline 163.5 & 2-6 \\
160-172-177
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.8 & 2-6 \\
159-175-179
\end{array}
\] & \[
\begin{array}{cr}
166.1 & 2-6 \\
158-178-182
\end{array}
\] & \[
\begin{array}{lr}
\hline 167.3 \quad 2-6 \\
157-180-185
\end{array}
\] \\
\hline -7 & \[
\begin{array}{lr}
159.06-6 \\
160-169-173
\end{array}
\] & \[
\begin{array}{lr}
161.6 & 6-6 \\
158-170-175
\end{array}
\] & \[
\begin{array}{lr}
\hline 163.5 \quad 2-6 \\
157-173-177
\end{array}
\] & \[
\begin{array}{lr}
164.8 \quad 2-6 \\
156-175-179
\end{array}
\] & \[
\begin{array}{ll}
166.1 \quad 2-6 \\
155-178-182
\end{array}
\] \\
\hline 3 & \[
\begin{array}{lr}
\hline 156.3 & 6-6 \\
158-167-172
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.0 & 6-6 \\
156-169-173
\end{array}
\] & \[
\begin{array}{ll}
161.7 & 6-6 \\
154-170-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 163.5 & 2-6 \\
153-173-177
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.7 & 2-6 \\
152-175-179
\end{array}
\] \\
\hline 13 & \[
\begin{array}{lr}
\hline 153.6 & 6-6 \\
156-166-171 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 156.4 \quad 6-6 \\
& 154-167-172
\end{aligned}
\] & \[
\begin{array}{lr}
\hline 159.16-6 \\
153-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 161.76-6 \\
151-170-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.5 & 2-6 \\
150-173-177
\end{array}
\] \\
\hline 23 & \[
\begin{array}{lr}
\hline 151.2 & 6-6 \\
154-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.0 \quad 6-6 \\
153-166-171
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.7 & 6-6 \\
151-168-172
\end{array}
\] & \[
\begin{array}{cc}
159.3 & 6-6 \\
150-169-174
\end{array}
\] & \[
\begin{array}{ll}
161.8 \quad 6-6 \\
148-171-175
\end{array}
\] \\
\hline 33 & \[
\begin{array}{lr}
148.7 & 6-6 \\
153-163-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.5 & 6-6 \\
151-165-169 \\
\hline
\end{array}
\] & \[
\begin{gathered}
154.2 \quad 6-6 \\
149-166-171
\end{gathered}
\] & \[
\begin{array}{ll}
156.9 & 6-6 \\
148-168-172
\end{array}
\] & \[
\begin{array}{ll}
159.5 & 6-6 \\
146-169-174
\end{array}
\] \\
\hline 35 & \[
\begin{array}{lr}
\hline 147.7 & 6-6 \\
153-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.5 & 6-6 \\
151-164-169 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
153.26-6 \\
150-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.8 & 6-6 \\
148-167-172
\end{array}
\] & \[
\begin{aligned}
& \hline 158.46-6 \\
& 147-169-173 \\
& \hline
\end{aligned}
\] \\
\hline 37 & \[
\begin{array}{lr}
\hline 146.7 & 6-6 \\
153-162-167
\end{array}
\] & \[
\begin{array}{ll}
\hline 149.4 & 6-6 \\
151-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
152.0 & 6-6 \\
150-165-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
154.6 & 6-6 \\
148-167-171
\end{array}
\] & \[
\begin{aligned}
& 157.2 \quad 6-6 \\
& 147-168-172
\end{aligned}
\] \\
\hline 39 & \[
\begin{array}{lr}
145.6 \quad 6-6 \\
153-162-166
\end{array}
\] & \[
\begin{array}{lr}
148.3 \quad 6-6 \\
152-164-168
\end{array}
\] & \(150.96-6\)
\(150-165-169\) & \[
\begin{array}{cc}
153.5 & 6-6 \\
149-166-170
\end{array}
\] & \[
\begin{array}{ll}
155.7 \quad 2-6 \\
147-168-172
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
\hline 144.6 & 6-6 \\
154-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.26-6 \\
152-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.8 & 6-6 \\
150-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.36-6 \\
149-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
153.9 & 2-6 \\
148-168-172
\end{array}
\] \\
\hline 43 & \[
\begin{array}{ll}
143.5 & 6-6 \\
154-161-165
\end{array}
\] & \[
\begin{aligned}
& 146.1 \quad 6-6 \\
& 152-163-166
\end{aligned}
\] & \[
\begin{array}{ll}
148.7 \quad 6-6 \\
151-164-168
\end{array}
\] & \begin{tabular}{ll}
150.7 & \(2-6\) \\
\(150-166-170\)
\end{tabular} & \[
\begin{aligned}
& 151.9 \quad 2-6 \\
& 149-168-172
\end{aligned}
\] \\
\hline 45 & \[
\begin{array}{lr}
142.5 & 6-6 \\
154-161-164
\end{array}
\] & \[
\begin{array}{ll}
145.0 \quad 6-6 \\
153-162-166
\end{array}
\] & \[
\begin{array}{ll}
\hline 147.5 \quad 6-6 \\
151-164-167
\end{array}
\] & \[
\begin{array}{cc}
148.8 \quad 2-6 \\
150-166-169
\end{array}
\] & \[
\begin{array}{ll}
149.9 & 2-6 \\
150-168-172
\end{array}
\] \\
\hline 47 & \[
\begin{array}{cr}
141.5 & 6-6 \\
154-160-164
\end{array}
\] & \[
\begin{array}{lr}
\hline 143.9 & 6-6 \\
153-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
145.7 \quad 2-6 \\
152-163-167
\end{array}
\] & \[
\begin{array}{cc}
146.8 \quad 2-6 \\
151-166-169
\end{array}
\] & \[
\begin{array}{cc}
147.9 \quad 2-6 \\
150-168-172
\end{array}
\] \\
\hline 49 & \(140.46-6\)
\(155-160-163\) & \[
\begin{array}{ll}
142.5 \quad 2-6 \\
153-161-165
\end{array}
\] & \begin{tabular}{ll}
143.7 & \(2-6\) \\
\(153-163-167\)
\end{tabular} & \begin{tabular}{ll}
144.8 & \(2-6\) \\
\(152-166-169\)
\end{tabular} & \(145.8 \quad 2-6\)
\(151-168-172\) \\
\hline 51 & \[
\begin{array}{lr}
139.3 & 6-6 \\
155-159-162
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.6 & 2-6 \\
154-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.7 & 2-6 \\
154-164-167
\end{array}
\] & \[
\begin{array}{cc}
142.8 & 2-6 \\
153-166-169
\end{array}
\] & \[
\begin{array}{lr}
143.8 \quad 2-6 \\
152-168-171
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
\hline 137.4 & 2-3 \\
156-159-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.5 & 2-6 \\
155-161-165
\end{array}
\] & \[
\begin{array}{ll}
139.6 \quad 2-6 \\
155-163-167
\end{array}
\] & \[
\begin{array}{cc}
140.5 & 2-6 \\
154-165-169
\end{array}
\] & \[
\begin{array}{ll}
141.5 & 2-6 \\
153-167-171
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
\hline 134.9 & 2-3 \\
155-158-161
\end{array}
\] & \[
\begin{array}{lr}
\hline 136.4 & 2-6 \\
156-161-164 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
137.4 & 2-6 \\
156-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 138.3 & 2-6 \\
155-165-169
\end{array}
\] & \[
\begin{array}{lr}
139.2 & 2-6 \\
155-167-171
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
132.6 & 2-3 \\
155-157-161
\end{array}
\] & \[
\begin{array}{lr}
134.4 & 2-6 \\
157-162-164
\end{array}
\] & \[
\begin{array}{cc}
135.3 & 2-6 \\
157-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 136.1 & 2-6 \\
156-165-169
\end{array}
\] & \[
\begin{array}{lr}
136.9 & 2-6 \\
156-167-171
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
130.2 & 2-3 \\
154-157-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
132.3 & 2-6 \\
159-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
133.1 & 2-6 \\
158-164-167 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
133.9 & 2-6 \\
157-166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
134.7 & 2-6 \\
157-167-171 \\
\hline
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
\hline 127.8 & 2-3 \\
154-156-159
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.9 & 2-3 \\
159-161-164 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 130.9 & 2-6 \\
159-164-167 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 131.7 & 2-6 \\
159-166-169
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.4 & 2-6 \\
158-167-170 \\
\hline
\end{array}
\] \\
\hline 63 & \(125.4 \quad 2-3\)
\(154-156-158\) & \[
\begin{array}{ll}
\\
\hline 127.4 & 2-3 \\
158-161-163
\end{array}
\] & \(128.8 \quad 2-6\)
\(161-164-167\) & \(129.4 \quad 2-6\)
\(160-166-168\) & \[
\begin{aligned}
& 130.1 \quad 2-6 \\
& 160-168-170
\end{aligned}
\] \\
\hline 65 & \begin{tabular}{ll}
123.0 & \(2-3\) \\
\(153-155-158\)
\end{tabular} & \[
\begin{array}{ll}
125.0 & 2-3 \\
158-160-163
\end{array}
\] & \begin{tabular}{ll}
126.5 & \(2-6\) \\
\(162-164-167\)
\end{tabular} & \begin{tabular}{ll}
127.2 & \(2-6\) \\
\(162-166-169\)
\end{tabular} & \(127.8 \quad 2-6\)
\(161-168-170\) \\
\hline 67 & \[
\begin{array}{lr}
120.7 & 2-3 \\
153-155-157
\end{array}
\] & \[
\begin{array}{lr}
122.5 & 2-3 \\
158-160-162
\end{array}
\] & \[
\begin{array}{cc}
124.1 & 2-3 \\
162-164-167 \\
\hline
\end{array}
\] & \begin{tabular}{ll}
125.0 & \(2-6\) \\
\(163-167-169\)
\end{tabular} & \[
\begin{aligned}
& 125.5 \quad 2-2 \\
& 162-168-170
\end{aligned}
\] \\
\hline 68 & \[
\begin{array}{lr}
119.5 \quad 2-3 \\
153-155-157
\end{array}
\] & \[
\begin{array}{lr}
121.3 & 2-3 \\
158-160-162
\end{array}
\] & \[
\begin{array}{cc}
122.9 & 2-3 \\
162-164-166
\end{array}
\] & \[
\begin{array}{cc}
123.8 & 2-6 \\
164-167-169
\end{array}
\] & \[
\begin{array}{cc}
123.9 & 2-2 \\
162-167-169
\end{array}
\] \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|c|}{PRESSURE ALTITUDE 0 FT} \\
\hline \[
\begin{aligned}
& \text { TREF }= \\
& \text { TMAX }=
\end{aligned}
\] & & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \text { MAX T.O. WEIGHT(1000KG) } \\
& \qquad \begin{array}{l}
\text { IAS(KT) : V1 - VR - V2 }
\end{array} \\
& \hline
\end{aligned}
\]} & CODES \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M) \(^{\text {(}}\)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -18 & \[
\begin{array}{lr}
\hline 158.1 & 2-3 \\
154-158-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 161.6 & 2-3 \\
160-165-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 164.5 & 2-3 \\
166-171-175 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 166.0 & 2-6 \\
166-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 167.1 & 2-6 \\
164-177-181 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{array}{lr}
156.8 & 2-3 \\
152-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
160.4 & 2-3 \\
158-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.4 & 2-3 \\
163-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.9 & 2-6 \\
163-172-176 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
166.1 & 2-6 \\
162-175-179 \\
\hline
\end{array}
\] \\
\hline 2 & \[
\begin{array}{lr}
155.5 & 2-3 \\
150-154-159
\end{array}
\] & \[
\begin{array}{lr}
159.2 & 2-3 \\
155-161-165
\end{array}
\] & \[
\begin{array}{cr}
\hline 162.3 & 2-3 \\
161-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 163.8 \quad 2-6 \\
161-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 165.0 & 2-6 \\
160-173-177
\end{array}
\] \\
\hline 12 & \[
\begin{array}{lr}
153.2 & 3-3 \\
148-153-158 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 158.0 \quad 2-3 \\
& 153-159-163
\end{aligned}
\] & \[
\begin{array}{lr}
161.1 & 2-3 \\
158-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
162.7 & 2-6 \\
158-168-172 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 163.92-6 \\
& 157-170-174 \\
& \hline
\end{aligned}
\] \\
\hline 22 & \[
\begin{array}{ll}
150.9 \quad 3-3 \\
147-151-156
\end{array}
\] & \[
\begin{array}{ll}
156.8 \quad 2-3 \\
151-156-161
\end{array}
\] & \[
\begin{array}{lll}
160.0 & 2-3 \\
156-163-167
\end{array}
\] & \begin{tabular}{ll}
161.5 & \(2-6\) \\
\(156-165-170\)
\end{tabular} & \[
\begin{array}{ll}
162.8 & 2-6 \\
155-168-172
\end{array}
\] \\
\hline 32 & \[
\begin{array}{cr}
\hline 148.7 & 3-3 \\
146-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 155.6 & 2-3 \\
149-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
158.9 & 2-6 \\
154-160-165 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 160.3 & 2-6 \\
153-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 161.7 & 2-6 \\
152-166-170 \\
\hline
\end{array}
\] \\
\hline 42 & \[
\begin{array}{lr}
146.5 & 3-3 \\
144-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.7 & 3-3 \\
148-153-158 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
157.6 & 2-6 \\
152-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
159.1 & 2-6 \\
150-161-165
\end{array}
\] & \[
\begin{array}{ll}
160.5 & 2-6 \\
149-164-168
\end{array}
\] \\
\hline 44 & \[
\begin{array}{lr}
145.0 & 3-3 \\
144-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.2 & 3-3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.8 & 2-3 \\
152-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
157.2 & 2-6 \\
151-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
158.6 & 2-6 \\
150-164-168 \\
\hline
\end{array}
\] \\
\hline 46 & \[
\begin{array}{lr}
143.3 & 3-3 \\
143-147-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.1 \quad 2-3 \\
147-152-157
\end{array}
\] & \[
\begin{array}{cc}
153.4 & 2-3 \\
152-158-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 155.1 & 2-6 \\
152-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.4 & 2-6 \\
151-164-168 \\
\hline
\end{array}
\] \\
\hline 48 & \[
\begin{array}{lr}
141.7 & 3-3 \\
143-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.9 & 2-3 \\
147-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
151.1 & 2-3 \\
152-157-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.0 & 2-6 \\
153-161-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.2 & 2-6 \\
152-164-168 \\
\hline
\end{array}
\] \\
\hline 50 & \[
\begin{array}{cr}
\hline 140.0 & 3-3 \\
142-146-151
\end{array}
\] & \[
\begin{array}{lr}
145.6 & 2-3 \\
147-151-156
\end{array}
\] & \[
\begin{array}{lr}
\hline 148.7 & 2-3 \\
152-157-161
\end{array}
\] & \[
\begin{array}{cc}
150.8 & 2-6 \\
154-162-166
\end{array}
\] & \[
\begin{array}{lr}
152.0 & 2-6 \\
154-164-168
\end{array}
\] \\
\hline 52 & \[
\begin{array}{lr}
138.2 & 3-3 \\
142-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
143.2 & 2-3 \\
146-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
146.2 & 2-3 \\
151-157-161 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
148.6 & 2-6 \\
155-162-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
149.7 & 2-6 \\
155-164-168 \\
\hline
\end{array}
\] \\
\hline 54 & \[
\begin{array}{cc}
136.5 & 3-3 \\
141-144-149
\end{array}
\] & \[
\begin{array}{ll}
140.8 \quad 2-3 \\
146-150-155
\end{array}
\] & \begin{tabular}{ll}
143.7 & \(2-3\) \\
\(151-156-160\)
\end{tabular} & \[
\begin{array}{lr}
146.2 \quad 2-3 \\
156-162-165
\end{array}
\] & \[
\begin{array}{ccc}
147.3 & 2-6 \\
156-164-168
\end{array}
\] \\
\hline 56 & \[
\begin{array}{lr}
134.5 & 3-3 \\
141-143-148
\end{array}
\] & \[
\begin{array}{lr}
\hline 138.3 & 2-3 \\
146-149-154
\end{array}
\] & \[
\begin{array}{cc}
141.2 & 2-3 \\
151-155-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 143.6 & 2-3 \\
156-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 145.0 & 2-6 \\
157-164-168
\end{array}
\] \\
\hline 58 & \[
\begin{array}{lr}
132.5 & 2-3 \\
140-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
135.8 & 2-3 \\
145-149-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.6 & 2-3 \\
151-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
140.9 & 2-3 \\
156-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
142.6 & 2-6 \\
158-165-168 \\
\hline
\end{array}
\] \\
\hline 60 & \[
\begin{array}{cr}
130.1 & 2-3 \\
140-142-146
\end{array}
\] & \[
\begin{array}{lr}
\hline 133.3 \quad 2-3 \\
145-148-152
\end{array}
\] & \[
\begin{array}{cc}
136.0 & 2-3 \\
150-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
138.3 & 2-3 \\
155-160-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.2 & 2-2 \\
160-165-168
\end{array}
\] \\
\hline 62 & \[
\begin{array}{lr}
127.8 & 2-3 \\
139-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.9 & 2-3 \\
145-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
133.5 & 2-3 \\
150-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
135.7 & 2-3 \\
155-159-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.1 & 2-2 \\
158-163-166 \\
\hline
\end{array}
\] \\
\hline 64 & \[
\begin{array}{cc}
125.4 & 2-3 \\
139-141-145
\end{array}
\] & \[
\begin{array}{cr}
128.4 & 2-3 \\
144-147-151
\end{array}
\] & \[
\begin{array}{cc}
130.9 & 2-3 \\
150-153-157
\end{array}
\] & \[
\begin{array}{cc}
133.1 \quad 2-3 \\
155-158-162
\end{array}
\] & \[
\begin{array}{ll}
134.0 & 2-2 \\
157-161-164
\end{array}
\] \\
\hline 66 & \[
\begin{array}{rr}
122.9 & 2-3 \\
138-140-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.9 & 2-3 \\
144-146-150 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
128.3 & 2-3 \\
149-152-156 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
130.4 & 2-3 \\
154-158-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.8 & 2-2 \\
155-159-162
\end{array}
\] \\
\hline 68 & \[
\begin{array}{cr}
120.5 & 2-3 \\
138-140-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
123.4 & 2-3 \\
144-146-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.7 & 2-3 \\
149-151-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.7 & 3-3 \\
154-157-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.7 & 2-2 \\
153-157-160 \\
\hline
\end{array}
\] \\
\hline 70 & \[
\begin{array}{lr}
\hline 118.2 & 2-3 \\
138-139-143
\end{array}
\] & \[
\begin{array}{lr}
\hline 120.9 & 2-3 \\
143-145-149
\end{array}
\] & \[
\begin{array}{cc}
123.2 & 2-3 \\
149-151-154 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 124.6 & 2-2 \\
152-155-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 124.6 & 2-2 \\
150-155-158
\end{array}
\] \\
\hline 72 & \[
\begin{array}{lr}
\hline 115.8 & 2-3 \\
137-139-142
\end{array}
\] & \[
\begin{array}{lr}
\hline 118.4 & 2-3 \\
143-145-148
\end{array}
\] & \[
\begin{array}{cc}
120.6 & 2-3 \\
148-151-154
\end{array}
\] & \[
\begin{array}{lr}
\hline 121.5 & 2-2 \\
150-153-156
\end{array}
\] & \[
\begin{array}{lr}
\hline 121.5 & 2-2 \\
148-153-156
\end{array}
\] \\
\hline
\end{tabular}

TEMPORARY REVISION № 218
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE \(=0 \mathrm{FT}\)} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=42^{\circ} \mathrm{C} \\
& \text { TMAX }=55^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0.0 \%
\] & MAX T.O. WE & \[
\begin{aligned}
& 1000 \mathrm{KG}) \\
& \text { (KT) V1 - VR. }
\end{aligned}
\] & CODES \\
\hline \multirow[t]{2}{*}{TEMP. (\({ }^{\circ} \mathrm{C}\))} & \multicolumn{5}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -18 & \[
\begin{array}{cr}
157.9 & 2.3 \\
154-158-163
\end{array}
\] & \[
\begin{array}{cc}
\hline 161.3 & 2-3 \\
159-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.2 & 2-3 \\
164-171-175 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
166.0 & 2-6 \\
166-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
167.172-6 \\
164-177-181 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{array}{lr}
156.6 & 2-3 \\
151-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
160.1 \quad 2-3 \\
156-162-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.0 & 2-3 \\
161-168-172 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
164.9 \quad 2-6 \\
163-172-176 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
166.1 & 2-6 \\
162-175-179 \\
\hline
\end{array}
\] \\
\hline 2 & \[
\begin{array}{r}
155.3 \quad 3-3 \\
149-154-159 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 158.9 \quad 2-3 \\
& 154-160-165
\end{aligned}
\] & \[
\begin{array}{rr}
\hline 161.9 & 2.3 \\
159-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
163.8 & 2-6 \\
161-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
165.0 & 2-6 \\
160-173-177 \\
\hline
\end{array}
\] \\
\hline 12 & \[
\begin{aligned}
& 152-154-103 \\
& 148.152-157 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 157.6 \quad 2-3 \\
& 152-158-163
\end{aligned}
\] & \[
\begin{array}{lr}
160.7 & 2.3 \\
157-164-168 \\
\hline
\end{array}
\] & \[
\begin{gathered}
162.72 .6 \\
158-168-172
\end{gathered}
\] & \[
\begin{gathered}
163.926 \\
157-170-174
\end{gathered}
\] \\
\hline 22 & \[
\begin{array}{ll}
150.6 & 3-3 \\
146-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
156.5 & 2-3 \\
150-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
159.6 & 2.3 \\
155-162-166 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 161.5 \quad 2-6 \\
& 156-165-170 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 162.8 \quad 2-6 \\
& 155-168-172 \\
& \hline
\end{aligned}
\] \\
\hline 32 & \[
\begin{array}{rr}
148.3 & 3-3 \\
145-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
155.3 & 3-3 \\
148-154-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
158.5 & 2-3 \\
153-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
160.3 & 2-6 \\
153-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
161.7 & 2-6 \\
152-166-170 \\
\hline
\end{array}
\] \\
\hline 42 & \[
\begin{aligned}
& 140-100-100 \\
& \frac{146.2-3}{34}-149-154
\end{aligned}
\] & \[
\begin{aligned}
& 140-104-105 \\
& 153.1 \quad 3-3 \\
& 147-153-158
\end{aligned}
\] & \[
\begin{array}{ll}
157.5 & 2-3 \\
151-158-162 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
159.1 & 2-6 \\
150-161-165
\end{array}
\] & \[
\begin{array}{cc}
160.5 & 2-6 \\
149-164-168
\end{array}
\] \\
\hline 44 & \[
\begin{aligned}
& 144.6 \quad 3.3 \\
& 143-148-153 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 151.5 \quad 3.3 \\
& 147-152-157
\end{aligned}
\] & \[
\begin{array}{ll}
155.4 & 2.3 \\
151-157-162 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
157.2 \quad 26 \\
151-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
158.6 & 26 \\
150-164-168 \\
\hline
\end{array}
\] \\
\hline 46 & \[
\begin{array}{lr}
143.0 & 3-3 \\
143-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
141-102-101 \\
149.8 \quad 2.3 \\
146-151-156
\end{array}
\] & 153.0
\(150-157-162\) & \[
\begin{array}{ll}
155.1 \quad 26 \\
152-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
156.4 & 2.6 \\
151-164.168 \\
\hline
\end{array}
\] \\
\hline 48 & \[
\begin{array}{cc}
141.3 & 3-3 \\
142-146-152 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
147.5 & 2.3 \\
146-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
150.7 & 2-3 \\
150-157-161 \\
\hline
\end{array}
\] & \[
\begin{gathered}
153.0 \quad 2-6 \\
153.161-166 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 154.2 \quad 2-6 \\
& 152-164-168
\end{aligned}
\] \\
\hline 50 & \[
\begin{array}{cc}
139.7 & 3.3 \\
142-146-151 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 145.3 \quad 2-3 \\
& 146-150-155
\end{aligned}
\] & \[
\begin{aligned}
& 148.32 .3 \\
& 150-156-161 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
150.826 \\
154-162-166 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 152.0 \quad 2-6 \\
& 154-164-168 \\
& \hline
\end{aligned}
\] \\
\hline 52 & \[
\begin{aligned}
& 14<7.933-3 \\
& 141-145-150
\end{aligned}
\] & \[
\begin{aligned}
& 142.9 \quad 2-3 \\
& 145-150-155
\end{aligned}
\] & \[
\begin{array}{ll}
145.8 & 2.3 \\
150-156-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.3 & 2.3 \\
154-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
149.7 & 2-6 \\
155-164-168 \\
\hline
\end{array}
\] \\
\hline 54 & \[
\begin{aligned}
& 136.1 \quad 3-3 \\
& 141-144-149 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
140.5 & 2-3 \\
145-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
143.3 & 2-3 \\
150-155-160 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
145.8 & 2-3 \\
154-161-165 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 147.3 \quad 2-6 \\
& 156-164-168 \\
& \hline
\end{aligned}
\] \\
\hline 56 & \[
\begin{aligned}
& 134.233-3 \\
& 140-143-148
\end{aligned}
\] & \[
\begin{array}{ll}
138.0 & 2-3 \\
145-149-153
\end{array}
\] & \[
\begin{array}{cc}
140.8 & 2.3 \\
149-155-159 \\
\hline
\end{array}
\] & \[
\begin{gathered}
143.2 \quad 2-3 \\
154-160-164 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 145.0 \quad 2-6 \\
& 157-164-168 \\
& \hline
\end{aligned}
\] \\
\hline 58 & \[
\begin{array}{lr}
132.2 & 3-3 \\
140-142-147
\end{array}
\] & \[
\begin{array}{ll}
135.5 & 2-3 \\
144-148-153
\end{array}
\] & \[
\begin{gathered}
149-100-109 \\
138.2 \quad 2.3 \\
149-154-158 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 154-100-104 \\
& 140.5 \quad 2-3 \\
& 154-159-163
\end{aligned}
\] & \[
\begin{aligned}
& 10 /-104-100 \\
& \hline 142.5 \quad 2-3 \\
& 158-164-168
\end{aligned}
\] \\
\hline 60 & \[
\begin{aligned}
& 140-142-147 \\
& 130.0 \quad 2-3 \\
& 139-141-146
\end{aligned}
\] & \[
\begin{array}{lr}
133.1 & 2-3 \\
144-147-152 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 135.7 \quad 2.3 \\
& 149-153-157 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 137.9 \quad 2-3 \\
& 153-159-162 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
139.8 & 2.3 \\
158-164-167 \\
\hline
\end{array}
\] \\
\hline 62 & \[
\begin{aligned}
& 127.6 \text { 2 } 23 \\
& 139.141-145 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
130.6 & 2.3 \\
144-147-151
\end{array}
\] & \[
\begin{gathered}
1433.1 \quad 2.3 \\
148-153-157 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 103-103-102 \\
& 135.3 \quad 2-3 \\
& 153-158-162 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 137.1 \quad 2-2 \\
& 157-163-166
\end{aligned}
\] \\
\hline 64 & \[
\begin{aligned}
& 129-141-140 \\
& 125.2 \quad 23 \\
& 138.140-145
\end{aligned}
\] & \[
\begin{array}{lr}
128.1 & 2-3 \\
143-146-151 \\
\hline
\end{array}
\] & \[
\begin{gathered}
130.6 \quad 2-3 \\
148-152-156 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline 132-7,-102 \\
& \hline 153-157-161 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
134.0 & 2-2 \\
156-161-164 \\
\hline
\end{array}
\] \\
\hline 66 & \[
\begin{aligned}
& 130-140-140 \\
& 138.140-144
\end{aligned}
\] & \[
\begin{array}{cc}
125.6 & 2-3 \\
143-146-150 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
128.0 & 2-3 \\
148-151-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.0 & 2-3 \\
152-157-160 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
130.8 & 2-2 \\
154-159-162 \\
\hline
\end{array}
\] \\
\hline 68 & \[
\begin{aligned}
& 130-140-144 \\
& 120.42-3 \\
& 138-139-143
\end{aligned}
\] & \[
\begin{aligned}
& 142.1 \quad 2-3 \\
& 143-145-149
\end{aligned}
\] & \[
\begin{aligned}
& 125.4 \quad 2.3 \\
& 147.151-154 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 127.4 \quad 2.3 \\
& 152-156-159 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
127.7 & 2-2 \\
153-157-160 \\
\hline
\end{array}
\] \\
\hline & \(118.0-2-3\) & \(\frac{120.6-2-3}{}\) & 122.8 2-3 & 124.6 2-2 & 124.6 2-2 \\
\hline 70 & 137-139-143 & 142-145-148 & 147-150-154 & 151-155-158 & 150-155-158 \\
\hline 72 & \[
\begin{array}{ll}
\hline 115.7 & 2-3 \\
137-139-142
\end{array}
\] & \[
\begin{array}{cc}
118.2 & 2-3 \\
142-144-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.3 & 2-3 \\
147-150-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.5 & 2-2 \\
150-153-156
\end{array}
\] & \[
\begin{array}{lr}
121.5 & 2-2 \\
148-153-156 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

A310-324/AAPWW-4152 T15/15-EE-CM72-1-A
FCOM-B0-02-10-40-006-000

CONFIGURATION 15/15
PRESSURE ALTITUDE \(=1000\) FT
\begin{tabular}{l|l}
\hline TREF \(=37^{\circ} \mathrm{C}\) & DRY RUNWAY \\
TMAX \(=53^{\circ} \mathrm{C}\) & SLOPE \(=0.0 \%\) \\
\hline
\end{tabular}

MAX T.O. WEIGHT(1000KG)
CODES
TEMP. CORRECTED RUNWAY LENGTH (M)
\begin{tabular}{|c|c|c|c|c|c|}
\hline (\({ }^{\circ} \mathrm{C}\)) & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -23 & \[
\begin{array}{lr}
157.0 & 2-3 \\
153-157-162 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 160.3 & 2-3 \\
158-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
163.2 & 2-3 \\
163-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
164.9 & 2-6 \\
164-174-177 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 166.1 & 2-6 \\
163-176-180 \\
\hline
\end{array}
\] \\
\hline . 13 & \[
\begin{array}{lr}
155.6 & 2-3 \\
150-155-160
\end{array}
\] & \[
\begin{array}{cc}
159.1 & 2-3 \\
156-161-166
\end{array}
\] & \[
\begin{array}{cc}
162.0 & 2-3 \\
160-167-172
\end{array}
\] & \[
\begin{array}{lr}
163.9 & 2-6 \\
162-171.175
\end{array}
\] & \[
\begin{array}{lr}
165.0 & 2-6 \\
161-174-178
\end{array}
\] \\
\hline -3 & \[
\begin{array}{lr}
153.9 & 3-3 \\
148-153-158
\end{array}
\] & \[
\begin{array}{rr}
157.9 & 2-3 \\
153-159-164
\end{array}
\] & \[
\begin{array}{lr}
160.9 & 2-3 \\
158-165-169
\end{array}
\] & \[
\begin{array}{lr}
162.8 & 2-6 \\
159-169-173
\end{array}
\] & \[
\begin{array}{cr}
164.0 & 2-6 \\
158-172-176
\end{array}
\] \\
\hline 7 & \(151.5 \quad 3-3\)
\(147.152-157\) & 156.6
\(151-157-162\)
15 & \begin{tabular}{ll}
159.7 & \(2-3\) \\
\(156-163-167\)
\end{tabular} & \[
\begin{array}{lr}
161.6 & 2-6 \\
157-167-171
\end{array}
\] & \[
\begin{gathered}
\hline 162.9 \quad 2-6 \\
156-169-173 \\
\hline
\end{gathered}
\] \\
\hline 17 & \begin{tabular}{ll}
149.1 & \(3-3\) \\
\(146-150-156\)
\end{tabular} & \begin{tabular}{ll}
155.4 & \(2-3\) \\
\(149-155-160\)
\end{tabular} & \begin{tabular}{ll}
158.6 & \(2-3\) \\
\(154-161-165\)
\end{tabular} & \(160.4 \quad 2-6\)
\(154-164-169\) & \[
\begin{array}{cc}
161.8 \quad 2-6 \\
153-167-171 \\
\hline
\end{array}
\] \\
\hline 27 & \[
\begin{array}{rr}
\hline 146.8 & 3.3 \\
144.149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.7 & 3-3 \\
148-153-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
157.4 & 2-3 \\
152-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
159.2 \quad 2-6 \\
152-162-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
160.6 & 2-6 \\
151-165-169 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{array}{lr}
\hline 144.2 & 3-3 \\
143-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.1 & 3-3 \\
146-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.6 & 2-3 \\
150-157-161
\end{array}
\] & \[
\begin{array}{cc}
157.4 & 2-6 \\
150-160-164
\end{array}
\] & \[
\begin{array}{cc}
158.8 & 2.6 \\
149-163-167 \\
\hline
\end{array}
\] \\
\hline 39 & \[
\begin{array}{cr}
143.2 & 3-3 \\
143-147-153
\end{array}
\] & \[
\begin{array}{lr}
150.1 & 3-3 \\
146-151-156
\end{array}
\] & \[
\begin{array}{lr}
154.5 & 2-3 \\
150-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
156.4 & 2-6 \\
150-160-164
\end{array}
\] & \[
\begin{array}{cc}
157.7 & 2-6 \\
149-162-167 \\
\hline
\end{array}
\] \\
\hline 41 & \[
\begin{array}{cr}
142.0 & 3-3 \\
142-147-152
\end{array}
\] & \[
\begin{array}{rr}
148.9 & 3-3 \\
145.151-155
\end{array}
\] & \[
\begin{array}{rr}
153.0 & 2-3 \\
149-156-160
\end{array}
\] & \[
\begin{array}{cc}
155.0 & 2-6 \\
150-160-164
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.4 & 2-6 \\
149-162-166 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{array}{cc}
140.5 & 3.3 \\
142-146-151
\end{array}
\] & \[
\begin{array}{cr}
147.4 & 3-3 \\
145-150-155
\end{array}
\] & \[
\begin{array}{rr}
150.9 & 2-3 \\
149-155-160
\end{array}
\] & \[
\begin{array}{lr}
153.1 & 2-6 \\
151-160-164
\end{array}
\] & \[
\begin{array}{cr}
154.4 & 2-6 \\
150-162-167
\end{array}
\] \\
\hline 45 & \[
\begin{array}{rr}
138.93-3 \\
141-145-150
\end{array}
\] & \[
\begin{array}{lr}
145.6 & 2.3 \\
145-149-154
\end{array}
\] & \[
\begin{array}{cc}
148.7 & 2-3 \\
149-155-159
\end{array}
\] & \[
\begin{array}{cc}
151.1 & 2-6 \\
152-160-164
\end{array}
\] & \[
\begin{array}{cc}
152.3 & 2-6 \\
151-163-166
\end{array}
\] \\
\hline 47 & \[
\begin{array}{ll}
137.3 & 3-3 \\
141-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 143.5 & 2-3 \\
144-149-154
\end{array}
\] & \[
\begin{array}{lr}
146.5 & 2-3 \\
149-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
149.1 & 2-3 \\
153-160-164
\end{array}
\] & \[
\begin{array}{cc}
\hline 150.3 & 2-6 \\
152-163-167 \\
\hline
\end{array}
\] \\
\hline 49 & \[
\begin{array}{cc}
135.7 & 3-3 \\
140-144-149
\end{array}
\] & \[
\begin{array}{cc}
141.3 & 2-3 \\
144-148-153
\end{array}
\] & \[
\begin{gathered}
144.2 \quad 2-3 \\
148-154-159
\end{gathered}
\] & \[
\begin{array}{lr}
146.7 & 2-3 \\
153-160-164
\end{array}
\] & \[
\begin{array}{cc}
148.2 & 2-6 \\
153-163-167
\end{array}
\] \\
\hline 51 & \[
\begin{array}{ll}
134.0 & 3-3 \\
140-143-148
\end{array}
\] & \[
\begin{array}{lr}
139.0 & 2-3 \\
144-148-153
\end{array}
\] & \[
\begin{array}{lr}
141.9 & 2-3 \\
148-154-158
\end{array}
\] & \[
\begin{array}{lr}
\hline 144.3 & 2.3 \\
153-159.163
\end{array}
\] & \[
\begin{array}{cc}
146.0 & 2-6 \\
154-163-166
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
132.3 & 3-3 \\
139-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
136.8 & 2.3 \\
143-147-152
\end{array}
\] & \[
\begin{array}{cr}
139.6 & 2-3 \\
148-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.0 & 2-3 \\
152-159-162
\end{array}
\] & \[
\begin{array}{lr}
\hline 143.8 & 2-6 \\
156-163-167
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
130.3 & 3-3 \\
138-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
134.3 & 2.3 \\
143-147-151 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
137.1 & 2-3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.4 & 2-3 \\
152-158-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.4 & 2-3 \\
156-163.166 \\
\hline
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
128.4 & 3.3 \\
138-140-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
131.9 & 2.3 \\
143.146-150
\end{array}
\] & \[
\begin{array}{lr}
134.6 & 2-3 \\
147-152-156
\end{array}
\] & \[
\begin{array}{cc}
136.8 & 2-3 \\
152-157-161
\end{array}
\] & \[
\begin{array}{rr}
138.8 & 2-3 \\
156-162-165 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{cr}
126.5 & 2-3 \\
137-139-144
\end{array}
\] & \[
\begin{array}{lr}
129.6 & 2-3 \\
142-145-150
\end{array}
\] & \[
\begin{array}{lr}
132.1 & 2-3 \\
147-151-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.3 & 2-3 \\
151-156-160 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 136.2 & 2-3 \\
156-161-165 \\
\hline
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
124.2 & 2-3 \\
137-139-143
\end{array}
\] & \[
\begin{array}{cc}
127.2 & 2-3 \\
142-145-149
\end{array}
\] & \[
\begin{array}{cr}
129.7 & 2-3 \\
147-150-154
\end{array}
\] & \[
\begin{array}{lr}
131.8 & 2-3 \\
151-156-159
\end{array}
\] & \[
\begin{array}{cc}
\hline 133.6 & 2-2 \\
156-161-164 \\
\hline
\end{array}
\] \\
\hline 63 & \[
\begin{array}{cr}
121.9 & 2-3 \\
136-138-143 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
124.8 & 2.3 \\
142-144-148
\end{array}
\] & \(127.2 \quad 2-3\)
\(146-150-153\) & \(129.22-3\)
\(151-155-158\) & \[
\begin{array}{cc}
130.6 & 2-2 \\
154-159-162
\end{array}
\] \\
\hline 65 & \[
\begin{array}{lr}
119.6 & 2-3 \\
136-138-142
\end{array}
\] & \[
\begin{array}{lr}
122.3 & 2-3 \\
141-144-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.7 & 2-3 \\
146-149-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 126.7 & 2-3 \\
150-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 127.6 & 2-2 \\
152-157-160 \\
\hline
\end{array}
\] \\
\hline 67 & \[
\begin{array}{cc}
117.3 & 2-3 \\
136.137-141
\end{array}
\] & \[
\begin{array}{cr}
119.9 & 2-3 \\
149-143-147
\end{array}
\] & \[
\begin{array}{cr}
122.2 & 2-3 \\
146-149-152
\end{array}
\] & \[
\begin{array}{lr}
124.1 & 2-3 \\
150-154-157
\end{array}
\] & \[
\begin{array}{cc}
124.6 & 2-2 \\
151-155-158
\end{array}
\] \\
\hline 69 & \[
\begin{array}{lr}
115.0 & 2-3 \\
135-137-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
117.6 & 2-3 \\
141-143-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
119.7 & 2-3 \\
145-148-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 121.6 & 3-3 \\
150-153-156 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.6 & 2-2 \\
149.153-156
\end{array}
\] \\
\hline 70 & \begin{tabular}{lr}
113.9 & \(2-3\) \\
\(135-137-140\)
\end{tabular} & \[
\begin{array}{cr}
116.4 & 2-3 \\
140-143-146
\end{array}
\] & \begin{tabular}{ll}
118.5 & \(2-3\) \\
\(145-148-151\)
\end{tabular} & \begin{tabular}{lr}
120.1 & \(2-2\) \\
\(149-153-155\)
\end{tabular} & \begin{tabular}{ll}
120.1 & \(2-2\) \\
\(148-153-155\)
\end{tabular} \\
\hline
\end{tabular}

A310-324/AA/PW-4152 T15/15-EE-CM72-1-A
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & QUICK REFERENCE TABLES & REV 33 & SEQ 090 \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE 1000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=37^{\circ} \mathrm{C} \\
& \text { TMAX }=53^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MAX T.O. WEIGHT(1000KG) } \\
& \qquad \text { IAS(KT) : V1 - VR - V2 }
\end{aligned}
\]} & CODES \\
\hline \multicolumn{6}{|l|}{TEMP. \({ }^{\text {a }}\) CORRECTED RUNWAY LENGTH (M)} \\
\hline \[
\left({ }^{\circ} \mathrm{C}\right)
\] & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -23 & \[
\begin{array}{lr}
\hline 157.1 & 2-3 \\
153-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 160.7 & 2-3 \\
159-164-169 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 163.6 & 2-3 \\
165-171-175 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 164.9 & 2-6 \\
164-174-177 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 166.1 \quad 2-6 \\
163-176-180 \\
\hline
\end{array}
\] \\
\hline -13 & \[
\begin{array}{lr}
\hline 155.8 & 2-3 \\
151-155-160
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.4 & 2-3 \\
157-162-167
\end{array}
\] & \[
\begin{array}{cc}
162.4 & 2-3 \\
162-168-172 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 163.9 & 2-6 \\
162-171-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 165.0 & 2-6 \\
161-174-178 \\
\hline
\end{array}
\] \\
\hline -3 & \[
\begin{array}{lr}
154.2 & 3-3 \\
149-153-158
\end{array}
\] & \[
\begin{array}{lr}
158.1 \quad 2-3 \\
154-160-164
\end{array}
\] & \[
\begin{array}{lll}
161.3 & 2-3 \\
160-166-170
\end{array}
\] & \[
\begin{array}{cc}
162.8 & 2-6 \\
159-169-173
\end{array}
\] & \[
\begin{array}{ll}
164.0 \quad 2-6 \\
158-172-176
\end{array}
\] \\
\hline 7 & \[
\begin{array}{lr}
151.8 & 3-3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
156.9 & 2-3 \\
152-158-162
\end{array}
\] & \[
\begin{array}{lr}
\hline 160.1 & 2-3 \\
157-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
161.6 & 2-6 \\
157-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
162.9 & 2-6 \\
156-169-173
\end{array}
\] \\
\hline 17 & \[
\begin{array}{lr}
149.4 & 3-3 \\
146-150-156
\end{array}
\] & \[
\begin{array}{lr}
155.7 & 2-3 \\
150-155-160
\end{array}
\] & \[
\begin{array}{lr}
159.0 & 2-3 \\
155-162-166
\end{array}
\] & \[
\begin{array}{cc}
\hline 160.4 & 2-6 \\
154-164-169
\end{array}
\] & \[
\begin{array}{lr}
\hline 161.8 & 2-6 \\
153-167-171
\end{array}
\] \\
\hline 27 & \[
\begin{array}{cr}
147.2 & 3-3 \\
145-149-155
\end{array}
\] & \[
\begin{array}{lr}
154.4 & 3-3 \\
148-154-158
\end{array}
\] & \[
\begin{array}{ll}
\hline 157.8 & 2-6 \\
153-159-164
\end{array}
\] & \[
\begin{gathered}
159.2 \quad 2-6 \\
152-162-166
\end{gathered}
\] & \[
\begin{array}{cc}
160.6 & 2-6 \\
151-165-169
\end{array}
\] \\
\hline 37 & \[
\begin{array}{lr}
\hline 144.5 & 3-3 \\
143-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.7 & 3-3 \\
147-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
155.9 & 2-6 \\
151-157-162
\end{array}
\] & \[
\begin{array}{cr}
\hline 157.4 & 2-6 \\
150-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 158.8 & 2-6 \\
149-163-167 \\
\hline
\end{array}
\] \\
\hline 39 & \[
\begin{array}{lr}
\hline 143.6 & 3-3 \\
143-147-153
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.7 & 3-3 \\
147-152-156
\end{array}
\] & \[
\begin{array}{lr}
\hline 154.9 & 2-6 \\
151-157-161
\end{array}
\] & \[
\begin{array}{cc}
156.4 & 2-6 \\
150-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
157.7 & 2-6 \\
149-162-167
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
142.4 & 3-3 \\
143-147-152
\end{array}
\] & \[
\begin{array}{lr}
149.5 & 3-3 \\
146-151-156
\end{array}
\] & \[
\begin{array}{lr}
153.4 & 2-3 \\
151-157-161
\end{array}
\] & \[
\begin{array}{lr}
155.0 & 2-6 \\
150-160-164
\end{array}
\] & \[
\begin{array}{ll}
156.4 \quad 2-6 \\
149-162-166
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
\hline 140.8 & 3-3 \\
142-146-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.0 & 3-3 \\
146-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.3 & 2-3 \\
151-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
153.1 & 2-6 \\
151-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.4 & 2-6 \\
150-162-167
\end{array}
\] \\
\hline 45 & \[
\begin{array}{cr}
139.3 & 3-3 \\
142-145-150
\end{array}
\] & \[
\begin{array}{lr}
145.9 & 2-3 \\
146-150-154
\end{array}
\] & \[
\begin{array}{ll}
149.1 & 2-3 \\
150-156-160
\end{array}
\] & \[
\begin{array}{lc}
151.1 & 2-6 \\
152-160-164
\end{array}
\] & \[
\begin{array}{lll}
152.3 & 2-6 \\
151-163-166
\end{array}
\] \\
\hline 47 & \[
\begin{array}{rr}
\hline 137.7 & 3-3 \\
141-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
143.8 & 2-3 \\
145-149-154
\end{array}
\] & \[
\begin{array}{lr}
146.9 & 2-3 \\
150-155-160 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 149.1 & 2-6 \\
153-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.3 & 2-6 \\
152-163-167
\end{array}
\] \\
\hline 49 & \[
\begin{array}{lr}
136.0 & 3-3 \\
141-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
141.6 & 2-3 \\
145-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
144.6 & 2-3 \\
150-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
147.0 & 2-6 \\
154-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.2 \quad 2-6 \\
153-163-167 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{lr}
\hline 134.3 & 3-3 \\
140-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.3 & 2-3 \\
145-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
142.3 & 2-3 \\
150-154-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
144.8 & 2-3 \\
155-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
146.0 & 2-6 \\
154-163-166 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
\hline 132.6 & 3-3 \\
140-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.1 & 2-3 \\
144-148-152
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.9 & 2-3 \\
149-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.4 & 2-3 \\
154-160-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 143.8 & 2-6 \\
156-163-167
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
130.6 & 3-3 \\
139-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.6 & 2-3 \\
144-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
137.4 & 2-3 \\
149-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
139.8 & 2-3 \\
154-159-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
141.5 & 2-6 \\
157-163-166 \\
\hline
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
\hline 128.7 & 3-3 \\
138-141-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.2 & 2-3 \\
144-147-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.9 & 2-3 \\
149-152-156 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.2 & 2-3 \\
154-158-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.2 & 2-6 \\
158-163-166 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{rr}
126.7 & 2-3 \\
138-140-144
\end{array}
\] & \[
\begin{array}{lr}
129.8 & 2-3 \\
143-146-150
\end{array}
\] & \[
\begin{array}{cc}
132.5 & 2-3 \\
148-152-156
\end{array}
\] & \[
\begin{array}{ll}
134.7 & 2-3 \\
153-157-161
\end{array}
\] & \[
\begin{array}{lll}
136.6 & 2-2 \\
158-163-166
\end{array}
\] \\
\hline 61 & \[
\begin{array}{rr}
124.4 & 2-3 \\
137-139-144
\end{array}
\] & \[
\begin{array}{rr}
127.4 & 2-3 \\
143-145-150
\end{array}
\] & \[
\begin{array}{lr}
130.0 & 2-3 \\
148-151-155
\end{array}
\] & \[
\begin{array}{lr}
132.2 & 2-3 \\
153-157-160
\end{array}
\] & \[
\begin{array}{lr}
133.6 & 2-2 \\
157-161-164
\end{array}
\] \\
\hline 63 & \[
\begin{array}{lr}
\hline 122.1 & 2-3 \\
137-139-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 125.0 & 2-3 \\
143-145-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.5 & 2-3 \\
148-151-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.6 & 2-3 \\
153-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.6 & 2-2 \\
155-159-162
\end{array}
\] \\
\hline 65 & \[
\begin{array}{lr}
\hline 119.7 & 2-3 \\
137-138-142
\end{array}
\] & \[
\begin{array}{lr}
\hline 122.6 & 2-3 \\
142-144-148
\end{array}
\] & \[
\begin{array}{lr}
125.0 & 2-3 \\
147-150-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.0 & 2-3 \\
152-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.6 & 2-2 \\
153-157-160 \\
\hline
\end{array}
\] \\
\hline 67 & \[
\begin{array}{rr}
\hline 117.4 & 2-3 \\
136-138-141
\end{array}
\] & \[
\begin{array}{lr}
\hline 120.2 & 2-3 \\
142-144-147
\end{array}
\] & \[
\begin{array}{cr}
122.5 & 2-3 \\
147-149-153 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
124.4 & 2-3 \\
152-155-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 124.6 & 2-2 \\
151-155-158
\end{array}
\] \\
\hline 69 & \[
\begin{array}{lr}
\hline 115.1 & 2-3 \\
136-137-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
117.8 & 2-3 \\
142-143-147 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
120.0 & 2-3 \\
147-149-152
\end{array}
\] & \[
\begin{array}{ll}
121.6 & 2-2 \\
151-153-156
\end{array}
\] & \[
\begin{array}{lr}
121.6 & 2-2 \\
149-153-156
\end{array}
\] \\
\hline 70 & \[
\begin{array}{lr}
114.0 & 2-3 \\
136-137-141
\end{array}
\] & \[
\begin{array}{lr}
\hline 116.6 & 2-3 \\
141-143-146
\end{array}
\] & \[
\begin{array}{lr}
118.8 & 2-3 \\
147-149-152
\end{array}
\] & \[
\begin{array}{lr}
\hline 120.1 & 2-2 \\
150-153-155
\end{array}
\] & \[
\begin{array}{lr}
120.1 & 2-2 \\
148-153-155
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & PAGE & \\
\hline & QUICK REFERENCE TABLES & REV 33 & SEO 090 \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE 2000 FT} \\
\hline \[
\begin{aligned}
& \text { TREF }= \\
& \text { TMAX }=
\end{aligned}
\] & & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & MAX T.O. WE & \[
\begin{aligned}
& 1000 \mathrm{KG}) \\
& (\mathrm{KT}): \text { V1 - VR }
\end{aligned}
\] & CODES \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -27 & \[
\begin{array}{lr}
\hline 156.1 & 2-3 \\
152-157-161
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.6 & 2-3 \\
158-163-168
\end{array}
\] & \[
\begin{array}{cc}
\hline 162.5 & 2-3 \\
164-169-174
\end{array}
\] & \[
\begin{array}{cr}
\hline 163.8 & 2-6 \\
163-172-176
\end{array}
\] & \[
\begin{array}{lr}
\hline 165.0 & 2-6 \\
162-175-179
\end{array}
\] \\
\hline - 17 & \[
\begin{array}{lr}
\hline 154.7 & 2-3 \\
150-154-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 158.3 & 2-3 \\
156-161-165
\end{array}
\] & \[
\begin{array}{lr}
161.3 & 2-3 \\
161-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
162.7 & 2-6 \\
160-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 163.9 & 2-6 \\
159-173-176 \\
\hline
\end{array}
\] \\
\hline -7 & \[
\begin{array}{lr}
\hline 152.7 & 3-3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
157.1 & 2-3 \\
153-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
160.2 & 2-3 \\
159-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
161.6 & 2-6 \\
158-168-172 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 162.8 & 2-6 \\
157-170-174 \\
\hline
\end{array}
\] \\
\hline 3 & \[
\begin{array}{ll}
150.2 & 3-3 \\
147-151-156
\end{array}
\] & \[
\begin{array}{ll}
155.8 \quad 2-3 \\
151-156-161
\end{array}
\] & \[
\begin{array}{ll}
159.0 \quad 2-3 \\
156-162-167
\end{array}
\] & \[
\begin{array}{ll}
160.4 \quad 2-6 \\
155-165-169
\end{array}
\] & \begin{tabular}{ll}
161.7 & \(2-6\) \\
\(154-168-172\)
\end{tabular} \\
\hline 13 & \[
\begin{array}{rr}
147.8 & 3-3 \\
145-150-155
\end{array}
\] & \[
\begin{array}{lr}
\hline 154.6 & 2-3 \\
149-154-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 157.8 \quad 2-6 \\
154-160-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.2 \quad 2-6 \\
153-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 160.6 & 2-6 \\
152-166-170 \\
\hline
\end{array}
\] \\
\hline 23 & \[
\begin{array}{lr}
145.5 & 3-3 \\
144-148-154
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.7 & 3-3 \\
148-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
156.5 & 2-6 \\
151-158-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
158.0 & 2-6 \\
150-161-165
\end{array}
\] & \[
\begin{array}{cr}
159.4 \quad 2-6 \\
149-163-167
\end{array}
\] \\
\hline 33 & \[
\begin{array}{lr}
143.3 & 3-3 \\
143-147-153
\end{array}
\] & \[
\begin{array}{lr}
150.5 & 3-3 \\
146-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
155.1 & 2-6 \\
149-156-160 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
156.7 & 2-6 \\
148-158-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 158.2 \quad 2-6 \\
147-161-165
\end{array}
\] \\
\hline 35 & \[
\begin{array}{lr}
142.0 & 3-3 \\
142-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
149.2 & 3-3 \\
146-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.8 & 2-6 \\
149-155-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.3 & 2-6 \\
148-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
156.7 & 2-6 \\
147-161-165 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{array}{lr}
\hline 140.6 & 3-3 \\
142-146-151
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.7 & 3-3 \\
145-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.0 & 2-3 \\
150-155-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.6 & 2-6 \\
149-158-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 154.9 & 2-6 \\
148-161-165
\end{array}
\] \\
\hline 39 & \begin{tabular}{ll}
139.1 & \(3-3\) \\
\(141-145-150\)
\end{tabular} & \[
\begin{array}{lr}
\hline 146.3 & 3-3 \\
145-149-154 \\
\hline
\end{array}
\] & \begin{tabular}{lll}
150.1 & \(2-3\) \\
\(149-155-159\)
\end{tabular} & \[
\begin{array}{lr}
151.8 & 2-6 \\
150-158-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.1 & 2-6 \\
149-161-165
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
137.7 & 3-3 \\
141-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
144.8 & 3-3 \\
145-149-153 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
148.1 & 2-3 \\
149-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.0 & 2-6 \\
151-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.3 & 2-6 \\
150-161-165 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
136.2 & 3-3 \\
140-144-149
\end{array}
\] & \[
\begin{array}{lr}
142.9 & 2-3 \\
144-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
146.0 & 2-3 \\
149-154-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.2 \quad 2-6 \\
152-159-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.4 & 2-6 \\
151-161-165
\end{array}
\] \\
\hline 45 & \[
\begin{array}{lr}
134.7 & 3-3 \\
140-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.9 & 2-3 \\
144-148-152 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 143.9 & 2-3 \\
149-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.3 & 2-6 \\
152-159-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.5 & 2-6 \\
152-161-165 \\
\hline
\end{array}
\] \\
\hline 47 & \[
\begin{array}{rr}
133.1 & 3-3 \\
139-143-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.8 & 2-3 \\
144-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
141.8 & 2-3 \\
148-153-158 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
144.4 & 2-3 \\
153-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.5 & 2-6 \\
153-161-165 \\
\hline
\end{array}
\] \\
\hline 49 & \[
\begin{array}{cr}
131.5 & 3-3 \\
139-142-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.7 & 2-3 \\
143-147-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.6 & 2-3 \\
148-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.1 & 2-3 \\
153-158-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
143.5 & 2-6 \\
154-161-165 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{lr}
129.9 & 3-3 \\
138-141-146
\end{array}
\] & \[
\begin{array}{lr}
\hline 134.6 & 2-3 \\
143-146-151
\end{array}
\] & \[
\begin{array}{cr}
137.5 & 2-3 \\
148-152-156
\end{array}
\] & \[
\begin{array}{rr}
139.9 & 2-3 \\
153-158-161
\end{array}
\] & \[
\begin{array}{lr}
141.5 & 2-6 \\
155-162-165
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
127.9 & 3-3 \\
138-140-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.2 & 2-3 \\
143-146-150 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
135.1 & 2-3 \\
148-151-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
137.4 & 2-3 \\
152-157-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.2 \quad 2-6 \\
156-162-165 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
\hline 126.1 \quad 3-3 \\
137-139-144
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.9 & 2-3 \\
142-145-149 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 132.6 & 2-3 \\
147-151-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.9 & 2-3 \\
152-156-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 136.9 & 2-3 \\
157-161-165
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
\hline 124.3 & 3-3 \\
136-138-143
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.6 & 2-3 \\
142-144-148 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 130.2 & 2-3 \\
147-150-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
132.5 & 2-3 \\
152-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 134.4 & 2-3 \\
157-161-164 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
122.3 & 2-3 \\
136-138-142
\end{array}
\] & \[
\begin{array}{ll}
\hline 125.3 & 2-3 \\
141-144-148
\end{array}
\] & \[
\begin{array}{cc}
127.9 & 2-3 \\
147-149-153 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
130.0 & 2-3 \\
151-155-158
\end{array}
\] & \[
\begin{array}{cr}
131.8 & 2-2 \\
155-160-163
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
\hline 120.0 & 2-3 \\
135-137-141
\end{array}
\] & \[
\begin{array}{lr}
123.0 & 2-3 \\
141-143-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.4 & 2-3 \\
146-149-152 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.5 & 2-3 \\
151-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 128.9 & 2-2 \\
154-158-161 \\
\hline
\end{array}
\] \\
\hline 63 & \[
\begin{array}{lr}
117.8 & 2-3 \\
135-136-140
\end{array}
\] & \[
\begin{array}{lr}
\hline 120.6 & 2-3 \\
141-143-146
\end{array}
\] & \[
\begin{array}{cc}
123.0 & 2-3 \\
146-148-152
\end{array}
\] & \begin{tabular}{ll}
125.0 & \(2-3\) \\
\(151-154-157\)
\end{tabular} & \begin{tabular}{ll}
126.0 & \(2-2\) \\
\(153-156-159\)
\end{tabular} \\
\hline 65 & \[
\begin{array}{lr}
\hline 115.5 & 2-3 \\
135-136-140
\end{array}
\] & \[
\begin{array}{lr}
\hline 118.3 & 2-3 \\
140-142-146
\end{array}
\] & \[
\begin{array}{cr}
\hline 120.6 & 2-3 \\
145-148-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
122.6 & 2-3 \\
150-153-156
\end{array}
\] & \[
\begin{array}{lr}
123.1 & 2-2 \\
151-154-157
\end{array}
\] \\
\hline 67 & \[
\begin{array}{lr}
113.3 & 2-3 \\
134-136-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
116.0 & 2-3 \\
140-142-145 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
118.2 & 2-3 \\
145-147-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.1 & 2-3 \\
150-153-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 120.2 & 2-2 \\
149-153-155 \\
\hline
\end{array}
\] \\
\hline 68 & \[
\begin{array}{lr}
\hline 112.2 & 2-3 \\
134-135-139
\end{array}
\] & \[
\begin{array}{lr}
114.9 & 2-3 \\
140-142-145
\end{array}
\] & \[
\begin{array}{lr}
117.0 & 2-3 \\
145-147-150
\end{array}
\] & \[
\begin{array}{lr}
118.7 & 2-2 \\
149-152-155
\end{array}
\] & \[
\begin{array}{lr}
118.7 & 2-2 \\
148-152-155
\end{array}
\] \\
\hline
\end{tabular}

TEMPORARY REVISION № 218
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE \(=2000 \mathrm{FT}\)} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=33^{\circ} \mathrm{C} \\
& \text { TMAX }=51^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0.0 \%
\] & \multicolumn{3}{|l|}{\[
\mathrm{IAS}(\mathrm{KT}) \mathrm{V}_{1}-\mathrm{VR}_{1}-\mathrm{V}_{2}
\]} \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline (\({ }^{\circ} \mathrm{C}\)) & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -27 & \[
\begin{array}{rr}
155.9 & 2.3 \\
152-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 159.3 & 2-3 \\
157-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 162.2 & 2-3 \\
162-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 163.8 & 2-6 \\
163-172-176 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 165.0 & 2-6 \\
162-175-179 \\
\hline
\end{array}
\] \\
\hline -17 & \[
\begin{aligned}
& 154.5 \quad 2-3 \\
& 149-154-159 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
158.0 & 2-3 \\
154-160-165 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
161.0 & 2-3 \\
159-166-170 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 162.7 \quad 2-6 \\
& 160-170-174 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 163.9 \quad 2-6 \\
& 159-173-176 \\
& \hline
\end{aligned}
\] \\
\hline -7 & \[
\begin{aligned}
& 152.3 \quad 3-3 \\
& 148-152-157 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
156.7 & 2-3 \\
152-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
159.8 & 2.3 \\
157-164-168 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 161.6 \quad 2-6 \\
& 158-168-172 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 162.8 \quad 2-6 \\
& 157-170-174 \\
& \hline
\end{aligned}
\] \\
\hline 3 & \[
\begin{aligned}
& 149.9 \quad 3-3 \\
& 146-151-156
\end{aligned}
\] & \[
\begin{array}{lr}
155.5 & 2-3 \\
150-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
158.6 & 2-3 \\
155-162-166 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 160.4 \quad 2-6 \\
& 155-165-169 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 161.7 \quad 2-6 \\
& 154-168-172 \\
& \hline
\end{aligned}
\] \\
\hline 13 & \[
\begin{aligned}
& 140-151-150 \\
& \hline 147.5 \quad 3-3 \\
& 145-149-155
\end{aligned}
\] & \[
\begin{aligned}
& 150-100-101 \\
& 154.2 \quad 2-3 \\
& 148-154-158
\end{aligned}
\] & \[
\begin{aligned}
& 157.4 \quad 2.3 \\
& 153-159-164 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 105-100-109 \\
& \hline 159.2 .6 \\
& 153-163-167 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 160.6 \quad 2-6 \\
& 152-166-170 \\
& \hline
\end{aligned}
\] \\
\hline 23 & \[
\begin{aligned}
& 145-149-150 \\
& \hline 145.233 \\
& 143-148-154
\end{aligned}
\] & \[
\begin{aligned}
& 152.1 \quad 3-3 \\
& 147-152-157 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 156.3 \quad 2-3 \\
& 151-157-162 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lll}
158.0 & 26 \\
150-161-165
\end{array}
\] & \[
\begin{array}{ll}
159.4 \quad 2-6 \\
149-163-167 \\
\hline
\end{array}
\] \\
\hline 33 & \[
\begin{aligned}
& 143-140-134 \\
& 142.0-147-152
\end{aligned}
\] & \[
\begin{aligned}
& 149.8 \quad 3-3 \\
& 145-151-156 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 155.1 \quad 2-3 \\
& 149-156-160 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
156.7 & 26 \\
148-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
158.2 & 2-6 \\
147-161-165 \\
\hline
\end{array}
\] \\
\hline 35 & \[
\begin{aligned}
& 142-141-732 \\
& 141.73 \\
& 142-146-152
\end{aligned}
\] & \[
\begin{aligned}
& 148.6 \quad 3-3 \\
& 145-150-155
\end{aligned}
\] & \[
\begin{aligned}
& 153.5 \quad 2-3 \\
& 149.155-160
\end{aligned}
\] & \[
\begin{array}{cc}
155.3 & 2.6 \\
148-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
156.7 & 2-6 \\
147-161-165 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{array}{l|}
\hline 140.23-3 \\
141-146-151 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 140-100-100 \\
& 147.1 \quad 3.3 \\
& 145-150-155 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
\hline 151.6 & 2-3 \\
148-155-159 \\
\hline
\end{array}
\] & \[
\begin{gathered}
153.62-6 \\
149-158-163 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 154.9 \quad 2-6 \\
& 148-161-165 \\
& \hline
\end{aligned}
\] \\
\hline 39 & \[
\begin{array}{ll}
138.8 & 3-3 \\
141-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.6 & 3-3 \\
144-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
149.6 & 2-3 \\
148-154-159 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
151.8 & 26 \\
150-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
153.1 \quad 2-6 \\
149-161-165 \\
\hline
\end{array}
\] \\
\hline 41 & \[
\begin{aligned}
& 141-140-100 \\
& 137.3 \quad 3.3 \\
& 140-144-149
\end{aligned}
\] & \[
\begin{aligned}
& 144.2 \quad 3-3 \\
& 144-148-153
\end{aligned}
\] & \[
\begin{aligned}
& 147.7 \quad 2-3 \\
& 148-154-158 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
150.0 & 26 \\
151-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
151.3 & 2-6 \\
150-161-165 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{aligned}
& 140-144-149 \\
& 140.8 \quad 3-3 \\
& 144-149
\end{aligned}
\] & \[
\begin{aligned}
& 142.5 \quad 2-3 \\
& 143-148-152
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 145.6 & 2.3 \\
148-153-158 \\
\hline
\end{array}
\] & \[
\begin{gathered}
148.2 \quad 2-6 \\
152-159-163 \\
\hline
\end{gathered}
\] & \[
\begin{array}{cc}
149.4 \quad 2-6 \\
151-161-165 \\
\hline
\end{array}
\] \\
\hline 45 & \[
\begin{aligned}
& 134.3 \quad 3-3 \\
& 139-143-148
\end{aligned}
\] & \[
\begin{array}{ll}
140.6 & 2-3 \\
143-147-152
\end{array}
\] & \[
\begin{aligned}
& 148-103-100 \\
& \hline 143.62-3 \\
& 147-153-157
\end{aligned}
\] & \[
\begin{array}{cc}
146.1 & 2-3 \\
152-158-162
\end{array}
\] & \[
\begin{aligned}
& \frac{101-101-100}{147.5} 2-6 \\
& 152-161-165
\end{aligned}
\] \\
\hline 47 & \[
\begin{aligned}
& 139-143-148 \\
& 132.8 \quad 3-3 \\
& 139-142-147
\end{aligned}
\] & \[
\frac{43-141-102}{138.5} 2-3
\] & \[
\begin{aligned}
& 141.4 \quad 2-3 \\
& 147.153-157
\end{aligned}
\] & \[
\begin{aligned}
& 143.9 \quad 2-3 \\
& 151-158-162
\end{aligned}
\] & \[
\begin{array}{ll}
145.5 & 2.6 \\
153-161-165
\end{array}
\] \\
\hline 49 & \[
\begin{aligned}
& 131.1 \quad 3-3 \\
& 138-142-146
\end{aligned}
\] & \[
\begin{array}{lr}
136.4 & 2-3 \\
142-146-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.3 & 2-3 \\
147-152-156
\end{array}
\] & \[
\begin{aligned}
& 101-150-102 \\
& \hline 14.7 \quad 2-3 \\
& 151-157-161 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 143.5 \quad 2-6 \\
& 154-161-165
\end{aligned}
\] \\
\hline 51 & \[
\begin{array}{lr}
129.5 & 3-3 \\
138-141-145 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 142-140-151 \\
& 142.3 \quad 2-3 \\
& 142-146-150
\end{aligned}
\] & \[
\begin{gathered}
137.1 \quad 2.3 \\
146-151-156 \\
\hline
\end{gathered}
\] & \[
\begin{array}{lr}
139.5 & 2-3 \\
151-157-161 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
141.5 & 2-6 \\
155-162-165 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{aligned}
& 130-141-14033 \\
& 127.6 \quad 3-140-144 \\
& 137.10
\end{aligned}
\] & \[
\begin{aligned}
& 142.0 \quad 2-3 \\
& 142-145-149
\end{aligned}
\] & \[
\begin{aligned}
& 134.7 \quad 2-3 \\
& 146-151-155 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
137.0 & 2-3 \\
150-156-160 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
139.0 & 2.3 \\
155-161-164 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{aligned}
& 125.7 \quad 3-3 \\
& 136-139-143
\end{aligned}
\] & \[
\begin{array}{cc}
129.6 \quad 2-3 \\
141-144-149
\end{array}
\] & \[
\begin{array}{r}
132.3 \quad 2-3 \\
146-150-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.5 & 2-3 \\
150-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.5 & 2-3 \\
155-160-163 \\
\hline
\end{array}
\] \\
\hline 57 & \[
\begin{aligned}
& 130-139-14-93 \\
& 123.938-3 \\
& 136-138-142
\end{aligned}
\] & \[
\begin{aligned}
& 127.3 \quad 2-3 \\
& 141-144-148
\end{aligned}
\] & \[
\begin{aligned}
& 129.9 \\
& 145-149-153 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 132.1 \quad 2-3 \\
& 150-155-158
\end{aligned}
\] & \[
\begin{array}{lr}
134.0 & 2-3 \\
154-160-163 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
122.1 & 2-3 \\
135-137-142
\end{array}
\] & \[
\begin{aligned}
& 145.1 \quad 2-3 \\
& 140-143-147
\end{aligned}
\] & \[
\begin{aligned}
& 145-14 y-105 \\
& 127.52 .3 \\
& 145-149-153
\end{aligned}
\] & \[
\begin{aligned}
& 100-100-100 \\
& 129.7 \quad 2-3 \\
& 149-154-157
\end{aligned}
\] & \[
\begin{aligned}
& 131.5 \quad 2-3 \\
& 154-159-162
\end{aligned}
\] \\
\hline & 119.9 2 2-3 & \(122.7{ }^{2-3}\) & 125.1 2-3 & \(127.2{ }^{2-3}\) & \(128.9{ }^{2-2}\) \\
\hline 61 & 135-137-141 & 140-143-147 & 145-148-152 & 149-153-157 & 153-158-161 \\
\hline 63 & \[
\begin{aligned}
& 117.6 \quad 2-3 \\
& 134-136-140 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
120.4 \quad 2-3 \\
140-142-146
\end{gathered}
\] & \[
\begin{array}{lr}
122.7 & 2-3 \\
144-147-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.7 & 2-3 \\
149-153-156
\end{array}
\] & \[
\begin{array}{lr}
126.0 & 2-2 \\
152-156-159 \\
\hline
\end{array}
\] \\
\hline 65 & \[
\begin{aligned}
& 134-130-140 \\
& \hline 1154.42-3 \\
& 134-136-139
\end{aligned}
\] & \[
\begin{array}{lr}
118.1 & 2-3 \\
139-142-145
\end{array}
\] & \[
\begin{aligned}
& 1440.3 \quad 2-3 \\
& 144-147-150 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1252.2 \quad 2-3 \\
148-152-155
\end{array}
\] & \[
\begin{array}{ll}
123.1 \quad 2-2 \\
150-154-157
\end{array}
\] \\
\hline 67 & \[
113.2 \quad 2-3
\] & \[
\frac{1159.12-145}{15-3}
\] & \[
\begin{aligned}
& 147.9123 \\
& 144-146-150
\end{aligned}
\] & \[
\begin{array}{rl}
140-102-105 \\
119.8 & 2-3 \\
148-151-154
\end{array}
\] & \[
\begin{aligned}
& 120.2 \quad 2-2 \\
& 149-153-155
\end{aligned}
\] \\
\hline 68 & \[
\frac{134-135-139}{112.12-3}
\] & \[
\begin{aligned}
& \frac{139-141-144}{114.62-3} \\
& 139-141-144
\end{aligned}
\] & \[
\begin{array}{ll}
116.7 & 2-3 \\
144-146-149
\end{array}
\] & \[
\begin{array}{lr}
118.6 & 2-3 \\
148-151-154
\end{array}
\] & \[
\begin{array}{lr}
118.7 & 2-2 \\
148-152-155
\end{array}
\] \\
\hline
\end{tabular}

A310-324/AA/PW-4152 T15/15-EE-CM72-1-A

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE \(=0 \mathrm{FT}\)} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=42^{\circ} \mathrm{C} \\
& \text { TMAX }=55^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0.0 \%
\] & \multicolumn{2}{|l|}{MAX T.O. WEIGHT(1000KG) IAS(KT) V1 - VR - V2} & CODES \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline \[
\begin{aligned}
& \text { TEMP. } \\
& \left({ }^{\circ} \mathrm{C}\right) \\
& \hline
\end{aligned}
\] & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -18 & \[
\begin{aligned}
& 1388.0 \quad 3-3 \\
& 137-138-145
\end{aligned}
\] & \[
\begin{array}{lr}
148.3 & 2.3 \\
143-145-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.8 & 2-3 \\
149-153-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.2 & 2-3 \\
155-160-165 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
157.1 & 2-2 \\
156-162-167 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{aligned}
& 135.3 \quad 3.3 \\
& 135-137-144 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
146.1 & 3.3 \\
141-143-149 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
151.6 & 2-3 \\
147-150-156 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.1 & 2-3 \\
153-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
157.1 & 2-2 \\
156-162-167 \\
\hline
\end{array}
\] \\
\hline 2 & \[
\begin{aligned}
& 132.833-3 \\
& 133-136-143
\end{aligned}
\] & \[
\begin{array}{lr}
143.6 & 3-3 \\
139-142-148 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 150.4 & 2.3 \\
145-148-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.0 & 2-3 \\
151-155-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
157.0 \quad 2-3 \\
156-162-167 \\
\hline
\end{array}
\] \\
\hline 12 & \[
\begin{aligned}
& 130.433-3 \\
& 132-135-141
\end{aligned}
\] & \[
\begin{array}{ll}
141.2 & 3-3 \\
138-141-147 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 149.2 \quad 2-3 \\
& 143-146-152 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
153.0 & 2-3 \\
148-153-159 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 156.0 \quad 2-3 \\
& 154-160-165 \\
& \hline
\end{aligned}
\] \\
\hline 22 & \[
\begin{aligned}
& 128.133-3 \\
& 130-133-140 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
138.9 & 3-3 \\
136-139-146 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
148.0 & 2-2 \\
141-144.150
\end{array}
\] & \[
\begin{array}{lr}
151.8 & 2-3 \\
146-151-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.1 & 2-3 \\
152-158-163 \\
\hline
\end{array}
\] \\
\hline 32 & \[
\begin{aligned}
& 126.0 \quad 3.3 \\
& 129-132-139 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
136.7 & 3-3 \\
135-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.9 & 3-3 \\
140-143-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.8 & 2-3 \\
145-149-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.0 & 2-3 \\
150-156-161 \\
\hline
\end{array}
\] \\
\hline 42 & \[
\begin{aligned}
& 124.0<3-3 \\
& 128.131-138
\end{aligned}
\] & \[
\begin{array}{ll}
134.5 & 3-3 \\
134-137-143
\end{array}
\] & \[
\begin{aligned}
& 143.7 \quad 3-3 \\
& 139-142-148 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
149.7 & 2-3 \\
143-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
153.1 & 2-3 \\
148-154-159 \\
\hline
\end{array}
\] \\
\hline 44 & \[
\begin{aligned}
& 120-15-130 \\
& 122.533-130-137
\end{aligned}
\] & \[
\begin{aligned}
& 134.0 \quad 3-3 \\
& 133-136-143
\end{aligned}
\] & \[
\begin{aligned}
& 142.2 \quad 3.3 \\
& 138-142-147
\end{aligned}
\] & \[
\begin{aligned}
& 145-140-105 \\
& 143.7 \quad 2-3 \\
& 143-147-153
\end{aligned}
\] & \[
\begin{aligned}
& 148-104-109 \\
& \hline 151.0 \quad 2-3 \\
& 148-154-159
\end{aligned}
\] \\
\hline 46 & \[
\begin{aligned}
& 120.933-3 \\
& 127-130-137
\end{aligned}
\] & \[
\begin{aligned}
& 131.3 \quad 3-3 \\
& 133-136-142 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
140.6 & 3.3 \\
138-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.5 & 2-3 \\
142-147-152
\end{array}
\] & \[
\begin{array}{ll}
148.6 & 2-3 \\
147-153-158 \\
\hline
\end{array}
\] \\
\hline 48 & \[
\begin{aligned}
& 119.433-3 \\
& 126.129-136
\end{aligned}
\] & \[
\begin{aligned}
& 129.6 \quad 3.3 \\
& 132.135-141
\end{aligned}
\] & \[
\begin{aligned}
& 138.933-3 \\
& 137.140-146
\end{aligned}
\] & \[
\begin{array}{ll}
143.2 & 2-3 \\
142-146-152
\end{array}
\] & \[
\begin{array}{lr}
146.3 & 2-3 \\
147-153-158 \\
\hline
\end{array}
\] \\
\hline 50 & \[
\begin{aligned}
& 120-129-130 \\
& 117.8 \quad 3-3 \\
& 126.128-135
\end{aligned}
\] & \[
\begin{aligned}
& 122-130-141 \\
& 128.132 .3 \\
& 132-134-140 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 137.23 .3 \\
& 137-139-145 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 142-140-102 \\
& 140.92-3 \\
& 142-146-151
\end{aligned}
\] & \[
\begin{aligned}
& 143.92-3 \\
& 147-152-157 \\
& \hline
\end{aligned}
\] \\
\hline 52 & \[
\begin{array}{ll}
116.1 \quad 3-3 \\
125-127-134 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 126.3 \quad 3-3 \\
& 131-134-139 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{rr}
134.9 & 2.3 \\
136-139-144 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
138.5 & 2-3 \\
142-145-151 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
141.5-2-3 \\
147-152-157 \\
\hline
\end{array}
\] \\
\hline 54 & \[
\begin{aligned}
& 114.5 \quad 3-3 \\
& 124-127-133 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
124.6 & 3-3 \\
131-133-138 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
132.7 & 2-3 \\
136-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.2 & 2-3 \\
142-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
139.02-3 \\
147-151-156 \\
\hline
\end{array}
\] \\
\hline 56 & \[
\begin{aligned}
& 112.7 \quad 3-3 \\
& 124-126.132 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
122.8 & 3-3 \\
130-132-138 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 130.32-3 \\
& 136-138-143 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
133.7 & 2.3 \\
141-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.5 & 2-3 \\
146-151-155 \\
\hline
\end{array}
\] \\
\hline 58 & \[
\begin{aligned}
& 124-120-152 \\
& 123.83-125-131 \\
& 123
\end{aligned}
\] & \[
\begin{gathered}
120.933-3 \\
129-131-137
\end{gathered}
\] & \[
\begin{array}{lr}
128.0 & 2-3 \\
135-137-142 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 131.2 \quad 2-3 \\
& 141-144-149
\end{aligned}
\] & \[
\begin{aligned}
& 133.92-2 \\
& 146-150-154 \\
& \hline
\end{aligned}
\] \\
\hline 60 & \[
\begin{array}{ll}
109.1 \quad 3-3 \\
122-124-130 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
119.0 & 3-3 \\
129-130-136 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
125.6 & 2.3 \\
135-136-141 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
128.8 & 2-3 \\
140-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
131.0 & 2-2 \\
144-148-153 \\
\hline
\end{array}
\] \\
\hline 62 & \[
\begin{aligned}
& 107.3 \quad 3-3 \\
& 122-123-129 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 117.23-3 \\
& 128-129-135 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
123.3 & 2-3 \\
134-136-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
126.4 & 2-3 \\
140-143-147 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
128.0 & 2-2 \\
143-146-151 \\
\hline
\end{array}
\] \\
\hline 64 & \[
\begin{array}{lr}
105.6 & 3-3 \\
121-123-129
\end{array}
\] & \[
\begin{aligned}
& 128-129-130 \\
& 115.53-3 \\
& 127-128-134
\end{aligned}
\] & \[
\begin{aligned}
& 134-100-141 \\
& 134-135-140 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
123.9 & 2-3 \\
140-142-147
\end{array}
\] & \[
\begin{array}{ll}
125.1 & 2-2 \\
142-145-149 \\
\hline
\end{array}
\] \\
\hline 66 & \[
\begin{aligned}
& 121-1.63-3 \\
& 121-123-129 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
113.6 & 3-3 \\
127-128-133 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 118.5 \quad 2-3 \\
& 133-135-139 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
121.4 & 2-3 \\
139-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
122.2 & 2-2 \\
140-143-148 \\
\hline
\end{array}
\] \\
\hline 68 & \[
\begin{array}{r}
12-3 \quad 3-3 \\
98.123-129 \\
121-1230-1<y
\end{array}
\] & \[
\begin{array}{ll}
111.8 & 3-3 \\
126-127-132
\end{array}
\] & \[
\begin{array}{ll}
116.2 \quad 2.3 \\
133-134-139 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 118.9 \quad 2-3 \\
& 139-141-145
\end{aligned}
\] & \[
\begin{array}{ll}
119.3 & 2-2 \\
138-142-146 \\
\hline
\end{array}
\] \\
\hline 70 & 95.1 \(3-3\) & 110.1
\(125-126-131\) & \(133.812-3\)
\(133-134-138\) & & \[
116.4 \quad 2-2
\] \\
\hline & & \(125-126-131\)
108.0
2-3 & 111.5 2-3 & 113.5 2 2-2 & 113.5 2-2 \\
\hline 72 & 121-124-129 & 125-125-130 & 132-133-138 & 136-139-142 & 133-139-142 \\
\hline
\end{tabular}

A310-324/AAPW-4152 T20/20-EE-CM72-1-A
FCOM-80-02-10-40-009-000
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & PAGE & \\
\hline & QUICK REFERENCE TABLES & REV 33 & SEO 090 \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|c|}{PRESSURE ALTITUDE 0 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=42^{\circ} \mathrm{C} \\
& \text { TMAX }=55^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY SLOPE \(=0 \%\) & \multicolumn{3}{|l|}{\[
\operatorname{IAS}(\mathrm{KT}): \mathrm{V} 1-\mathrm{VR}-\mathrm{V} 2
\]} \\
\hline \multicolumn{6}{|l|}{(tal} \\
\hline \(\left.{ }^{\circ} \mathrm{C}\right)\) & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -18 & \[
\begin{array}{lr}
\hline 138.0 & 3-3 \\
137-138-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 148.3 & 2-3 \\
143-145-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.8 & 2-3 \\
149-153-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.3 & 2-3 \\
156-160-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 157.1 & 2-2 \\
156-162-167 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{array}{lr}
135.3 \quad 3-3 \\
135-137-144
\end{array}
\] & \[
\begin{aligned}
& 146.1 \quad 3-3 \\
& 141-143-149
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 151.6 & 2-3 \\
147-1.50-156
\end{array}
\] & \[
\begin{aligned}
& 155.2 \quad 2-3 \\
& 153-158-163
\end{aligned}
\] & \[
\begin{array}{lr}
157.1 & 2-2 \\
157-162-167
\end{array}
\] \\
\hline 2 & \[
\begin{array}{lr}
132.8 & 3-3 \\
133-136-143
\end{array}
\] & \[
\begin{array}{ll}
143.6 \quad 3-3 \\
139-142-148
\end{array}
\] & \[
\begin{aligned}
& 150.4 \quad 2-3 \\
& 145-148-154
\end{aligned}
\] & \[
\begin{array}{ll}
154.12-3 \\
151-156-161
\end{array}
\] & \[
\begin{array}{lr}
157.1 & 2-2 \\
156-162-167
\end{array}
\] \\
\hline 12 & \[
\begin{aligned}
& 130.4 \quad 3-3 \\
& 132-135-141
\end{aligned}
\] & \[
\begin{array}{ll}
141.2 & 3-3 \\
138-141-147
\end{array}
\] & \[
\begin{array}{ll}
149.2 & 2-3 \\
143-146-152
\end{array}
\] & \[
\begin{array}{rr}
153.1 \quad 2-3 \\
149-154-159
\end{array}
\] & \[
\begin{aligned}
& 156.2 \quad 2-3 \\
& 155-160-165
\end{aligned}
\] \\
\hline 22 & \[
128.1 \quad 3-3
\] & \[
\begin{aligned}
& 138.93-3 \\
& 136-129-106
\end{aligned}
\] & \[
148.0 \quad 2-2
\]
141-144-150 & \[
152.0 \quad 2-3
\] & \[
\begin{gathered}
155.3 \\
153-158-163
\end{gathered}
\] \\
\hline 32 & \[
126.0 \quad 3-3
\] & \[
136.7 \quad 3-3
\] & \[
145.9 \quad 3-3
\] & \[
150.92-3
\] & \[
154.3 \quad 2-3
\] \\
\hline 42 & \[
124.0 \quad 3-3
\] & \[
134.5 \quad 3-3
\] & \[
143.7 \quad 3-3
\] & \[
149.9 \quad 2-3
\] & \[
\begin{gathered}
153.3 \quad 2-3 \\
149-154-159
\end{gathered}
\] \\
\hline 44 & \[
122.5 \quad 3-3
\] & \[
133.0 \quad 3-3
\] & \[
142.23-3
\] & \[
147.8 \quad 2-3
\] & \[
151.2=2-3
\] \\
\hline 46 & & & \[
140.6 \quad 3-3
\] & \[
145.6 \quad 2-3
\] & \[
148.8 \quad 2-3
\] \\
\hline 48 & \[
\begin{array}{lr}
119.43-3 \\
126-129-136
\end{array}
\] & \[
\begin{aligned}
& 12 J-1 \text { Jo-14Z } \\
& 129.6 \quad 3-3 \\
& 132-135-141
\end{aligned}
\] & \[
\begin{gathered}
130-141-140 \\
\hline 138.9 \quad 3-3 \\
137-140-146
\end{gathered}
\] & \[
\begin{aligned}
& 143-14 /-152 \\
& 143.3 \quad 2-3 \\
& 143-147-152
\end{aligned}
\] & \[
\begin{array}{lr}
146.5 & 2-3 \\
148-153-158 \\
\hline
\end{array}
\] \\
\hline 50 & \[
\begin{array}{ll}
117.8 \quad 3-3 \\
126-128-135
\end{array}
\] & \[
\begin{aligned}
& 128.1 \quad 3-3 \\
& 132-134-140
\end{aligned}
\] & \[
\begin{array}{ll}
137.2 & 3-3 \\
137-139-145
\end{array}
\] & \[
\begin{array}{ll}
141.0 & 2-3 \\
142-146-152
\end{array}
\] & \[
\begin{aligned}
& 144.1 \quad 2-3 \\
& 148-153-158
\end{aligned}
\] \\
\hline 52 & 116.1 3-3 & 126.3 3-3 & 134.9 2-3 & 138.7 2-3 & \(141.6{ }^{2-3}\) \\
\hline & 125-14.5 \(\quad 3\)-3 & 121-1.64-139 & 136-139-144 & 142-146-151
\(136.3-2-3\) & 148-152-157 \\
\hline 54 & 124-127-133 & 131-133-138 & 136-138-144 & 142-145-150 & 147-152-156 \\
\hline 56 & \[
\begin{aligned}
& 112.7 \quad 3-3 \\
& 124-126-132
\end{aligned}
\] & \(122.8 \quad 3-3\)
\(130-132-138\) & 130.3
\(136-138-143\) & 133.8
\(142-145-150\) & \[
\begin{array}{ll}
136.7 & 2-3 \\
147-151-156
\end{array}
\] \\
\hline & 110.8 3-3 & \(120.9 \quad 3\) 3-3 & 128.0 2-3 & \(131.3 \quad 2-3\) & 133.9 2-2 \\
\hline 58 & 123-125-131 & 129-131-137 & 135-137-142 & 141-144-149 & 146-150-154 \\
\hline 60 & \[
\begin{aligned}
& 109.1 \quad 3-3 \\
& 122-124-130
\end{aligned}
\] & \[
\begin{aligned}
& 119.0 \quad 3-3 \\
& 129-130-136
\end{aligned}
\] & 125.6
\(135-136-141\) & 128.9
\(141-143-148\) & \[
\begin{aligned}
& 131.0 \quad 2-2 \\
& 145-148-153
\end{aligned}
\] \\
\hline & 107.3 3-3 & 117.2 3-3 & 123.3 2-3 & 126.5 2-3 & \(128.0 \quad 2-2\) \\
\hline 62 & 122-123-129 & 128-129-135 & 134-136-141 & 141-143-147 & 143-146-151 \\
\hline 64 & \[
\begin{array}{ll}
105.6 & 3-3 \\
121.123 .120
\end{array}
\] & \[
\begin{array}{ll}
115.5 & 3-3 \\
127.128 & 134
\end{array}
\] & 120.9
\(134-135-140\) & 124.0
\(140-142-147\) & 125.12 2-2 \\
\hline & \(101.6 \quad 3-3\) & 113.6 3-3 & 118.5 2-3 & 121.5 2-3 & 122.2 2-2 \\
\hline 66 & 121-123-129 & 127-128-133 & 133-135-139 & 140-142-146 & 140-143-148 \\
\hline 68 & 98.3 3-3 & \(111.8{ }^{3} 3\) & \(116.2{ }^{163}\) & \(119.0 \quad 2-3\) & \(119.3{ }^{2-2}\) \\
\hline & 121-1.1 3 - 3 -3 & 110.1 \({ }^{126-3}\) & 133-134-139 & 139-141-145 & 116-42-146 \\
\hline 70 & 121-124-129 & 125-126-131 & 133-134-138 & 138-140-144 & 135-140-144 \\
\hline 72 & \[
\begin{array}{cc}
92.1 \quad 3-3 \\
121-124-129
\end{array}
\] & \[
\begin{array}{ll}
108.0 & 2-3 \\
125-125-130
\end{array}
\] & \[
\begin{aligned}
& 111.5 \quad 2-3 \\
& 132.133 .138
\end{aligned}
\] & \[
\begin{aligned}
& 113.5 \quad 2-2 \\
& 137-139-142
\end{aligned}
\] & \[
\begin{array}{ll}
113.5 & 2-2 \\
133-139-142
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & PAGE & \\
\hline & QUICK REFERENCE TABLES & REV 33 & SEQ 090 \\
\hline
\end{tabular}

\section*{NOMINAL THRUST}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE 1000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=37^{\circ} \mathrm{C} \\
& \text { TMAX }=53^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MAX T.O. WEIGHT(1000KG) } \\
& \qquad \text { IAS(KT) : V1 - VR - V2 }
\end{aligned}
\]} & CODES \\
\hline \multicolumn{6}{|l|}{TEMP.} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -23 & \[
\begin{array}{lr}
\hline 136.7 & 3-3 \\
136-138-144
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.4 & 2-3 \\
142-144-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.8 & 2-3 \\
148-152-157
\end{array}
\] & \[
\begin{array}{lr}
\hline 155.4 & 2-3 \\
155-159-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.4 & 2-2 \\
157-162-167
\end{array}
\] \\
\hline -13 & \[
\begin{array}{lr}
134.0 & 3-3 \\
134-136-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
144.8 & 3-3 \\
140-142-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.6 & 2-3 \\
146-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.3 & 2-3 \\
152-157-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.4 & 2-2 \\
156-162-167 \\
\hline
\end{array}
\] \\
\hline -3 & \[
\begin{array}{rr}
131.4 & 3-3 \\
133-135-142
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.3 & 3-3 \\
138-141-147
\end{array}
\] & \[
\begin{array}{cr}
\hline 149.4 \quad 2-3 \\
144-147-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.2 & 2-3 \\
150-155-160
\end{array}
\] & \[
\begin{array}{lr}
156.2 & 2-3 \\
156-161-166
\end{array}
\] \\
\hline 7 & \[
\begin{array}{rr}
129.0 & 3-3 \\
131-134-141
\end{array}
\] & \[
\begin{array}{rr}
139.8 & 3-3 \\
137-140-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
148.1 & 2-3 \\
142-145-151 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
152.1 & 2-3 \\
148-153-158
\end{array}
\] & \[
\begin{array}{lr}
155.2 & 2-3 \\
154-159-164
\end{array}
\] \\
\hline 17 & \[
\begin{array}{ll}
126.7 & 3-3 \\
130-133-140
\end{array}
\] & \[
\begin{aligned}
& 137.4 \quad 3-3 \\
& 136-139-145
\end{aligned}
\] & \[
\begin{array}{cc}
146.6 & 3-3 \\
140-144-149
\end{array}
\] & \[
\begin{array}{ll}
150.9 \quad 2-3 \\
146-151-156
\end{array}
\] & \[
\begin{aligned}
& 154.2 \quad 2-3 \\
& 152-157-162
\end{aligned}
\] \\
\hline 27 & \[
\begin{array}{rr}
124.6 & 3-3 \\
128-131-138
\end{array}
\] & \[
\begin{array}{lr}
135.2 & 3-3 \\
134-137-144 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 144.4 & 3-3 \\
139-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
149.9 & 2-3 \\
144-149-154
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.2 & 2-3 \\
150-155-160 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{array}{lr}
\hline 122.1 & 3-3 \\
127-130-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
132.5 & 3-3 \\
133-136-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
141.8 & 3-3 \\
138-141-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.1 & 2-3 \\
142-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.5 & 2-3 \\
148-153-158 \\
\hline
\end{array}
\] \\
\hline 39 & \[
\begin{array}{lr}
121.2 & 3-3 \\
126-130-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
131.6 & 3-3 \\
132-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
140.8 & 3-3 \\
137-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
147.0 & 2-3 \\
142-146-152 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
150.4 & 2-3 \\
147-153-158 \\
\hline
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
\hline 120.1 & 3-3 \\
126-129-136
\end{array}
\] & \[
\begin{array}{cr}
\hline 130.4 & 3-3 \\
132-135-141 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
139.6 & 3-3 \\
137-140-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 145.6 & 2-3 \\
142-146-151
\end{array}
\] & \[
\begin{array}{lr}
\hline 148.9 & 2-3 \\
147-152-157
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
118.6 & 3-3 \\
125-128-135 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
128.93-3 \\
132-135-141 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
138.1 & 3-3 \\
136-140-145 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
143.6 & 2-3 \\
142-145-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
146.8 & 2-3 \\
147-152-157 \\
\hline
\end{array}
\] \\
\hline 45 & \[
\begin{array}{lr}
117.1 \quad 3-3 \\
125-128-135
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.3 & 3-3 \\
131-134-140 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
136.4 & 3-3 \\
136-139-144 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 141.4 & 2-3 \\
141-145-150
\end{array}
\] & \[
\begin{array}{rr}
144.6 & 2-3 \\
147-152-157
\end{array}
\] \\
\hline 47 & \[
\begin{array}{lr}
115.6 & 3-3 \\
124-127-134 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.8 & 3-3 \\
131-133-139 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
134.9 & 3-3 \\
135-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.3 & 2-3 \\
141-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
142.4 & 2-3 \\
146-151-156 \\
\hline
\end{array}
\] \\
\hline 49 & \[
\begin{array}{lr}
114.1 & 3-3 \\
124-126-133 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.3 & 3-3 \\
130-132-138 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
133.2 & 3-3 \\
135-138-143 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
137.1 & 2-3 \\
141-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.1 & 2-3 \\
146-151-156 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{lr}
\hline 112.5 & 3-3 \\
123-126-132
\end{array}
\] & \[
\begin{array}{lr}
\hline 122.6 & 3-3 \\
129-132-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
131.3 & 2-3 \\
135-137-142
\end{array}
\] & \[
\begin{array}{rr}
134.9 & 2-3 \\
141-144-149
\end{array}
\] & \[
\begin{array}{lr}
137.8 & 2-3 \\
146-150-155 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
111.0 & 3-3 \\
123-125-131 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 121.0 & 3-3 \\
129-131-137 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
129.1 & 2-3 \\
134-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
132.7 & 2-3 \\
140-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
135.5 & 2-3 \\
146-150-154 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
109.1 \quad 3-3 \\
122-124-130
\end{array}
\] & \[
\begin{array}{lr}
\hline 119.1 & 3-3 \\
128-130-136 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 126.8 & 2-3 \\
134-136-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 130.2 & 2-3 \\
140-143-147
\end{array}
\] & \[
\begin{array}{lr}
133.0 & 2-3 \\
145-149-154
\end{array}
\] \\
\hline 57 & \[
\begin{array}{rr}
\hline 107.4 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 117.2 & 3-3 \\
128-129-135 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.5 & 2-3 \\
133-135-140 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.9 & 2-3 \\
139-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.5 & 2-2 \\
144-148-152 \\
\hline
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
105.7 \quad 3-3 \\
121-122-129
\end{array}
\] & \[
\begin{array}{lr}
115.5 & 3-3 \\
127-128-134
\end{array}
\] & \[
\begin{array}{cr}
122.3 & 2-3 \\
133-134-139
\end{array}
\] & \[
\begin{array}{cr}
125.5 & 2-3 \\
139-141-146
\end{array}
\] & \[
\begin{array}{cc}
127.6 \quad 2-2 \\
143-146-151
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
102.0 & 3-3 \\
121-123-129
\end{array}
\] & \[
\begin{array}{lr}
\hline 113.8 & 3-3 \\
126-127-133 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
120.0 & 2-3 \\
132-134-139 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
123.2 & 2-3 \\
139-141-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.8 & 2-2 \\
142-145-149 \\
\hline
\end{array}
\] \\
\hline 63 & \[
\begin{array}{cr}
98.6 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 111.9 & 3-3 \\
126-127-132 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 117.7 & 2-3 \\
132-133-138 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.8 & 2-3 \\
138-140-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
122.0 & 2-2 \\
140-143-147 \\
\hline
\end{array}
\] \\
\hline 65 & \[
\begin{array}{cr}
95.3 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.2 & 3-3 \\
125-126-131 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
115.4 & 2-3 \\
132-133-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
118.3 & 2-3 \\
138-140-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 119.2 & 2-2 \\
139-142-146 \\
\hline
\end{array}
\] \\
\hline 67 & \[
\begin{array}{cr}
92.2 & 3-3 \\
121-124-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 108.4 & 3-3 \\
124-125-130 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
113.1 & 2-3 \\
131-132-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
115.9 & 2-3 \\
137-139-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
116.4 & 2-2 \\
136-140-144 \\
\hline
\end{array}
\] \\
\hline 69 & & \[
\begin{array}{lr}
106.7 & 3-3 \\
124-124-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.8 & 2-3 \\
131-132-136 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 113.6 & 2-2 \\
137-139-142
\end{array}
\] & \[
\begin{array}{lr}
113.6 & 2-2 \\
134-139-142 \\
\hline
\end{array}
\] \\
\hline 70 & & \[
\begin{array}{lr}
105.9 & 3-3 \\
123-124-129
\end{array}
\] & \[
\begin{array}{lr}
109.7 & 2-3 \\
131-132-136
\end{array}
\] & \[
\begin{array}{lc}
112.2 & 2-2 \\
136-138-142
\end{array}
\] & \[
\begin{array}{lr}
\hline 112.2 & 2-2 \\
133-138-142
\end{array}
\] \\
\hline
\end{tabular}

TEMPORARY REVISION N \({ }^{\circ} 218\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE \(=1000 \mathrm{FT}\)} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=37^{\circ} \mathrm{C} \\
& \text { TMAX }=53^{\circ} \mathrm{C}
\end{aligned}
\]} & \begin{tabular}{l}
DRY RUNWAY \\
SLOPE \(=0.0 \%\)
\end{tabular} & \multicolumn{3}{|l|}{MAX T.O. WEIGHT(1000KG)
IAS(KT) V1 - VR - V2} \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline (\({ }^{\text {C) }}\) & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -23 & \[
\begin{array}{cc}
\hline 136.7 & 3-3 \\
136-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
147.4 & 2-3 \\
142-144-150 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
151.8 & 2.3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.3 & 2-3 \\
\\
\hline 155-159-164 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
156.4 & 2-2 \\
156-162-167 \\
\hline
\end{array}
\] \\
\hline -13 & \[
\begin{aligned}
& 130-130-144 \\
& 134.0 \quad 3-3 \\
& 134-136-143
\end{aligned}
\] & \[
\begin{aligned}
& 144.8 \quad 3-3 \\
& 140.142-148
\end{aligned}
\] & \[
\begin{aligned}
& 150.6 \quad 2-3 \\
& 146-150-155 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
154.2 & 2-3 \\
152-157-162 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 156.4 \quad 2-2 \\
& 156-162-167 \\
& \hline
\end{aligned}
\] \\
\hline -3 & \[
\begin{aligned}
& 131.4 \quad 3-3 \\
& 133-135-142 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
142.3 & 3-3 \\
138-141-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
149.4 & 2-3 \\
144-147-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.0 & 2-3 \\
150-154-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
156.0 & 2-3 \\
155-161-166 \\
\hline
\end{array}
\] \\
\hline 7 & \[
\begin{aligned}
& 129.03-3-3 \\
& 131-134-141
\end{aligned}
\] & \[
\begin{array}{ll}
139.8 & 3-3 \\
137-140-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.1 & 2-3 \\
142-145-151
\end{array}
\] & \[
\begin{gathered}
151.92 .3 \\
147-152-158
\end{gathered}
\] & \[
\begin{array}{cc}
155.0 & 2-3 \\
153-159-164
\end{array}
\] \\
\hline 17 & \[
\begin{aligned}
& 126.7 \quad 3-3 \\
& 130-133-140 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 137.4 \quad 3-3 \\
& 136-139-145 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
146.6 & 3.3 \\
140-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
150.8 & 2-3 \\
145-150-156 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.0 & 2-3 \\
151-157-162 \\
\hline
\end{array}
\] \\
\hline 27 & \[
\begin{aligned}
& 124.6 \quad 3.3 \\
& 128.131-138 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{rr}
135.2 & 3-3 \\
134-137-144 \\
\hline
\end{array}
\] & \[
\begin{gathered}
144.4 \quad 3-3 \\
139-143-148 \\
\hline
\end{gathered}
\] & \[
\begin{array}{lr}
\hline 149.7 & 2-3 \\
144-148-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.0 & 2-3 \\
149-155-160 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{aligned}
& 122.1 \quad 3-3 \\
& 127-130-137 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 132.5 \quad 3-3 \\
& 133-136-143 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 141.8 \quad 3-3 \\
& 138-141-147 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
148.0 & 2-3 \\
142-146-152
\end{array}
\] & \[
\begin{gathered}
151.3 \quad 2.3 \\
147.153-158 \\
\hline
\end{gathered}
\] \\
\hline 39 & \[
\begin{aligned}
& 121.2 \quad 3-3 \\
& 126-130-137
\end{aligned}
\] & \[
\begin{array}{rr}
131.6 & 3-3 \\
132-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
140.8 & 3-3 \\
137-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
146.9 & 2-3 \\
142-146-151 \\
\hline
\end{array}
\] & \[
\begin{gathered}
150.3 \quad 2-3 \\
146-152-157 \\
\hline
\end{gathered}
\] \\
\hline 41 & \[
\begin{aligned}
& 120-130-131 \\
& 126-129-136 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 130.4 \quad 3-3 \\
& 132.135 .141
\end{aligned}
\] & \[
\begin{gathered}
139.6 \quad 3.3 \\
137-140-146 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 142-502-3 \\
& 141-146-151
\end{aligned}
\] & \[
\begin{array}{ll}
148.7 & 2-3 \\
146-152-157 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
118.6 & 3-3 \\
125-128-135 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
128.9 & 3-3 \\
132-135-141 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 138.1 \quad 3.3 \\
& 136-140-145 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
143.4 & 2-3 \\
141-145-151 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
146.6 & 2-3 \\
146-152-157 \\
\hline
\end{array}
\] \\
\hline 45 & \[
\begin{aligned}
& 125-128-135 \\
& 117.13-3 \\
& 125-128-135 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 132-130-141 \\
& 127.333 \\
& 131-134-140
\end{aligned}
\] & \[
\begin{aligned}
& 130-140-140 \\
& 136.433 \\
& 136-139-144 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 141.3 \quad 2-3 \\
& 141-145-150
\end{aligned}
\] & \[
\begin{aligned}
& 144.42-3 \\
& 146-151-156
\end{aligned}
\] \\
\hline 47 & \[
\begin{aligned}
& 115.6 \quad 3-3 \\
& 124-127-134 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
125.8 & 3-3 \\
131-133-139 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 134.9 \quad 3.3 \\
& 135.138 .144 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
139.2 & 2-3 \\
141-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
142.22-3 \\
146-151-156 \\
\hline
\end{array}
\] \\
\hline 49 & \[
\begin{array}{lr}
114.1 & 3-3 \\
124-126-133 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
124.3 & 3-3 \\
130-132-138 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
133.2 & 3-3 \\
135-138-143 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
137.0 & 2.3 \\
140-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
139.92-3 \\
145-150-155 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{ll}
172.5 & 3-3 \\
123-126-132
\end{array}
\] & \[
\begin{array}{lr}
122.6 & 3-3 \\
129-132-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
131.3 & 2.3 \\
135-137-142 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.8 & 2.3 \\
140-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
137.6 & 2-3 \\
145-150-155 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{aligned}
& 123-120-132 \\
& 111.0 \quad 3-3 \\
& 123-125-131
\end{aligned}
\] & \[
\begin{array}{lr}
121.0 & 3-3 \\
129.131-137
\end{array}
\] & \[
\begin{aligned}
& 135-151-142 \\
& 129.12 .3 \\
& 134-136-142 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 140-144-149 \\
& \hline 132.6 \quad 2-3 \\
& 140-143-148
\end{aligned}
\] & \[
\begin{aligned}
& 1435.3 \quad 20-3 \\
& 145-149-154 \\
& \hline
\end{aligned}
\] \\
\hline 55 & \[
\begin{aligned}
& 120-1<0-13-3 \\
& 122-124-130 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 119.1 \quad 3-3 \\
& 128-130-136 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 126.8 \quad 2.3 \\
& 134.136-141 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lll}
130.1 & 2.3 \\
139-142-147 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 132.8 \quad 2-3 \\
& 145-148-153 \\
& \hline
\end{aligned}
\] \\
\hline 57 & \[
\begin{aligned}
& 107.4 \quad 3-3 \\
& 121-123-129 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 117.2 \quad 3-3 \\
& 128-129-135 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
124.5 & 2.3 \\
133-135-140 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.7 & 2.3 \\
139-142-146 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 130.4 \quad 2-3 \\
& 144-148-152 \\
& \hline
\end{aligned}
\] \\
\hline 59 & \[
\begin{aligned}
& 105.7 \quad 3-3 \\
& 121-122-129
\end{aligned}
\] & \[
\begin{gathered}
115.5 \quad 3-3 \\
127.128-134
\end{gathered}
\] & \[
\begin{aligned}
& 122.3 \quad 2-3 \\
& 133.134-139
\end{aligned}
\] & \[
\begin{aligned}
& 125.4 \quad 2-3 \\
& 139-141-146 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
127.6 & 2-2 \\
143-146-151 \\
\hline
\end{array}
\] \\
\hline 61 & \[
\begin{aligned}
& 102.0 \quad 3-3 \\
& 121-123-129
\end{aligned}
\] & \[
\begin{array}{ll}
113.8 & 3-3 \\
126-127-133 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
120.0 & 2-3 \\
132-134-139 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 123.1 \quad 2-3 \\
& 138-141-145 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
124.8 & 2-2 \\
142-145-149 \\
\hline
\end{array}
\] \\
\hline 63 & \[
\begin{array}{r}
121-123-129 \\
98.6 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 111.933-3 \\
& 126-127-132
\end{aligned}
\] & \[
\begin{aligned}
& 117.7 \quad 2.3 \\
& 132-133-138 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
130-7 \quad 2-3 \\
138-140-144
\end{array}
\] & \[
\begin{aligned}
& 122.0 \quad 2-2 \\
& 140-143-147
\end{aligned}
\] \\
\hline 65 & \[
\begin{array}{r}
95.3 \quad 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{gathered}
110.2 \quad 3-3 \\
125-126-131 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 115.4 \quad 2-3 \\
& 132-133-137 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ccc}
118.2 \quad 2-3 \\
137.139-144 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 119.2 \quad 2-2 \\
& 139-142-146 \\
& \hline
\end{aligned}
\] \\
\hline 67 & \[
\begin{array}{r}
12-1<2-1<y \\
\hline 921-3 \\
121-124-129
\end{array}
\] & \[
\begin{aligned}
& 108.4 \quad 3-3 \\
& 124.125-130
\end{aligned}
\] & \[
\begin{aligned}
& 1313.1 \quad 2-3 \\
& 131-132-137
\end{aligned}
\] & \[
\begin{aligned}
& 115.9 \quad 2-3 \\
& 137-139-143
\end{aligned}
\] & \[
\begin{aligned}
& 176.4 \quad 2-2 \\
& 136-140-144
\end{aligned}
\] \\
\hline 69 & & \[
\frac{14-120-130}{106.73-3}
\] & \[
110.8 \quad 2-3
\] & \[
113.5 \quad 2.3
\] & \[
113.6 \quad 2-2
\] \\
\hline 70 & & \[
\begin{array}{lr}
105.9 & 3-3 \\
123-124-129
\end{array}
\] & \[
\begin{aligned}
& 109.72 .-3 \\
& 131-132.136
\end{aligned}
\] & \[
\begin{aligned}
& \frac{151-138-142}{112.2 \quad 2-2} \\
& 136-138-142
\end{aligned}
\] & \[
\begin{aligned}
& 134-13 y-142 \quad 2-2 \\
& 133-138-142
\end{aligned}
\] \\
\hline
\end{tabular}

A310-324/AAPW-4152 T20/20-EE-CM72-1-A

TEMPORARY REVISION № 218
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE \(=2000 \mathrm{FT}\)} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=33^{\circ} \mathrm{C} \\
& \text { TMAX }=51^{\circ} \mathrm{C}
\end{aligned}
\]} & \begin{tabular}{l}
DRY RUNWAY \\
SLOPE \(=0.0 \%\)
\end{tabular} & \multicolumn{2}{|l|}{MAX T.O. WEIGHT(1000KG)
IAS(KT) V1 - VR - V2} & CODES \\
\hline \multirow[t]{2}{*}{TEMP. (\({ }^{\circ} \mathrm{C}\))} & \multicolumn{5}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -27 & \[
\begin{array}{cr}
\hline 135.1 & 3-3 \\
135-137-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 145.9 & 3-3 \\
141-143-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.8 & 2.3 \\
147-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 154.3 & 2-3 \\
153-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 155.7 & 2.2 \\
156-161-166 \\
\hline
\end{array}
\] \\
\hline -17 & \[
\begin{aligned}
& 132.433-3 \\
& 133-136-142 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 143.3 \quad 3-3 \\
& 139.142-148 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 149.5 \quad 2.3 \\
& 145-149-154 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{rr}
153.1 \quad 2-3 \\
151-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.7 & 2-2 \\
156-161-166 \\
\hline
\end{array}
\] \\
\hline -7 & \[
\begin{array}{ll}
129.9 & 3.3 \\
132-134-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
140.7 & 3-3 \\
138-140-146 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
148.2 \quad 2-3 \\
143-146-152 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
152.0 & 2.3 \\
149-153-159 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
155.0 & 2-3 \\
154-160-165 \\
\hline
\end{array}
\] \\
\hline 3 & \[
\begin{aligned}
& 122-1.54-141 \\
& 130-3 \\
& 130-133-140 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 138.230-140 \\
& 136.139-145 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
147.0 \quad 2-3 \\
141-144-150 \\
\hline
\end{gathered}
\] & \[
\begin{array}{ll}
150.8 & 2-3 \\
146-151-157 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
154.0 & 2.3 \\
152-158-163 \\
\hline
\end{array}
\] \\
\hline 13 & \[
\begin{aligned}
& 125.2 \quad 3.3 \\
& 129-132-139 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{rr}
135.8 & 3-3 \\
135-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
145.0 & 3-3 \\
140-143-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
149.7 & 2-3 \\
144-149-155 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
152.9 & 2-3 \\
150-156-161 \\
\hline
\end{array}
\] \\
\hline 23 & \[
\begin{array}{lr}
123.0 & 3-3 \\
127-131-138 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
133.5 & 3-3 \\
133-137-143 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
142.8 & 3.3 \\
138-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.6 & 2-3 \\
143-147-153 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
151.9 & 2.3 \\
148-154-159 \\
\hline
\end{array}
\] \\
\hline 33 & \[
\begin{array}{ll}
121.0 & 3-3 \\
126-129-137 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
131.3 \quad 3-3 \\
132-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 140.6 & 3.3 \\
137-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 147.5 & 2-3 \\
141.145-151 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
150.9 & 2.3 \\
146-152-157 \\
\hline
\end{array}
\] \\
\hline 35 & \[
\begin{aligned}
& 119.833-3 \\
& 125-129-136
\end{aligned}
\] & \[
\begin{array}{r}
130.133-3 \\
132-135-141 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 139.3 \quad 3.3 \\
& 136-140-146 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
145.9 & 2-3 \\
141-145-150
\end{array}
\] & \[
\begin{array}{r}
140-10<-101 \\
145.3151-156 \\
145.10
\end{array}
\] \\
\hline 37 & \[
\begin{aligned}
& 118.433 .3 \\
& 125-128-135 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{ll}
128.63-3 \\
131-134-141 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 137.8 \quad 3-3 \\
& 136-139-145 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 144.1 \quad 2-3 \\
& 140-145-150
\end{aligned}
\] & \[
\begin{aligned}
& 147.4 \quad 2.3 \\
& 145-151-156 \\
& \hline
\end{aligned}
\] \\
\hline 39 & \[
\begin{array}{ll}
117.0 & 3-3 \\
124-128-135 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
127.2 & 3-3 \\
131-134-140 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
136.33-3 \\
136-139-144 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
142.2 & 2-3 \\
140-144-149 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 145.4 \quad 2-3 \\
& 145-150-155 \\
& \hline
\end{aligned}
\] \\
\hline 41 & \[
\begin{array}{ll}
115.7 & 3-3 \\
124-127-134 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.8 & 3-3 \\
130-133-139 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
134.9 & 3-3 \\
135-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
140.3 & 2-3 \\
140-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
143.5 & 2-3 \\
145-150-155 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{array}{ll}
114.2 & 3-3 \\
123-126-133 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.4 & 3-3 \\
130-132-138 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
133.3 & 3-3 \\
135-138-143 \\
\hline
\end{array}
\] & \[
\begin{gathered}
138.3 \quad 2-3 \\
140-143-149
\end{gathered}
\] & \[
\begin{array}{r}
141.4223 \\
144-150-154
\end{array}
\] \\
\hline 45 & 112.93 .3
\(123.126-132\) & \[
\begin{aligned}
& 123.0 \quad 3-3 \\
& 129-132-138 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 131.93-3 \\
& 134-137-142 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
136.42-3 \\
139-143-148 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 139.42 .3 \\
& 144-149-154
\end{aligned}
\] \\
\hline 47 & \[
\begin{array}{lr}
\hline 111.4 & 3-3 \\
122-125-132 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.5 & 3-3 \\
129.131-137 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 130.33-3 \\
& 134-136-141 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{rr}
134.3 & 2.3 \\
139-143-148 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 137.3 \quad 2.3 \\
& 144-149-153 \\
& \hline
\end{aligned}
\] \\
\hline 49 & \[
\begin{aligned}
& 109.933-3 \\
& 122-124-131 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 119.93-3 \\
& 128-130-136
\end{aligned}
\] & \[
\begin{aligned}
& 128.63-3 \\
& 133-135-141 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
132.3 & 2.3 \\
139-142.147 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
135.1 \quad 2.3 \\
144-148-153 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{ll}
108.5 & 3-3 \\
121-124-130 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
118.4 \quad 3-3 \\
127-130-135 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
126.8 & 23 \\
133-135-140 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 130.2 \quad 2.3 \\
& 138-142-146 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
133.0 & 2-3 \\
144-148-152 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
106.7 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
116.5 & 3-3 \\
127-129-134 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.5 & 2-3 \\
132-134-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.9 & 2-3 \\
138-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
130.6 & 2.3 \\
143-147-151 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{aligned}
& 103.8 \quad 3-3 \\
& 120-123-129 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 114.7 \quad 3-3 \\
& 126-128-133 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
122.3 \quad 2-3 \\
132-133-138 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.5 & 2-3 \\
138.140-145
\end{array}
\] & \[
\begin{aligned}
& 128.2 \quad 2.3 \\
& 143.146 .151 \\
& \hline
\end{aligned}
\] \\
\hline 57 & \[
\begin{array}{lr}
100.6 & 3-3 \\
120-123-129
\end{array}
\] & \[
\begin{aligned}
& 120-120-133 \\
& 113.0 \quad 3-3 \\
& 126-127-132
\end{aligned}
\] & \[
\begin{gathered}
122-133-150 \\
\hline 131-133-138 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
123.10-145 \\
137-140-144 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 145 \cdot 140 \quad 2-10 \\
& 142.145-150
\end{aligned}
\] \\
\hline 59 & \[
\begin{gathered}
120-1.5-12933 \\
120-123-129 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 11.3 \quad 3-3 \\
& 125-126-132
\end{aligned}
\] & \[
\begin{array}{ll}
118.0 & 2-3 \\
131-132-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.0 & 2-3 \\
137-139-143 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1423.1 \quad 2-2 \\
& 141-144-148
\end{aligned}
\] \\
\hline 61 & \[
\begin{gathered}
94.2 \quad 3-3 \\
120-123-129 \\
\hline
\end{gathered}
\] & \[
\begin{array}{lr}
109.5 & 3.3 \\
124-125-131 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
115.8 & 2-3 \\
130-132-136 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
118.7 & 2-3 \\
136-138-143 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 120.42 .2 \\
& 140-142-147 \\
& \hline
\end{aligned}
\] \\
\hline 63 & & \[
\begin{array}{ll}
107.8 & 3-3 \\
124-125-130 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
113.5 & 2-3 \\
130-131-136 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
116.4 & 2-3 \\
136-138-142
\end{array}
\] & \[
\begin{array}{ll}
117.6 & 2.2 \\
138-141-145 \\
\hline
\end{array}
\] \\
\hline 65 & & \[
\begin{aligned}
& 124-120-130 \\
& 106.1 \quad 3-3 \\
& 123-124-129
\end{aligned}
\] & \[
\begin{aligned}
& 11.3 \quad 2-3 \\
& 129-131-135
\end{aligned}
\] & \[
114.1 \quad 2-3
\] & \[
\begin{gathered}
10.1414 .92 \\
136-139-143 \\
\hline
\end{gathered}
\] \\
\hline 67 & & \[
\begin{aligned}
& 125-124-1293-3 \\
& 123.124-129
\end{aligned}
\] & \[
\begin{aligned}
& 109.1 \quad 2-3 \\
& 129.130-134
\end{aligned}
\] & \[
\begin{aligned}
& 111.8 \quad 2-3 \\
& 135-137.141
\end{aligned}
\] & \[
112.2 \quad 2.2
\] \\
\hline 68 & & \[
\begin{array}{cr}
101.4 & 3-3 \\
123-124-129
\end{array}
\] & \[
\begin{aligned}
& 129-130-154 \\
& \hline 108.0 \quad 2-3 \\
& 129.130-134
\end{aligned}
\] & \[
\begin{aligned}
& 135-15|-14| \\
& 135-137-140
\end{aligned}
\] & \[
\begin{aligned}
& 134 \cdot 138-142 \\
& 133.92-2 \\
& 137.141
\end{aligned}
\] \\
\hline
\end{tabular}

NOMINAL THRUST
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|l|}{PRESSURE ALTITUDE 2000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=33^{\circ} \mathrm{C} \\
& \text { TMAX }=51^{\circ} \mathrm{C}
\end{aligned}
\]} & \begin{tabular}{l}
DRY RUNWAY \\
SLOPE = 0 \%
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MAX T.O. WEIGHT(1000KG) } \\
& \qquad \text { IAS(KT) : V1 - VR - V2 }
\end{aligned}
\]} & CODES \\
\hline \multicolumn{6}{|l|}{TEMP. \(\quad\) CORRECTED RUNWAY LENGTH (M)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -27 & \[
\begin{array}{lr}
\hline 135.1 & 3-3 \\
135-137-144
\end{array}
\] & \[
\begin{array}{lr}
\hline 145.9 & 3-3 \\
141-143-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.8 & 2-3 \\
147-151-156
\end{array}
\] & \[
\begin{array}{lr}
\hline 154.4 & 2-3 \\
154-158-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 155.7 & 2-2 \\
156-161-166
\end{array}
\] \\
\hline - 17 & \[
\begin{array}{rr}
132.4 & 3-3 \\
133-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 143.3 & 3-3 \\
139-142-148 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
149.5 & 2-3 \\
145-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 153.2 & 2-3 \\
151-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 155.7 & 2-2 \\
156-161-166
\end{array}
\] \\
\hline -7 & \[
\begin{array}{rr}
129.9 & 3-3 \\
132-134-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
140.7 & 3-3 \\
138-140-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.2 & 2-3 \\
143-146-152 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.1 & 2-3 \\
149-154-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.2 & 2-3 \\
155-160-165 \\
\hline
\end{array}
\] \\
\hline 3 & \[
\begin{array}{lr}
127.5 & 3-3 \\
130-133-140 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.2 & 3-3 \\
136-139-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
147.0 & 2-3 \\
141-144-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.0 & 2-3 \\
147-151-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.2 & 2-3 \\
153-158-163 \\
\hline
\end{array}
\] \\
\hline 13 & \[
\begin{array}{lr}
\hline 125.2 & 3-3 \\
129-132-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
135.8 & 3-3 \\
135-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.0 & 3-3 \\
140-143-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.8 & 2-3 \\
145-149-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.1 & 2-3 \\
150-156-161 \\
\hline
\end{array}
\] \\
\hline 23 & \[
\begin{array}{lr}
123.0 & 3-3 \\
127-131-138
\end{array}
\] & \[
\begin{array}{lr}
133.5 & 3-3 \\
133-137-143
\end{array}
\] & \[
\begin{array}{ll}
\hline 142.8 & 3-3 \\
138-142-147
\end{array}
\] & \[
\begin{array}{ll}
148.7 & 2-3 \\
143-147-153
\end{array}
\] & \[
\begin{array}{lr}
152.1 & 2-3 \\
148-154-159
\end{array}
\] \\
\hline 33 & \[
\begin{array}{lr}
121.0 & 3-3 \\
126-129-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 131.3 & 3-3 \\
132-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 140.6 & 3-3 \\
137-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 147.6 & 2-3 \\
141-146-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.1 & 2-3 \\
146-152-157 \\
\hline
\end{array}
\] \\
\hline 35 & \[
\begin{array}{lr}
119.8 & 3-3 \\
125-129-136
\end{array}
\] & \[
\begin{array}{lr}
\hline 130.1 \quad 3-3 \\
132-135-141
\end{array}
\] & \[
\begin{array}{cc}
139.3 & 3-3 \\
136-140-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
146.0 & 2-3 \\
141-145-151
\end{array}
\] & \[
\begin{array}{lr}
149.5 & 2-3 \\
146-152-157
\end{array}
\] \\
\hline 37 & \[
\begin{array}{lr}
118.4 \quad 3-3 \\
125-128-135
\end{array}
\] & \[
\begin{array}{lr}
\hline 128.6 & 3-3 \\
131-134-141
\end{array}
\] & \[
\begin{array}{rr}
137.8 & 3-3 \\
136-139-145 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
144.2 & 2-3 \\
141-145-150
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.6 \quad 2-3 \\
146-151-156
\end{array}
\] \\
\hline 39 & \[
\begin{array}{lr}
117.0 & 3-3 \\
124-128-135
\end{array}
\] & \[
\begin{array}{lr}
127.2 & 3-3 \\
131-134-140 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.3 & 3-3 \\
136-139-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.3 & 2-3 \\
141-144-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.6 & 2-3 \\
146-151-156 \\
\hline
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
115.7 & 3-3 \\
124-127-134 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.8 & 3-3 \\
130-133-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
134.9 & 3-3 \\
135-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
140.5 & 2-3 \\
140-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
143.7 & 2-3 \\
146-150-155 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
114.2 & 3-3 \\
123-126-133
\end{array}
\] & \[
\begin{array}{rr}
\hline 124.4 & 3-3 \\
130-132-138 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 133.3 & 3-3 \\
135-138-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 138.5 & 2-3 \\
140-144-149
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.6 & 2-3 \\
145-150-155
\end{array}
\] \\
\hline 45 & \[
\begin{array}{lr}
\hline 112.9 & 3-3 \\
123-126-132 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
123.0 & 3-3 \\
129-132-138 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
131.9 & 3-3 \\
134-137-142 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
136.5 & 2-3 \\
140-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.6 & 2-3 \\
145-150-154 \\
\hline
\end{array}
\] \\
\hline 47 & \[
\begin{array}{rr}
111.4 & 3-3 \\
122-125-132
\end{array}
\] & \[
\begin{array}{lr}
121.5 & 3-3 \\
129-131-137 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
130.3 & 3-3 \\
134-136-141
\end{array}
\] & \[
\begin{array}{lr}
134.5 & 2-3 \\
140-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
137.5 & 2-3 \\
145-149-154 \\
\hline
\end{array}
\] \\
\hline 49 & \[
\begin{array}{lr}
\hline 109.9 & 3-3 \\
122-124-131 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 119.9 & 3-3 \\
128-130-136 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 128.6 & 3-3 \\
133-135-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.4 & 2-3 \\
139-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 135.3 & 2-3 \\
145-149-153 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{lr}
108.5 & 3-3 \\
121-124-130 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
118.4 & 3-3 \\
127-130-135 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
126.8 & 2-3 \\
133-135-140 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
130.3 & 2-3 \\
139-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
133.1 & 2-3 \\
144-148-153 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
106.7 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 116.5 & 3-3 \\
127-129-134 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.5 & 2-3 \\
132-134-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
128.0 & 2-3 \\
138-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.7 & 2-3 \\
144-147-152 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
103.8 & 3-3 \\
120-123-129
\end{array}
\] & \[
\begin{array}{lr}
\hline 114.7 & 3-3 \\
126-128-133
\end{array}
\] & \[
\begin{array}{cc}
\hline 122.3 & 2-3 \\
132-133-138 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
125.7 & 2-3 \\
138-140-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
128.4 \quad 2-3 \\
144-146-151
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
100.6 & 3-3 \\
120-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
113.0 & 3-3 \\
126-127-132 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.1 & 2-3 \\
131-133-138 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
123.4 & 2-3 \\
138-140-144 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
125.8 & 2-2 \\
142-145-150
\end{array}
\] \\
\hline 59 & \[
\begin{array}{cr}
97.5 & 3-3 \\
120-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 111.3 & 3-3 \\
125-126-132 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
118.0 & 2-3 \\
131-132-137
\end{array}
\] & \[
\begin{array}{rr}
121.1 & 2-3 \\
137-139-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 123.1 & 2-2 \\
141-144-148 \\
\hline
\end{array}
\] \\
\hline 61 & \[
\begin{array}{rr}
94.2 & 3-3 \\
120-123-129
\end{array}
\] & \[
\begin{array}{cr}
\hline 109.5 & 3-3 \\
124-125-131
\end{array}
\] & \[
\begin{array}{cc}
115.8 & 2-3 \\
130-132-136
\end{array}
\] & \[
\begin{array}{rr}
\hline 118.8 & 2-3 \\
137-139-143
\end{array}
\] & \[
\begin{array}{cr}
\hline 120.4 & 2-2 \\
140-142-147
\end{array}
\] \\
\hline 63 & & \[
\begin{array}{lr}
\hline 107.8 & 3-3 \\
124-125-130 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
113.5 & 2-3 \\
130-131-136
\end{array}
\] & \[
\begin{array}{lr}
116.5 & 2-3 \\
136-138-142 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 117.6 & 2-2 \\
138-141-145 \\
\hline
\end{array}
\] \\
\hline 65 & & \[
\begin{array}{lr}
\hline 106.1 & 3-3 \\
123-124-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 111.3 & 2-3 \\
129-131-135 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 114.2 \quad 2-3 \\
136-137-141
\end{array}
\] & \[
\begin{array}{lr}
\hline 114.9 & 2-2 \\
136-139-143
\end{array}
\] \\
\hline 67 & & \[
\begin{array}{ll}
102.9 & 3-3 \\
123-124-129
\end{array}
\] & \[
\begin{array}{ll}
\hline 109.1 \quad 2-3 \\
129-130-134
\end{array}
\] & \[
\begin{array}{lr}
111.9 & 2-3 \\
135-137-141
\end{array}
\] & \[
\begin{array}{ll}
112.2 & 2-2 \\
134-138-142
\end{array}
\] \\
\hline 68 & & \[
\begin{array}{lr}
\hline 101.4 & 3-3 \\
123-124-129
\end{array}
\] & \[
\begin{array}{lr}
108.0 & 2-3 \\
129-130-134
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.7 & 2-3 \\
135-137-140
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.9 & 2-2 \\
133-137-141
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{TAKE OFF
QUICK REFERENCE TABLES} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 12} \\
\hline & & REV 33 & SEO 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{TAKE OFF
QUICK REFERENCE TABLES} & \multicolumn{2}{|r|}{2.10.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 13} \\
\hline & & REV 29 & SEQ 135 \\
\hline
\end{tabular}

NET TAKE-OFF FLIGHT PATH - CLOSE OBSTACLE CLEARANCE SLATS 15 - FLAPS 0

Notes : - The above graph must not be used in case of tail wind.
- In case of ascending runway slope, increase obstacle height by 77 ft per \(1 \%\) slope.
- Decrease take-off speeds by \(0.4 \%\) per 1 ton (\(0.2 \%\) per 1000 lb) weight decrement.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 14} \\
\hline & Quick reference tables & REV 29 & SEQ 135 \\
\hline
\end{tabular}

\section*{NET TAKE-OFF FLIGHT PATH - REMOTE OBSTACLE CLEARANCE \\ SLATS 15 - FLAPS 0}

Notes : - The above graph must not be used in case of tail wind.
- In case of ascending runway slope, increase obstacle height by 77 ft per \(1 \%\) slope.
- Decrease take-off speeds by \(0.4 \%\) per 1 ton (\(0.2 \%\) per 1000 lb) weight decrement.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 15} \\
\hline & QUICK REFERENCE TABLES & REV 29 & SEO 135 \\
\hline
\end{tabular}

\section*{NET TAKE-OFF FLIGHT PATH - CLOSE OBSTACLE CLEARANCE SLATS 15 - FLAPS 15}

Notes : - The above graph must not be used in case of tail wind.
- In case of ascending runway slope, increase obstacle height by 61 ft per \(1 \%\) slope.
- Decrease take-off speeds by \(0.4 \%\) per 1 ton (\(0.2 \%\) per 1000 lb) weight decrement.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 16} \\
\hline & QuICk Reference tables & REV 29 & SEQ 135 \\
\hline
\end{tabular}

\section*{NET TAKE-OFF FLIGHT PATH - REMOTE OBSTACLE CLEARANCE \\ SLATS 15 - FLAPS 15}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 17} \\
\hline & QUICK REFERENCE TABLES & REV 29 & SEC 135 \\
\hline
\end{tabular}

NET TAKE-OFF FLIGHT PATH - CLOSE OBSTACLE CLEARANCE

\section*{SLATS 20 - FLAPS 20}

Notes:- The above graph must not be used in case of tail wind.
- In case of ascending runway slope, increase obstacle height by 46 ft per \(1 \%\) slope.
- Decrease take-off speeds by \(0.4 \%\) per 1 ton (\(0.2 \%\) per 1000 lb) weight decrement.

\section*{NET TAKE-OFF FLIGHT PATH - REMOTE OBSTACLE CLEARANCE}

SLATS 20 - FLAPS 20

Notes : - The above graph must not be used in case of tail wind.
- In case of ascending runway slope, increase obstacle height by 46 ft per \(1 \%\) slope.
- Decrease take-off speeds by \(0.4 \%\) per 1 ton (\(0.2 \%\) per 1000 lb) weight decrement.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 19} \\
\hline & QUICK REFERENCE TABLES & REV 34 & SEQ 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|c|}{ELEVATION = 0 FT} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TREF }=42^{\circ} \mathrm{C} \\
& \text { TMAX }=55^{\circ} \mathrm{C}
\end{aligned}
\]}} & DRY RUNWAY & MAX T.O. WE & 1000KG) & CODES \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline (\({ }^{\circ} \mathrm{C}\)) & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -18 & \[
\begin{array}{lr}
\hline 163.0 & 2-6 \\
167-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.2 & 2-6 \\
166-177-182 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 165.4 & 2-6 \\
165-180-184 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 166.6 & 2-6 \\
164-183-187 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 167.6 & 2-6 \\
164-185-189 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{gathered}
161.7 \quad 2-6 \\
165-172-177
\end{gathered}
\] & \[
\begin{array}{ll}
163.0 & 2-6 \\
161-175 & 179
\end{array}
\] & \[
\begin{aligned}
& 164.2 \quad 2-6 \\
& 163.177-182
\end{aligned}
\] & \[
\begin{aligned}
& 165.4 \quad 2-6 \\
& 162-180-184
\end{aligned}
\] & \[
\begin{array}{cc}
166.5 & 2-6 \\
161-183-187
\end{array}
\] \\
\hline 2 & \[
\begin{array}{cc}
160.3 & 2-6 \\
162-170-174
\end{array}
\] & \[
161.7 \quad 2-6
\] & \[
\begin{array}{ll}
163.0 & 2-6 \\
160.175-179
\end{array}
\] & \[
\begin{array}{ll}
164.2 & 2-6 \\
160-177-180
\end{array}
\] & \[
\begin{array}{cc}
165.3 & 2-6 \\
159-180-184
\end{array}
\] \\
\hline & 157.8 6-6 & \(160.3{ }^{16-6}\) & \(161.7 \quad 2-6\) & 162.9 2-6 & 164.1 2-6 \\
\hline 12 & 160-168-173 & 159-170-174 & 158-172-177 & 157-175-179 & 156-178-182 \\
\hline 22 & \[
\begin{aligned}
& 155.46-6 \\
& 158-167-171
\end{aligned}
\] & \[
\begin{aligned}
& 158.0666 \\
& 157-168-173
\end{aligned}
\] & \[
\begin{array}{lc}
160.5 & 26 \\
155-170-174
\end{array}
\] & \[
\begin{array}{ll}
161.7 & 2-6 \\
154-173-177
\end{array}
\] & \[
\begin{array}{ll}
163.0 & 2-6 \\
154-175-179
\end{array}
\] \\
\hline 32 & 153.07 6-6 & 155.7 6-6 & 158.3 6-6 & 160.5 2-6 & 161.8 2-6 \\
\hline 32 & 157-166-170 & 155-167-172 & 154-169-173 & 152-170-175 & 151-173-177 \\
\hline 42 & \[
\begin{array}{lr}
\hline 150.6 & 6-6 \\
155-164-169 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 153.36-6 \\
& 153-166-170 \\
& \hline
\end{aligned}
\] & 155.9
\(152-167-172\) & \[
\begin{array}{lr}
\hline 158.5 & 6-6 \\
150-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 160.6 & 2-6 \\
149-171-175 \\
\hline
\end{array}
\] \\
\hline 44 & \[
\begin{aligned}
& 149.56-6 \\
& 155-164-168
\end{aligned}
\] & \[
\begin{aligned}
& 152.2 \quad 6-6 \\
& 154-166-170
\end{aligned}
\] & \[
\begin{aligned}
& 154.86-6 \\
& 152.167-171
\end{aligned}
\] & 157.4
\(151-168-173\) & \[
\begin{array}{ll}
158.7 & 2-6 \\
150-171-175
\end{array}
\] \\
\hline 46 & 148.3 6-6 & \(151.0 \quad 6-6\) & 153.6 6-6 & 155.3 2-6 & \({ }^{156.5} \quad 2-6\) \\
\hline 46 & 156-164-168 & 154-165-169 & 153-166-170 & 152-168-173 & 151-171-175 \\
\hline 48 & 147.2
\(156-163-167\) & 149.8 6-6
\(154-165-168\) & 151.9
\(153-166-170\) & 153.1
\(152-168-173\) & 154.3
\(152-171-175\) \\
\hline & 146-1.0-16-6 & 144-165-168 & 149.166-170 & 152-168-173 & 152-171-175 \\
\hline 50 & 156-163-166 & 155-164-168 & 154-166-170 & 153-169-173 & 153-171-175 \\
\hline & 144.9 6-6 & 146.4 2-6 & 147.6 2-6 & 148.7 2-6 & \(149.8{ }^{2-6}\) \\
\hline 52 & 157-162-166 & 156-164-168 & 155-166-170 & 154-169-173 & 154-171-175 \\
\hline 54 & \(143.1{ }^{2-6}\) & \(144.3-2.6\) & 145.4 2-6 & 146.4 2-6 & 147.512 .6 \\
\hline 54 & 158-162-166 & 157-164-168 & 156-167-170 & \(\frac{155-169-173}{144.1-2-6}\) & 155-171-175 \\
\hline 56 & \[
\begin{array}{lc}
\hline 140.9 & 2-6 \\
159-162-166 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 142.1 \quad 2-6 \\
& 158-164-168
\end{aligned}
\] & \[
\begin{aligned}
& \hline 143.1 \quad 2-6 \\
& 157-167-170 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
\hline 144.1 & 2-6 \\
157-169-173
\end{array}
\] & \[
\begin{aligned}
& 145.0 \quad 2-6 \\
& 156-171-175
\end{aligned}
\] \\
\hline 58 & 138.6
\(159-162-165\) & 139.8
\(159-164-168\) & 140.8
\(158-166-170\) & 141.8
\(158-169-172\) & \(142.712-6\)
\(157-171-174\) \\
\hline & \(136.1 \quad 2-3\) & 137.6 2-6 & \(138.5 \quad 2-6\) & 139.4 - 2 -6 & \(140.2{ }^{2-6}\) \\
\hline 60 & 159-161-164 & 160-165-168 & 160-167-170 & 159-169-172 & 159-171-174 \\
\hline 62 & \[
\begin{array}{ll}
133.6 & 2-3 \\
159.161
\end{array}
\] & \[
135.4 \quad 2-6
\] & \(136.3-2-6\)
\(161-167-170\) & \(137.12-6\)
\(160-169-172\) & 137.9
\(160-171-174\) \\
\hline & \(131.0 \quad 2-3\) & 133.1 2-3 & 134.0 2-6 & 134.7 - 2 -6 & 135.5 \({ }^{13-6}\) \\
\hline 64 & 158-160-163 & 163-165-168 & 162-167-170 & 162-169-172 & 161-171-174 \\
\hline 66 & \({ }^{128.5}\) - \(2-3\) & 130.5 2-3 & 131.6 & 132.4 2-6 & \(133.0{ }^{2-6}\) \\
\hline & 158-159-162 & 122-164-167 & 164-167-170 & 163-169-172 & 163-171-174 \\
\hline 68 & \[
\begin{aligned}
& 125.9 \\
& 157-159-161 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
127.8 \quad 2-3 \\
162-164-166 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
129.3 \quad 2-6 \\
165-167-170 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 130.0 \\
& 165-69-172 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
130.5 & 2-2 \\
163-171-174 \\
\hline
\end{array}
\] \\
\hline 70 & 123.4 2-3 & \(125.3{ }^{2-3}\) & \(126.812-3\) & 127.3 2-2 & \(127.3{ }^{2-2}\) \\
\hline 70 & 157-158-161 & 162-163-166 & 166-168-170 & 165-169-172 & 163-169-172 \\
\hline 72 & \[
\begin{gathered}
\hline 120.923 \\
157-158-160
\end{gathered}
\] & \[
\begin{array}{ll}
122.7 & 2-3 \\
162-163-165
\end{array}
\] & \[
\begin{aligned}
& 124.2 \quad 2-2 \\
& 166-167-170
\end{aligned}
\] & \[
124.2 \quad 2-2
\] & \[
\begin{aligned}
& 124.2 \quad 2-2 \\
& 162-167-170
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
AIRBLS TRAINING \\
A310 \\
FLIGHT CREW OPERATING MANUAL
\end{tabular}} & \multirow[t]{3}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 20} \\
\hline & & REV 34 & SEO 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|c|}{ELEVATION = 1000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=37^{\circ} \mathrm{C} \\
& \text { TMAX }=53^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & MAX T.O. WE & \[
\begin{aligned}
& \hline 000 \mathrm{KG}) \\
& (\mathrm{KT}) \text { V1 - VR }
\end{aligned}
\] & CODES \\
\hline \multicolumn{6}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -23 & 162.0
\(166-174-178\) & 165-176-181 & 164-179-183 & \[
\begin{array}{lr}
\hline 165.6 & 2-6 \\
164-182-186 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 166.7 & 2-6 \\
163-184-188 \\
\hline
\end{array}
\] \\
\hline -13 & \[
\begin{array}{lr}
\hline 160.7 & 2-6 \\
164-171-176
\end{array}
\] & \[
\begin{array}{lr}
162.0 & 2-6 \\
163-174-178
\end{array}
\] & 162-177-181 & 161-179-183 & \[
\begin{array}{lr}
\hline 165.5 & 2-6 \\
160-182-186 \\
\hline
\end{array}
\] \\
\hline -3 & \(159.16-6\)
\(161-169-173\) & \[
\begin{array}{lr}
160.7 & 2-6 \\
160-171-176
\end{array}
\] & \[
\begin{array}{cc}
162.0 & 2-6 \\
160-174-178 \\
\hline
\end{array}
\] & 159-177-181 & \[
\begin{array}{lr}
164.3 \quad 2-6 \\
158-179-183
\end{array}
\] \\
\hline 7 & \[
\begin{array}{lr}
156.5 & 6-6 \\
160-168-172
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.1 & 6-6 \\
158-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
160.7 & 2-6 \\
157-171-176 \\
\hline
\end{array}
\] & 156-174-178 & \[
\begin{array}{lr}
163.1 & 2-6 \\
155-177-181 \\
\hline
\end{array}
\] \\
\hline 17 & \[
\begin{array}{cr}
\hline 153.9 & 6-6 \\
158-166-171
\end{array}
\] & \[
\begin{array}{lr}
156.6 & 6-6 \\
156-168-172
\end{array}
\] & 154-169-174 & \[
154-172-176
\] & \[
\begin{array}{lr}
\hline 161.9 & 2-6 \\
153-174-178
\end{array}
\] \\
\hline 27 & \[
\begin{array}{lr}
\hline 151.5 & 6-6 \\
156-165-169
\end{array}
\] & \[
\begin{aligned}
& 154.2 \quad 6-6 \\
& 154-167-171
\end{aligned}
\] & \[
\begin{gathered}
156.9 \quad 6-6 \\
153-168-172
\end{gathered}
\] & 151-169-174 & \[
\begin{array}{lr}
160.8 & 2-6 \\
150-172-176
\end{array}
\] \\
\hline 37 & \begin{tabular}{ll}
148.9 & \(6-6\) \\
\(155-164-168\)
\end{tabular} & \[
\begin{array}{lr}
151.6 & 6-6 \\
153-165-169 \\
\hline
\end{array}
\] & \(154.2 \quad 6-6\)
\(151-167-171\) & \[
\begin{array}{ll}
156.8 & 6-6 \\
150-168-172
\end{array}
\] & \[
\begin{array}{cc}
158.9 & 2-6 \\
149-170-174
\end{array}
\] \\
\hline 39 & \[
\begin{array}{lr}
\hline 148.1 & 6-6 \\
154-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.8 & 6-6 \\
153-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
153.4 & 6-6 \\
151-166-170 \\
\hline
\end{array}
\] & \(156.06-6\)
\(150-168-172\) & \[
\begin{array}{lr}
\hline 157.9 & 2-6 \\
149-169-174
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
\hline 147.2 & 6-6 \\
155-163-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.9 & 6-6 \\
153-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 152.5 & 6-6 \\
151-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 155.0 & 6-6 \\
150-167-171
\end{array}
\] & \[
\begin{array}{cr}
156.5 & 2-6 \\
149-169-174 \\
\hline
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
\hline 146.1 \quad 6-6 \\
155-162-166
\end{array}
\] & \[
\begin{aligned}
& 148.8 \quad 6-6 \\
& 153-164-168
\end{aligned}
\] & \[
\begin{gathered}
151.3 \quad 6-6 \\
152-165-169
\end{gathered}
\] & \[
\begin{array}{cr}
153.3 & 2-6 \\
151-167-171
\end{array}
\] & \[
\begin{array}{lr}
154.5 & 2-6 \\
150-169-173
\end{array}
\] \\
\hline 45 & \[
\begin{array}{cc}
145.06-6 \\
155-162-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.6 & 6-6 \\
154-163-167
\end{array}
\] & 150.1
\(152-165-169\) & \[
\begin{array}{lr}
\hline 151.3 & 2-6 \\
151-167-171
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.5 & 2-6 \\
151-169-173
\end{array}
\] \\
\hline 47 & \[
\begin{array}{lr}
144.0 & 6-6 \\
155-162-165
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.5 & 6-6 \\
154-163-167 \\
\hline
\end{array}
\] & 153-165-169 & \[
\begin{array}{cc}
149.3 & 2-6 \\
152-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
150.4 & 2-6 \\
152-169-173 \\
\hline
\end{array}
\] \\
\hline 49 & \[
\begin{array}{lr}
\hline 142.9 & 6-6 \\
156-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
144.9 & 2-6 \\
155-163-166 \\
\hline
\end{array}
\] & 154-165-169 & \[
\begin{array}{lr}
147.2 & 2-6 \\
153-167-171
\end{array}
\] & \[
\begin{array}{cr}
\hline 148.3 & 2-6 \\
153-169-173 \\
\hline
\end{array}
\] \\
\hline 51 & \begin{tabular}{ll}
141.7 & \(2-6\) \\
\(156-161-164\)
\end{tabular} & \begin{tabular}{ll}
142.8 & \(2-6\) \\
\(156-163-166\)
\end{tabular} & \[
\begin{array}{cc}
\hline 144.0 & 2-6 \\
155-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 145.0 & 2-6 \\
154-167-171
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.1 & 2-6 \\
154-169-173
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
139.7 & 2-6 \\
157-161-164
\end{array}
\] & \[
\begin{array}{lr}
140.8 & 2-6 \\
156-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 141.9 & 2-6 \\
156-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.9 & 2-6 \\
155-167-171
\end{array}
\] & \[
\begin{array}{ll}
143.8 & 2-6 \\
155-169-173
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
137.4 \quad 2-3 \\
158-160-164
\end{array}
\] & \[
\begin{array}{lr}
138.6 & 2-6 \\
158-163-166
\end{array}
\] & \[
\begin{array}{cc}
139.6 & 2-6 \\
157-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.6 & 2-6 \\
156-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.5 & 2-6 \\
156-169-173 \\
\hline
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
\hline 134.9 & 2-3 \\
157-160-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.5 & 2-6 \\
159-163-166
\end{array}
\] & \[
\begin{array}{cc}
137.5 & 2-6 \\
158-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
138.3 & 2-6 \\
158-167-171
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.2 \quad 2-6 \\
157-169-173
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
132.5 & 2-3 \\
157-159-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.4 & 2-6 \\
160-163-166 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
135.2 & 2-6 \\
159-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
136.1 & 2-6 \\
159-167-170
\end{array}
\] & \[
\begin{array}{lr}
136.8 & 2-6 \\
158-169-172 \\
\hline
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
\hline 130.1 & 2-3 \\
156-159-161 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
132.2 & 2-3 \\
161-163-166
\end{array}
\] & \[
\begin{array}{cc}
133.1 & 2-6 \\
161-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
133.8 & 2-6 \\
160-167-170 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
134.6 & 2-6 \\
160-169-172
\end{array}
\] \\
\hline 63 & \[
\begin{array}{lr}
\hline 127.6 & 2-3 \\
156-158-161 \\
\hline
\end{array}
\] & \[
\begin{array}{ccc}
129.6 & 2-3 \\
161-163-166 \\
\hline
\end{array}
\] & \begin{tabular}{cc}
130.8 & \(2-6\) \\
\(162-165-168\)
\end{tabular} & \[
\begin{array}{cr}
\hline 131.5 & 2-6 \\
161-167-170
\end{array}
\] & \[
\begin{array}{cc}
132.2 & 2-6 \\
161-169-172
\end{array}
\] \\
\hline 65 & \[
\begin{array}{lr}
\hline 125.2 & 2-3 \\
156-157-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.1 & 2-3 \\
160-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
128.6 & 2-6 \\
163-166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.2 & 2-6 \\
163-168-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 129.9 & 2-6 \\
162-169-172 \\
\hline
\end{array}
\] \\
\hline 67 & \[
\begin{array}{lr}
122.7 & 2-3 \\
155-157-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
124.6 & 2-3 \\
160-162-164 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
126.2 & 2-3 \\
164-166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.0 & 2-6 \\
164-168-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.3 & 2-2 \\
163-169-172 \\
\hline
\end{array}
\] \\
\hline 69 & \[
\begin{array}{lr}
\hline 120.3 & 2-3 \\
155-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
122.1 & 2-3 \\
160-161-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
123.7 & 2-3 \\
164-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
124.3 & 2-2 \\
165-167-170
\end{array}
\] & \[
\begin{array}{lr}
124.3 & 2-2 \\
163-167-170
\end{array}
\] \\
\hline 70 & \[
\begin{array}{lr}
119.1 \quad 2-3 \\
155-156-158
\end{array}
\] & \begin{tabular}{ll}
120.8 & \(2-3\) \\
\(160-161-163\)
\end{tabular} & \[
\begin{array}{lr}
\hline 122.4 \quad 2-3 \\
164-165-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 122.8 \quad 2-2 \\
164-166-169
\end{array}
\] & \[
\begin{array}{lr}
122.8 & 2-2 \\
162-166-169
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 21} \\
\hline & QUICK REFERENCE TABLES & REV 34 & SEQ 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/ 0} & \multicolumn{3}{|c|}{ELEVATION = 2000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { 「REF }=33^{\circ} \mathrm{C} \\
& \text { 「MAX }=51^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{3}{|l|}{\begin{tabular}{rlr|}
MAX T.O. WEIGHT(1000KG) & CODES \\
IAS(KT) V1 - VR - V2 & \\
\hline
\end{tabular}} \\
\hline \multirow[t]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{5}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline & 3000 & 3250 & 3500 & 3750 & 4000 \\
\hline -27 & \[
\begin{array}{lr}
\hline 160.9 & 2-6 \\
165-173-177 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 162.2 & 2-6 \\
164-175-180 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 163.4 & 2-6 \\
163-178-182
\end{array}
\] & \[
\begin{array}{cc}
\hline 164.6 & 2-6 \\
167-180-185
\end{array}
\] & \[
\begin{array}{lr}
\hline 165.6 & 2-6 \\
162-183-187
\end{array}
\] \\
\hline - 17 & \[
\begin{array}{lr}
159.6 & 2-6 \\
163-170-175
\end{array}
\] & \[
\begin{array}{lr}
\hline 160.9 \quad 2-6 \\
162-173-177
\end{array}
\] & \(162.2 \quad 2-6\)
\(161-175-180\) & \begin{tabular}{ll}
163.3 & \(2-6\) \\
\(160-178-182\)
\end{tabular} & \begin{tabular}{ll}
164.5 & \(2-6\) \\
\(159-180-185\)
\end{tabular} \\
\hline -7 & \[
\begin{aligned}
& 157.5 \quad 6-6 \\
& 161-168-173
\end{aligned}
\] & \[
\begin{array}{lr}
\hline 159.6 \quad 2-6 \\
159-170-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 160.9 & 2-6 \\
158-173-177
\end{array}
\] & \[
\begin{array}{cr}
\hline 162.1 \quad 2-6 \\
158-175-180
\end{array}
\] & \[
\begin{array}{lr}
\hline 163.3 & 2-6 \\
157-178-182
\end{array}
\] \\
\hline 3 & \[
\begin{aligned}
& 154.9666 \\
& 159-167-171 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 157.5 \quad 6-6 \\
& 157-168-173 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{cc}
159.6 \quad 2-6 \\
156-170-175
\end{array}
\] & \[
\begin{array}{lr}
160.8 \quad 2-6 \\
155-173-177
\end{array}
\] & \(162.1 \quad 2-6\)
\(154-175-179\) \\
\hline 13 & \[
\begin{array}{lr}
\hline 152.2 & 6-6 \\
157-165-170
\end{array}
\] & \[
\begin{array}{lr}
\hline 154.96-6 \\
155-167-171
\end{array}
\] & \[
\begin{array}{ll}
157.6 \quad 6-6 \\
154-168-173
\end{array}
\] & \[
\begin{gathered}
159.6 \quad 2-6 \\
152-170-175
\end{gathered}
\] & \[
\begin{array}{ll}
160.8 \quad 2-6 \\
152-173-177
\end{array}
\] \\
\hline 23 & \[
\begin{array}{lr}
\hline 149.8 & 6-6 \\
155-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.5 & 6-6 \\
153-166-170
\end{array}
\] & \[
\begin{array}{lr}
155.2 & 6-6 \\
152-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
157.7 & 6-6 \\
150-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.6 & 2-6 \\
149-171-175 \\
\hline
\end{array}
\] \\
\hline 33 & \[
\begin{array}{lr}
\hline 147.4 \quad 6-6 \\
153-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.1 & 6-6 \\
152-164-169 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 152.8 \quad 6-6 \\
& 150-166-170
\end{aligned}
\] & \[
\begin{gathered}
155.4 \quad 6-6 \\
149-167-171
\end{gathered}
\] & \[
\begin{array}{lr}
\hline 157.96-6 \\
147-169-173
\end{array}
\] \\
\hline 35 & \[
\begin{array}{lr}
\hline 146.5 & 6-6 \\
153-162-167
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.26-6 \\
152-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
151.8 \quad 6-6 \\
150-165-169 \\
\hline
\end{array}
\] & \[
\begin{gathered}
154.4 \quad 6-6 \\
149-167-171
\end{gathered}
\] & \[
\begin{array}{lr}
\hline 156.9 & 2-6 \\
147-168-172 \\
\hline
\end{array}
\] \\
\hline 37 & \[
\begin{array}{lr}
\hline 145.5 & 6-6 \\
154-162-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 148.1 & 6-6 \\
152-164-167
\end{array}
\] & \begin{tabular}{ll}
150.7 & \(6-6\) \\
\(151-165-169\)
\end{tabular} & \(153.26-6\)
\(149-166-170\) & \[
\begin{array}{lr}
155.1 & 2-6 \\
148-168-172 \\
\hline
\end{array}
\] \\
\hline 39 & 144.5
\(154-162-165\) & \[
\begin{array}{lr}
\hline 147.1 & 6-6 \\
152-163-167 \\
\hline
\end{array}
\] & \(149.6 \quad 6-6\)
\(151-165-168\) & \[
\begin{array}{lr}
\hline 152.0 & 2-6 \\
150-166-170 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
153.3 & 2-6 \\
149-168-172
\end{array}
\] \\
\hline 41 & 143.4 \({ }^{154-161-165}\) & \[
\begin{array}{lr}
146.0 & 6-6 \\
153-163-166
\end{array}
\] & \[
\begin{array}{cc}
\hline 148.5 & 6-6 \\
151-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.2 & 2-6 \\
150-166-170
\end{array}
\] & \[
\begin{array}{cr}
\hline 151.4 \quad 2-6 \\
150-168-172
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
\hline 142.46-6 \\
154-161-164
\end{array}
\] & \[
\begin{array}{lr}
\hline 144.96-6 \\
153-162-166 \\
\hline
\end{array}
\] & \begin{tabular}{ll}
147.2 & \(2-6\) \\
\(152-164-167\)
\end{tabular} & \[
\begin{array}{cc}
148.4 \quad 2-6 \\
151-166-170
\end{array}
\] & \[
\begin{array}{lr}
149.5 & 2-6 \\
150-168-172
\end{array}
\] \\
\hline 45 & \multirow[t]{2}{*}{\[
\begin{array}{r}
155-160-164 \\
\hline 140.46-6 \\
155-160-163
\end{array}
\]} & \[
\begin{array}{lr}
\hline 143.9 & 6-6 \\
153-162-165
\end{array}
\] & \[
\begin{array}{cc}
\hline 145.4 & 2-6 \\
152-164-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.6 & 2-6 \\
152-166-170
\end{array}
\] & \[
\begin{array}{ll}
147.7 & 2-6 \\
151-168-172
\end{array}
\] \\
\hline 47 & & \[
\begin{array}{ll}
142.4 \quad 2-6 \\
154-162-165
\end{array}
\] & \[
\begin{array}{cc}
143.5 & 2-6 \\
153-164-167
\end{array}
\] & \[
\begin{array}{cr}
144.6 & 2-6 \\
152-166-169
\end{array}
\] & \[
\begin{array}{lr}
\hline 145.7 & 2-6 \\
152-168-172
\end{array}
\] \\
\hline 49 & \(139.3 \quad 2-6\)
\(155-159-163\) & \[
\begin{aligned}
& 140.4 \quad 2-6 \\
& 155-162-165
\end{aligned}
\] & \(141.5 \quad 2-6\)
\(154-164-167\) & \begin{tabular}{ll}
142.6 & \(2-6\) \\
\(153-166-169\)
\end{tabular} & \[
\begin{array}{lr}
\hline 143.6 & 2-6 \\
153-168-172
\end{array}
\] \\
\hline 51 & \[
\begin{array}{cr}
\hline 137.4 & 2-3 \\
156-160-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 138.5 & 2-6 \\
156-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.5 & 2-6 \\
155-164-167
\end{array}
\] & \[
\begin{array}{cr}
\hline 140.5 & 2-6 \\
154-166-169
\end{array}
\] & \[
\begin{array}{cc}
\hline 141.4 & 2-6 \\
154-168-172
\end{array}
\] \\
\hline 53 & 156-159-162 & \[
\begin{array}{lr}
\hline 136.4 & 2-6 \\
157-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
137.4 & 2-6 \\
156-164-167 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 138.3 & 2-6 \\
155-166-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.2 & 2-6 \\
155-168-171
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
132.6 & 2-3 \\
155-158-161
\end{array}
\] & \[
\begin{array}{lr}
\hline 134.3 & 2-6 \\
158-162-165 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 135.2 \quad 2-6 \\
& 157-164-167
\end{aligned}
\] & \(136.1 \quad 2-6\)
\(157-166-169\) & \begin{tabular}{ll}
136.9 & \(2-6\) \\
\(156-168-171\)
\end{tabular} \\
\hline 57 & \[
\begin{array}{lr}
130.3 & 2-3 \\
155-157-160
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.3 & 2-6 \\
159-162-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
133.1 & 2-6 \\
158-164-167 \\
\hline
\end{array}
\] & \(133.9 \quad 2-6\)
\(158-166-169\) & \[
\begin{array}{lr}
134.7 & 2-6 \\
157-168-171
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
128.0 & 2-3 \\
155-157-160 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
130.0 & 2-3 \\
159-162-164 \\
\hline
\end{array}
\] & \begin{tabular}{ll}
131.0 & \(2-6\) \\
\(160-164-167\)
\end{tabular} & \(131.7 \quad 2-6\)
\(159-166-169\) & \[
\begin{array}{cr}
\hline 132.5 & 2-6 \\
159-168-171 \\
\hline
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
\hline 125.5 & 2-3 \\
154-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.5 & 2-3 \\
159-161-164 \\
\hline
\end{array}
\] & \begin{tabular}{cc}
128.8 & \(2-6\) \\
\(161-164-167\)
\end{tabular} & \[
\begin{array}{cc}
129.5 & 2-6 \\
160-166-169
\end{array}
\] & 160-168-171 \\
\hline 63 & \(123.1 \quad 2-3\)
\(154-155-158\) & \[
\begin{array}{lr}
\hline 125.1 & 2-3 \\
159-160-163
\end{array}
\] & \begin{tabular}{cc}
126.7 & \(2-6\) \\
\(162-164-167\)
\end{tabular} & 127.4
\(162-166-169\) & \[
\begin{array}{ll}
128.0 & 2-6 \\
161-168-171
\end{array}
\] \\
\hline 65 & \begin{tabular}{ll}
120.8 & \(2-3\) \\
\(154-155-157\)
\end{tabular} & \begin{tabular}{ll}
122.7 & \(2-3\) \\
\(158-160-162\)
\end{tabular} & \begin{tabular}{ll}
124.3 & \(2-3\) \\
\(163-164-167\)
\end{tabular} & 163-166-169 & \[
\begin{array}{lr}
\hline 125.7 & 2-2 \\
163-168-171
\end{array}
\] \\
\hline 67 & \[
\begin{array}{lr}
118.5 & 2-3 \\
153-154-157
\end{array}
\] & \[
\begin{array}{lr}
120.3 & 2-3 \\
158-159-161
\end{array}
\] & \[
\begin{array}{cc}
121.9 & 2-3 \\
162-164-166 \\
\hline
\end{array}
\] & 164-166-169 & \[
\begin{array}{lr}
\hline 122.8 & 2-2 \\
162-166-169 \\
\hline
\end{array}
\] \\
\hline 68 & \[
\begin{array}{lr}
117.3 \quad 2-3 \\
153-154-156
\end{array}
\] & \[
\begin{array}{lr}
119.1 & 2-3 \\
158-159-161
\end{array}
\] & \[
\begin{array}{lr}
\hline 120.6 & 2-3 \\
162-163-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 121.3 & 2-2 \\
163-165-168
\end{array}
\] & \[
\begin{array}{cc}
121.3 & 2-2 \\
161-165-168
\end{array}
\] \\
\hline
\end{tabular}

A310-324/AA/4152FTDMT15/00-EF-CM72-1---A
\#BKO FCOM-BO-02-10-40-021-090
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 22} \\
\hline & QuICK ReFERENCE TABLES & REV 34 & SEO 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|c|}{ELEVATION = 0 FT} \\
\hline \[
\begin{aligned}
& \text { TREF }= \\
& \text { TMAX }=
\end{aligned}
\] & & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{3}{|l|}{IAS(KT) V1 - VR - V2} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & \multicolumn{5}{|c|}{CORRECTED RUNWAY LENGTH (M)} \\
\hline & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -18 & \[
\begin{array}{lr}
\hline 155.3 & 2-3 \\
155-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 158.7 & 2-3 \\
161-165-169 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 161.5 & 2-3 \\
167-171-175 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 163.1 & 2-6 \\
168-175-179 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 164.2 & 2-6 \\
167-178-181
\end{array}
\] \\
\hline -8 & \[
\begin{array}{lr}
154.1 & 2-3 \\
153-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
157.6 & 2-3 \\
158-163-167 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
160.4 & 2-3 \\
164-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
162.2 & 2-6 \\
166-173-177 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
163.3 & 2-6 \\
165-176-179 \\
\hline
\end{array}
\] \\
\hline 2 & \[
\begin{array}{lr}
\hline 152.9 & 2-3 \\
151-154-159
\end{array}
\] & \[
\begin{array}{lr}
156.4 & 2-3 \\
156-161-165
\end{array}
\] & \[
\begin{array}{cr}
\hline 159.4 & 2-3 \\
162-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 161.1 \quad 2-6 \\
163-171-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 162.3 & 2-6 \\
162-173-177
\end{array}
\] \\
\hline 12 & \[
\begin{array}{lr}
151.6 & 3-3 \\
149-152-157 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 155.3 \quad 2-3 \\
& 154-158-163 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
158.4 & 2-3 \\
159-165-169 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 160.1 \quad 2-6 \\
& 160-168-172 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
161.3 & 2-6 \\
159-171-175 \\
\hline
\end{array}
\] \\
\hline 22 & \[
\begin{array}{lr}
\\
\hline 149.3 \quad 3-3 \\
147-151-156
\end{array}
\] & \[
\begin{aligned}
& 154.2 \quad 2-3 \\
& 152-157-161
\end{aligned}
\] & \[
\begin{array}{ccc}
157.3 & 2-3 \\
157-162-167
\end{array}
\] & \(159.0 \quad 2-6\)
\(158-166-170\) & \[
\begin{aligned}
& 160.2 \quad 2-6 \\
& 157-169-172
\end{aligned}
\] \\
\hline 32 & \[
\begin{array}{lr}
147.1 & 3-3 \\
146-149-155
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.1 & 2-3 \\
150-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.3 & 2-3 \\
155-161-165
\end{array}
\] & \[
\begin{array}{cc}
\hline 157.9 & 2-6 \\
155-164-168
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.1 & 2-6 \\
154-166-170
\end{array}
\] \\
\hline 42 & \[
\begin{array}{lr}
145.0 & 3-3 \\
145-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.0 & 2-3 \\
148-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
155.3 & 2-6 \\
153-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
156.7 & 2-6 \\
152-161-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 158.0 & 2-6 \\
151-164-168 \\
\hline
\end{array}
\] \\
\hline 44 & \[
\begin{array}{lr}
\hline 143.5 & 3-3 \\
144-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.0 & 2-3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.2 & 2-3 \\
153-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
154.8 & 2-6 \\
153-162-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 156.1 & 2-6 \\
152-164-168 \\
\hline
\end{array}
\] \\
\hline 46 & \[
\begin{array}{lr}
\hline 141.9 & 3-3 \\
144-147-152
\end{array}
\] & \[
\begin{array}{lr}
147.8 & 2-3 \\
148-152-157
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.9 & 2-3 \\
153-158-162
\end{array}
\] & \[
\begin{array}{cr}
\hline 152.8 & 2-6 \\
154-162-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.9 & 2-6 \\
153-164-168
\end{array}
\] \\
\hline 48 & \[
\begin{array}{lr}
140.2 & 3-3 \\
143-146-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.5 & 2-3 \\
148-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
148.6 & 2-3 \\
153-157-162 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
150.6 & 2-6 \\
155-162-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.8 & 2-6 \\
154-164-168 \\
\hline
\end{array}
\] \\
\hline 50 & \[
\begin{array}{lr}
138.6 & 3-3 \\
143-145-150
\end{array}
\] & \[
\begin{array}{lr}
143.2 & 2-3 \\
147-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.2 & 2-3 \\
152-157-161 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 148.5 & 2-6 \\
156-162-166
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.6 & 2-6 \\
155-165-168
\end{array}
\] \\
\hline 52 & \[
\begin{array}{lr}
136.8 & 3-3 \\
142-145-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
140.8 & 2-3 \\
147-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
143.8 & 2-3 \\
152-157-161 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.2 & 2-3 \\
157-162-166 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 147.3 & 2-6 \\
156-165-168 \\
\hline
\end{array}
\] \\
\hline 54 & \[
\begin{array}{ll}
\\
\hline 135.1 & 3-3 \\
141-144-148
\end{array}
\] & \[
\begin{array}{lr}
138.5 & 2-3 \\
147-150-155
\end{array}
\] & \[
\begin{array}{cc}
141.3 \quad 2-3 \\
152-156-160
\end{array}
\] & \[
\begin{array}{cr}
143.7 & 2-3 \\
157-162-165
\end{array}
\] & \[
\begin{array}{ll}
145.0 & 2-6 \\
158-165-168
\end{array}
\] \\
\hline 56 & \[
\begin{array}{lr}
132.7 & 2-3 \\
141-143-148
\end{array}
\] & \[
\begin{array}{lr}
\hline 136.0 & 2-3 \\
146-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 138.8 & 2-3 \\
151-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.1 & 2-3 \\
156-161-165
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.7 & 2-6 \\
159-165-168 \\
\hline
\end{array}
\] \\
\hline 58 & \[
\begin{array}{lr}
130.3 & 2-3 \\
140-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
133.5 & 2-3 \\
146-149-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.2 & 2-3 \\
151-155-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
138.5 & 2-3 \\
156-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 140.1 & 2-2 \\
159-164-168 \\
\hline
\end{array}
\] \\
\hline 60 & \[
\begin{array}{lr}
127.9 & 2-3 \\
140-142-146
\end{array}
\] & \[
\begin{array}{lr}
131.0 & 2-3 \\
145-148-152
\end{array}
\] & \[
\begin{array}{lr}
\hline 133.6 \quad 2-3 \\
151-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
135.8 & 2-3 \\
156-159-163
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.0 & 2-2 \\
158-163-166
\end{array}
\] \\
\hline 62 & \[
\begin{array}{lr}
125.6 & 2-3 \\
140-141-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
128.6 & 2-3 \\
145-147-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
131.1 & 2-3 \\
150-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
133.2 & 2-3 \\
155-159-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.0 & 2-2 \\
157-161-164 \\
\hline
\end{array}
\] \\
\hline 64 & \[
\begin{array}{lll}
123.2 & 2-3 \\
139-141-145
\end{array}
\] & \[
\begin{array}{cc}
126.1 & 2-3 \\
145-147-151
\end{array}
\] & \[
\begin{array}{lr}
128.6 & 2-3 \\
150-153-156
\end{array}
\] & \[
\begin{array}{cc}
130.6 & 2-3 \\
155-158-161
\end{array}
\] & \[
\begin{array}{ll}
131.0 & 2-2 \\
155-159-162
\end{array}
\] \\
\hline 66 & \[
\begin{array}{cr}
120.7 & 2-3 \\
139-140-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 123.6 & 2-3 \\
144-146-150 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
126.0 & 2-3 \\
149-152-155 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 127.9 & 2-2 \\
154-157-160 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 127.9 & 2-2 \\
153-157-160 \\
\hline
\end{array}
\] \\
\hline 68 & \[
\begin{array}{lr}
118.4 & 2-3 \\
138-139-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.1 & 2-3 \\
144-145-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
123.4 & 2-3 \\
149-151-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 124.9 & 2-2 \\
153-155-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 124.9 & 2-2 \\
150-155-158 \\
\hline
\end{array}
\] \\
\hline 70 & \[
\begin{array}{lr}
\hline 116.0 & 2-3 \\
138-139-142 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
118.6 & 2-3 \\
143-145-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.8 & 2-3 \\
149-150-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.9 & 2-2 \\
151-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 121.9 & 2-2 \\
148-153-157 \\
\hline
\end{array}
\] \\
\hline 72 & \[
\begin{array}{lr}
\hline 113.6 & 2-3 \\
137-138-142
\end{array}
\] & \[
\begin{array}{lr}
\hline 116.2 & 2-3 \\
143-144-148
\end{array}
\] & \[
\begin{array}{lr}
118.3 & 2-3 \\
148-150-153
\end{array}
\] & \[
\begin{array}{lr}
\hline 118.8 & 2-2 \\
149-152-155
\end{array}
\] & \[
\begin{array}{lr}
\hline 118.8 & 2-2 \\
146-152-155
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 23} \\
\hline & QUICK REFERENCE TABLES & REV 34 & SEQ 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|c|}{ELEVATION = 1000 FT} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { TREF }=37^{\circ} \mathrm{C} \\
& \text { TMAX }=53^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\]}} & DRY RUNWAY & MAX T.O. WEI & 1000KG) & CODES \\
\hline & & SLOPE \(=0 \%\) & \multicolumn{3}{|c|}{IAS(KT) V1 - VR - V2} \\
\hline \multicolumn{6}{|l|}{TEMP. \({ }^{\text {a }}\) (CORRECTED RUNWAY LENGTH (M)} \\
\hline TEMP. (\({ }^{\circ} \mathrm{C}\)) & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline -23 & \[
\begin{array}{lr}
\hline 154.4 & 2-3 \\
154-157-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 157.8 & 2-3 \\
160-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 160.6 & 2-3 \\
166-170-174 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 162.2 & 2-6 \\
167-174-178 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
163.2 \quad 2-6 \\
166-177-180 \\
\hline
\end{array}
\] \\
\hline -13 & \[
153.22-3
\] & \[
156.6 \quad 2-3
\] & \[
159.5 \quad 2-3
\] & \[
161.2 \quad 2-6
\]
164-172-175 & \[
162.3 \quad 2-6
\] \\
\hline -3 & \(151.92-3\) & 155.5 2-3 & 158.4 2-3 & \(160.1{ }^{16-6}\) & 161.3 2-6 \\
\hline & 150-153-158 & 155-160-164 & 161-166-170 & 162-170-173 & 161-172-176 \\
\hline 7 & \[
\begin{array}{lr}
150.2 & 3-3 \\
148-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
154.3 & 2-3 \\
153-158-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 157.4 & 2-3 \\
158-164-168 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 159.0 & 2-6 \\
159-167-171 \\
\hline
\end{array}
\] & \[
\begin{array}{ccc}
160.2 & 2-6 \\
158-170-174 \\
\hline
\end{array}
\] \\
\hline 17 & \[
\begin{array}{ll}
147.9 & 3-3 \\
146-150-155
\end{array}
\] & \[
\begin{aligned}
& 153.2 \quad 2-3 \\
& 151-156-160
\end{aligned}
\] & \[
\begin{aligned}
& 156.3 \\
& 156-162-3 \\
& \hline 166
\end{aligned}
\] & \[
\begin{array}{ll}
157.9 & 2-6 \\
156-165-169
\end{array}
\] & \[
\begin{array}{lr}
159.2 \quad 2-6 \\
155-167-171
\end{array}
\] \\
\hline 27 & \(145.7{ }^{3-3}\) & \(152.0{ }^{2-3}\) & 155.3 2-3 & 156.8 2-6 & \(158.1{ }^{2-6}\) \\
\hline 27 & 145-149-154 & 149-154-158 & 154-160-164 & 154-162-167 & 153-165-169 \\
\hline 37 & \[
143.133
\] & \(150.2{ }^{2-3}\) & 153.5 2-3 & \({ }^{155.0}{ }^{2-6}\) & \(156.3{ }^{2-6}\) \\
\hline & 142.1 \({ }^{1}\) & 149.2 2-3 & 152.5 2-3 & 154.0 - 2 -6 & 155.3 \({ }^{2-6}\) \\
\hline 39 & 143-147-152 & 147-151-156 & 152-157-162 & 152-160-164 & 151-163-167 \\
\hline & 141.0 3-3 & 147.7 2-3 & \(151.0 \quad 2-3\) & 152.7 2-6 & 153.9 2-6 \\
\hline 41 & 143-146-151 & 147-151-155 & 152-157-161 & 152-160-164 & 151-163-167 \\
\hline 43 & 139.4
\(142.146-151\) & \(\begin{array}{lll}145.7 & 2.3 \\ 146-150-155\end{array}\) & \(\begin{array}{ll}148.9 & 2-3 \\ 151-156-161\end{array}\) & 150.8 2-6 & \(152.0{ }^{2-6}\) \\
\hline & 142-146-151 & 146-150-155 & 151-156-161 & 153-160-164 & 152-163-167 \\
\hline 45 & \[
\begin{array}{ll}
137.9 & 3-3 \\
142-145-150
\end{array}
\] & \[
\begin{array}{lr}
143.6 & 2-3 \\
146-150-154
\end{array}
\] & \[
\begin{array}{ll}
\hline 146.7 & 2.3 \\
151-156-160
\end{array}
\] & \[
\begin{array}{lc}
148.8 & 2-6 \\
154-160-164
\end{array}
\] & \[
\begin{array}{lr}
150.0 & 2-6 \\
153-163-167
\end{array}
\] \\
\hline 47 & 136.3 3-3 & \(141.512-3\) & 144.5 2-3 & \(146.9{ }^{2-6}\) & \(148.0{ }^{2-6}\) \\
\hline 47 & 141-144-149 & 146-149-154 & 151-155-160 & 155-161-164 & 154-163-167 \\
\hline 49 & \[
\begin{array}{lr}
\hline 134.6 & 3-3 \\
141-143-148
\end{array}
\] & \[
\begin{array}{lr}
\hline 139.3 & 2-3 \\
146-149-153
\end{array}
\] & \[
\begin{array}{lr}
\hline 142.3 & 2-3 \\
150-155-159
\end{array}
\] & \[
\begin{array}{cr}
\hline 144.7 & 2-3 \\
155-160-164 \\
\hline
\end{array}
\] & \[
\begin{array}{lc}
\hline 145.9 & 2-6 \\
155-163-167
\end{array}
\] \\
\hline 51 & \(132.9{ }^{3-3}\) & \(137.0{ }^{1}\) & 139.9 2-3 & 142.3 2-3 & \(143.7{ }^{2}\) 2-6 \\
\hline & 140-143-147 & 1454.8-153 & 130-154-159 & 135-160-164 & 156-163-167 \\
\hline 53 & 140-142-146 & 145-148-152 & 150-154-158 & 155-159-163 & 157-164-167 \\
\hline 55 & \[
\begin{array}{lr}
129.1 & 2-3 \\
139-141-145
\end{array}
\] & \[
\begin{array}{ll}
132.4 & 2-3 \\
144.147-151
\end{array}
\] & \[
135.0 \quad 2-3
\] & \[
137.3 \quad 2-3
\] & \[
139.2 \quad 2-6
\] \\
\hline & 126.8 2-3 & 129.9 2-3 & \(132.62-3\) & 134.8 2-3 & \(136.5 \quad 2-2\) \\
\hline 57 & 139-140-145 & 144-146-151 & 149-152-156 & 154-158-161 & 158-162-166 \\
\hline 59 & \[
124.5 \quad 2-3
\] & \[
\begin{array}{lc}
127.5 & 2-3 \\
144-146-150
\end{array}
\] & \(\begin{array}{ll}130.1 & 2-3 \\ 149-152-155\end{array}\) & 132.3
\(154-157-160\) & 133.6
\(157-161-264\) \\
\hline & 122.2 2-3 & 125.2 2-3 & 127.7 2-3 & 129.8 \({ }^{15-157}\) & 137-17-764 \\
\hline 61 & 138-139-143 & 143-145-149 & 148-151-155 & 153-156-160 & 156-159-162 \\
\hline & 119.9 2-3 & 122.8 2-3 & 125.2 2-3 & 127.2 2-3 & \(127.7{ }^{\text {2-2 }}\) \\
\hline 63 & 137-138-142 & 143-145-148 & 148-150-154 & 153-156-159 & 153-157-160 \\
\hline 65 & 117.6
\(137-138-3\) & 120.3 2-3 & \(122.7{ }^{2-3}\) & \(\begin{array}{ll}124.7 & 2.3 \\ 152.155\end{array}\) & 124.8 2-2 \\
\hline & 137-138-142 & 142-144-148 & \(\frac{147-149-153}{120.2}\) & 152-155-158 & 151-155-158 \\
\hline 67 & 136-137-141 & 142-143-147 & 147-149-152 & \[
\begin{aligned}
& 121.9 \\
& 151-154-157
\end{aligned}
\] & \[
\begin{aligned}
& 121.9 \\
& 149-154-157
\end{aligned}
\] \\
\hline 69 & \(113.0{ }^{13-3}\) & \(115.6 \quad 2-3\) & 117.8 2-3 & 118.9 2-2 & 118.9 2-2 \\
\hline 69 & 136-137-140 & 141-143-146 & 147-148-152 & 150-152-155 & 147-152-155 \\
\hline 70 & \[
\begin{array}{lr}
\hline 111.8 & 2-3 \\
136-137-140
\end{array}
\] & \[
\begin{array}{lr}
\hline 114.4 & 2-3 \\
141-143-146
\end{array}
\] & \[
\begin{array}{lr}
\hline 116.5 & 2-3 \\
146-148-151
\end{array}
\] & \[
\begin{array}{lr}
\hline 117.5 & 2-2 \\
148-151-154
\end{array}
\] & \[
\begin{array}{lr}
\hline 117.5 & 2-2 \\
146-151-154
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & PAGE & \\
\hline & QUICK REFERENCE TABLES & REV 34 & SEC 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 15/15} & \multicolumn{3}{|c|}{ELEVATION = 2000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \text { TREF }=33^{\circ} \mathrm{C} \\
& \text { TMAX }=51^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{3}{|l|}{IAS(KT) V1 - VR - V2} \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline \[
\left({ }^{\circ} \mathrm{C}\right)
\] & 2250 & 2500 & 2750 & 3000 & 3250 \\
\hline \(-27\) & \[
\begin{array}{cr}
153.4 & 2-3 \\
153-156-161 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
156.8 & 2-3 \\
159-163-168 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
159.6 & 2-3 \\
164-169-173 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
161.1 & 2-6 \\
165-173-176 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
162.2 & 2-6 \\
164-176-179 \\
\hline
\end{array}
\] \\
\hline \(-17\) & \[
\begin{array}{lr}
152.1 & 2-3 \\
151-154-159
\end{array}
\] & \[
\begin{array}{lr}
155.6 & 2-3 \\
156-161-165
\end{array}
\] & \[
\begin{array}{cr}
158.5 & 2-3 \\
162-167-171
\end{array}
\] & \[
\begin{array}{cr}
160.1 & 2-6 \\
163-170-174
\end{array}
\] & \[
\begin{array}{cr}
161.2 & 2-6 \\
162-173-177
\end{array}
\] \\
\hline \(-7\) & \[
\begin{array}{lr}
150.8 & 2-3 \\
149-152-157
\end{array}
\] & \[
\begin{array}{cr}
154.4 & 2-3 \\
154-158-163
\end{array}
\] & \[
\begin{array}{cr}
157.4 & 2-3 \\
159-165-169
\end{array}
\] & \[
\begin{array}{cr}
159.0 & 2-6 \\
160-168-172
\end{array}
\] & \[
\begin{array}{cc}
160.2 & 2-6 \\
159-171-174 \\
\hline
\end{array}
\] \\
\hline 3 & \[
\begin{array}{lr}
148.6 & 3-3 \\
147-150-155
\end{array}
\] & \[
\begin{array}{lr}
153.2 & 2-3 \\
152-156-161
\end{array}
\] & \[
\begin{array}{cc}
156.3 & 2-3 \\
157-162-167
\end{array}
\] & \[
\begin{array}{lr}
157.9 & 2-6 \\
157-166-170
\end{array}
\] & \[
\begin{array}{lr}
159.1 & 2-6 \\
156-168-172
\end{array}
\] \\
\hline 13 & \[
\begin{array}{lr}
146.3 & 3-3 \\
146-149-154
\end{array}
\] & \[
\begin{array}{lr}
152.1 & 2-3 \\
150-154-159
\end{array}
\] & \[
\begin{array}{lr}
155.2 & 2-3 \\
155-160-165
\end{array}
\] & \[
\begin{array}{lr}
156.8 & 2-6 \\
155-163-167
\end{array}
\] & \[
\begin{array}{lr}
158.0 & 2-6 \\
154-166-170
\end{array}
\] \\
\hline 23 & \[
\begin{array}{cr}
144.0 & 3-3 \\
144-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.9 & 2-3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
154.2 & 2-3 \\
153-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 155.5 & 2-6 \\
152-161-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
156.9 & 2-6 \\
151-164-168
\end{array}
\] \\
\hline \[
33
\] & \[
\begin{array}{cr}
141.9 & 3-3 \\
143-147-152
\end{array}
\] & \[
\begin{array}{lr}
149.0 & 3-3 \\
147-151-156
\end{array}
\] & \[
\begin{array}{cc}
152.8 & 2-6 \\
150-156-160
\end{array}
\] & \[
\begin{array}{cc}
154.3 & 2-6 \\
149-159-163
\end{array}
\] & \[
\begin{array}{cc}
155.7 & 2-6 \\
148-161 & -166
\end{array}
\] \\
\hline \[
35
\] & \[
\begin{array}{lr}
140.6 & 3-3 \\
142-146-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
147.8 & 3-3 \\
146-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.5 & 2-3 \\
151-156-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.9 & 2-6 \\
150-159-163
\end{array}
\] & \[
\begin{array}{lr}
154.2 & 2-6 \\
149-161-165
\end{array}
\] \\
\hline & \[
\begin{array}{lr}
139.2 & 3-3 \\
142-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
146.3 & 2-3 \\
146-150-154 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
149.6 & 2-3 \\
150-156-160
\end{array}
\] & \[
\begin{array}{cr}
151.2 & 2-6 \\
151-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.5 & 2-6 \\
150-161-165 \\
\hline
\end{array}
\] \\
\hline \[
39
\] & \[
\begin{array}{lr}
137.8 & 3-3 \\
141-145-150
\end{array}
\] & \[
\begin{array}{cc}
144.5 & 2-3 \\
145-149-154
\end{array}
\] & \[
\begin{array}{lr}
147.7 & 2-3 \\
150-155-159
\end{array}
\] & \[
\begin{array}{cc}
149.5 & 2-6 \\
151-159-163
\end{array}
\] & \[
\begin{array}{lr}
150.7 & 2-6 \\
151-161-165
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
136.3 & 3-3 \\
141-144-149
\end{array}
\] & \[
\begin{array}{cc}
142.6 & 2-3 \\
145-149-153
\end{array}
\] & \[
\begin{array}{lr}
145.7 & 2-3 \\
150-155-159
\end{array}
\] & \[
\begin{array}{lr}
147.8 & 2-6 \\
152-159-163
\end{array}
\] & \[
\begin{array}{cr}
148.9 & 2-6 \\
151-162-165
\end{array}
\] \\
\hline 43 & \[
\begin{array}{cr}
\hline 134.8 & 3-3 \\
140-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
140.7 & 2-3 \\
145-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
143.7 & 2-3 \\
149-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
146.0 & 2-6 \\
153-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
147.1 & 2-6 \\
152-162-165 \\
\hline
\end{array}
\] \\
\hline 45 & \[
\begin{array}{lr}
133.3 & 3-3 \\
140-143-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.7 & 2-3 \\
144-148-152 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
141.7 & 2-3 \\
149-154-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
144.2 & 2-3 \\
154-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
145.3 & 2-6 \\
153-162-165 \\
\hline
\end{array}
\] \\
\hline 47 & \[
\begin{array}{lr}
131.8 & 3-3 \\
139-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
136.7 & 2-3 \\
144-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
139.6 & 2-3 \\
149-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
142.1 & 2-3 \\
154-159-163 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
143.4 & 2-6 \\
154-162-165 \\
\hline
\end{array}
\] \\
\hline 49 & \[
\begin{array}{cr}
130.1 & 3-3 \\
139-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
134.5 & 2-3 \\
144-147-151 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
137.4 & 2-3 \\
149-153-157 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
139.8 & 2-3 \\
153-158-162 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
141.3 & 2-6 \\
155-162-165 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{cr}
128.5 & 3-3 \\
138-141-145
\end{array}
\] & \[
\begin{array}{lr}
132.3 & 2-3 \\
143-146-151
\end{array}
\] & \[
\begin{array}{cc}
135.1 & 2-3 \\
148-152-156
\end{array}
\] & \[
\begin{array}{cr}
137.5 & 2-3 \\
153-158-161
\end{array}
\] & \[
\begin{array}{lr}
139.2 & 2-6 \\
157-162-165
\end{array}
\] \\
\hline 53 & \[
\begin{array}{lr}
126.5 & 3-3 \\
138-140-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.0 & 2-3 \\
143-146-150
\end{array}
\] & \[
\begin{array}{lr}
132.7 & 2-3 \\
148-151-155
\end{array}
\] & \[
\begin{array}{lr}
135.0 & 2-3 \\
153-157-160
\end{array}
\] & \[
\begin{array}{lr}
136.9 & 2-3 \\
158-162-165
\end{array}
\] \\
\hline 55 & \[
\begin{array}{lr}
\hline 124.5 & 2-3 \\
137-139-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.7 & 2-3 \\
142-145-149 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 130.3 & 2-3 \\
147-150-154 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 132.5 & 2-3 \\
152-156-159 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 134.4 & 2-3 \\
157-161-164 \\
\hline
\end{array}
\] \\
\hline 57 & \[
\begin{array}{lr}
122.3 & 2-3 \\
136-138-142
\end{array}
\] & \[
\begin{array}{lr}
125.4 & 2-3 \\
142-144-148
\end{array}
\] & \[
\begin{array}{lr}
127.9 & 2-3 \\
147-150-154
\end{array}
\] & \[
\begin{array}{lr}
130.1 & 2-3 \\
152-155-159
\end{array}
\] & \[
\begin{array}{lr}
131.7 & 2-2 \\
156-160-163
\end{array}
\] \\
\hline 59 & \[
\begin{array}{cr}
120.1 & 2-3 \\
136-138-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
123.1 & 2-3 \\
142-144-147 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
125.6 & 2-3 \\
147-149-153 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
127.7 & 2-3 \\
152-155-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
128.8 & 2-2 \\
155-158-161
\end{array}
\] \\
\hline 61 & \[
\begin{array}{lr}
117.9 & 2-3 \\
135-137-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.8 & 2-3 \\
141-143-147
\end{array}
\] & \[
\begin{array}{cr}
123.1 & 2-3 \\
146-148-152 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.2 & 2-3 \\
151-154-157
\end{array}
\] & \[
\begin{array}{lr}
126.0 & 2-2 \\
153-156-159 \\
\hline
\end{array}
\] \\
\hline 63 & \[
\begin{array}{lr}
115.6 & 2-3 \\
135-136-140
\end{array}
\] & \[
\begin{array}{lr}
118.4 & 2-3 \\
141-142-146
\end{array}
\] & \[
\begin{array}{lr}
120.7 & 2-3 \\
146-148-151
\end{array}
\] & \[
\begin{array}{lr}
122.7 & 2-3 \\
151-153-156
\end{array}
\] & \[
\begin{array}{lr}
123.2 & 2-2 \\
151-154-157
\end{array}
\] \\
\hline 65 & \[
\begin{array}{cr}
113.4 & 2-3 \\
134-136-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
116.1 & 2-3 \\
140-142-145 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
118.4 & 2-3 \\
145-147-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.3 & 2-3 \\
150-152-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
120.4 & 2-2 \\
149-153-156 \\
\hline
\end{array}
\] \\
\hline & \[
\begin{array}{lr}
111.2 & 2-3 \\
134-135-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
113.8 & 2-3 \\
140-141-144 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
116.0 & 2-3 \\
145-147-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
117.5 & 2-2 \\
149-151-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
117.5 & 2-2 \\
147-151-154 \\
\hline
\end{array}
\] \\
\hline 68 & \[
\begin{array}{lr}
110.1 & 2-3 \\
134-135-138
\end{array}
\] & \[
\begin{array}{lr}
112.7 & 2-3 \\
140-141-144
\end{array}
\] & \[
\begin{array}{cc}
114.8 & 2-3 \\
145-146-149
\end{array}
\] & \[
\begin{array}{lr}
116.1 & 2-2 \\
148-150-153
\end{array}
\] & \[
\begin{array}{lr}
116.1 & 2-2 \\
146-150-153
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 25} \\
\hline & QUICK REFERENCE TABLES & REV 34 & SEQ 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/2} & \multicolumn{3}{|c|}{ELEVATION = 0 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=42^{\circ} \mathrm{C} \\
& \text { TMAX }=55^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY SLOPE = \(0 \%\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { MAX T.O. WEIGHT(1000KG) } \\
& \text { IAS(KT) V1 - VR - V2 }
\end{aligned}
\]} & CODES \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline \(\left({ }^{\circ} \mathrm{C}\right)\) & 1500 & \multirow[t]{2}{*}{\[
\]} & 2000 & 2250 & 2500 \\
\hline -18 & \[
\begin{array}{lc}
\hline 135.9 & 3-3 \\
136-138-144 \\
\hline
\end{array}
\] & & \[
\begin{array}{lr}
\hline 150.0 & 2-3 \\
150-153-158 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.5 & 2-3 \\
157-160-165 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.6 & 2-2 \\
155-161-165 \\
\hline
\end{array}
\] \\
\hline -8 & \[
\begin{array}{rr}
133.4 & 3-3 \\
135-136-143 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 144.2 & 3-3 \\
141-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.9 & 2-3 \\
148-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
152.5 & 2-3 \\
155-158-163 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.5 & 2-2 \\
156-161-165 \\
\hline
\end{array}
\] \\
\hline 2 & \[
\begin{array}{lr}
130.9 & 3-3 \\
133-135-142
\end{array}
\] & \[
\begin{array}{lr}
141.9 & 3-3 \\
139-141-147
\end{array}
\] & \[
\begin{array}{cc}
147.8 & 2-3 \\
146-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
151.5 & 2-3 \\
152-156-161
\end{array}
\] & \[
\begin{array}{lr}
153.5 & 2-2 \\
156-161-165
\end{array}
\] \\
\hline 12 & \[
\begin{array}{lr}
128.6 & 3-3 \\
132-134-141 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
139.6 & 3-3 \\
138-140-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 146.7 & 2-3 \\
144-147-152
\end{array}
\] & \[
\begin{array}{lr}
\hline 150.5 & 2-3 \\
150-154-159
\end{array}
\] & \[
\begin{array}{lr}
\hline 153.5 & 2-2 \\
156-161-165
\end{array}
\] \\
\hline 22 & \[
\begin{array}{lr}
\hline 126.4 & 3-3 \\
130-133-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.3 & 3-3 \\
137-139-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
145.6 & 2-3 \\
142-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
149.6 & 2-3 \\
148-152-157 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
152.7 & 2-3 \\
154-159-163 \\
\hline
\end{array}
\] \\
\hline 32 & \[
\begin{array}{lr}
124.4 \quad 3-3 \\
129-132-138
\end{array}
\] & \[
\begin{array}{rr}
135.1 & 3-3 \\
135-138-144
\end{array}
\] & \[
\begin{array}{lr}
144.6 & 2-2 \\
141-143-148
\end{array}
\] & \[
\begin{array}{rr}
148.6 & 2-3 \\
147-150-155
\end{array}
\] & \[
\begin{array}{lr}
151.8 & 2-3 \\
153-157-162
\end{array}
\] \\
\hline 42 & \[
\begin{array}{rr}
122.4 & 3-3 \\
127-130-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
133.0 & 3-3 \\
134-137-143 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
142.5 & 3-3 \\
139-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
147.6 & 2-3 \\
145-149-154 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.0 & 2-3 \\
151-155-160 \\
\hline
\end{array}
\] \\
\hline 44 & \[
\begin{array}{cr}
\hline 120.9 & 3-3 \\
127-130-137 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 131.5 & 3-3 \\
133-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
141.0 & 3-3 \\
139-141-147 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
145.6 & 2-3 \\
144-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 148.9 & 2-3 \\
150-155-159 \\
\hline
\end{array}
\] \\
\hline 46 & \[
\begin{array}{lr}
\hline 119.3 & 3-3 \\
126-129-136 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 129.8 & 3-3 \\
133-135-141
\end{array}
\] & \[
\begin{array}{cc}
139.3 & 3-3 \\
138-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
143.3 & 2-3 \\
144-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 146.5 & 2-3 \\
150-154-159 \\
\hline
\end{array}
\] \\
\hline 48 & \[
\begin{array}{ll}
117.7 & 3-3 \\
126-128-135
\end{array}
\] & \[
\begin{array}{lr}
\hline 128.2 & 3-3 \\
132-135-140 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
137.2 & 2-3 \\
138-140-145 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 141.1 \quad 2-3 \\
144-147-152
\end{array}
\] & \[
\begin{array}{lr}
\hline 144.1 & 2-3 \\
150-154-158 \\
\hline
\end{array}
\] \\
\hline 50 & \[
\begin{array}{lr}
116.2 & 3-3 \\
125-128-134
\end{array}
\] & \[
\begin{array}{lr}
126.6 & 3-3 \\
132-134-140
\end{array}
\] & \[
\begin{array}{cc}
135.0 & 2-3 \\
137-140-145 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 138.8 & 2-3 \\
143-147-152
\end{array}
\] & \[
\begin{array}{lr}
141.8 & 2-3 \\
149-153-158
\end{array}
\] \\
\hline 52 & \[
\begin{array}{lr}
\hline 114.5 & 3-3 \\
125-127-133 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 124.9 & 3-3 \\
131-133-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
132.8 & 2-3 \\
137-139-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 136.4 & 2-3 \\
143-146-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
139.3 & 2-3 \\
149-153-157 \\
\hline
\end{array}
\] \\
\hline 54 & \[
\begin{array}{ll}
112.9 & 3-3 \\
124-126-132
\end{array}
\] & \[
\begin{array}{lr}
123.2 & 3-3 \\
130-132-138
\end{array}
\] & \[
\begin{array}{cc}
130.5 & 2-3 \\
136-139-144
\end{array}
\] & \[
\begin{array}{ll}
134.0 & 2-3 \\
143-145-150
\end{array}
\] & \[
\begin{array}{lr}
136.5 & 2-2 \\
148-151-156
\end{array}
\] \\
\hline 56 & \[
\begin{array}{lr}
111.2 \quad 3-3 \\
123-125-131
\end{array}
\] & \[
\begin{array}{lr}
121.4 & 3-3 \\
130-131-137
\end{array}
\] & \[
\begin{array}{lr}
128.2 & 2-3 \\
136-138-143
\end{array}
\] & \[
\begin{array}{cr}
131.6 & 2-3 \\
142-145-150
\end{array}
\] & \[
\begin{array}{lr}
133.7 & 2-2 \\
146-150-154
\end{array}
\] \\
\hline 58 & \[
\begin{array}{lr}
109.3 & 3-3 \\
123-124-130 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
119.4 & 3-3 \\
129-130-136 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.8 & 2-3 \\
135-137-142 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
129.1 & 2-3 \\
142-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.8 & 2-2 \\
145-148-153 \\
\hline
\end{array}
\] \\
\hline 60 & \[
\begin{array}{lr}
\hline 107.5 & 3-3 \\
122-124-130
\end{array}
\] & \[
\begin{array}{lr}
117.5 & 3-3 \\
128-130-135
\end{array}
\] & \[
\begin{array}{cr}
\hline 123.4 & 2-3 \\
135-136-141
\end{array}
\] & \[
\begin{array}{cr}
126.6 & 2-3 \\
141-143-148
\end{array}
\] & \[
\begin{array}{ll}
128.0 & 2-2 \\
143-146-151
\end{array}
\] \\
\hline 62 & \[
\begin{array}{lr}
\hline 105.8 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 115.7 & 3-3 \\
128-129-134 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.1 & 2-3 \\
134-136-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 124.2 & 2-3 \\
141-143-147
\end{array}
\] & \[
\begin{array}{lr}
125.1 & 2-2 \\
141-145-149
\end{array}
\] \\
\hline 64 & \[
\begin{array}{cr}
102.3 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 113.9 & 3-3 \\
127-128-133 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
118.7 & 2-3 \\
134-135-140 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
121.8 & 2-3 \\
140-142-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
122.3 & 2-2 \\
139-143-148 \\
\hline
\end{array}
\] \\
\hline 66 & \[
\begin{array}{rr}
98.9 & 3-3 \\
121-123-129
\end{array}
\] & \[
\begin{array}{lr}
112.0 & 3-3 \\
126-127-132
\end{array}
\] & \[
\begin{array}{cr}
\hline 116.3 & 2-3 \\
133-134-139
\end{array}
\] & \[
\begin{array}{cr}
\hline 119.3 & 2-3 \\
140-141-146
\end{array}
\] & \[
\begin{array}{ll}
119.4 & 2-2 \\
138-142-146
\end{array}
\] \\
\hline 68 & \[
\begin{array}{cr}
95.7 & 3-3 \\
121-124-129
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.2 & 3-3 \\
126-126-131
\end{array}
\] & \[
\begin{array}{lr}
114.0 & 2-3 \\
133-134-138
\end{array}
\] & \[
\begin{array}{cr}
\hline 116.6 & 2-2 \\
138-140-144
\end{array}
\] & \[
\begin{array}{lr}
116.6 & 2-2 \\
135-140-144
\end{array}
\] \\
\hline 70 & \[
\begin{array}{cc}
92.7 & 3-3 \\
121-124-129
\end{array}
\] & \[
\begin{array}{lr}
108.2 & 2-3 \\
125-125-130
\end{array}
\] & \[
\begin{array}{ll}
\hline 111.6 \quad 2-3 \\
132-133-138
\end{array}
\] & \[
\begin{array}{cc}
\hline 113.7 & 2-2 \\
137-139-143
\end{array}
\] & \[
\begin{array}{ll}
113.7 & 2-2 \\
134-139-143
\end{array}
\] \\
\hline 72 & & \[
\begin{array}{lr}
106.0 & 2-3 \\
125-125-130
\end{array}
\] & \[
\begin{array}{ll}
\hline 109.3 & 2-3 \\
132-133-137
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.9 & 2-2 \\
135-137-141
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.9 & 2-2 \\
131-137-141
\end{array}
\] \\
\hline
\end{tabular}

A310-324/AA/4152FTDMT20/20-EF-CM72-1---A
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{TAKE OFF} & \multicolumn{2}{|r|}{2.10 .40} \\
\hline & & PAGE & \\
\hline & QUICK REFERENCE TABLES & REV 34 & SEC 290 \\
\hline
\end{tabular}

\section*{FAN THRUST DETERIORATION MODE}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|c|}{ELEVATION = 1000 FT} \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { TREF }=37^{\circ} \mathrm{C} \\
& \text { TMAX }=53^{\circ} \mathrm{C}
\end{aligned}
\]} & DRY RUNWAY
\[
\text { SLOPE }=0 \%
\] & \multicolumn{3}{|l|}{IAS(KT) V1 - VR - V2} \\
\hline \multicolumn{6}{|l|}{TEMP. CORRECTED RUNWAY LENGTH (M)} \\
\hline \[
\left({ }^{\circ} \mathrm{C}\right)
\] & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -23 & \[
\begin{array}{lr}
\hline 134.6 & 3-3 \\
136-137-144
\end{array}
\] & \[
\begin{array}{lr}
\hline 144.7 & 2-3 \\
142-144-149
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.1 & 2-3 \\
149-152-157
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.6 & 2-3 \\
156-160-164
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.9 & 2-2 \\
154-160-165
\end{array}
\] \\
\hline -13 & \[
\begin{array}{cr}
\hline 132.1 & 3-3 \\
134-136-142 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
143.0 & 3-3 \\
140-142-148 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
148.0 & 2-3 \\
147-150-155 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 151.6 & 2-3 \\
154-157-162 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.9 & 2-2 \\
156-160-165 \\
\hline
\end{array}
\] \\
\hline -3 & \[
\begin{array}{lr}
129.6 & 3-3 \\
132-135-141 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
140.6 & 3-3 \\
139-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
146.9 & 2-3 \\
145-148-153 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
150.6 & 2-3 \\
151-155-160 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 152.9 & 2-2 \\
156-160-165 \\
\hline
\end{array}
\] \\
\hline 7 & \[
\begin{array}{lr}
\hline 127.3 & 3-3 \\
131-133-140 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
138.2 & 3-3 \\
137-140-145
\end{array}
\] & \[
\begin{array}{cr}
145.7 & 2-3 \\
143-146-151 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
149.6 & 2-3 \\
149-153-158
\end{array}
\] & \[
\begin{array}{lr}
152.7 & 2-3 \\
156-160-164
\end{array}
\] \\
\hline 17 & \[
\begin{array}{lr}
\hline 125.1 & 3-3 \\
129-132-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 135.9 & 3-3 \\
136-138-144 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 144.6 & 2-3 \\
141-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
148.6 & 2-3 \\
147-151-156 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
151.7 & 2-3 \\
153-158-162
\end{array}
\] \\
\hline 27 & \[
\begin{array}{lr}
123.0 & 3-3 \\
128-131-138
\end{array}
\] & \[
\begin{array}{lr}
133.6 & 3-3 \\
134-137-143
\end{array}
\] & \[
\begin{array}{lll}
\hline 143.1 & 3-3 \\
140-143-148
\end{array}
\] & \[
\begin{array}{ll}
\hline 147.5 & 2-3 \\
146-149-154
\end{array}
\] & \[
\begin{array}{ll}
150.9 & 2-3 \\
151-156-161
\end{array}
\] \\
\hline 37 & \[
\begin{array}{cr}
\hline 120.5 & 3-3 \\
126-129-136 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 131.1 \quad 3-3 \\
133-136-142
\end{array}
\] & \[
\begin{array}{cc}
140.6 & 3-3 \\
138-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 145.9 & 2-3 \\
144-147-152
\end{array}
\] & \[
\begin{array}{lr}
\hline 149.2 & 2-3 \\
150-154-159 \\
\hline
\end{array}
\] \\
\hline 39 & \[
\begin{array}{lr}
119.6 & 3-3 \\
126-129-136 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
130.1 & 3-3 \\
133-135-141 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
139.6 & 3-3 \\
138-141-146 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
144.8 & 2-3 \\
143-147-152 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
148.2 & 2-3 \\
149-154-158 \\
\hline
\end{array}
\] \\
\hline 41 & \[
\begin{array}{lr}
118.5 & 3-3 \\
126-128-135
\end{array}
\] & \[
\begin{array}{lr}
128.9 & 3-3 \\
132-135-141
\end{array}
\] & \[
\begin{array}{cc}
138.4 & 3-3 \\
137-140-145 \\
\hline
\end{array}
\] & \[
\begin{gathered}
143.4 \quad 2-3 \\
143-146-152
\end{gathered}
\] & \[
\begin{array}{ll}
146.7 & 2-3 \\
149-153-158
\end{array}
\] \\
\hline 43 & \[
\begin{array}{lr}
117.0 & 3-3 \\
125-128-135
\end{array}
\] & \[
\begin{array}{lr}
\hline 127.4 & 3-3 \\
132-134-140 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 136.8 & 3-3 \\
137-139-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 141.3 & 2-3 \\
143-146-151
\end{array}
\] & \[
\begin{array}{lr}
\hline 144.6 & 2-3 \\
148-153-157 \\
\hline
\end{array}
\] \\
\hline 45 & \[
\begin{array}{lr}
115.5 & 3-3 \\
125-127-134
\end{array}
\] & \[
\begin{array}{lr}
125.9 & 3-3 \\
131-133-139
\end{array}
\] & \[
\begin{array}{ll}
\hline 135.2 \quad 3-3 \\
136-139-144
\end{array}
\] & \[
\begin{array}{rrr}
139.2 & 2-3 \\
142-145-151
\end{array}
\] & \[
\begin{array}{lr}
142.4 \quad 2-3 \\
148-152-157
\end{array}
\] \\
\hline 47 & \[
\begin{array}{lr}
\hline 114.1 & 3-3 \\
124-126-133
\end{array}
\] & \[
\begin{array}{rr}
\hline 124.4 & 3-3 \\
130-133-138
\end{array}
\] & \[
\begin{array}{cc}
133.4 & 2-3 \\
136-138-143 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.2 \quad 2-3 \\
142-145-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
140.2 & 2-3 \\
148-152-156
\end{array}
\] \\
\hline 49 & \[
\begin{array}{lr}
112.6 & 3-3 \\
123-126-132 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
122.8 & 3-3 \\
130-132-138 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
131.3 & 2-3 \\
135-138-143 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
135.0 & 2-3 \\
142-144-150 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 137.9 & 2-3 \\
147-151-156 \\
\hline
\end{array}
\] \\
\hline 51 & \[
\begin{array}{lr}
\hline 111.0 & 3-3 \\
123-125-131 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 121.2 & 3-3 \\
129-131-137
\end{array}
\] & \[
\begin{array}{cr}
129.1 & 2-3 \\
135-137-142 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 132.7 & 2-3 \\
141-144-149 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
135.6 & 2-3 \\
147-150-155 \\
\hline
\end{array}
\] \\
\hline 53 & \[
\begin{array}{cr}
\hline 109.5 & 3-3 \\
122-124-131 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 119.6 & 3-3 \\
129-130-136 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
127.0 & 2-3 \\
135-137-141 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
\hline 130.4 & 2-3 \\
141-143-148 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
133.0 & 2-2 \\
146-149-154 \\
\hline
\end{array}
\] \\
\hline 55 & \[
\begin{aligned}
& 107.6 \quad 3-3 \\
& 122-123-130 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{lr}
117.63-3 \\
128-129-135 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
124.7 & 2-3 \\
134-136-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
128.0 & 2-3 \\
140-143-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
130.2 & 2-2 \\
144-148-152 \\
\hline
\end{array}
\] \\
\hline 57 & \[
\begin{array}{cr}
\hline 105.9 & 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 115.7 & 3-3 \\
127-129-134 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 122.4 & 2-3 \\
133-135-140 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
125.6 & 2-3 \\
140-142-147 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
127.5 & 2-2 \\
144-146-151
\end{array}
\] \\
\hline 59 & \[
\begin{array}{lr}
\hline 102.4 & 3-3 \\
121-123-129
\end{array}
\] & \[
\begin{array}{rr}
113.9 & 3-3 \\
127-128-133
\end{array}
\] & \[
\begin{array}{cr}
\hline 120.1 & 2-3 \\
133-134-139 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
123.3 & 2-3 \\
139-141-146
\end{array}
\] & \[
\begin{array}{lr}
124.7 & 2-2 \\
142-145-149
\end{array}
\] \\
\hline 61 & \[
\begin{array}{rr}
99.4 \quad 3-3 \\
121-123-129 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
112.2 & 3-3 \\
126-127-132 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
117.8 & 2-3 \\
133-134-138 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
120.9 & 2-3 \\
139-141-145 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
122.0 & 2-2 \\
140-143-147 \\
\hline
\end{array}
\] \\
\hline 63 & \[
\begin{array}{rr}
96.1 & 3-3 \\
121-123-129
\end{array}
\] & \[
\begin{array}{lr}
\hline 110.4 & 3-3 \\
125-126-131 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 115.5 & 2-3 \\
132-133-138 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 118.5 & 2-3 \\
138-140-144 \\
\hline
\end{array}
\] & \[
\begin{array}{cr}
\hline 119.2 & 2-2 \\
138-142-146
\end{array}
\] \\
\hline 65 & \[
\begin{array}{cr}
92.9 & 3-3 \\
121-124-129
\end{array}
\] & \[
\begin{array}{lr}
108.6 & 3-3 \\
125-125-130
\end{array}
\] & \[
\begin{array}{cc}
113.3 & 2-3 \\
131-132-137
\end{array}
\] & \[
\begin{array}{cr}
\hline 116.1 & 2-3 \\
138-139-143 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
116.5 & 2-2 \\
136-140-144
\end{array}
\] \\
\hline 67 & & \[
\begin{array}{rr}
\hline 106.8 & 3-3 \\
124-124-129
\end{array}
\] & \[
\begin{array}{cc}
111.0 & 2-3 \\
131-132-136 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 113.7 & 2-2 \\
137-139-143
\end{array}
\] & \[
\begin{array}{lr}
\hline 113.7 & 2-2 \\
135-139-143
\end{array}
\] \\
\hline 69 & & \[
\begin{array}{lr}
\hline 105.1 & 3-3 \\
123-124-128 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 108.7 & 2-3 \\
131-131-135 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 111.0 & 2-2 \\
136-137-141 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 111.0 & 2-2 \\
132-137-141 \\
\hline
\end{array}
\] \\
\hline 70 & & \[
\begin{array}{lr}
\hline 102.8 & 3-3 \\
124-124-129
\end{array}
\] & \[
\begin{array}{lr}
\hline 107.6 & 2-3 \\
130-131-135
\end{array}
\] & \[
\begin{array}{lr}
109.6 & 2-2 \\
135-136-140
\end{array}
\] & \[
\begin{array}{lr}
\hline 109.6 & 2-2 \\
131-136-140
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{TAKE OFF
QuICK REFERENCE TABLES} & \multicolumn{3}{|c|}{2.10 .40} \\
\hline & & \multicolumn{3}{|l|}{PAGE 27/28} \\
\hline & & REV 34 & SEO & 290 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{CONFIGURATION 20/20} & \multicolumn{3}{|c|}{ELEVATION = 2000 FT} \\
\hline \multicolumn{2}{|l|}{TREF \(=33^{\circ} \mathrm{C}\)} & DRY RUNWAY & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{MAX T.O. WEIGHT(1000KG)
IAS(KT) \(\mathrm{V}_{1}\)-VR - V2}} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline \[
\begin{aligned}
& \text { TEMP. } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & 1500 & 1750 & 2000 & 2250 & 2500 \\
\hline -27 & \[
\begin{array}{ll}
\hline 133.2 & 3-3 \\
135-136-143
\end{array}
\] & \[
\begin{array}{cc}
143.7 & 2-3 \\
141-143-148
\end{array}
\] & \[
\begin{array}{ll}
\hline 148.1 & 2-3 \\
148-151-156
\end{array}
\] & \({ }_{151.6}^{159} 2\) & \(152.2 \quad 2-2\) \\
\hline & \({ }^{130.6}{ }^{3} 3.3\) & 141.5 3-3 & 146.9 2-3 & \(150.6 \quad 2.3\) & \(152.2{ }^{2-2}\) \\
\hline -17 & 133-135-142 & 139-141-147 & 146-149-154 & 153-156-161 & 156-160-164 \\
\hline -7 & \(128.1 \quad 3-3\)
\(132-134-140\) & \(139.1 \quad 3-3\)
\(138-140-146\) & 145.8
\(144-147-152\)

2-3 & \(149.5{ }^{2-3}\)
\(150-154-159\) & 152.2
\(155-160-164\)
102 \\
\hline & 125.8 3-3 & 136.6 3-3 & \(144.7 \quad 2-3\) & \(148.5 \quad 2.3\) & 151.6 2-3 \\
\hline 3 & 130-132-139 & 136-139-144 & 142-145-150 & 148-152-157 & 154-159-163 \\
\hline 13 & \begin{tabular}{l}
123.5 \(3-3\) \\
\(129-131-138\) \\
\hline
\end{tabular} & 134.383 .3
\(135-138-143\) & \(143.5-2-3\)
\(140-143-148\) & \(147.5{ }^{2-3}\)
\(146-150-155\) & \\
\hline 23 & 121.4 3-3 & \(132.0 \quad 3.3\) & \(141.5 \quad 3.3\) & 146.5 2-3 & 149.8 2-3 \\
\hline 23 & 127-130-137 & 133-136-142 & 139-142-147 & 144-148-153 & 150-155-159 \\
\hline 33 & \begin{tabular}{l}
119.49-3 \\
\(126-129-136\) \\
\hline 125
\end{tabular} & \begin{tabular}{l}
129.8 \\
\(132-135-141\) \\
\hline 3-3
\end{tabular} & 139.3
\(137-141-146\) & 145.4
\(143-146-151\)
10.3 & \begin{tabular}{l}
148.8 \\
\(148-153-158\) \\
\hline 158
\end{tabular} \\
\hline 35 & 118.2 3-3 & 128.6 3 3-3 & 138.1 3-3 & 143.9 2-3 & \(147.2{ }^{2-3}\) \\
\hline 35 & \(125-128-135\)
116.8
1183 & \(132-135-141\)
\(1272-3\) & \(137-140-145\)
\(136.6-3\) & 142-146-151 & 148-152-157 \\
\hline 37 & - 116.8 & 127.2
\(131-134-140\) & \begin{tabular}{l}
136.6 \\
\(137-139-144\) \\
\hline 18
\end{tabular} & \(\begin{array}{r}142.0 \\ 142-145-150 \\ \hline 1\end{array}\) & +145.152-157 \\
\hline 39 & \({ }^{115.5}{ }^{3-3}\) & 125.8 \({ }^{3-3}\) & 135.2 3 3-3 & 140.2 2.3 & 143.44.2.3 \\
\hline 39 & 124-127-134 & 131-133-139 & \(136-139-144\)
133.7 & \(142-145-150\)
1383 & 147-151-156 \\
\hline 41 & 114.1
\(124-126-133\)
123 & \begin{tabular}{l}
124.43-3 \\
\(130-133-138\) \\
\hline
\end{tabular} & \begin{tabular}{l}
133.783 \\
\(155-138-143\) \\
\hline
\end{tabular} & 138.32 .3
\(141-144-150\)
10. & \begin{tabular}{l}
141.5 \(2-3\) \\
\(147-151-156\) \\
\hline
\end{tabular} \\
\hline & \({ }^{112.7}{ }^{3} 123\) & \(123.0 \quad 3.3\) & \({ }^{132.1}{ }^{3-3}\) & \(136.4{ }^{2.3}\) & \({ }^{139.5}\) 2-3 \\
\hline 43 & 123-126-132 & 130-132-138 & 135-137-142 & 141-144-149 & 146-150-155 \\
\hline 45 & (111.4 \(\begin{aligned} & \text { 3-3 } \\ & 123-125-132\end{aligned}\) & +121.6 3 3-3 & \(130.6{ }^{3-3}\)
\(134-137-142\) & 134.5 2.3
\(141-143-148\)
10 & 137.5
\(146-150-15\)
105 \\
\hline & \(110.0 \quad 3-3\) & \(120.1 \quad 3.3\) & \(128.8 \quad 2.3\) & \(132.4 \quad 2.3\) & \(135.4 \quad 2.3\) \\
\hline 47 & 122-124-131 & 128-131-136 & 134-136-141 & 140-143-148 & 146-149-154 \\
\hline 49 & 108.5
\(123-124-130\)
121 & \begin{tabular}{l}
118.5 \\
\(128-130-135\) \\
\hline
\end{tabular} & \begin{tabular}{l}
126.7 \\
\(133-135-140\) \\
\\
\\
\hline
\end{tabular} & 130.3
14.3
140.142 .147 & +133.1 2.3 \\
\hline 51 & \(107.0{ }^{3} 3\) & 116.9 3-3 & 124.7 2-3 & 128.1 2 2-3 & \(\begin{aligned} & 130.9\end{aligned} 2-2\) \\
\hline & & 127-129-134 & 133-135-140 & 139-142-147 & 145-148-153 \\
\hline 53 & +104.43-3-3 & +127.028-133 & 122.4
\(132-134-139\) & (125.8 \begin{tabular}{l}
2-3 \\
\(139.141-146\) \\
\hline
\end{tabular} & - \\
\hline 55 & 101.13 \(3-3\)
\(120-123-129\) & 113.2
126-127-133
120 & 120.22 .3
\(132-133-138\) & 123.5 \({ }^{123}\) & \({ }^{125.6}\) - 2 -2 \\
\hline & 128.0-12-3 & 111.4 3-3 & 118.0 \({ }^{132-3}\) & \begin{tabular}{l}
\(1381.20-3\) \\
\hline 18
\end{tabular} & - 122.4 - 2 -2 \\
\hline 57 & 120-123-129 & 125-126-132 & 131-133-137 & - & \({ }_{141-144-148}\) \\
\hline 59 & (\({ }_{\text {95.0 }} \begin{gathered}\text { 3-3 } \\ 120-123-129\end{gathered}\) & 109.83 3-3
\(124-126-131\) & \(115.822-3\)
\(131-132-137\) & \(118.9{ }^{2-3}\)
\(137-139-143\) & 120.3 2 2-2 \\
\hline 61 & & 120-26-131 & \begin{tabular}{l}
\(131-132-137\) \\
\hline \(113.62-3\)
\end{tabular} & 137-139-143 & 139-142-446 \\
\hline 61 & 120-123-129 & 124-125-130 & 130-132-136 & 137.138-142 & 138-141-145 \\
\hline 63 & & 106.24 .3
\(123-124-129\) & 111.4
\(130-131-135\)

2-3 & & 115.0) \(2-2\)
\(136-139-143\)
1 \\
\hline & & 103.0 & 109.2 2-3 & 112.08 & 112.3 - 2 -2 \\
\hline 65 & & 123-124-129 & 129-130-134 & 136-137-141 & 134-138-142 \\
\hline 67 & & 99.9
\(123-124-129\) & 107.0 \(2-3\)
\(129-130-134\) & \begin{tabular}{l}
\(109.7{ }^{12-2}\) \\
\(135-136-140\) \\
\\
\hline 1
\end{tabular} & \begin{tabular}{l}
109.7 \(2-2\) \\
\(132-136-140\) \\
\hline
\end{tabular} \\
\hline 68 & & & 105.9
10.3
\(129-129.133\) & 1358.3 2-2
134.136 .139 & 108.3
\(131-136-129\) \\
\hline & & & 129-129-133 & 134-136-139 & 131-136-139 \\
\hline
\end{tabular}

A310-324/AA/4152FTDMT20/20-EF-CM72-1---A
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CLIMB} & \multicolumn{3}{|c|}{2.11.00} \\
\hline & & PAGE & & \\
\hline & CONTENTS & REV 04 & \multicolumn{2}{|l|}{SEO 020} \\
\hline
\end{tabular}
Pages

\subsection*{2.11.10 CLIMB CHART 2 ENGINES}
Introduction......... 1
Normal Climb - Max Climb Thrust-250/300 KT/M 0.80

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{CLIMB
CLIMB CHART 2 ENGINES} & \multicolumn{2}{|r|}{2.11.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & REV 14 & SEQ 001 \\
\hline
\end{tabular}

\section*{INTRODUCTION}

Climb Charts are established at MAX CLIMB THRUST with air conditioning in economic mode. When using normal air conditioning, increase fuel R consumption by 0.8 \%.

All tables are established with a center of gravity location corresponding to \(27 \%\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{CLIMB
CLIMB CHART 2 ENGINES} & \multicolumn{2}{|r|}{2.11 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 21 & SEQ 050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{lr}
FROM BRAKES RELEASE PT. \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT) \\
\hline
\end{tabular}} \\
\hline & WEIGH & BRA & EAS & 00KG) & & & & & \\
\hline FL & 85 & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 \\
\hline 410 & \[
\begin{array}{rr}
\hline 13 & 1877 \\
82 & 385
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2011 \\
89 & 388
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2155 \\
96 & 390
\end{array}
\] & \[
\begin{array}{rr}
16 & 2313 \\
104 & 392
\end{array}
\] & \[
\begin{array}{rr}
17 & 2493 \\
115 & 395 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
19 & 2710 \\
128 \quad 398 \\
\hline
\end{array}
\] & & & \\
\hline 390 & \[
\begin{array}{rr}
\hline 12 & 1781 \\
73 & 378
\end{array}
\] & \[
\begin{array}{rr}
12 & 1902 \\
78 & 380
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2031 \\
84 & 382
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2168 \\
91 & 384
\end{array}
\] & \(\begin{array}{rrr}15 & 2315 \\ 98 & 385\end{array}\) & \(\begin{array}{r}16 \\ 106 \\ 10476 \\ \hline\end{array}\) & \begin{tabular}{rr}
18 & 2656 \\
\(115 \quad 389\)
\end{tabular} & \begin{tabular}{rr}
19 & 2868 \\
\(126 \quad 391\)
\end{tabular} & \[
\begin{array}{|rr|}
\hline 22 & 3140 \\
142 & 395
\end{array}
\] \\
\hline 370 & \begin{tabular}{rr}
11 & 1693 \\
65 & 370
\end{tabular} & \begin{tabular}{rr}
11 & 1805 \\
70 & 372
\end{tabular} & \[
\begin{array}{rr}
12 & 1923 \\
75 & 374
\end{array}
\] & \[
\begin{array}{rr}
13 & 2047 \\
80 & 376
\end{array}
\] & \[
\begin{array}{rr}
14 & 2179 \\
86 & 377
\end{array}
\] & \[
\begin{array}{rr}
15 & 2319 \\
92 & 378
\end{array}
\] & \[
\begin{array}{rr|}
\hline 16 & 2469 \\
99 & 379 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
17 & 2632 \\
106 \quad 380
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 2813 \\
114 & 382
\end{array}
\] \\
\hline 350 & \begin{tabular}{rr}
10 & 1614 \\
59 & 363
\end{tabular} & \[
\begin{array}{rr}
10 & 1719 \\
63 & 365
\end{array}
\] & \begin{tabular}{rr}
11 & 1829 \\
68 & 367
\end{tabular} & \[
\begin{array}{rr}
12 & 1944 \\
72 & 368
\end{array}
\] & \[
\begin{array}{rr}
13 & 2065 \\
77 & 370
\end{array}
\] & \[
\begin{array}{rr}
13 & 2194 \\
82 & 370
\end{array}
\] & \[
\begin{array}{rr}
14 & 2329 \\
88 & 371
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2474 \\
94 & 372
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 16 & 2629 \\
100 & 372
\end{array}
\] \\
\hline 330 & \[
\begin{array}{rr}
9 & 1541 \\
54 & 355
\end{array}
\] & \[
\begin{array}{rr}
10 & 1640 \\
58 & 358
\end{array}
\] & \begin{tabular}{rr}
10 & 1743 \\
62 & 360
\end{tabular} & \begin{tabular}{rr}
11 & 1852 \\
66 & 361
\end{tabular} & \begin{tabular}{rr}
12 & 1965 \\
70 & 362
\end{tabular} & \[
\begin{array}{rr}
12 & 2084 \\
74 & 363
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2210 \\
79 & 363
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2343 \\
84 & 364
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2485 \\
90 & 364
\end{array}
\] \\
\hline 310 & \[
\begin{array}{rr}
8 & 1469 \\
49 & 347
\end{array}
\] & \begin{tabular}{rr}
9 & 1562 \\
52 & 350
\end{tabular} & \[
\begin{array}{rr}
10 & 1660 \\
56 & 351
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 1761 \\
60 & 353
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 1868 \\
63 & 354
\end{array}
\] & \begin{tabular}{rr}
11 & 1979 \\
67 & 355
\end{tabular} & \[
\begin{array}{rr}
12 & 2097 \\
72 & 355
\end{array}
\] & \[
\begin{array}{rr}
13 & 2221 \\
76 & 355
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2353 \\
81 & 356
\end{array}
\] \\
\hline 290 & \[
\begin{array}{rr}
8 & 1376 \\
43 & 336
\end{array}
\] & \begin{tabular}{rr}
8 & 1462 \\
46 & 338
\end{tabular} & \[
\begin{array}{rr}
9 & 1552 \\
49 & 340
\end{array}
\] & \[
\begin{array}{rr}
9 & 1646 \\
52 & 342
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 1744 \\
56 & 343
\end{array}
\] & \[
\begin{array}{rr}
10 & 1847 \\
59 & 343
\end{array}
\] & \begin{tabular}{rr}
11 & 1956 \\
63 & 344
\end{tabular} & \[
\begin{array}{rr}
12 & 2070 \\
67 & 344
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2190 \\
71 & 344
\end{array}
\] \\
\hline 270 & \[
\begin{array}{rr}
7 & 1285 \\
38 & 324
\end{array}
\] & \begin{tabular}{rr}
7 & 1364 \\
40 & 327
\end{tabular} & \[
\begin{array}{rr}
8 & 1446 \\
43 & 329 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1533 \\
46 & 330
\end{array}
\] & \[
\begin{array}{rr}
9 & 1623 \\
49 & 331
\end{array}
\] & \[
\begin{array}{rr}
9 & 1718 \\
52 & 332
\end{array}
\] & \[
\begin{array}{rr}
10 & 1817 \\
55 & 332
\end{array}
\] & \[
\begin{array}{rr}
10 & 1922 \\
58 & 332
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 2032 \\
61 & 332
\end{array}
\] \\
\hline 250 & \[
\begin{array}{rr}
6 & 1197 \\
33 & 313
\end{array}
\] & \[
\begin{array}{rr}
7 & 1270 \\
35 & 315
\end{array}
\] & \[
\begin{array}{rr}
7 & 1346 \\
38 & 317
\end{array}
\] & \[
\begin{array}{rr}
8 & 1425 \\
40 & 319
\end{array}
\] & \begin{tabular}{rr}
8 & 1508 \\
43 & 320
\end{tabular} & \[
\begin{array}{rr}
8 & 1595 \\
45 & 321
\end{array}
\] & \[
\begin{array}{rr}
9 & 1686 \\
48 & 321
\end{array}
\] & \[
\begin{array}{rr}
9 & 1782 \\
51 & 321
\end{array}
\] & \begin{tabular}{rr}
10 & 1883 \\
53 & 321
\end{tabular} \\
\hline 240 & \begin{tabular}{rr}
6 & 1154 \\
\(31 \quad 307\)
\end{tabular} & \begin{tabular}{rr}
6 & 1224 \\
33 & 310
\end{tabular} & \[
\begin{array}{rr}
\hline 7 & 1297 \\
35 & 312
\end{array}
\] & \[
\begin{array}{rr}
\hline 7 & 1373 \\
38 & 313
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1452 \\
40 & 314 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
8 & 1536 \\
42 & 315
\end{tabular} & \begin{tabular}{rr}
8 & 1623 \\
45 & 315
\end{tabular} & \[
\begin{array}{rr}
9 & 1715 \\
47 & 315
\end{array}
\] & \[
\begin{array}{rr}
9 & 1811 \\
50 & 315
\end{array}
\] \\
\hline 220 & \begin{tabular}{rr}
5 & 1069 \\
27 & 295
\end{tabular} & \[
\begin{array}{rr}
6 & 1133 \\
29 & 298 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
6 & 1199 \\
31 & 300
\end{array}
\] & \(6 \quad 1269\)
\(33 \quad 302\) & \begin{tabular}{rr}
7 & 1342 \\
35 & 303
\end{tabular} & \begin{tabular}{rr}
7 & 1418 \\
37 & 304
\end{tabular} & \[
\begin{array}{rr}
\hline 8 & 1498 \\
39 & 304
\end{array}
\] & \begin{tabular}{rr}
8 & 1582 \\
41 & 304
\end{tabular} & \begin{tabular}{rr}
9 & 1671 \\
43 & 303
\end{tabular} \\
\hline 200 & \begin{tabular}{rr}
5 & 985 \\
23 & 283
\end{tabular} & \begin{tabular}{rr}
5 & 1043 \\
25 & 286
\end{tabular} & \[
\begin{array}{rr}
6 & 1104 \\
26 & 289
\end{array}
\] & \[
\begin{array}{rr}
6 & 1167 \\
28 & 290
\end{array}
\] & \[
\begin{array}{rr}
6 & 1233 \\
30 & 291
\end{array}
\] & \begin{tabular}{rr}
6 & 1303 \\
\(32 \quad 292\)
\end{tabular} & \begin{tabular}{rr}
7 & 1376 \\
\(33 \quad 292\)
\end{tabular} & \begin{tabular}{rr}
7 & 1453 \\
35 & 292
\end{tabular} & \begin{tabular}{rr}
8 & 1534 \\
37 & 291
\end{tabular} \\
\hline 180 & \begin{tabular}{rr}
4 & 903 \\
20 & 270
\end{tabular} & \begin{tabular}{rr}
5 & 955 \\
21 & 274
\end{tabular} & \begin{tabular}{rr}
5 & 1010 \\
23 & 276
\end{tabular} & \[
\begin{array}{rr}
5 & 1067 \\
24 & 278
\end{array}
\] & \[
\begin{array}{rr}
5 & 1128 \\
26 & 279
\end{array}
\] & \[
\begin{array}{rr}
6 & 1191 \\
27 & 280
\end{array}
\] & \[
\begin{array}{rr}
6 & 1258 \\
29 & 280
\end{array}
\] & \[
\begin{array}{rr}
6 & 1327 \\
30 & 280
\end{array}
\] & \[
\begin{array}{rr}
\hline 7 & 1401 \\
32 & 279
\end{array}
\] \\
\hline 160 & \begin{tabular}{rr}
4 & 823 \\
17 & 257
\end{tabular} & \[
\begin{array}{rr}
4 & 870 \\
18 & 261
\end{array}
\] & \[
\begin{array}{rr}
\hline 4 & 919 \\
19 & 263
\end{array}
\] & \[
\begin{array}{rl}
5 & 971 \\
20 & 265
\end{array}
\] & \begin{tabular}{rr}
5 & 1026 \\
22 & 266
\end{tabular} & \[
\begin{array}{rr}
5 & 1083 \\
23 & 267
\end{array}
\] & \[
\begin{array}{rr}
5 & 1143 \\
24 & 267
\end{array}
\] & \[
\begin{array}{rr}
6 & 1207 \\
26 & 267
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1273 \\
27 & 266
\end{array}
\] \\
\hline 140 & \[
\begin{array}{rr}
\hline 3 & 746 \\
14 & 243 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 787 \\
15 & 247 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 4 & 831 \\
16 & 250 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 878 \\
17 & 252 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
4 & 926 \\
18 & 253 \\
\hline 4 & 830
\end{tabular} & \[
\begin{array}{rl}
5 & 978 \\
19 & 253 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
5 & 1033 \\
20 & 254 \\
\hline 4 & 925
\end{tabular} & \[
\begin{array}{rr}
5 & 1090 \\
21 \quad 253 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1150 \\
23 & 252 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{array}{rr}
3 & 670 \\
12 & 228 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
3 & 706 \\
13 & 232 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
3 & 745 \\
13 & 235 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 787 \\
14 & 237 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
4 & 830 \\
15 & 238 \\
\hline 3 & 672
\end{tabular} & \[
\begin{array}{rr}
4 & 876 \\
16 & 239 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 925 \\
17 & 239 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 4 & 977 \\
18 & 238 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 5 & 1031 \\
19 & 238 \\
\hline
\end{array}
\] \\
\hline 100 & \[
\begin{array}{ll}
\hline 2 & 545 \\
8 & 199
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 574 \\
9 & 204
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 604 \\
9 & 207
\end{array}
\] & \[
\begin{array}{rl}
\hline 3 & 637 \\
10 & 209
\end{array}
\] & \[
\begin{array}{rr}
\hline 3 & 672 \\
10 & 211 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 3 & 710 \\
11 & 212
\end{array}
\] & \[
\begin{array}{rr}
\hline 3 & 749 \\
12 & 212
\end{array}
\] & \[
\begin{array}{rl}
\hline 3 & 791 \\
12 & 211
\end{array}
\] & \begin{tabular}{rr}
4 & 836 \\
13 & 211
\end{tabular} \\
\hline 50 & \[
\begin{array}{ll}
2 & 368 \\
4 & 159
\end{array}
\] & \[
\begin{array}{ll}
2 & 385 \\
4 & 165
\end{array}
\] & \[
\begin{array}{ll}
2 & 404 \\
5 & 169
\end{array}
\] & \[
\begin{array}{ll}
2 & 424 \\
5 & 172
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 446 \\
5 & 174
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 471 \\
6 & 174
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 497 \\
6 & 174
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 525 \\
6 & 174
\end{array}
\] & \begin{tabular}{ll}
2 & 556 \\
7 & 172
\end{tabular} \\
\hline 15 & \[
\begin{array}{ll}
1 & 243 \\
2 & 108
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 251 \\
2 & 114
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 262 \\
2 & 118
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 273 \\
2 & 121
\end{array}
\] & \[
\begin{array}{ll}
1 & 287 \\
2 & 123
\end{array}
\] & \[
\begin{array}{ll}
1 & 302 \\
3 & 124
\end{array}
\] & \[
\begin{array}{ll}
1 & 319 \\
3 & 124
\end{array}
\] & \[
\begin{array}{ll}
1 & 338 \\
3 & 123
\end{array}
\] & \[
\begin{array}{ll}
1 & 359 \\
3 & 121
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 21 100000E5KG270 00185900021.3300 .0300 .0103250 .000300 .000 .8000
FCOM-B0-02-11-10-002-050

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lr|}
\hline FROM BRAKES RELEASE PT. \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT) \\
\hline
\end{tabular}}} \\
\hline \multirow[b]{2}{*}{FL} & \multicolumn{6}{|l|}{WEIGHT AT BRAKES RELEASE (1000KG)} & & & \\
\hline & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 & 165 \\
\hline \multicolumn{10}{|l|}{410} \\
\hline 390 & \(22 \quad 3140\)
\(142 \quad 395\) & & & & & & & & \\
\hline 370 & \[
\begin{array}{|r|}
\hline 18 \\
114 \\
114 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 19 & 3018 \\
124 & 384 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 21 & 3264 \\
137 & 387 \\
\hline
\end{array}
\] & & & & & & \\
\hline 350 & \[
\begin{array}{rr}
16 & 2629 \\
100 \quad 372
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 17 & 2796 \\
107 & 374
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 2979 \\
115 & 375
\end{array}
\] & \[
\begin{array}{rr}
\hline 20 & 3182 \\
124 & 378
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 21 & 3417 \\
134 & 381
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 23 & 3699 \\
149 & 384
\end{array}
\] & & & \\
\hline 330 & \[
\begin{array}{rr}
15 & 2485 \\
90 & 364 \\
\hline
\end{array}
\] & \[
\begin{array}{lr}
\hline 16 & 2635 \\
95 & 365
\end{array}
\] & \begin{tabular}{|rrr}
17 & 2796 \\
\(101 \quad 366\)
\end{tabular} & \begin{tabular}{|r|r|r}
18 & 2969 \\
108 & 368
\end{tabular} & \begin{tabular}{|rrr}
19 & 3158 \\
116 & 370
\end{tabular} & \begin{tabular}{r|rr}
20 & 3365 \\
\(124 \quad 372\)
\end{tabular} & \begin{tabular}{|rr|r|r|}
22 & 3597 \\
135 & 374
\end{tabular} & \[
\begin{array}{|rr|}
\hline 23 & 3867 \\
147 & 376
\end{array}
\] & \[
\begin{array}{rr|}
\hline 26 & 4200 \\
164 & 380
\end{array}
\] \\
\hline 310 & \[
\begin{array}{rr}
\hline 14 & 2353 \\
81 & 356
\end{array}
\] & \[
\begin{array}{rr}
14 & 2492 \\
86 & 356
\end{array}
\] & \begin{tabular}{rr}
15 & 2639 \\
91 & 357
\end{tabular} & \[
\begin{array}{rr}
16 & 2796 \\
97 & 359
\end{array}
\] & \[
\begin{array}{rr}
17 & 2965 \\
103 & 361
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 3145 \\
110 & 362
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 19 & 3340 \\
117 & 363
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 21 & 3554 \\
126 & 364
\end{array}
\] & \[
\begin{array}{|r|}
\hline 22 \\
136
\end{array} \quad 3663
\] \\
\hline 290 & \[
\begin{array}{rr}
12 & 2190 \\
71 & 344
\end{array}
\] & \[
\begin{array}{rr}
13 & 2316 \\
75 & 344
\end{array}
\] & \(\begin{array}{rrr}14 & 2450 \\ 79 & 345\end{array}\) & \(\begin{array}{rr}14 & 2592 \\ 84 & 347\end{array}\) & \[
\begin{array}{rr}
15 & 2743 \\
89 & 348
\end{array}
\] & \[
\begin{array}{rr}
16 & 2902 \\
95 & 349
\end{array}
\] & \begin{tabular}{|r|rr|}
17 & 3071 \\
101 & 350
\end{tabular} & \begin{tabular}{|rrr}
18 & 3254 \\
108 & 351
\end{tabular} & \[
\begin{array}{|rr|}
\hline 20 & 3453 \\
115 & 352
\end{array}
\] \\
\hline 270 & \[
\begin{array}{rr}
\hline 11 & 2032 \\
61 & 332
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2147 \\
65 & 332
\end{array}
\] & \begin{tabular}{rr}
12 & 2269 \\
69 & 333
\end{tabular} & \[
\begin{array}{lr}
13 & 2397 \\
73 & 335
\end{array}
\] & \[
\begin{array}{rr}
14 & 2533 \\
77 & 336
\end{array}
\] & \[
\begin{array}{rr|}
\hline 14 & 2675 \\
81 & 337
\end{array}
\] & \[
\begin{array}{rr}
15 & 2825 \\
86 & 338
\end{array}
\] & \[
\begin{array}{rr}
\hline 16 & 2984 \\
92 & 338
\end{array}
\] & \begin{tabular}{rr}
17 & 3154 \\
98 & 339
\end{tabular} \\
\hline 250 & \[
\begin{array}{rr}
10 & 1883 \\
53 & 321
\end{array}
\] & \begin{tabular}{rr}
11 & 1989 \\
56 & 321
\end{tabular} & \(\begin{array}{r}11 \\ 60 \\ 60 \\ \hline 10\end{array}\) & \(\begin{array}{rr}12 & 2217 \\ 63 & 323\end{array}\) & \[
\begin{array}{rr}
\hline 12 & 2341 \\
66 & 325
\end{array}
\] & \[
\begin{array}{rr}
13 & 2469 \\
70 & 325
\end{array}
\] & \[
\begin{array}{rr}
14 & 2603 \\
75 & 326
\end{array}
\] & \[
\begin{array}{rr}
15 & 2744 \\
79 & 326
\end{array}
\] & \[
\begin{array}{rr|}
\hline 15 & 2893 \\
84 & 327
\end{array}
\] \\
\hline 240 & \[
\begin{array}{rr}
9 & 1811 \\
50 & 315
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 1912 \\
53 & 315
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 2019 \\
56 & 316
\end{array}
\] & \[
\begin{array}{rr}
11 & 2131 \\
59 & 317
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2249 \\
62 & 319
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2371 \\
65 & 320
\end{array}
\] & \[
\begin{array}{rr}
13 & 2498 \\
69 & 320
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2631 \\
73 & 320
\end{array}
\] & \[
\begin{array}{rr}
15 & 2772 \\
78 & 321
\end{array}
\] \\
\hline 220 & \[
\begin{array}{rr}
\hline 9 & 1671 \\
43 & 303 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 9 & 1763 \\
46 & 304
\end{array}
\] & \(\begin{array}{rrr}9 & 1861 \\ 48 & 305\end{array}\) & 101963
51 & \(\begin{array}{|rr|}10 & 2070 \\ 53 & 307\end{array}\) & \(\begin{array}{rrr}11 & 2180 \\ 56 & 308\end{array}\) & \(\begin{array}{r}12 \\ 60 \\ 60 \\ \hline 106\end{array}\) & \(\begin{array}{|rr|}12 & 2415 \\ 63 & 309\end{array}\) & \[
\begin{array}{rr|}
\hline 13 & 2541 \\
67 & 309
\end{array}
\] \\
\hline 200 & \[
\begin{array}{rr}
8 & 1534 \\
37 & 291
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1618 \\
39 & 292
\end{array}
\] & \(\begin{array}{rrr}81707 \\ 41 & 293\end{array}\) & \[
\begin{array}{rr|}
\hline 9 & 1800 \\
43 & 294
\end{array}
\] & \[
\begin{array}{rr}
\hline 9 & 1898 \\
46 & 295
\end{array}
\] & \[
\begin{array}{rr|}
\hline 10 & 1997 \\
48 & 296
\end{array}
\] & \[
\begin{array}{rr}
10 & 2101 \\
51 & 296
\end{array}
\] & \[
\begin{array}{rr}
11 & 2208 \\
54 & 297
\end{array}
\] & \[
\begin{array}{rr|}
\hline 12 & 2320 \\
57 & 297
\end{array}
\] \\
\hline 180 & \[
\begin{array}{rr}
\hline 7 & 1401 \\
32 & 279
\end{array}
\] & \begin{tabular}{|rr|}
\hline 7 & 1478 \\
33 & 279
\end{tabular} & \(\begin{array}{rrr}8 & 1559 \\ 35 & 280\end{array}\) & 81644
\(37 \quad 282\) & \(\begin{array}{|rr|}81732 \\ 39 & 283\end{array}\) & \[
\begin{array}{rr}
\hline 9 & 1822 \\
41 & 284
\end{array}
\] & \(\begin{array}{|rr|}9 & 1916 \\ 44 & 284\end{array}\) & \[
\begin{array}{rr}
10 & 2012 \\
46 & 284
\end{array}
\] & \begin{tabular}{|rr|}
10 & 2112 \\
49 & 284 \\
\hline
\end{tabular} \\
\hline 160 & \[
\begin{array}{rr}
6 & 1273 \\
27 & 266
\end{array}
\] & \[
\begin{array}{rr}
6 & 1343 \\
28 & 266
\end{array}
\] & 71417
\(30 \quad 267\) & \[
\begin{array}{rr|}
\hline 7 & 1494 \\
31 & 269
\end{array}
\] & \(\begin{array}{|rr|}71575 \\ 33 & 270\end{array}\) & \[
\begin{array}{rr}
\hline 8 & 1656 \\
35 & 271
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1740 \\
37 & 272
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 9 & 1827 \\
39 & 272
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 9 & 1917 \\
41 & 272
\end{array}
\] \\
\hline 140 & \[
\begin{array}{rr}
5 & 1150 \\
23 & 252
\end{array}
\] & \[
\begin{array}{rr}
6 & 1214 \\
24 & 253
\end{array}
\] & \(\begin{array}{rrr}6 & 1281 \\ 25 & 254\end{array}\) & 61351
\(26 \quad 255\) & \begin{tabular}{|rr|r|}
6 & 1424 \\
28 & 257
\end{tabular} & \begin{tabular}{|rr|}
71497 \\
29 & 258 \\
\hline
\end{tabular} & \(\begin{array}{|rr|}7 & 1573 \\ 31 & 258\end{array}\) & \(\begin{array}{rrr}8 & 1651 \\ 33 & 259\end{array}\) & \begin{tabular}{|rrr}
8 & 1732 \\
35 & 259 \\
\hline
\end{tabular} \\
\hline 120 & \[
\begin{array}{rr}
5 & 1031 \\
19 & 238
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1089 \\
20 & 238
\end{array}
\] & \(\begin{array}{rrr}5 & 1149 \\ 21 & 239\end{array}\) & \(\begin{array}{rrr}5 & 1212 \\ 22 \quad 241\end{array}\) & \(\begin{array}{|rr|}6 & 1279 \\ 23 & 243\end{array}\) & \[
\begin{array}{rr}
\hline 6 & 1344 \\
24 & 244
\end{array}
\] & \(\begin{array}{|rr|}6 & 1413 \\ 26 & 244\end{array}\) & \[
\begin{array}{|rr|}
\hline 7 & 1483 \\
27 & 245
\end{array}
\] & \[
\begin{array}{|r|}
\hline 7 \\
\hline 1555 \\
29
\end{array} 245 \text { }
\] \\
\hline & 4836 & 48884 & 4933 & 4986 & \(\begin{array}{ll}4 & 1041\end{array}\) & 5 1096 & 51152 & 51209 & \({ }_{6}^{6} 1268\) \\
\hline 100 & \(13 \quad 211\) & \(14 \quad 211\) & \(14 \quad 212\) & \(15 \quad 214\) & \(16 \quad 217\) & \(17 \quad 218\) & \(18 \quad 219\) & \(19 \quad 220\) & \(21 \quad 221\) \\
\hline & \(\begin{array}{ll}2 & 556 \\ 7 & \end{array}\) & \(\begin{array}{ll}2 & 588 \\ 7 & \end{array}\) & \(\begin{array}{ll}3 & 623 \\ 7 & \end{array}\) & 3659 & \(\begin{array}{ll}3 & 698\end{array}\) & \(\begin{array}{ll}3 & 735\end{array}\) & \(\begin{array}{ll}3 & 772\end{array}\) & \(\begin{array}{ll}3 & 811\end{array}\) & \(\begin{array}{ll}4 & 849\end{array}\) \\
\hline 50 & \(7 \quad 172\) & \(7 \quad 173\) & \(7 \quad 175\) & \(8 \quad 177\) & \(8 \quad 181\) & 9183 & \(10 \quad 185\) & \(10 \quad 187\) & \(11 \quad 188\) \\
\hline & 1359 & 2381 & 2405 & 2431 & 2459 & 2484 & 509 & 2535 & 2560 \\
\hline 15 & 3121 & 3121 & 3124 & 4127 & \(4 \quad 132\) & 136 & 140 & 5144 & \(6 \quad 14\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CLIMB} & \multicolumn{2}{|r|}{2.11 .10} \\
\hline & & PAGE & \\
\hline & CLIMB CHART 2 ENGINES & REV 21 & SEQ 050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA }+10 \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{lr}
\multicolumn{2}{l}{ FROM BRAKES RELEASE PT. } \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT)
\end{tabular}} \\
\hline & WEIGHT & BRA & EAS & 00KG) & & & & & \\
\hline FL & 85 & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 \\
\hline 410 & \[
\begin{array}{rr}
\hline 13 & 1962 \\
86 & 393
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2104 \\
93 & 396
\end{array}
\] & \[
\begin{array}{rr}
15 & 2257 \\
101 & 398
\end{array}
\] & \[
\begin{array}{rr}
16 & 2424 \\
109 & 400
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 2613 \\
120 & 403 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 20 & 2841 \\
134 & 406 \\
\hline
\end{array}
\] & & & \\
\hline 390 & \[
\begin{array}{rr}
12 & 1860 \\
76 & 386
\end{array}
\] & \begin{tabular}{rr}
13 & 1989 \\
82 & 388
\end{tabular} & \[
\begin{array}{rr}
\hline 14 & 2125 \\
88 & 390
\end{array}
\] & \[
\begin{array}{rr}
15 & 2270 \\
95 & 391
\end{array}
\] & 16 2425 & \(\begin{array}{|rr|}17 & 2594 \\ 111 & 394\end{array}\) & \[
\begin{array}{|rr|}
\hline 18 & 2784 \\
120 & 396 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
20 & 3006 \\
\(132 \quad 399\)
\end{tabular} & \[
\begin{array}{|rr|}
\hline 22 & 3291 \\
149 & 403
\end{array}
\] \\
\hline 370 & \[
\begin{array}{rr}
\hline 11 & 1767 \\
68 & 378
\end{array}
\] & \begin{tabular}{rr}
12 & 1886 \\
73 & 380
\end{tabular} & \[
\begin{array}{rr}
12 & 2011 \\
78 & 382
\end{array}
\] & \[
\begin{array}{rr}
13 & 2143 \\
84 & 383
\end{array}
\] & \[
\begin{array}{rr}
14 & 2281 \\
90 & 384
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2428 \\
96 & 385
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 16 & 2586 \\
103 & 387
\end{array}
\] & \[
\begin{array}{rr}
17 & 2757 \\
111 & 388
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 2945 \\
120 & 389
\end{array}
\] \\
\hline 350 & \begin{tabular}{rr}
10 & 1684 \\
62 & 370
\end{tabular} & \[
\begin{array}{rr}
\hline 11 & 1795 \\
66 & 372
\end{array}
\] & \begin{tabular}{rr}
11 & 1912 \\
71 & 374
\end{tabular} & \[
\begin{array}{rr}
12 & 2034 \\
76 & 375
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2161 \\
81 & 376
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2296 \\
86 & 377
\end{array}
\] & \begin{tabular}{rr}
15 & 2438 \\
92 & 378
\end{tabular} & \[
\begin{array}{rr}
16 & 2589 \\
98 & 379
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 17 & 2751 \\
104 & 380
\end{array}
\] \\
\hline 330 & \begin{tabular}{rr}
9 & 1606 \\
56 & 362
\end{tabular} & \begin{tabular}{rr}
10 & 1711 \\
60 & 365
\end{tabular} & \begin{tabular}{rr}
11 & 1821 \\
64 & 366
\end{tabular} & \begin{tabular}{rr}
11 & 1936 \\
69 & 368
\end{tabular} & \[
\begin{array}{rr}
12 & 2055 \\
73 & 369 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
13 & 2180 \\
78 & 369
\end{array}
\] & \[
\begin{array}{rr}
13 & 2311 \\
83 & 370 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
14 & 2451 \\
88 & 371 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
15 & 2598 \\
94 & 371 \\
\hline
\end{array}
\] \\
\hline 310 & \begin{tabular}{rr}
9 & 1530 \\
\(51 \quad 354\)
\end{tabular} & \begin{tabular}{rr}
9 & 1629 \\
55 & 356
\end{tabular} & \begin{tabular}{rr}
10 & 1733 \\
58 & 358
\end{tabular} & \begin{tabular}{rr}
10 & 1840 \\
62 & 359
\end{tabular} & \[
\begin{array}{rr|}
\hline 11 & 1952 \\
66 & 360
\end{array}
\] & \[
\begin{array}{rr}
12 & 2069 \\
70 & 361
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2192 \\
75 & 361
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2322 \\
79 & 362
\end{array}
\] & \[
\begin{array}{rr}
14 & 2458 \\
84 & 362
\end{array}
\] \\
\hline 290 & \[
\begin{array}{rr}
8 & 1432 \\
45 & 342
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 8 & 1524 \\
48 & 344
\end{array}
\] & \[
\begin{array}{rr}
9 & 1619 \\
51 & 346
\end{array}
\] & \[
\begin{array}{rr}
9 & 1719 \\
55 & 348
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 1822 \\
58 & 348
\end{array}
\] & \[
\begin{array}{rr}
11 & 1930 \\
62 & 349
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 2043 \\
65 & 350
\end{array}
\] & \[
\begin{array}{rr}
12 & 2161 \\
69 & 350
\end{array}
\] & \[
\begin{array}{rr}
13 & 2286 \\
73 & 350
\end{array}
\] \\
\hline 270 & \begin{tabular}{rr}
7 & 1335 \\
\(39 \quad 330\)
\end{tabular} & \begin{tabular}{rr}
8 & 1420 \\
42 & 332
\end{tabular} & \[
\begin{array}{rr}
8 & 1508 \\
45 & 334 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
9 & 1599 \\
48 & 336
\end{tabular} & \[
\begin{array}{|rr|}
\hline 9 & 1694 \\
51 & 337
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 1793 \\
54 & 337
\end{array}
\] & \begin{tabular}{rr}
10 & 1897 \\
57 & 337
\end{tabular} & \[
\begin{array}{rr|}
\hline 11 & 2005 \\
60 & 338 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 11 & 2119 \\
64 & 338 \\
\hline
\end{array}
\] \\
\hline 250 & \[
\begin{array}{rr}
6 & 1243 \\
34 & 318
\end{array}
\] & \begin{tabular}{rr}
7 & 1321 \\
37 & 321
\end{tabular} & \begin{tabular}{rr}
7 & 1402 \\
39 & 323
\end{tabular} & \begin{tabular}{rr}
8 & 1486 \\
42 & 324
\end{tabular} & \[
\begin{array}{rr}
8 & 1573 \\
44 & 325
\end{array}
\] & \begin{tabular}{rr}
9 & 1664 \\
47 & 325
\end{tabular} & \[
\begin{array}{|rr|}
\hline 9 & 1759 \\
50 & 326
\end{array}
\] & \begin{tabular}{rr}
10 & 1859 \\
53 & 326
\end{tabular} & \begin{tabular}{rr}
10 & 1963 \\
56 & 326
\end{tabular} \\
\hline 240 & \begin{tabular}{rr}
6 & 1198 \\
32 & 312
\end{tabular} & \[
\begin{array}{rr}
\hline 7 & 1273 \\
34 & 315
\end{array}
\] & \begin{tabular}{rr}
7 & 1350 \\
37 & 317
\end{tabular} & \[
\begin{array}{rr}
\hline 7 & 1431 \\
39 & 318
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 8 & 1514 \\
41 & 319
\end{array}
\] & \begin{tabular}{rr|}
8 & 1602 \\
44 & 320
\end{tabular} & \[
\begin{array}{|rr|}
\hline 9 & 1692 \\
46 & 320
\end{array}
\] & \[
\begin{array}{rr}
\hline 9 & 1788 \\
49 & 320
\end{array}
\] & \begin{tabular}{rr}
10 & 1887 \\
52 & 320 \\
\hline
\end{tabular} \\
\hline 220 & \begin{tabular}{rr}
6 & 1109 \\
28 & 300
\end{tabular} & \[
\begin{array}{|r|}
\hline 6 \\
1177 \\
30 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
6 & 1248 \\
32 & 305
\end{tabular} & \begin{tabular}{rr}
7 & 1322 \\
\(34 \quad 306\)
\end{tabular} & \[
\begin{array}{|rr|}
\hline 7 & 1398 \\
36 & 307 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 7 & 1478 \\
38 & 308 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
8 & 1562 \\
40 & 308
\end{tabular} & \begin{tabular}{rr}
8 & 1649 \\
42 & 308
\end{tabular} & \begin{tabular}{rr}
9 & 1740 \\
45 & 308 \\
\hline 8 & 1596
\end{tabular} \\
\hline 200 & \[
\begin{array}{rr}
5 & 1021 \\
24 & 288
\end{array}
\] & \begin{tabular}{rr}
5 & 1083 \\
26 & 291
\end{tabular} & \begin{tabular}{rr}
6 & 1147 \\
27 & 293
\end{tabular} & \[
\begin{array}{rr}
6 & 1215 \\
29 & 294
\end{array}
\] & \[
\begin{array}{rr|}
\hline 6 & 1285 \\
31 & 295
\end{array}
\] & \[
\begin{array}{rr|}
\hline 7 & 1357 \\
33 & 296
\end{array}
\] & \begin{tabular}{rr}
7 & 1433 \\
35 & 296
\end{tabular} & \begin{tabular}{rr}
7 & 1513 \\
\(37 \quad 296\)
\end{tabular} & \begin{tabular}{rr}
8 & 1596 \\
\(39 \quad 295\)
\end{tabular} \\
\hline 180 & \[
\begin{array}{rr}
\hline 5 & 935 \\
21 & 275 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 991 \\
22 & 278 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1049 \\
23 & 280 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1110 \\
25 & 282 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1174 \\
26 & 282 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 6 & 1240 \\
28 & 283 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1309 \\
30 & 283 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
\hline 7 & 1381 \\
31 & 283 \\
\hline 6 & 1255
\end{tabular} & \begin{tabular}{rr}
7 & 1457 \\
33 & 282 \\
\hline 6 & 1323
\end{tabular} \\
\hline 160 & \[
\begin{array}{rr}
\hline 4 & 851 \\
17 & 261 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 4 & 902 \\
19 & 264 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 954 \\
20 & 267 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1009 \\
21 & 268 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1067 \\
22 & 269 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1127 \\
24 & 270 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1189 \\
25 & 270 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
6 & 1255 \\
26 & 270 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 6 & 1323 \\
28 & 269 \\
\hline
\end{array}
\] \\
\hline 140 & \[
\begin{array}{rr|}
\hline 4 & 770 \\
15 & 247 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 4
\end{array} 815 \text { } 16 \text { 250 }
\] & \[
\begin{array}{rr}
4 & 862 \\
17 & 252 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 911 \\
18 & 254 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
4 & 963 \\
19 & 255 \\
\hline 4 & 862
\end{tabular} & \[
\begin{array}{rr|}
5 & 1017 \\
20 & 256 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1073 \\
21 & 256 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1132 \\
22 & 256 \\
\hline
\end{array}
\] & \begin{tabular}{rr|}
5 & 1194 \\
23 & 255 \\
\hline
\end{tabular} \\
\hline 120 & \[
\begin{array}{rr}
3 & 691 \\
12 & 231
\end{array}
\] & \begin{tabular}{|rr|}
3 & 730 \\
13 & 234 \\
\hline 3 & 592
\end{tabular} & \[
\begin{array}{rr}
3 & 772 \\
14 & 237 \\
\hline
\end{array}
\] & \(\begin{array}{|rr|}4 & 816 \\ 15 & 239\end{array}\) & \begin{tabular}{|rr|}
4 & 862 \\
16 & 240 \\
\hline 3 & 697
\end{tabular} & \(\begin{array}{|rr|}4 & 911 \\ 16 & 240\end{array}\) & \[
\begin{array}{|r|}
\hline 4 \\
17 \\
17 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1014 \\
18 & 240 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1070 \\
19 & 240
\end{array}
\] \\
\hline 100 & \[
\begin{array}{ll}
\hline 2 & 561 \\
8 & 201
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 592 \\
9 & 205
\end{array}
\] & \[
\begin{array}{rl}
\hline 3 & 625 \\
10 & 208 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
3 & 660 \\
10 & 210 \\
\hline
\end{array}
\] & \[
\begin{array}{rl}
3 & 697 \\
11 & 212 \\
\hline
\end{array}
\] & \[
\begin{array}{rl}
3 & 736 \\
11 & 212 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 3 & 777 \\
12 & 212
\end{array}
\] & \[
\begin{array}{rr}
\hline 4 & 821 \\
13 & 212
\end{array}
\] & \begin{tabular}{rr}
4 & 866 \\
13 & 211
\end{tabular} \\
\hline 50 & \[
\begin{array}{ll}
2 & 376 \\
4 & 160
\end{array}
\] & \begin{tabular}{ll}
2 & 395 \\
5 & 165
\end{tabular} & \[
\begin{array}{ll}
\hline 2 & 416 \\
5 & 168 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
2 & 438 \\
5 & 171
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 462 \\
6 & 172
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 487 \\
6 & 173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll|}
\hline 2 & 514 \\
6 & 173
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 543 \\
7 & 172 \\
\hline
\end{array}
\] & \[
\begin{array}{ll|}
\hline 2 & 573 \\
7 & 171 \\
\hline
\end{array}
\] \\
\hline 15 & \[
\begin{array}{ll}
\hline 1 & 245 \\
2 & 106
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 256 \\
2 & 111
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 268 \\
2 & 115
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 281 \\
2 & 117
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 296 \\
2 & 119
\end{array}
\] & \[
\begin{array}{ll}
1 & 312 \\
3 & 119
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 329 \\
3 & 119
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 348 \\
3 & 118
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 368 \\
3 & 117
\end{array}
\] \\
\hline
\end{tabular}

\footnotetext{
04 P-05 A310-324-01 PW4152 21 100000E5KG270 00185900021.3300 .0300 .0103250 .000300 .000 .80010
FCOM-B0-02-11-10-004-050
}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA+10 } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{lr}
FROM BRAKES RELEASE PT. \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT) \\
\hline
\end{tabular}} \\
\hline & WEIGHT & BRAKE & RELEAS & (1000KG) & & & & & \\
\hline FL & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 & 165 \\
\hline 410 & & & & & & & & & \\
\hline 390 & \(\begin{array}{r}223291 \\ 149 \\ \hline 183\end{array}\) & & & & & & & & \\
\hline 370 & \[
\begin{array}{rr}
18 & 2945 \\
120 \quad 389
\end{array}
\] & \[
\begin{array}{|rr}
\hline 20 & 3160 \\
130 & 391 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 22 & 3418 \\
143 & 394 \\
\hline
\end{array}
\] & & & & & & \\
\hline 350 & \[
\begin{array}{rr}
17 & 2751 \\
104 \quad 380
\end{array}
\] & \(18 \quad 2925\)
\(112 \quad 381\) & \begin{tabular}{rr}
19 & 3116 \\
120 & 382
\end{tabular} & \begin{tabular}{rr}
20 & 3330 \\
\(129 \quad 385\)
\end{tabular} & \[
\begin{array}{rr}
\hline 22 & 3576 \\
141 & 388 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
24 & 3873 \\
155 & 391
\end{array}
\] & & & \\
\hline 330 & \[
\begin{array}{rr}
15 & 2598 \\
94 & 371
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 16 & 2755 \\
100 & 372
\end{array}
\] & \[
\begin{array}{rr}
\hline 17 & 2923 \\
106 & 373
\end{array}
\] & \[
\begin{array}{rr}
18 & 3104 \\
113 \quad 375
\end{array}
\] & \[
\begin{array}{rr}
19 & 3302 \\
121 & 376
\end{array}
\] & \[
\begin{array}{rr}
21 & 3519 \\
130 & 378
\end{array}
\] & \[
\begin{array}{rr}
22 & 3764 \\
141 & 380
\end{array}
\] & \(24 \quad 4048\)
\(154 \quad 383\) & \begin{tabular}{rr}
27 & 4400 \\
\(171 \quad 386\)
\end{tabular} \\
\hline 310 & \[
\begin{array}{rr}
14 & 2458 \\
84 & 362
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2603 \\
89 & 363
\end{array}
\] & \[
\begin{array}{rr}
16 & 2757 \\
95 & 364
\end{array}
\] & \[
\begin{array}{rr}
17 & 2921 \\
101 \quad 365
\end{array}
\] & \[
\begin{array}{rr}
18 & 3097 \\
107 & 367
\end{array}
\] & \[
\begin{array}{rr}
19 & 3286 \\
115 & 368
\end{array}
\] & \[
\begin{array}{rr}
20 & 3491 \\
123 & 369
\end{array}
\] & \[
\begin{array}{rr}
21 & 3717 \\
132 & 370
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 23 & 3970 \\
142 & 372
\end{array}
\] \\
\hline 290 & \[
\begin{array}{rr}
13 & 2286 \\
73 & 350
\end{array}
\] & \[
\begin{array}{rr}
13 & 2418 \\
78 & 350
\end{array}
\] & \[
\begin{array}{rr}
14 & 2557 \\
82 & 351
\end{array}
\] & \[
\begin{array}{rr}
15 & 2705 \\
87 & 352
\end{array}
\] & \[
\begin{array}{rr}
16 & 2863 \\
93 & 354
\end{array}
\] & \[
\begin{array}{rr}
17 & 3029 \\
99 & 355
\end{array}
\] & \[
\begin{array}{rr}
18 & 3208 \\
105 & 355
\end{array}
\] & \[
\begin{array}{rr}
19 & 3400 \\
112 & 356
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 20 & 3610 \\
120 & 357
\end{array}
\] \\
\hline 270 & \[
\begin{array}{rr}
\hline 11 & 2119 \\
64 & 338
\end{array}
\] & \[
\begin{array}{rr|}
\hline 12 & 2239 \\
68 & 338 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2366 \\
71 & 339
\end{array}
\] & \[
\begin{array}{rr}
13 & 2500 \\
76 & 340 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2642 \\
80 & 341 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2790 \\
85 & 342
\end{array}
\] & \[
\begin{array}{rr}
\hline 16 & 2948 \\
90 & 342 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 17 & 3115 \\
96 & 343
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 3295 \\
102 & 343 \\
\hline
\end{array}
\] \\
\hline 250 & \begin{tabular}{rr}
10 & 1963 \\
56 & 326
\end{tabular} & \begin{tabular}{rr}
11 & 2073 \\
59 & 326
\end{tabular} & \[
\begin{array}{rr}
\hline 11 & 2188 \\
62 & 327
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2310 \\
65 & 328
\end{array}
\] & \[
\begin{array}{rr|}
\hline 13 & 2439 \\
69 & 329 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
13 & 2573 \\
73 & 330 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2714 \\
78 & 330 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2862 \\
82 & 330
\end{array}
\] & \[
\begin{array}{rr}
16 & 3020 \\
87 & 330
\end{array}
\] \\
\hline 240 & \begin{tabular}{rr}
10 & 1887 \\
52 & 320
\end{tabular} & \begin{tabular}{rr}
10 & 1992 \\
55 & 320
\end{tabular} & \[
\begin{array}{rr}
\hline 11 & 2103 \\
58 & 321
\end{array}
\] & \begin{tabular}{rr}
11 & 2219 \\
61 & 322
\end{tabular} & \[
\begin{array}{rr}
\hline 12 & 2343 \\
64 & 323
\end{array}
\] & \[
\begin{array}{rr}
13 & 2470 \\
68 & 324
\end{array}
\] & \[
\begin{array}{rr|}
\hline 13 & 2604 \\
72 & 324
\end{array}
\] & \[
\begin{array}{rr}
14 & 2744 \\
76 & 324
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2893 \\
81 & 324
\end{array}
\] \\
\hline 220 & \begin{tabular}{rr}
9 & 1740 \\
45 & 308
\end{tabular} & \begin{tabular}{rr}
9 & 1835 \\
47 & 308
\end{tabular} & \[
\begin{array}{rr}
10 & 1937 \\
50 & 309
\end{array}
\] & \[
\begin{array}{rr}
10 & 2043 \\
53 & 310
\end{array}
\] & \begin{tabular}{rr}
11 & 2155 \\
55 & 311
\end{tabular} & \[
\begin{array}{rr}
11 & 2270 \\
59 & 311
\end{array}
\] & \[
\begin{array}{rr}
12 & 2391 \\
62 & 312
\end{array}
\] & \[
\begin{array}{rr}
13 & 2517 \\
66 & 312
\end{array}
\] & \[
\begin{array}{rr|}
\hline 13 & 2649 \\
69 & 312
\end{array}
\] \\
\hline 200 & \begin{tabular}{rr}
8 & 1596 \\
39 & 295
\end{tabular} & \begin{tabular}{rr}
8 & 1683 \\
41 & 295
\end{tabular} & \[
\begin{array}{rr}
9 & 1775 \\
43 & 296
\end{array}
\] & \begin{tabular}{rr}
9 & 1872 \\
45 & 297
\end{tabular} & \begin{tabular}{rr}
10 & 1974 \\
48 & 298
\end{tabular} & \[
\begin{array}{rr}
10 & 2078 \\
50 \quad 299
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 2187 \\
53 & 299
\end{array}
\] & \[
\begin{array}{rr}
11 & 2300 \\
56 & 299
\end{array}
\] & \[
\begin{array}{rr}
12 & 2418 \\
59 & 299
\end{array}
\] \\
\hline 180 & \begin{tabular}{rr}
7 & 1457 \\
\(33 \quad 282\)
\end{tabular} & \begin{tabular}{rr}
7 & 1536 \\
35 & 283
\end{tabular} & \[
\begin{array}{rr}
\hline 8 & 1620 \\
36 & 283
\end{array}
\] & \[
\begin{array}{rr}
8 & 1708 \\
38 & 284
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 8 & 1800 \\
40 & 286
\end{array}
\] & \[
\begin{array}{rr}
9 & 1894 \\
43 & 286
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 9 & 1992 \\
45 & 286
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 2094 \\
48 & 286
\end{array}
\] & \[
\begin{array}{rr}
11 & 2200 \\
50 & 286
\end{array}
\] \\
\hline 160 & \[
\begin{array}{rr}
6 & 1323 \\
28 & 269 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 7 \\
1395 \\
29
\end{array} 269 \text { }
\] & \[
\begin{array}{rr}
7 & 1471 \\
31 & 270 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
7 & 1551 \\
33 & 271
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 8 & 1635 \\
34 & 272 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
8 & 1720 \\
36 & 273
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 8 & 1808 \\
38 & 273 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
9 & 1900 \\
40 & 273
\end{array}
\] & \[
\begin{array}{|r|}
\hline 9 \\
1995 \\
43 \\
\hline
\end{array}
\] \\
\hline 140 & \begin{tabular}{rr}
5 & 1194 \\
23 & 255
\end{tabular} & \[
\begin{array}{rr|}
6 & 1260 \\
25 & 255 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
6 & 1329 \\
26 & 256
\end{array}
\] & \[
\begin{array}{rr}
6 & 1401 \\
27 \quad 257 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
7 & 1477 \\
29 & 258 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
7 & 1554 \\
30 \quad 259
\end{array}
\] & \begin{tabular}{rr}
7 & 1633 \\
32 & 259 \\
\hline
\end{tabular} & \[
\begin{array}{rr}
8 & 1716 \\
34 & 259
\end{array}
\] & \[
\begin{array}{rr}
8 & 1801 \\
36 & 259
\end{array}
\] \\
\hline 120 & \[
\begin{array}{rr}
5 & 1070 \\
19 & 240
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1129 \\
20 & 240 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1191 \\
21 & 241
\end{array}
\] & \[
\begin{array}{rr}
6 & 1256 \\
23 & 242
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1325 \\
24 & 243
\end{array}
\] & \[
\begin{array}{rr}
6 & 1394 \\
25 & 244
\end{array}
\] & \begin{tabular}{rr}
7 & 1466 \\
27 & 245
\end{tabular} & \[
\begin{array}{rr}
7 & 1540 \\
28 & 245
\end{array}
\] & \[
\begin{array}{|r|}
\hline 7 \\
1617 \\
30
\end{array} 245
\] \\
\hline 100 & \[
\begin{array}{rr}
\hline 4 & 866 \\
13 & 211
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 4 & 914 \\
14 & 212
\end{array}
\] & \begin{tabular}{rr}
4 & 966 \\
15 & 213
\end{tabular} & \[
\begin{array}{rr}
4 & 1020 \\
16 & 214
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1077 \\
17 & 216
\end{array}
\] & \[
\begin{array}{rr}
5 & 1134 \\
18 & 217
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1193 \\
19 & 218
\end{array}
\] & \[
\begin{array}{rr}
5 & 1254 \\
20 & 219
\end{array}
\] & \[
\begin{array}{rr|}
\hline 6 & 1317 \\
21 & 219
\end{array}
\] \\
\hline 50 & \[
\begin{array}{ll}
2 & 573 \\
7 & 171
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 606 \\
7 & 171
\end{array}
\] & \[
\begin{array}{ll}
3 & 642 \\
8 & 173
\end{array}
\] & \[
\begin{array}{ll}
3 & 679 \\
8 & 175
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 719 \\
9 & 177
\end{array}
\] & \[
\begin{array}{ll}
3 & 758 \\
9 & 179
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 3 & 798 \\
10 & 181
\end{array}
\] & \begin{tabular}{rr}
3 & 838 \\
11 & 182
\end{tabular} & \begin{tabular}{rr|}
\hline 4 & 880 \\
11 & 184 \\
\hline
\end{tabular} \\
\hline 15 & \[
\begin{array}{ll}
2 & 368 \\
3 & 117
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 391 \\
3 & 117
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 415 \\
3 & 119
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 441 \\
4 & 122
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 470 \\
4 & 126
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 496 \\
4 & 129
\end{array}
\] & \[
\begin{array}{ll}
2 & 524 \\
5 & 133
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 551 \\
5 & 136
\end{array}
\] & \[
\begin{array}{ll}
2 & 579 \\
6 & 139
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{A310 GTMUJIATOR FLIGHT CREW OPERATING MANUAL} & \multirow[t]{3}{*}{CLIMB
CLIMB CHART 2 ENGINES} & \multicolumn{2}{|r|}{2.11.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & & REV 21 & SEO 050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA+15 } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{lr}
\multicolumn{2}{|c}{ FROM BRAKES RELEASE PT. } \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT)
\end{tabular}} \\
\hline & WEIGH & BRA & - & 00KG) & & & & & \\
\hline FL & 85 & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 \\
\hline 410 & \[
\begin{array}{rr}
\hline 14 & 2046 \\
93 & 398
\end{array}
\] & \[
\begin{array}{rr}
15 & 2200 \\
101 & 401
\end{array}
\] & \[
\begin{array}{r}
162365 \\
109 \quad 403 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
18 & 2545 \\
119 \quad 405 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 19 & 2750 \\
131 & 407 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 213001 \\
147 & 411 \\
\hline
\end{array}
\] & & & \\
\hline 390 & \[
\begin{array}{rr}
\hline 13 & 1939 \\
83 & 391
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2078 \\
89 & 393
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2225 \\
96 & 394
\end{array}
\] & \[
\begin{array}{rr}
16 & 2381 \\
104 & 396
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 17 & 2547 \\
112 & 397
\end{array}
\] & \[
\begin{array}{rr}
18 & 2729 \\
121 \quad 399
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 20 & 2934 \\
132 & 401
\end{array}
\] & \[
\begin{array}{rr}
\hline 22 & 3176 \\
146 & 404
\end{array}
\] & \\
\hline 370 & \[
\begin{array}{rr}
12 & 1842 \\
74 & 383
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 1970 \\
80 & 385
\end{array}
\] & \[
\begin{array}{rr}
13 & 2105 \\
86 & 386
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2247 \\
92 & 388 \\
\hline
\end{array}
\] & \(\begin{array}{rrr}15 & 2395 \\ 98 & 389\end{array}\) & \(\begin{array}{r}16 \\ 106 \\ \hline 1593\end{array}\) & \[
\begin{array}{|rr|}
\hline 17 & 2721 \\
113 & 391
\end{array}
\] & \[
\begin{array}{rr}
19 & 2905 \\
122 \quad 392
\end{array}
\] & \begin{tabular}{rr}
20 & 3108 \\
132 & 394
\end{tabular} \\
\hline 350 & \begin{tabular}{rr}
11 & 1754 \\
67 & 376
\end{tabular} & \begin{tabular}{rr}
11 & 1875 \\
72 & 377
\end{tabular} & \[
\begin{array}{rr}
12 & 2001 \\
77 & 379
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2132 \\
83 & 380
\end{array}
\] & \[
\begin{array}{rr}
14 & 2269 \\
88 & 381
\end{array}
\] & \[
\begin{array}{rr}
15 & 2413 \\
94 & 382
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 16 & 2565 \\
101 & 383
\end{array}
\] & \[
\begin{array}{rr}
17 & 2726 \\
108 & 384
\end{array}
\] & \begin{tabular}{rrr}
18 & 2899 \\
115 & 385
\end{tabular} \\
\hline 330 & \begin{tabular}{rr}
10 & 1673 \\
61 & 368
\end{tabular} & \[
\begin{array}{rr|}
\hline 11 & 1787 \\
66 & 370
\end{array}
\] & \begin{tabular}{rr}
11 & 1905 \\
70 & 371
\end{tabular} & \[
\begin{array}{rr}
\hline 12 & 2028 \\
75 & 372
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2156 \\
80 & 373
\end{array}
\] & \[
\begin{array}{rr}
14 & 2290 \\
85 & 374
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2430 \\
91 & 375
\end{array}
\] & \[
\begin{array}{rr}
15 & 2579 \\
97 & 375
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 16 & 2736 \\
103 & 376
\end{array}
\] \\
\hline 310 & \begin{tabular}{rr}
9 & 1592 \\
56 & 360
\end{tabular} & \[
\begin{array}{rr}
\hline 10 & 1700 \\
60 & 361
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 1811 \\
64 & 363
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 1927 \\
68 & 364
\end{array}
\] & \[
\begin{array}{rr}
12 & 2047 \\
73 & 365
\end{array}
\] & \[
\begin{array}{rr}
13 & 2172 \\
77 & 366
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2303 \\
82 & 366
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2441 \\
87 & 367
\end{array}
\] & \begin{tabular}{rr}
15 & 2586 \\
93 & 367
\end{tabular} \\
\hline 290 & \begin{tabular}{rr}
8 & 1489 \\
49 & 348
\end{tabular} & \begin{tabular}{rr}
9 & 1588 \\
53 & 350
\end{tabular} & \[
\begin{array}{rr}
\hline 10 & 1691 \\
56 & 351
\end{array}
\] & \begin{tabular}{rr}
10 & 1798 \\
60 & 352
\end{tabular} & \begin{tabular}{rr}
11 & 1908 \\
64 & 353
\end{tabular} & \[
\begin{array}{rr}
\hline 12 & 2023 \\
68 & 354
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2143 \\
72 & 354
\end{array}
\] & \[
\begin{array}{rr}
13 & 2269 \\
76 & 354
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2401 \\
81 & 355
\end{array}
\] \\
\hline 270 & \[
\begin{array}{rr}
8 & 1386 \\
43 & 336 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1478 \\
46 & 338
\end{array}
\] & \[
\begin{array}{rr}
9 & 1573 \\
49 & 339
\end{array}
\] & \[
\begin{array}{rr}
9 & 1671 \\
52 & 340
\end{array}
\] & \[
\begin{array}{rr}
10 & 1772 \\
56 & 341
\end{array}
\] & \[
\begin{array}{rr}
10 & 1878 \\
59 & 342
\end{array}
\] & \begin{tabular}{rr}
11 & 1988 \\
63 & 342
\end{tabular} & \[
\begin{array}{rr}
12 & 2103 \\
66 & 342
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2223 \\
70 & 342 \\
\hline
\end{array}
\] \\
\hline 250 & \begin{tabular}{rr}
7 & 1289 \\
38 & 324
\end{tabular} & \[
\begin{array}{rr}
\hline 7 & 1374 \\
40 & 326
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1461 \\
43 & 327
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1551 \\
46 & 329
\end{array}
\] & \[
\begin{array}{rr}
9 & 1644 \\
49 & 329
\end{array}
\] & \[
\begin{array}{rr}
9 & 1741 \\
52 & 330
\end{array}
\] & \begin{tabular}{rr}
10 & 1842 \\
55 & 330
\end{tabular} & \[
\begin{array}{rr}
11 & 1947 \\
58 & 330
\end{array}
\] & \[
\begin{array}{rr}
11 & 2057 \\
61 & 330
\end{array}
\] \\
\hline 240 & \begin{tabular}{rr}
7 & 1242 \\
35 & 318
\end{tabular} & \[
\begin{array}{rr}
\hline 7 & 1323 \\
38 & 320
\end{array}
\] & \[
\begin{array}{rr}
\hline 7 & 1407 \\
40 & 322 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
8 & 1493 \\
43 & 323
\end{tabular} & \begin{tabular}{rr}
8 & 1582 \\
45 & 323
\end{tabular} & \[
\begin{array}{rr}
9 & 1675 \\
48 & 324 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 9 & 1771 \\
51 & 324 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
10 & 1871 \\
54 & 324
\end{array}
\] & \begin{tabular}{rr}
11 & 1976 \\
57 & 324 \\
\hline 9 & 1820
\end{tabular} \\
\hline 220 & \begin{tabular}{rr}
6 & 1148 \\
\(31 \quad 306\)
\end{tabular} & \begin{tabular}{rr}
6 & 1222 \\
\(33 \quad 308\)
\end{tabular} & \begin{tabular}{rr}
7 & 1299 \\
35 & 310
\end{tabular} & \begin{tabular}{rr}
7 & 1378 \\
37 & 311
\end{tabular} & \begin{tabular}{rr}
8 & 1460 \\
39 & 312
\end{tabular} & \begin{tabular}{rr}
8 & 1545 \\
\(42 \quad 312\)
\end{tabular} & \begin{tabular}{rr}
8 & 1633 \\
44 & 312
\end{tabular} & \begin{tabular}{rr}
9 & 1724 \\
47 & 312
\end{tabular} & \begin{tabular}{rr}
9 & 1820 \\
49 & 312
\end{tabular} \\
\hline 200 & \begin{tabular}{rr}
5 & 1055 \\
26 & 293
\end{tabular} & \[
\begin{array}{rr}
6 & 1123 \\
28 & 295
\end{array}
\] & \[
\begin{array}{rr}
6 & 1193 \\
30 & 297
\end{array}
\] & \begin{tabular}{rr}
6 & 1265 \\
\(32 \quad 298\)
\end{tabular} & \begin{tabular}{rr}
7 & 1340 \\
\(34 \quad 299\)
\end{tabular} & \[
\begin{array}{rr}
7 & 1417 \\
36 & 300
\end{array}
\] & \begin{tabular}{rr}
8 & 1497 \\
38 & 300
\end{tabular} & \[
\begin{array}{rr}
\hline 8 & 1580 \\
40 & 300
\end{array}
\] & \begin{tabular}{rr}
8 & 1667 \\
\(42 \quad 299\)
\end{tabular} \\
\hline 180 & \begin{tabular}{rr}
5 & 965 \\
22 & 280
\end{tabular} & \begin{tabular}{rr}
5 & 1026 \\
24 & 282
\end{tabular} & \[
\begin{array}{rr}
5 & 1090 \\
26 & 284
\end{array}
\] & \begin{tabular}{rr}
6 & 1155 \\
\(27 \quad 285\)
\end{tabular} & \[
\begin{array}{rr}
\hline 6 & 1223 \\
29 & 286
\end{array}
\] & \[
\begin{array}{rr}
6 & 1293 \\
31 & 287
\end{array}
\] & \begin{tabular}{rr}
7 & 1366 \\
32 & 287
\end{tabular} & \[
\begin{array}{rr}
7 & 1441 \\
34 & 287
\end{array}
\] & \begin{tabular}{rr}
8 & 1520 \\
36 & 286 \\
7 &
\end{tabular} \\
\hline 160 & \[
\begin{array}{rr}
4 & 877 \\
19 & 266
\end{array}
\] & \begin{tabular}{rr}
5 & 933 \\
20 & 269
\end{tabular} & \begin{tabular}{rr}
5 & 990 \\
22 & 271
\end{tabular} & \begin{tabular}{rr}
5 & 1049 \\
23 & 272
\end{tabular} & \[
\begin{array}{rr|}
\hline 5 & 1110 \\
24 & 273
\end{array}
\] & \[
\begin{array}{rr}
6 & 1174 \\
26 & 273
\end{array}
\] & \begin{tabular}{rr}
6 & 1239 \\
27 & 273
\end{tabular} & \[
\begin{array}{rr}
6 & 1308 \\
29 & 273
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 7 & 1379 \\
30 & 273
\end{array}
\] \\
\hline 140 & \begin{tabular}{rr}
4 & 792 \\
16 & 251
\end{tabular} & \begin{tabular}{rr}
4 & 842 \\
17 & 254
\end{tabular} & \[
\begin{array}{rr}
\hline 4 & 894 \\
18 & 256
\end{array}
\] & \(\begin{array}{|rr|}4 & 947 \\ 19 & 258\end{array}\) & \[
\begin{array}{rr}
5 & 1002 \\
20 & 258
\end{array}
\] & 51059
\(22 \quad 259\) & \[
\begin{array}{|rr|}
\hline 5 & 1118 \\
23 & 259
\end{array}
\] & \[
\begin{array}{rr}
6 & 1179 \\
24 & 259
\end{array}
\] & \[
\begin{array}{rr}
6 & 1243 \\
25 & 258
\end{array}
\] \\
\hline 120 & \[
\begin{array}{rr}
3 & 710 \\
13 & 235 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 754 \\
14 & 238 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 800 \\
15 & 240 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
4 & 847 \\
16 & 242 \\
\hline 3 & 684
\end{tabular} & \begin{tabular}{|rr|}
4 & 896 \\
17 & 243 \\
\hline 3 & 724
\end{tabular} & \begin{tabular}{rr}
4 & 947 \\
18 & 243 \\
\hline
\end{tabular} & \[
\begin{array}{rr}
5 & 1000 \\
19 & 243 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1055 \\
20 \quad 243 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1112 \\
21 & 242 \\
\hline
\end{array}
\] \\
\hline 100 & \[
\begin{array}{ll}
\hline 3 & 574 \\
9 & 205
\end{array}
\] & \[
\begin{array}{rl}
\hline 3 & 610 \\
10 & 208
\end{array}
\] & \[
\begin{array}{rl}
\hline 3 & 646 \\
10 & 211
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 3 & 684 \\
11 & 212
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 3 & 724 \\
11 & 214 \\
\hline
\end{array}
\] & \(\begin{array}{rr}3 & 765 \\ 12 & 214\end{array}\) & \begin{tabular}{rr}
4 & 808 \\
13 & 214
\end{tabular} & \[
\begin{array}{rr}
\hline 4 & 852 \\
14 & 214
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 4 & 899 \\
14 & 213
\end{array}
\] \\
\hline 50 & \[
\begin{array}{ll}
2 & 384 \\
5 & 162
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 406 \\
5 & 166
\end{array}
\] & \[
\begin{array}{ll}
2 & 430 \\
5 & 169
\end{array}
\] & \[
\begin{array}{ll}
2 & 455 \\
5 & 171
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 480 \\
6 & 172
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 507 \\
6 & 173
\end{array}
\] & \begin{tabular}{ll}
2 & 536 \\
7 & 173
\end{tabular} & \begin{tabular}{ll}
2 & 565 \\
7 & 172
\end{tabular} & \begin{tabular}{ll}
3 & 595 \\
7 & 171 \\
\hline
\end{tabular} \\
\hline 15 & \[
\begin{array}{ll}
1 & 249 \\
2 & 105
\end{array}
\] & \[
\begin{array}{ll}
1 & 262 \\
2 & 109
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 277 \\
2 & 112
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 292 \\
2 & 114
\end{array}
\] & \[
\begin{array}{ll}
1 & 308 \\
2 & 115
\end{array}
\] & \[
\begin{array}{ll}
1 & 326 \\
3 & 115
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 344 \\
3 & 115
\end{array}
\] & \[
\begin{array}{ll}
1 & 363 \\
3 & 114
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 382 \\
3 & 113
\end{array}
\] \\
\hline
\end{tabular}

\footnotetext{
04 P-05 A310-324-01 PW4152 21 100000E5KG270 00185900021.3300 .0300 .0103250 .000300 .000 .80015
FCOM-B0-02-11-10-006-050
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CLIMB} & \multicolumn{2}{|r|}{2.11.10} \\
\hline & & PAGE & \\
\hline & CLIMB CHART 2 ENGINES & REV 21 & SEQ 050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA+15 } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{lr}
\hline \multicolumn{1}{l}{ FROM BRAKES RELEASE PT. } \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT) \\
\hline
\end{tabular}} \\
\hline & WEIGHT & BRAKE & RELEAS & 1000KG) & & & & & \\
\hline FL & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 & 165 \\
\hline 410 & & & & & & & & & \\
\hline 390 & & & & & & & & & \\
\hline 370 & 203108
\(132 \quad 394\) & \[
\begin{array}{|rr}
\hline 22 & 3342 \\
144 & 396 \\
\hline
\end{array}
\] & 243629
\(159 \quad 400\) & & & & & & \\
\hline 350 & \(18 \quad 2899\)
\(115 \quad 385\) & \[
\begin{array}{|rr|}
\hline 19 & 3088 \\
123 & 386 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
21 & 3296 \\
133 & 387
\end{tabular} & \[
\begin{array}{rr}
22 & 3531 \\
144 \quad 390
\end{array}
\] & \begin{tabular}{rr}
24 & 3805 \\
157 & 393
\end{tabular} & \begin{tabular}{rr}
26 & 4146 \\
175 & 396
\end{tabular} & & & \\
\hline 330 & \[
\begin{array}{rr}
16 & 2736 \\
103 & 376
\end{array}
\] & \[
\begin{array}{|rr}
18 & 2905 \\
110 & 377
\end{array}
\] & \begin{tabular}{rr}
19 & 3086 \\
117 & 378
\end{tabular} & \[
\begin{array}{rr}
\hline 20 & 3284 \\
126 & 380
\end{array}
\] & \[
\begin{array}{rr}
\hline 21 & 3501 \\
135 & 381
\end{array}
\] & \[
\begin{array}{rr}
\hline 23 & 3743 \\
145 & 383
\end{array}
\] & \[
\begin{array}{rr}
25 & 4020 \\
158 & 385 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
27 & 4349 \\
\(174 \quad 388\)
\end{tabular} & \\
\hline 310 & \[
\begin{array}{rr}
15 & 2586 \\
93 & 367
\end{array}
\] & \[
\begin{array}{rr|}
\hline 16 & 2741 \\
99 & 368
\end{array}
\] & \[
\begin{array}{rr}
17 & 2907 \\
105 & 369
\end{array}
\] & \[
\begin{array}{rr}
18 & 3085 \\
112 & 370
\end{array}
\] & \[
\begin{array}{rr}
19 & 3278 \\
119 & 371
\end{array}
\] & \[
\begin{array}{rr}
21 & 3486 \\
128 & 372
\end{array}
\] & \[
\begin{array}{rr}
22 & 3716 \\
137 & 374
\end{array}
\] & \[
\begin{array}{rr}
24 & 3970 \\
148 & 375
\end{array}
\] & \[
\begin{array}{rr}
26 & 4260 \\
161 & 377
\end{array}
\] \\
\hline 290 & \[
\begin{array}{rr}
\hline 14 & 2401 \\
81 & 355
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2542 \\
86 & 355 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2691 \\
91 & 356
\end{array}
\] & \[
\begin{array}{rr}
\hline 16 & 2851 \\
97 & 357
\end{array}
\] & \[
\begin{array}{rr}
17 & 3022 \\
103 & 358
\end{array}
\] & \[
\begin{array}{rr}
18 & 3205 \\
110 \quad 359
\end{array}
\] & \begin{tabular}{rr}
20 & 3403 \\
117 & 360
\end{tabular} & \[
\begin{array}{rr}
\hline 21 & 3618 \\
125 & 361
\end{array}
\] & \[
\begin{array}{rr}
22 & 3855 \\
135 & 362 \\
\hline
\end{array}
\] \\
\hline 270 & \[
\begin{array}{rr}
12 & 2223 \\
70 & 342 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2350 \\
74 & 343 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
14 & 2486 \\
79 & 343
\end{array}
\] & \[
\begin{array}{rr}
15 & 2630 \\
84 & 344
\end{array}
\] & \[
\begin{array}{rr}
15 & 2783 \\
89 & 345 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 16 & 2945 \\
94 & 346
\end{array}
\] & \[
\begin{array}{rr}
17 & 3119 \\
100 \quad 347
\end{array}
\] & \[
\begin{array}{rr}
18 & 3304 \\
107 & 347
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 20 & 3506 \\
114 & 348 \\
\hline
\end{array}
\] \\
\hline 250 & \[
\begin{array}{rr}
\hline 11 & 2057 \\
61 & 330
\end{array}
\] & \[
\begin{array}{rr|}
\hline 12 & 2172 \\
65 & 330
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2296 \\
68 & 331
\end{array}
\] & \[
\begin{array}{rr}
13 & 2427 \\
72 & 332 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2565 \\
76 & 333
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2711 \\
81 & 333
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2866 \\
86 & 334 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 16 & 3029 \\
91 & 334
\end{array}
\] & \[
\begin{array}{rr|}
\hline 17 & 3205 \\
97 & 334 \\
\hline
\end{array}
\] \\
\hline 240 & \begin{tabular}{rr}
11 & 1976 \\
57 & 324
\end{tabular} & \[
\begin{array}{rr}
\hline 11 & 2087 \\
60 & 324
\end{array}
\] & \[
\begin{array}{rr}
12 & 2205 \\
64 & 325
\end{array}
\] & \[
\begin{array}{rr}
12 & 2329 \\
67 & 326
\end{array}
\] & \[
\begin{array}{rr|}
\hline 13 & 2461 \\
71 & 327
\end{array}
\] & \[
\begin{array}{rr}
14 & 2600 \\
75 & 327 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2747 \\
80 & 328
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2901 \\
85 & 328
\end{array}
\] & \[
\begin{array}{rr}
\hline 16 & 3066 \\
90 & 328
\end{array}
\] \\
\hline 220 & \begin{tabular}{rr}
9 & 1820 \\
49 & 312
\end{tabular} & \begin{tabular}{rr}
10 & 1920 \\
52 & 312
\end{tabular} & \[
\begin{array}{rr}
11 & 2028 \\
55 & 313
\end{array}
\] & \[
\begin{array}{rr}
11 & 2141 \\
58 & 314
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2261 \\
61 & 315
\end{array}
\] & \(\begin{array}{rr}12 & 2385 \\ 65 & 315\end{array}\) & \(\begin{array}{rrr}13 & 2517 \\ 68 & 315\end{array}\) & \[
\begin{array}{rr}
14 & 2656 \\
73 & 315
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2803 \\
77 & 315
\end{array}
\] \\
\hline 200 & \[
\begin{array}{rr}
8 & 1667 \\
42 & 299
\end{array}
\] & \begin{tabular}{rr}
9 & 1758 \\
45 & 300
\end{tabular} & \begin{tabular}{rr}
9 & 1856 \\
47 & 300
\end{tabular} & \begin{tabular}{rr}
10 & 1959 \\
50 & 301
\end{tabular} & \[
\begin{array}{rr}
10 & 2067 \\
52 & 302
\end{array}
\] & \[
\begin{array}{rr}
11 & 2180 \\
55 & 302
\end{array}
\] & \[
\begin{array}{rr}
12 & 2298 \\
58 & 302
\end{array}
\] & \[
\begin{array}{rr}
12 & 2422 \\
62 & 302
\end{array}
\] & \[
\begin{array}{rr|}
\hline 13 & 2553 \\
65 & 302
\end{array}
\] \\
\hline 180 & \[
\begin{array}{rr}
8 & 1520 \\
36 & 286 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 8 & 1602 \\
38 & 286 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1691 \\
40 & 287 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
9 & 1784 \\
\(42 \quad 288\)
\end{tabular} & \begin{tabular}{rr}
9 & 1882 \\
44 & 289 \\
\hline 8 & 1707
\end{tabular} & \[
\begin{array}{rr}
10 & 1983 \\
47 & 289 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 2090 \\
50 & 289 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
11 & 2201 \\
52 & 289 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
\hline 12 & 2318 \\
55 & 289 \\
\hline
\end{array}
\] \\
\hline 160 & \[
\begin{array}{rr}
7 & 1379 \\
30 \quad 273 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 7 \\
\hline 1454 \\
32 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
7 & 1534 \\
34 & 273 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
8 & 1618 \\
36 & 274 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 8 & 1707 \\
37 & 275 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
9 & 1798 \\
40 & 275 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 9 & 1894 \\
42 & 275 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
10 & 1994 \\
44 & 275
\end{tabular} & \[
\begin{array}{rr}
10 & 2099 \\
47 & 275 \\
\hline
\end{array}
\] \\
\hline 140 & \[
\begin{array}{rr}
6 & 1243 \\
25 & 258 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 6 & 1311 \\
27 & 258 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
7 & 1383 \\
28 & 259
\end{tabular} & \begin{tabular}{rr}
7 & 1460 \\
\(30 \quad 260\)
\end{tabular} & \begin{tabular}{rr}
7 & 1540 \\
31 & 261
\end{tabular} & \[
\begin{array}{rr}
8 & 1622 \\
33 & 261
\end{array}
\] & \begin{tabular}{rr|}
8 & 1708 \\
35 & 261
\end{tabular} & \[
\begin{array}{rr}
8 & 1799 \\
37 & 261
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 9 & 1892 \\
39 & 261 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{array}{rr}
5 & 1112 \\
21 & 242
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1173 \\
22 & 243
\end{array}
\] & \begin{tabular}{rr}
6 & 1238 \\
23 & 243
\end{tabular} & \[
\begin{array}{rr}
6 & 1307 \\
24 & 244
\end{array}
\] & \[
\begin{array}{rr}
\hline 6 & 1380 \\
26 & 245
\end{array}
\] & \begin{tabular}{rr}
7 & 1453 \\
27 & 246
\end{tabular} & \[
\begin{array}{|rr|}
\hline 7 & 1531 \\
29 & 246
\end{array}
\] & \begin{tabular}{rr}
7 & 1612 \\
31 & 246
\end{tabular} & \[
\begin{array}{|rr|}
\hline 8 & 1696 \\
32 & 246
\end{array}
\] \\
\hline 100 & \begin{tabular}{rr}
4 & 899 \\
14 & 213
\end{tabular} & \begin{tabular}{rr}
4 & 949 \\
15 & 213
\end{tabular} & \[
\begin{array}{rr}
4 & 1002 \\
16 & 214
\end{array}
\] & \[
\begin{array}{rr}
5 & 1059 \\
17 & 216
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 5 & 1119 \\
18 & 217
\end{array}
\] & \[
\begin{array}{rr}
5 & 1180 \\
19 & 218
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1244 \\
20 & 218
\end{array}
\] & \[
\begin{array}{rr}
6 & 1311 \\
21 & 219
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1380 \\
23 & 219
\end{array}
\] \\
\hline 50 & \[
\begin{array}{ll}
3 & 595 \\
7 & 171
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 629 \\
8 & 171
\end{array}
\] & \begin{tabular}{ll}
3 & 665 \\
8 & 173
\end{tabular} & \[
\begin{array}{ll}
3 & 704 \\
9 & 174
\end{array}
\] & \[
\begin{array}{ll|}
\hline 3 & 746 \\
9 & 176
\end{array}
\] & \begin{tabular}{rr}
3 & 788 \\
10 & 177
\end{tabular} & \[
\begin{array}{|rr|}
\hline 3 & 831 \\
10 & 179
\end{array}
\] & \begin{tabular}{rr}
4 & 876 \\
11 & 180
\end{tabular} & \[
\begin{array}{|rr|}
\hline 4 & 922 \\
12 & 181
\end{array}
\] \\
\hline 15 & \[
\begin{array}{ll}
\hline 2 & 382 \\
3 & 113
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 405 \\
3 & 113
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 430 \\
3 & 115
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 457 \\
4 & 117
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 486 \\
4 & 120
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 515 \\
4 & 123
\end{array}
\] & \begin{tabular}{ll}
2 & 545 \\
5 & 126
\end{tabular} & \[
\begin{array}{ll}
\hline 2 & 575 \\
5 & 129
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 607 \\
6 & 132
\end{array}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CLIMB} & \multicolumn{2}{|r|}{2.11 .10} \\
\hline & & PAGE & \\
\hline & CLIMB CHART 2 ENGINES & REV 21 & SEQ 050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA }+20 \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{lr}
\multicolumn{2}{l}{ FROM BRAKES RELEASE PT. } \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT)
\end{tabular}} \\
\hline & WEIGHT & BRA & - & (00) & & & & & \\
\hline FL & 85 & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 \\
\hline 410 & \[
\begin{array}{r}
15 \quad 2150 \\
102 \quad 404 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 16 & 2318 \\
111 & 406 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 2499 \\
121 & 408 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
19 & 2697 \\
132 & 410 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 21 & 2923 \\
146 & 413 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr}
\hline 24 & 3206 \\
164 & 416
\end{array}
\] & & & \\
\hline 390 & \[
\begin{array}{rr}
14 & 2036 \\
91 & 396
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2188 \\
98 & 398
\end{array}
\] & \[
\begin{array}{|rr}
16 & 2349 \\
106 & 400
\end{array}
\] & 17
114
1749 & \[
\begin{array}{|rr|}
\hline 18 & 2700 \\
124 & 403
\end{array}
\] & \[
\begin{array}{rr}
\hline 20 & 2899 \\
134 & 404
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 22 & 3124 \\
147 & 406
\end{array}
\] & \[
\begin{array}{rr}
24 & 3395 \\
163 & 410
\end{array}
\] & \\
\hline 370 & \begin{tabular}{rr}
13 & 1932 \\
82 & 389
\end{tabular} & \[
\begin{array}{rr}
\hline 14 & 2074 \\
88 & 390
\end{array}
\] & \[
\begin{array}{rr}
14 & 2221 \\
95 & 392
\end{array}
\] & \(\begin{array}{r}16 \\ 102375 \\ \hline 103\end{array}\) & 17 25336 & \begin{tabular}{|rr}
18 & 2707 \\
117 & 395
\end{tabular} & \[
\begin{array}{|rr|}
\hline 19 & 2891 \\
126 & 397
\end{array}
\] & \[
\begin{array}{rr}
20 & 3091 \\
136 & 398
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 22 & 3314 \\
147 & 400
\end{array}
\] \\
\hline 350 & \begin{tabular}{rr}
12 & 1840 \\
74 & 381
\end{tabular} & \begin{tabular}{rr}
12 & 1972 \\
80 & 383
\end{tabular} & \[
\begin{array}{rr}
13 & 2110 \\
86 & 384
\end{array}
\] & \[
\begin{array}{rr}
14 & 2253 \\
92 & 385
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2401 \\
98 & 386
\end{array}
\] & \begin{tabular}{|rrr}
16 & 2557 \\
105 & 387
\end{tabular} & \[
\begin{array}{|rr|}
\hline 17 & 2722 \\
112 & 388 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
19 & 2898 \\
120 & 389
\end{array}
\] & \begin{tabular}{rr}
20 & 3086 \\
129 & 390
\end{tabular} \\
\hline 330 & \begin{tabular}{rr}
11 & 1754 \\
68 & 374
\end{tabular} & \begin{tabular}{rr}
12 & 1879 \\
73 & 375
\end{tabular} & \[
\begin{array}{rr}
12 & 2008 \\
78 & 377 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
13 & 2142 \\
83 & 378 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
14 & 2280 \\
89 & 379 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
15 & 2425 \\
95 & 380 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
16 & 2577 \\
101 & 380 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
17 & 2738 \\
108 & 381 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
18 & 2909 \\
115 & 382
\end{array}
\] \\
\hline 310 & \begin{tabular}{rr}
10 & 1668 \\
62 & 365
\end{tabular} & \begin{tabular}{rr}
11 & 1786 \\
66 & 367
\end{tabular} & \begin{tabular}{rr}
12 & 1908 \\
71 & 368
\end{tabular} & \[
\begin{array}{rr}
12 & 2034 \\
76 & 369
\end{array}
\] & \[
\begin{array}{rr}
13 & 2163 \\
81 & 370
\end{array}
\] & \[
\begin{array}{rr}
14 & 2299 \\
86 & 371
\end{array}
\] & \begin{tabular}{rr}
15 & 2440 \\
91 & 371
\end{tabular} & \[
\begin{array}{rr}
16 & 2589 \\
97 & 372
\end{array}
\] & \[
\begin{array}{rr}
17 & 2745 \\
104 & 373
\end{array}
\] \\
\hline 290 & \[
\begin{array}{rr}
9 & 1557 \\
54 & 354
\end{array}
\] & \begin{tabular}{rr}
10 & 1666 \\
58 & 355
\end{tabular} & \[
\begin{array}{rr}
10 & 1779 \\
62 & 356
\end{array}
\] & \begin{tabular}{rr}
11 & 1895 \\
66 & 357
\end{tabular} & \[
\begin{array}{rr}
12 & 2014 \\
71 & 358
\end{array}
\] & \[
\begin{array}{rr}
13 & 2138 \\
75 & 359
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2267 \\
80 & 359
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2402 \\
85 & 360
\end{array}
\] & \[
\begin{array}{rr}
15 & 2544 \\
90 & 360
\end{array}
\] \\
\hline 270 & \begin{tabular}{rr}
8 & 1448 \\
47 & 341
\end{tabular} & \[
\begin{array}{|rr|}
\hline 9 & 1549 \\
51 & 343
\end{array}
\] & \[
\begin{array}{rr}
9 & 1652 \\
54 & 344
\end{array}
\] & \begin{tabular}{rr}
10 & 1759 \\
58 & 345
\end{tabular} & \begin{tabular}{rr}
11 & 1868 \\
62 & 346
\end{tabular} & \begin{tabular}{rr}
11 & 1982 \\
65 & 347
\end{tabular} & \[
\begin{array}{rr}
\hline 12 & 2100 \\
69 & 347
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2223 \\
74 & 347 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
14 & 2351 \\
78 & 347
\end{array}
\] \\
\hline 250 & \begin{tabular}{rr}
8 & 1345 \\
41 & 330
\end{tabular} & \begin{tabular}{rr}
8 & 1438 \\
44 & 331
\end{tabular} & \begin{tabular}{rr}
9 & 1533 \\
47 & 333
\end{tabular} & \begin{tabular}{rr}
9 & 1631 \\
\(50 \quad 333\)
\end{tabular} & \begin{tabular}{rr}
10 & 1732 \\
54 & 334
\end{tabular} & \begin{tabular}{rr}
10 & 1836 \\
57 & 335
\end{tabular} & \begin{tabular}{rr}
11 & 1943 \\
60 & 335
\end{tabular} & \begin{tabular}{rr}
11 & 2055 \\
64 & 335
\end{tabular} & \[
\begin{array}{rr}
12 & 2172 \\
68 & 335 \\
\hline
\end{array}
\] \\
\hline 240 & \begin{tabular}{rr}
7 & 1294 \\
39 & 324
\end{tabular} & \begin{tabular}{rr}
8 & 1384 \\
41 & 325
\end{tabular} & \begin{tabular}{rr}
8 & 1475 \\
44 & 327
\end{tabular} & \begin{tabular}{rr}
9 & 1569 \\
47 & 328
\end{tabular} & \[
\begin{array}{|rr|}
\hline 9 & 1665 \\
50 & 328
\end{array}
\] & \begin{tabular}{rr}
10 & 1765 \\
53 & 329
\end{tabular} & \begin{tabular}{rr}
10 & 1867 \\
56 & 329
\end{tabular} & \[
\begin{array}{rr|}
\hline 11 & 1974 \\
60 & 329
\end{array}
\] & \[
\begin{array}{rr}
12 & 2085 \\
63 & 329
\end{array}
\] \\
\hline 220 & \begin{tabular}{rr}
6 & 1195 \\
34 & 311
\end{tabular} & \[
\begin{array}{|rr|}
\hline 7 & 1277 \\
36 & 313 \\
\hline
\end{array}
\] & \(\begin{array}{rrr}7 & 1361 \\ 38 & 315\end{array}\) & \begin{tabular}{rr}
8 & 1447 \\
\(41 \quad 315\)
\end{tabular} & \begin{tabular}{rr}
8 & 1535 \\
43 & 316
\end{tabular} & \begin{tabular}{rr}
9 & 1626 \\
46 & 317
\end{tabular} & \begin{tabular}{rr}
9 & 1719 \\
49 & 317
\end{tabular} & \begin{tabular}{rr}
10 & 1816 \\
51 & 317
\end{tabular} & \begin{tabular}{rr}
10 & 1917 \\
54 & 317
\end{tabular} \\
\hline 200 & \[
\begin{array}{rr}
6 & 1097 \\
29 & 299 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
6 & 1172 \\
31 & 301 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
7 & 1249 \\
33 & 302 \\
6 & 1139
\end{tabular} & \begin{tabular}{rr}
7 & 1327 \\
\(35 \quad 303\) \\
\hline 6 & 1210
\end{tabular} & \[
\begin{array}{rr|}
\hline 7 & 1407 \\
37 & 304 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
8 & 1490 \\
39 & 304 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 8 & 1575 \\
42 & 304 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 9 & 1663 \\
44 & 304 \\
\hline
\end{array}
\] & \begin{tabular}{rr|}
9 & 1754 \\
47 & 304 \\
\hline 8 & 1596
\end{tabular} \\
\hline 180 & \[
\begin{array}{rr}
5 & 1001 \\
25 & 285 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
5 & 1069 \\
26 & 287 \\
\hline & 971
\end{tabular} & \[
\begin{array}{rr}
6 & 1139 \\
28 & 289 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
6 & 1210 \\
30 & 290 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 7 & 1283 \\
32 & 290 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
\hline 7 & 1358 \\
34 & 291 \\
\hline 6 & 1232
\end{tabular} & \begin{tabular}{rr}
7 & 1435 \\
35 & 291 \\
\hline 6 & 1301
\end{tabular} & \begin{tabular}{rr|}
\hline 8 & 1514 \\
37 & 291 \\
\hline 7 & 1372
\end{tabular} & \begin{tabular}{rr}
8 & 1596 \\
40 & 291 \\
\hline 7 & 1446
\end{tabular} \\
\hline 160 & \[
\begin{array}{rr}
5 & 909 \\
21 & 271 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
5 & 971 \\
22 & 273 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1034 \\
24 \quad 275 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 1098 \\
25 & 276 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
6 & 1164 \\
27 & 277 \\
\hline 5 & 1049
\end{tabular} & \[
\begin{array}{rr}
6 & 1232 \\
28 & 277 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 6 & 1301 \\
30 & 277 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 7 & 1372 \\
32 & 277 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
7 & 1446 \\
33 & 277 \\
\hline 6 & 1302
\end{tabular} \\
\hline 140 & \[
\begin{array}{rr}
4 & 819 \\
17 & 256 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 875 \\
18 & 258 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 932 \\
20 & 260 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
5 & 990 \\
21 & 261 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
5 & 1049 \\
22 & 262 \\
\hline & 937
\end{tabular} & \begin{tabular}{|rr|}
5 & 1110 \\
24 & 262 \\
\hline
\end{tabular} & \[
\begin{array}{|rr|}
\hline 6 & 1172 \\
25 & 262 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1236 \\
26 & 262 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
6 & 1302 \\
28 & 262 \\
\hline 6 & 1163
\end{tabular} \\
\hline 120 & \[
\begin{array}{rr}
4 & 732 \\
14 & 240 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 782 \\
15 & 242 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
4 & 833 \\
16 & 244 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
4 & 885 \\
17 & 245 \\
\hline 3 & 714
\end{tabular} & \[
\begin{array}{|rr|}
\hline 4 & 937 \\
18 & 246 \\
\hline
\end{array}
\] & \begin{tabular}{|rr|}
5 & 992 \\
19 & 246 \\
\hline 4 & 801
\end{tabular} & \[
\begin{array}{|rr|}
\hline 5 & 1047 \\
20 & 246 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
5 & 1105 \\
21 & 246 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 6 & 1163 \\
23 & 246
\end{array}
\] \\
\hline 100 & \[
\begin{array}{rl}
\hline 3 & 590 \\
10 & 209
\end{array}
\] & \[
\begin{array}{rr}
3 & 631 \\
10 & 211 \\
\hline
\end{array}
\] & \[
\begin{array}{rl}
\hline 3 & 672 \\
11 & 213
\end{array}
\] & \[
\begin{array}{rr}
3 & 714 \\
12 & 215
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 3 & 757 \\
12 & 216
\end{array}
\] & \begin{tabular}{rr|}
4 & 801 \\
13 & 216
\end{tabular} & \[
\begin{array}{|rr|}
\hline 4 & 846 \\
14 & 216 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
4 & 892 \\
15 & 216
\end{tabular} & \begin{tabular}{rr}
4 & 939 \\
15 & 216
\end{tabular} \\
\hline 50 & \begin{tabular}{ll}
2 & 393 \\
5 & 165
\end{tabular} & \[
\begin{array}{ll}
\hline 2 & 420 \\
5 & 168
\end{array}
\] & \[
\begin{array}{ll}
2 & 447 \\
5 & 170
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 476 \\
6 & 172
\end{array}
\] & \[
\begin{array}{ll|}
\hline 2 & 504 \\
6 & 173
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 533 \\
6 & 173
\end{array}
\] & \begin{tabular}{ll}
2 & 562 \\
7 & 173
\end{tabular} & \[
\begin{array}{ll}
\hline 3 & 592 \\
7 & 173 \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 623 \\
8 & 172 \\
\hline
\end{array}
\] \\
\hline 15 & \[
\begin{array}{ll}
\hline 1 & 253 \\
2 & 103
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 271 \\
2 & 106
\end{array}
\] & \[
\begin{array}{ll}
1 & 289 \\
2 & 109
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 307 \\
2 & 110
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 326 \\
2 & 111
\end{array}
\] & \[
\begin{array}{ll}
1 & 344 \\
3 & 112
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 363 \\
3 & 111
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 382 \\
3 & 111
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 401 \\
3 & 110
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 21 100000E5KG270 00185900021.3300 .0300 .01 03250.000300.000.800 20 FCOM-B0-02-11-10-008-050
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{CLIMB
CLIMB CHART 2 ENGINES} & \multicolumn{2}{|r|}{2.11.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 9/10} \\
\hline & & REV 21 & SEQ 050 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 250 KT / 300 KT / M. 80} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA+20 } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{lr|}
\hline FROM BRAKES RELEASE PT. \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT) \\
\hline
\end{tabular}}} \\
\hline \multirow[b]{2}{*}{FL} & \multicolumn{6}{|l|}{WEIGHT AT BRAKES RELEASE (1000KG)} & & & \\
\hline & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 & 165 \\
\hline \multicolumn{10}{|l|}{} \\
\hline \multicolumn{10}{|l|}{390} \\
\hline 370 & \[
\begin{array}{|r|}
\hline 22 \\
3314 \\
147 \\
\hline
\end{array}
\] & \begin{tabular}{|r|r|r|}
24 & 3575 \\
\(161 \quad 402\) \\
\hline 21 & 3293
\end{tabular} & & & & & & & \\
\hline 350 & \[
\begin{array}{rr}
20 & 3086 \\
129 & 390
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 21 & 3293 \\
138 & 391
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 23 & 3524 \\
149 & 393
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 25 & 3788 \\
162 & 396
\end{array}
\] & \[
\begin{array}{rr}
\hline 27 & 4104 \\
179 & 399
\end{array}
\] & & & & \\
\hline 330 & \[
\begin{array}{|r|}
\hline 18 \\
115 \\
115 \\
\hline
\end{array}
\] & & \(21 \quad 3293\)
\(132 \quad 384\) & \begin{tabular}{|r|r|r|}
22 & 3512 \\
141 & 385
\end{tabular} & \begin{tabular}{|rrr}
24 & 3756 \\
152 & 387
\end{tabular} & \[
\begin{array}{|rr|}
\hline 26 & 4033 \\
165 & 389 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 28 & 4356 \\
181 & 392 \\
\hline
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 314752 \\
202 \quad 395 \\
\hline
\end{array}
\] & \\
\hline 310 & \[
\begin{array}{rr}
17 & 2745 \\
104 & 373
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 18 & 2914 \\
111 & 373
\end{array}
\] & \(\begin{array}{rrr}19 & 3095 \\ 118 & 374\end{array}\) & \[
\begin{array}{|rr|}
\hline 20 & 3292 \\
126 & 375
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 21 & 3506 \\
135 & 377
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 23 & 3742 \\
145 & 378
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 25 & 4004 \\
156 & 380
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 27 & 4300 \\
170 & 381
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 29 & 4644 \\
186 & 384
\end{array}
\] \\
\hline 290 & \[
\begin{array}{rr}
15 & 2544 \\
90 & 360
\end{array}
\] & \[
\begin{array}{rr}
16 & 2695 \\
96 & 361
\end{array}
\] & \begin{tabular}{|rrr}
17 & 2858 \\
\(102 \quad 361\)
\end{tabular} & \(\begin{array}{|rr|}18 & 3033 \\ 108 & 362\end{array}\) & \(\begin{array}{|rrr|}19 & 3222 \\ 116 & 364\end{array}\) & \(\begin{array}{rrr}20 & 3427 \\ 124 & 364\end{array}\) & \begin{tabular}{|rr|r|}
22 & 3651 \\
\(132 \quad 365\)
\end{tabular} & \(\begin{array}{|rr|}23 & 3897 \\ 142 \quad 366\end{array}\) & \(\begin{array}{|rr|}25 & 4172 \\ 154 & 368\end{array}\) \\
\hline 270 & \[
\begin{array}{rr}
14 & 2351 \\
78 & 347
\end{array}
\] & \[
\begin{array}{rr}
14 & 2488 \\
83 & 348
\end{array}
\] & \[
\begin{array}{rr}
15 & 2635 \\
88 & 349
\end{array}
\] & \[
\begin{array}{rr}
16 & 2791 \\
93 & 349
\end{array}
\] & \[
\begin{array}{rr}
17 & 2959 \\
99 & 350
\end{array}
\] & \[
\begin{array}{|rr}
18 & 3139 \\
\hline 106 & 351
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 19 & 3334 \\
113 & 351
\end{array}
\] & \begin{tabular}{|rrr}
21 & 3544 \\
120 & 352
\end{tabular} & \[
\begin{array}{|rr|}
\hline 22 & 3775 \\
129 & 353
\end{array}
\] \\
\hline 250 & \[
\begin{array}{rr}
\hline 12 & 2172 \\
68 & 335
\end{array}
\] & \[
\begin{array}{rr}
13 & 2295 \\
72 & 336
\end{array}
\] & \[
\begin{array}{rr}
14 & 2429 \\
76 & 336
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2570 \\
81 & 337
\end{array}
\] & \[
\begin{array}{rr}
15 & 2722 \\
85 & 338
\end{array}
\] & \[
\begin{array}{rr}
16 & 2883 \\
91 & 338
\end{array}
\] & \begin{tabular}{rr}
17 & 3055 \\
97 & 338
\end{tabular} & \[
\begin{array}{|rr|}
\hline 18 & 3239 \\
103 & 339
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 19 & 3439 \\
110 & 339 \\
\hline
\end{array}
\] \\
\hline 240 & \[
\begin{array}{rr}
\hline 12 & 2085 \\
63 & 329
\end{array}
\] & \[
\begin{array}{rr}
12 & 2203 \\
67 & 329
\end{array}
\] & \[
\begin{array}{rr|}
\hline 13 & 2330 \\
71 & 330
\end{array}
\] & \[
\begin{array}{rr}
14 & 2465 \\
75 & 331
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2609 \\
79 & 331
\end{array}
\] & \[
\begin{array}{rr}
15 & 2762 \\
84 & 332
\end{array}
\] & \[
\begin{array}{rr}
16 & 2925 \\
89 & 332
\end{array}
\] & \begin{tabular}{|rr|}
17 & 3098 \\
95 & 332
\end{tabular} & \[
\begin{array}{|rr|}
\hline 18 & 3285 \\
101 & 333
\end{array}
\] \\
\hline 220 & \[
\begin{array}{rr|}
\hline 10 & 1917 \\
54 & 317
\end{array}
\] & \begin{tabular}{|rr}
11 & 2024 \\
58 & 317
\end{tabular} & \(\begin{array}{rrr}11 & 2139 \\ 61 & 317\end{array}\) & \(\begin{array}{rrr}12 & 2261 \\ 64 & 318\end{array}\) & \(\begin{array}{|rr|}13 & 2391 \\ 68 & 319\end{array}\) & \(\begin{array}{|rr|}14 & 2528 \\ 72 & 319\end{array}\) & \(\begin{array}{rr}14 & 2674 \\ 76 & 319\end{array}\) & \(\begin{array}{|rr|}15 & 2829 \\ 81 & 319\end{array}\) & \[
\begin{array}{rr}
\hline 16 & 2994 \\
86 & 319
\end{array}
\] \\
\hline 200 & \[
\begin{array}{rr}
9 & 1754 \\
47 & 304
\end{array}
\] & \[
\begin{array}{rr|}
\hline 10 & 1851 \\
49 & 304
\end{array}
\] & \(\begin{array}{ll}10 & 1955 \\ 52 & 305\end{array}\) & \[
\begin{array}{rr}
11 & 2065 \\
55 & 305
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 2182 \\
58 & 306
\end{array}
\] & \[
\begin{array}{rr|}
\hline 12 & 2305 \\
61 & 306
\end{array}
\] & \[
\begin{array}{rr}
\hline 13 & 2436 \\
65 & 306
\end{array}
\] & \begin{tabular}{l}
\[
132574
\] \\
69306
\end{tabular} & \[
\begin{array}{|lr|}
\hline 14 & 2720 \\
72 & 306
\end{array}
\] \\
\hline 180 & \[
\begin{array}{rr}
\hline 8 & 1596 \\
40 & 291
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 9 & 1684 \\
42 & 291
\end{array}
\] & \[
\begin{array}{rr}
\hline 9 & 1778 \\
44 & 291
\end{array}
\] & \(\begin{array}{ll}10 & 1878 \\ 46 & 292\end{array}\) & \(\begin{array}{|rr|}10 & 1983 \\ 49 & 292\end{array}\) & \(\begin{array}{|rr|}11 & 2093 \\ 52 & 292\end{array}\) & \(\begin{array}{rrr}11 & 2211 \\ 55 & 293\end{array}\) & \(\begin{array}{rrr}12 & 2334 \\ 58 & 292\end{array}\) & \begin{tabular}{|rr|}
13 & 2464 \\
62 & 292 \\
\hline 1 & 222
\end{tabular} \\
\hline 160 & \[
\begin{array}{rr}
7 & 1446 \\
33 & 277
\end{array}
\] & \[
\begin{array}{rr}
8 & 1525 \\
35 & 277
\end{array}
\] & \(\begin{array}{rrr}8 & 1610 \\ 37 & 277\end{array}\) & \[
\begin{array}{rr|}
\hline 8 & 1700 \\
39 & 278
\end{array}
\] & \[
\begin{array}{rr|}
\hline 9 & 1795 \\
41 & 278
\end{array}
\] & \[
\begin{array}{rr}
9 & 1894 \\
44 & 279
\end{array}
\] & \[
\begin{array}{rr}
10 & 1999 \\
46 & 279
\end{array}
\] & \[
\begin{array}{rr|}
\hline 11 & 2110 \\
49 & 278
\end{array}
\] & \[
\begin{array}{rr}
11 & 2227 \\
52 & 278
\end{array}
\] \\
\hline 140 & \[
\begin{array}{rr}
6 & 1302 \\
28 & 262
\end{array}
\] & \[
\begin{array}{|rr|}
\hline 7 & 1373 \\
29 & 262
\end{array}
\] & \(\begin{array}{rrr}71450 \\ 31 & 262\end{array}\) & 71531
\(32 \quad 263\) & \(\begin{array}{|rr|}8 & 1616 \\ 34 & 264\end{array}\) & \(\begin{array}{|rr|}81705 \\ 36 & 264\end{array}\) & \(\begin{array}{rrr}9 & 1800 \\ 38 & 264\end{array}\) & \(\begin{array}{|rr|}9 & 1900 \\ 41 & 264\end{array}\) & \[
\begin{array}{|rr|}
\hline 10 & 2004 \\
43 & 263
\end{array}
\] \\
\hline 120 & \[
\begin{array}{rr}
6 & 1163 \\
23 & 246
\end{array}
\] & \[
\begin{array}{rr}
6 & 1227 \\
24 & 246
\end{array}
\] & \(\begin{array}{rr}6 & 1295 \\ 25 \quad 246\end{array}\) & \[
\begin{array}{|rr|}
\hline 6 & 1368 \\
27 & 247
\end{array}
\] & \[
71445
\] & \(7 \quad 1525\)
\(30 \quad 248\) & \begin{tabular}{|rr|}
\hline 8 & 1610 \\
31 & 248
\end{tabular} & \[
\begin{array}{r}
81700 \\
\hline 22
\end{array}
\] & \[
91794
\] \\
\hline \multirow[b]{2}{*}{100} & 4939 & 5990 & 51046 & 51106 & 51170 & 61236 & 61306 & 61380 & 71457 \\
\hline & \(15 \quad 216\) & \(16 \quad 216\) & \(17 \quad 216\) & \(18 \quad 217\) & 19218 & \(20 \quad 219\) & \(22 \quad 219\) & \(23 \quad 219\) & \(25 \quad 220\) \\
\hline \multirow[b]{2}{*}{50} & \(\begin{array}{ll}3 & 623\end{array}\) & \begin{tabular}{l}
3 \\
\hline
\end{tabular} 657 & \begin{tabular}{l}
3 \\
\hline
\end{tabular} 695 & 3736 & \(\begin{array}{ll}3 & 779\end{array}\) & \(\begin{array}{ll}3 & 825\end{array}\) & \(\begin{array}{ll}4 & 872\end{array}\) & 4922 & \begin{tabular}{ll}
4 & 975 \\
\hline
\end{tabular} \\
\hline & \(8 \quad 172\) & \(8 \quad 172\) & \(8 \quad 173\) & \(9 \quad 174\) & \(10 \quad 175\) & \(10 \quad 176\) & \(11 \quad 177\) & \(12 \quad 178\) & \(13 \quad 179\) \\
\hline \multirow[b]{2}{*}{15} & 2401 & 2423 & 2449 & 2478 & 2508 & 2540 & 2573 & 2608 & 644 \\
\hline & 3110 & 3110 & 3111 & 4113 & 4115 & 117 & 120 & \(5 \quad 123\) & \(6 \quad 12\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{3}{|c|}{2.12.00} \\
\hline & & \multicolumn{3}{|l|}{PAGE \(1 / 2\)} \\
\hline & CONTENTS & REV 33 & & 120 \\
\hline
\end{tabular}
Pages
2.12.10 CRUISE TABLES 2 ENGINES
INTRODUCTION 1
FL270 - M.80/M.81 2
FL290 - M.80/M. 81 3
FL310 - M.80/M. 81 4
FL330 - M.80/M. 81 5
FL350 - M.80/M. 81 6
FL370 - M.80/M. 81 7
FL390 - M.80/M. 81 8
FL410 - M.80/M. 81 9
LONG RANGE CRUISE
ISA - FL100/200 10
ISA - FL220/410 11
ISA + 10 - FL100/200 12
ISA + 10 - FL220/410 13
ISA + 15 - FL100/200 14ISA + 15 - FL220/410..... 15
ISA + 20 - FL100/200 16
ISA + 20 - FL220/410 17
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & PAGE & 1 \\
\hline & CRUISE TABLES 2 ENGINES & REV 21 & SEQ 120 \\
\hline
\end{tabular}

\section*{INTRODUCTION}

Cruise tables are established from FL 270 to FL 410 at ISA, ISA +10 , ISA +15 and ISA +20 for different Mach number, with air conditioning in economic mode.

These tables are established with a center of gravity location of \(37.5 \%\).

In addition LONG RANGE tables are given at ISA, ISA + 10, ISA + 15, ISA + 20 from FL 100 to FL 410.

The LONG RANGE tables are established with a center of gravity of \(37.5 \%\) for a flight level above 20000 ft .

For a flight level below 20000 ft , the LONG RANGE tables are established with a center of gravity location of \(27 \%\).
\begin{tabular}{l}
\cline { 2 - 3 } \multicolumn{1}{c|}{ CORRECTION } \\
\cline { 2 - 3 } \multicolumn{1}{c|}{} \\
\cline { 2 - 3 } \multicolumn{1}{c|}{ FUEL CONSUMPTION } \\
\hline Normal air conditioning \\
\hline Constant Mach Number \\
\hline Engine anti-ice ON \\
\hline Total anti-ice ON
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12.10} \\
\hline & & PAGE & \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEQ 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - FL 270} \\
\hline \multicolumn{4}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { ISA }=-38^{\circ} \mathrm{C} \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{EGT \({ }^{\circ} \mathrm{C}\)
EPR
KG/H/ENG
NM/1000KG} \\
\hline & \multicolumn{4}{|c|}{80} & \multicolumn{4}{|c|}{81} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& (1000 \mathrm{KG})
\end{aligned}
\] & ISA & ISA+10 & ISA+15 & ISA+20 & ISA & ISA+10 & ISA+15 & ISA+20 \\
\hline 85 & \[
\begin{array}{r}
319 \\
1.086 \\
2401 \\
99.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.088 \\
2472 \\
98.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.088 \\
2507 \\
98.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
374 \\
1.089 \\
2542 \\
97.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
323 \\
1.093 \\
2483 \\
97.4
\end{array}
\] & \[
\begin{array}{r}
350 \\
1.094 \\
2556 \\
96.6
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.095 \\
2593 \\
96.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.096 \\
2629 \\
95.8 \\
\hline
\end{array}
\] \\
\hline 90 & & \[
\begin{array}{r}
348 \\
1.092 \\
2495 \\
97.7 \\
\hline 210
\end{array}
\] & \[
\begin{array}{r}
361 \\
1.092 \\
2531 \\
97.3 \\
\hline 262
\end{array}
\] & \[
\begin{array}{r}
375 \\
1.093 \\
2566 \\
96.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
324 \\
1.096 \\
2504 \\
96.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
351 \\
1.098 \\
2578 \\
95.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
365 \\
1.099 \\
2615 \\
95.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
379 \\
1.100 \\
2652 \\
95.0 \\
\hline
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
322 \\
1.094 \\
2448 \\
97.5
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.096 \\
2520 \\
96.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
362 \\
1.097 \\
2556 \\
96.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.098 \\
2592 \\
96.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
325 \\
1.101 \\
2528 \\
95.6
\end{array}
\] & \[
\begin{array}{r}
352 \\
1.102 \\
2600 \\
94.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.103 \\
2637 \\
94.6 \\
\hline
\end{array}
\] & \\
\hline 100 & \[
\begin{array}{r}
323 \\
1.099 \\
2474 \\
96.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
350 \\
1.100 \\
2546 \\
95.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.101 \\
2582 \\
95.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.102 \\
2617 \\
95.1
\end{array}
\] & \[
\begin{array}{r}
326 \\
1.105 \\
2550 \\
94.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
354 \\
1.107 \\
2624 \\
94.1
\end{array}
\] & \[
\begin{array}{r}
368 \\
1.108 \\
2660 \\
93.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
382 \\
1.109 \\
2696 \\
93.4 \\
\hline
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
324 \\
1.104 \\
2498 \\
95.6
\end{array}
\] & \[
\begin{array}{r}
352 \\
1.105 \\
2569 \\
94.9
\end{array}
\] & \[
\begin{array}{r}
365 \\
1.106 \\
2605 \\
94.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
379 \\
1.107 \\
2641 \\
94.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
328 \\
1.110 \\
2574 \\
93.9
\end{array}
\] & \[
\begin{array}{r}
355 \\
1.112 \\
2648 \\
93.2
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.113 \\
2685 \\
92.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
383 \\
1.114 \\
2721 \\
92.6 \\
\hline
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
326 \\
1.109 \\
2522 \\
94.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.110 \\
2594 \\
94.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.111 \\
2630 \\
93.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
381 \\
1.112 \\
2666 \\
93.3
\end{array}
\] & \[
\begin{array}{r}
329 \\
1.115 \\
2598 \\
93.1
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.117 \\
2672 \\
92.4
\end{array}
\] & \[
\begin{array}{r}
371 \\
1.118 \\
2709 \\
92.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
385 \\
1.119 \\
2746 \\
91.7 \\
\hline
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
327 \\
1.114 \\
2547 \\
93.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
355 \\
1.116 \\
2621 \\
93.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.11 \\
2657 \\
92.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
382 \\
1.117 \\
2693 \\
92.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
331 \\
1.121 \\
2623 \\
92.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
358 \\
1.123 \\
2698 \\
91.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.123 \\
2735 \\
91.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
386 \\
1.124 \\
2772 \\
90.8 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
329 \\
1.120 \\
2575 \\
92.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
356 \\
1.121 \\
2649 \\
92.1
\end{array}
\] & \[
\begin{array}{r}
370 \\
1.122 \\
2685 \\
91.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
384 \\
1.123 \\
2722 \\
91.4
\end{array}
\] & \[
\begin{array}{r}
332 \\
1.126 \\
2649 \\
91.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.128 \\
2725 \\
90.6
\end{array}
\] & \[
\begin{array}{r}
374 \\
1.129 \\
2763 \\
90.3
\end{array}
\] & \[
\begin{array}{r}
388 \\
1.130 \\
2800 \\
89.9 \\
\hline
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
331 \\
1.126 \\
2603 \\
91.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
358 \\
1.127 \\
2678 \\
91.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.128 \\
2715 \\
90.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
386 \\
1.129 \\
2751 \\
90.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
334 \\
1.132 \\
2677 \\
90.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
362 \\
1.134 \\
2754 \\
89.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.135 \\
2792 \\
89.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
390 \\
1.136 \\
2830 \\
89.0 \\
\hline
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
332 \\
1.132 \\
2633 \\
90.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.134 \\
2708 \\
90.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
374 \\
1.135 \\
2746 \\
89.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
388 \\
1.135 \\
2783 \\
89.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
336 \\
1.139 \\
2709 \\
89.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.141 \\
2787 \\
88.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.142 \\
2825 \\
88.3 \\
\hline
\end{array}
\] & \\
\hline 135 & \[
\begin{array}{r}
334 \\
1.139 \\
2666 \\
89.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
362 \\
1.141 \\
2742 \\
88.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.141 \\
2780 \\
88.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
390 \\
1.142 \\
2817 \\
88.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
338 \\
1.146 \\
2743 \\
88.1 \\
\hline 210
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.148 \\
2821 \\
87.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
380 \\
1.149 \\
2860 \\
87.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
394 \\
1.150 \\
2899 \\
86.9 \\
\hline
\end{array}
\] \\
\hline 140 & & \[
\begin{array}{r}
365 \\
1.148 \\
2778 \\
87.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
379 \\
1.149 \\
2817 \\
87.4
\end{array}
\] & \[
\begin{array}{r}
393 \\
1.150 \\
2855 \\
87.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
340 \\
1.154 \\
2779 \\
87.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
368 \\
1.155 \\
2859 \\
86.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
382 \\
1.156 \\
2899 \\
86.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
397 \\
1.157 \\
2939 \\
85.7 \\
\hline
\end{array}
\] \\
\hline 145 & \[
\begin{array}{r}
339 \\
1.154 \\
2741 \\
87.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.156 \\
2820 \\
86.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
381 \\
1.157 \\
2860 \\
86.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
395 \\
1.158 \\
2899 \\
85.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
342 \\
1.161 \\
2818 \\
85.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
370 \\
1.163 \\
2899 \\
85.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
385 \\
1.164 \\
2939 \\
84.8
\end{array}
\] & \[
\begin{array}{r}
399 \\
1.165 \\
2979 \\
84.5 \\
\hline
\end{array}
\] \\
\hline 150 & \[
\begin{array}{r}
341 \\
1.163 \\
2785 \\
85.7
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.164 \\
2865 \\
85.1
\end{array}
\] & \[
\begin{array}{r}
383 \\
1.165 \\
2905 \\
84.8
\end{array}
\] & \[
\begin{array}{r}
398 \\
1.166 \\
2944 \\
84.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
344 \\
1.169 \\
2860 \\
84.5
\end{array}
\] & \[
\begin{array}{r}
373 \\
1.171 \\
2942 \\
83.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
387 \\
1.172 \\
2983 \\
83.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
401 \\
1.173 \\
3024 \\
83.3 \\
\hline
\end{array}
\] \\
\hline 155 & \[
\begin{array}{r}
344 \\
1.172 \\
2833 \\
84.3
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.174 \\
2914 \\
83.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
386 \\
1.175 \\
2955 \\
83.4
\end{array}
\] & \[
\begin{array}{r}
400 \\
1.175 \\
2995 \\
83.1
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.178 \\
2905 \\
83.2
\end{array}
\] & \[
\begin{array}{r}
375 \\
1.180 \\
2988 \\
82.6
\end{array}
\] & \[
\begin{array}{r}
389 \\
1.181 \\
3030 \\
82.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
404 \\
1.181 \\
3071 \\
82.0
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { IAS(kts) } \\
& \text { TAS(kts) } \\
& \text { TAT } \left.{ }^{\circ} \mathbf{C} \mathbf{C}\right)
\end{aligned}
\] & \[
\begin{array}{r}
324 \\
478 \\
-8.5
\end{array}
\] & \[
\begin{aligned}
& 324 \\
& 488 \\
& 2.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 324 \\
& 493 \\
& 8.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
324 \\
497 \\
14.1
\end{array}
\] & \[
\begin{array}{r}
328 \\
484 \\
-7.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 328 \\
& 494 \\
& 3.6
\end{aligned}
\] & \[
\begin{aligned}
& 328 \\
& 499 \\
& 9.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
328 \\
504 \\
14.9 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12400000E5KG375 00185900011.0 .0.0 02700 20.000.000.000 0 FCOM-B0-02-12-10-002-104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEQ 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - FL 290} \\
\hline \multicolumn{4}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { ISA }=-42^{\circ} \mathrm{C} \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{EGT \({ }^{\circ} \mathrm{C}\)
EPR
KG/H/ENG
NM/1000KG} \\
\hline & \multicolumn{4}{|c|}{80} & \multicolumn{4}{|c|}{81} \\
\hline WEIGHT (1000KG) & ISA & ISA+ 10 & ISA+15 & ISA+20 & ISA & ISA+10 & ISA+15 & ISA+20 \\
\hline 85 & \[
\begin{array}{r}
313 \\
1.094 \\
2220 \\
106.6
\end{array}
\] & \[
\begin{array}{r}
341 \\
1.096 \\
2287 \\
105.7
\end{array}
\] & \[
\begin{array}{r}
354 \\
1.097 \\
2020 \\
105.3
\end{array}
\] & \[
\begin{array}{r}
368 \\
1.098 \\
20952 \\
104.9
\end{array}
\] & \[
\begin{array}{r}
317 \\
1.101 \\
2093 \\
104.6
\end{array}
\] & \[
\begin{array}{r}
344 \\
1.103 \\
2360 \\
103.7
\end{array}
\] & \[
\begin{array}{r}
358 \\
1.104 \\
.393 \\
103.4
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.105 \\
2426 \\
103.0
\end{array}
\] \\
\hline 90 & \[
\begin{array}{r}
315 \\
1.099 \\
2254 \\
105.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
342 \\
1.101 \\
2312 \\
104.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
356 \\
1.102 \\
.344 \\
104.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
370 \\
103 \\
103 \\
10376 \\
\hline 103.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
318 \\
1.106 \\
2314
\end{array}
\] & \[
\begin{array}{r}
346 \\
1.108 \\
2382 \\
102.8
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.109 \\
245 \\
102.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
374 \\
1.10 \\
2449 \\
102.1 \\
\hline
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
316 \\
1.105 \\
2268 \\
104.4
\end{array}
\] & \[
\begin{array}{r}
344 \\
1.106 \\
.233 \\
103.6
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.107 \\
.367 \\
103.2
\end{array}
\] & \[
\begin{array}{r}
371 \\
1.108 \\
2400 \\
102.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
320 \\
1.111 \\
2337 \\
102.6
\end{array}
\] & \[
\begin{array}{r}
347 \\
113 \\
2406 \\
101.8
\end{array}
\] & \[
\begin{array}{r}
361 \\
1.14 \\
1240 \\
101.4
\end{array}
\] & \[
\begin{array}{r}
375 \\
1.15 \\
1073 \\
101.0
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
38 \\
1.100 \\
2292 \\
103.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
345 \\
1.112 \\
2359 \\
102.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
359 \\
1.113 \\
2392 \\
102.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
373 \\
1.113 \\
2425 \\
101.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
321 \\
1.117 \\
2060 \\
101.6
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.119 \\
2430 \\
100.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
363 \\
1.120 \\
2064 \\
100.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
377 \\
1.120 \\
2498 \\
100.1 \\
\hline
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
319 \\
1.16 \\
2317 \\
102.2
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.118 \\
2385 \\
101.4
\end{array}
\] & \[
\begin{array}{r}
361 \\
1.18 \\
2418 \\
101.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
375 \\
1.119 \\
2451 \\
100.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
323 \\
1.123 \\
2385 \\
100.5
\end{array}
\] & \[
\begin{array}{r}
351 \\
1.125 \\
2455 \\
99.7
\end{array}
\] & \[
\begin{array}{r}
365 \\
1.125 \\
2490 \\
99.4
\end{array}
\] & \[
\begin{array}{r}
379 \\
1.126 \\
2524 \\
99.0 \\
\hline
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
321 \\
1.122 \\
2344 \\
101.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.124 \\
.2412 \\
100.2
\end{array}
\] & \[
\begin{array}{r}
363 \\
1.125 \\
2446 \\
99.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
377 \\
1.126 \\
2480 \\
99.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
325 \\
1.129 \\
2411 \\
99.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.131 \\
2482 \\
98.6
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.132 \\
2517 \\
98.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38 \\
1.132 \\
\text { 1551 } \\
97.9 \\
\hline
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
323 \\
1.129 \\
2372 \\
99.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
351 \\
1.130 \\
2441 \\
99.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
365 \\
1.131 \\
2476 \\
98.7
\end{array}
\] & \[
\begin{array}{r}
379 \\
1.132 \\
2509 \\
98.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
327 \\
1.18 \\
2440 \\
98.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
355 \\
1.137 \\
2511 \\
97.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.138 \\
2546 \\
97.2
\end{array}
\] & \[
\begin{array}{r}
3833 \\
1.139 \\
2581 \\
96.8 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
325 \\
1.136 \\
2403 \\
98.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.137 \\
2473 \\
97.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.138 \\
2507 \\
97.5
\end{array}
\] & \[
\begin{array}{r}
381 \\
1.139 \\
2541 \\
97.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
329 \\
1.143 \\
2472 \\
97.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.145 \\
2544 \\
96.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
371 \\
1.146 \\
2580 \\
95.9
\end{array}
\] & \[
\begin{array}{r}
385 \\
1.147 \\
2665 \\
95.6
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
327 \\
1.143 \\
2455 \\
97.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
355 \\
1.145 \\
2506 \\
96.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.146 \\
2541 \\
96.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
383 \\
1.147 \\
2576 \\
95.8
\end{array}
\] & \[
\begin{array}{r}
331 \\
1.15 \\
2506 \\
95.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
359 \\
1.153 \\
2580 \\
94.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
373 \\
1.154 \\
2616 \\
94.6
\end{array}
\] & \[
\begin{array}{r}
387 \\
1.155 \\
2652 \\
94.2 \\
\hline
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
330 \\
1.152 \\
2473 \\
95.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
358 \\
1.154 \\
2546 \\
95.0
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.154 \\
.581 \\
94.6
\end{array}
\] & \[
\begin{array}{r}
3866 \\
1.155 \\
2617 \\
94.3
\end{array}
\] & \[
\begin{array}{r}
333 \\
1.19 \\
2544 \\
94.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
361 \\
3161 \\
2619 \\
93.5 \\
\hline
\end{array}
\] & \(\begin{array}{r}376 \\ 1.162 \\ \text { 2656 } \\ \\ 93.2 \\ \hline 1.378\end{array}\) & \[
\begin{array}{r}
390 \\
1.163 \\
2692 \\
92.8 \\
\hline 9
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
332 \\
1.161 \\
2515 \\
94.1
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.163 \\
2589 \\
93.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
374 \\
1.163 \\
.625 \\
93.1
\end{array}
\] & \[
\begin{array}{r}
389 \\
1.164 \\
2661 \\
92.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.25 \\
1.667 \\
2563 \\
92.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.169 \\
2659 \\
92.1
\end{array}
\] & \(\begin{array}{r}378 \\ 1.170 \\ \text { 2697 } \\ \text { 91.7 } \\ \hline 1.381\end{array}\) & \(\begin{array}{r}392 \\ 1.171 \\ \text { 2734 } \\ 91.4 \\ \hline 1.4 \\ \hline 1.85\end{array}\) \\
\hline 140 & \[
\begin{array}{r}
335 \\
1.170 \\
2561 \\
92.5
\end{array}
\] & \[
\begin{array}{r}
363 \\
1.172 \\
2636 \\
91.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
377 \\
1.173 \\
2673 \\
91.4
\end{array}
\] & 391
1.174
2709
91.1 & \[
\begin{array}{r}
338 \\
1.177 \\
2627 \\
91.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.179 \\
2705 \\
90.5 \\
\hline
\end{array}
\] & \(\begin{array}{r}381 \\ 1.179 \\ 2743 \\ 90.2 \\ \hline 18\end{array}\) & \(\begin{array}{r}395 \\ 1.180 \\ 2780 \\ 89.9 \\ \hline\end{array}\) \\
\hline 145 & \[
\begin{array}{r}
337 \\
1.181 \\
2610 \\
90.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.183 \\
2687 \\
90.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
380 \\
1.184 \\
2724 \\
89.7 \\
\hline
\end{array}
\] & \(\begin{array}{r}1.395 \\ 1.184 \\ 2761 \\ 89.4 \\ \hline 1\end{array}\) & \[
\begin{array}{r}
341 \\
1.187 \\
2674 \\
89.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.188 \\
2753 \\
88.9 \\
\hline
\end{array}
\] & \(\begin{array}{r}384 \\ 1.189 \\ \text { 2791 } \\ 88.6 \\ \hline 188\end{array}\) & \(\begin{array}{r}398 \\ 1.190 \\ 2829 \\ 88.3 \\ \hline 1.401 \\ \hline\end{array}\) \\
\hline 150 & \[
\begin{array}{r}
340 \\
1.192 \\
2662 \\
89.0
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.194 \\
2739 \\
88.3
\end{array}
\] & \[
\begin{array}{r}
383 \\
195 \\
2777 \\
277.0
\end{array}
\] & \[
\begin{array}{r}
398 \\
195 \\
2815 \\
287.7
\end{array}
\] & \[
\begin{array}{r}
343 \\
1979 \\
2785 \\
885 \\
\hline 88
\end{array}
\] & \[
\begin{array}{r}
372 \\
199 \\
2805 \\
2805
\end{array}
\] & \[
\begin{array}{r}
387 \\
1.200 \\
2844 \\
87.0
\end{array}
\] & 401
1.201
2883
86.7 \\
\hline 155 & \[
\begin{array}{r}
343 \\
1.204 \\
2716 \\
87.2
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.206 \\
2795 \\
86.5
\end{array}
\] & \[
\begin{array}{r}
387 \\
1.207 \\
2834 \\
86.2
\end{array}
\] & \[
\begin{array}{r}
401 \\
1.208 \\
2872 \\
85.9
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.210 \\
2781 \\
86.2
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.212 \\
2862 \\
85.6
\end{array}
\] & \(\begin{array}{r}390 \\ 1.213 \\ 2902 \\ 85.3 \\ \hline\end{array}\) & \[
\begin{array}{r}
405 \\
1.214 \\
2941 \\
85.0
\end{array}
\] \\
\hline \[
\begin{aligned}
& \text { IAS(kts) } \\
& \text { TAS }(\mathrm{kts})
\end{aligned}
\]
\[
\text { TAT }\left({ }^{\circ} \mathrm{C}\right)
\] & \[
\begin{array}{r}
311 \\
473 \\
-12.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
311 \\
484 \\
-1.6
\end{array}
\] & \[
\begin{array}{r}
00.2 \\
311 \\
489 \\
4.0
\end{array}
\] & \[
\begin{array}{r}
311 \\
494 \\
9.6
\end{array}
\] & \[
\begin{array}{r}
315 \\
479 \\
-12.2
\end{array}
\] & \[
\begin{array}{r}
\begin{array}{r}
315 \\
490 \\
490 \\
-.9
\end{array}
\end{array}
\] & \[
\begin{aligned}
& 315 \\
& 495 \\
& 4.8
\end{aligned}
\] & \[
\begin{array}{r}
315 \\
500 \\
10.4
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12400000E5KG375 0018590001 1.0.0.002900 20.000.000.0000 FCOM-B0-02-12-10-003-104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2．12．10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEO 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE－FL 310} \\
\hline \multicolumn{4}{|l|}{MAX．CRUISE THRUST LIMITS ECON．AIR CONDITIONING ANTI－ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { ISA }=-46^{\circ} \mathrm{C} \\
& \mathrm{CG}=37.5 \%
\end{aligned}
\]} & \multicolumn{2}{|l|}{EGT \({ }^{\circ} \mathrm{C}\) EPR KG／H／ENG NM／1000KG} \\
\hline & \multicolumn{4}{|c|}{80} & \multicolumn{4}{|c|}{81} \\
\hline WEIGHT & ISA & ISA＋10 & ISA＋15 & ISA＋20 & ISA & ISA＋10 & ISA＋15 & ISA＋20 \\
\hline 85 & \[
\begin{aligned}
& 308 \\
& \hline .205 \\
& .2053 \\
& 114.3
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
335 \\
1.106 \\
.1014 \\
1114
\end{array}
\end{aligned}
\] & \[
\begin{array}{r}
349 \\
\begin{array}{r}
3107 \\
2144 \\
113.0 \\
\hline
\end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ ⿴ 囗 十 丌
\end{array}
\] & \[
\begin{aligned}
& 363 \\
& \begin{array}{l}
360 \\
\hline .108 \\
1174 \\
112.6
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 3111 \\
& \begin{array}{l}
3112 \\
.1112 \\
112.3
\end{array} \\
& \hline 122 .
\end{aligned}
\] & & \[
\begin{aligned}
& .353 \\
& 1.1214 \\
& .1209 \\
& 111.1
\end{aligned}
\] & \\
\hline 90 & \[
\begin{aligned}
& 14.59 \\
& 1.110 \\
& .1075 \\
& 113.1
\end{aligned}
\] & \[
\begin{aligned}
& 3.37 \\
& 1.112 \\
& 1.137 \\
& 112.2 .2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 351 \\
& 1.113 \\
& .2168 \\
& 111.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.051 \\
& 1.114 \\
& .1198 \\
& \hline 111.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 313 \\
& 1.118 \\
& .2138 \\
& 111.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.19 \\
1.319 \\
.2202 \\
110.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.15 \\
1.250 \\
.209 .9 \\
\hline 109.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.09 \\
\hline 1.129 \\
.265 \\
109.5 \\
\hline
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
311 \\
1.117 \\
11100 \\
\hline 111.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
339 \\
1.119 \\
.163 \\
110.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.120 \\
1190 \\
110.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.120 \\
.220 . \\
110.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
315 \\
1.124 \\
.1262 \\
109,9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
343 \\
1.126 \\
2227 \\
109.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.127 \\
.259 \\
108.6 \\
\hline
\end{array}
\] & \\
\hline 100 & \[
\begin{array}{r}
313 \\
1.124 \\
\text { 127 } \\
\hline 100.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
341 \\
1.3125 \\
.195 \\
109.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
355 \\
1.126 \\
.222 .1 \\
109.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.227 \\
.2525 \\
108.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1317 \\
& 1.131 \\
& .108 \\
& 108.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 1.132 \\
& .125 \\
& 107.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.39 \\
1.35 \\
.258 \\
107.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.331 \\
1317 \\
107.0 \\
\hline
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
315 \\
1.315 \\
12515 \\
\hline 108.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 343 \\
& 1.133 \\
& .1231 \\
& 108.1 \\
& \hline 108.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
357 \\
1.134 \\
.2550 \\
107.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 37171 \\
& 1.134 \\
& .1282 \\
& 107.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
319 \\
1.138 \\
.2126 \\
107.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.140 \\
& .1280 \\
& 106.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 361 \\
& 1.311 \\
& .2314 \\
& 106.0 \\
& \hline
\end{aligned}
\] & \\
\hline 110 & \[
\begin{array}{r}
317.3 \\
1.189 \\
1.185 \\
107.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.145 \\
& 1.140 \\
& .250 \\
& 106.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 1.141 \\
& .282 \\
& 106.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
374 \\
1.142 \\
1312 \\
105.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.21 \\
1.146 \\
.248 \\
105.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.148 \\
\text { 2315 } \\
\hline 104.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
363 \\
1.149 \\
.1348 \\
104.5 \\
\hline
\end{array}
\] & \[
\begin{array}{|r}
\hline 3780 \\
\hline 1.50 \\
10401 \\
104.1 \\
\hline
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
320 \\
1.147 \\
.2218 \\
105.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
348 \\
1.149 \\
.284 \\
105.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 362 \\
& 1.150 \\
& .3516 \\
& 104.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
376 \\
1.151 \\
.354 \\
104.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
323 \\
1.155 \\
.288 . \\
104.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
332 \\
1.157 \\
.355 \\
103.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.158 \\
\text { i386 } \\
102.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
380 \\
1.158 \\
10219 \\
\hline 102.5 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{aligned}
& 322 \\
& 1.357 \\
& .2525 \\
& 104.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3.31 \\
& 1.158 \\
& .2325 \\
& 103.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 365 \\
& 1.159 \\
& .2558 \\
& 102.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.179 \\
& .160 \\
& .202 .4 \\
& \hline 102.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 326 \\
& 1.164 \\
& .1321 \\
& 102.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 354 \\
& 1.165 \\
& 2390 \\
& 101.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
368 \\
1.166 \\
2425 \\
101.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
383 \\
1.167 \\
2459 \\
\hline 100.8 \\
\hline
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
325 \\
1.866 \\
10200 \\
102.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 353 \\
& 1.168 \\
& .368 \\
& 101.3 \\
& \hline
\end{aligned}
\] & & \[
\begin{array}{r}
382 \\
1.170 \\
10436 \\
\hline 100.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
328 \\
1.173 \\
1006 \\
100.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.175 \\
.2432 \\
\hline 99.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 371 \\
& 1.176 \\
& .2467 \\
& 99.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
386 \\
1.176 \\
.2502 \\
\hline 99.1 \\
\hline
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
3288 \\
1.3187 \\
1007 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
356 \\
1.179 \\
.8417 \\
\hline 9.2 .2 \\
\hline
\end{array}
\] & & & \[
\begin{array}{r}
331 \\
1.184 \\
.2407 \\
\hline 98.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.185 \\
.2487 \\
\hline 98.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
374 \\
.1 .186 \\
.515 \\
\hline 97.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
389 \\
1.187 \\
.2549 \\
\hline 97.2 \\
\hline
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
10.0 \\
1331 \\
1.189 \\
.397 \\
97.9 \\
\hline 9 .
\end{array}
\] & \[
\begin{array}{r}
39.2 \\
\begin{array}{r}
360 \\
1961 \\
2468 \\
97.2 \\
\hline 97.2
\end{array} \\
\hline
\end{array}
\] & & & \[
\begin{array}{r}
90.134 \\
1.195 \\
\begin{array}{r}
1454 \\
96.8 \\
96
\end{array}
\end{array}
\] & & & \\
\hline 140 & \[
\begin{array}{r}
334 \\
\begin{array}{r}
3242 \\
\text { i2450 } \\
95.8 \\
\hline 5.8
\end{array}
\end{array}
\] & & & & \[
\begin{array}{r}
337 \\
1.208 \\
\text { 1.509 } \\
\hline 94.7
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.210 \\
.2583 \\
94.0 \\
\hline 9.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
381 \\
\hline 1.211 \\
. \quad .620 \\
93.7
\end{array}
\] & \\
\hline 145 & \[
\begin{array}{r}
338 \\
1.216 \\
\text { 1.507 } \\
93.6 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
382 \\
1.219 \\
.2617 \\
\hline 92.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
396 \\
1.220 \\
.2653 \\
92.3 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
371 \\
1.325 \\
. \quad 2641 \\
99.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
385 \\
1.226 \\
.2682 \\
91.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
400 \\
1.227 \\
.2719 \\
\hline 91.2 \\
\hline
\end{array}
\] \\
\hline 150 & & & & \[
\begin{array}{r}
32.01 \\
1.237 \\
.2722 \\
89.9 \\
\hline 89.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.56 \\
\begin{array}{c}
346 \\
1.241 \\
.2637 \\
90.1 \\
90.1
\end{array}
\end{array}
\] & & \[
\begin{array}{r}
1.090 \\
1.244 \\
.2754 \\
\hline 89.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.2 .25 \\
\hline 1.245 \\
.2791 \\
88.8 \\
\hline 88.8
\end{array}
\] \\
\hline 155 & & \[
\begin{array}{r}
90.0 \\
\hline \begin{array}{l}
377 \\
\hline, 255 \\
.2728 \\
87.9
\end{array}
\end{array}
\] & & \[
\begin{array}{r}
89.97 \\
\begin{array}{r}
4097 \\
1.2507 \\
8805 \\
87.3
\end{array}
\end{array}
\] & \[
\begin{array}{r}
9.1 \\
\begin{array}{r}
351 \\
1.261 \\
.2717 \\
87.5
\end{array}
\end{array}
\] & \[
\begin{array}{r}
89.51 \\
\begin{array}{c}
381261 \\
12797 \\
86.8 \\
86.8
\end{array}
\end{array}
\] & \[
\begin{array}{r}
3.196 \\
1.264 \\
.2837 \\
.86 .5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.0 .0 \\
\begin{array}{r}
411 \\
1.265 \\
2876 \\
86.2 \\
\hline 8.2
\end{array} \\
\hline
\end{array}
\] \\
\hline IAS（kts）
TAST（ks）
TAT（ TAT（ \(\left.{ }^{\circ} \mathrm{C}\right)\) & \[
\begin{array}{r}
88.0 \\
297 \\
-17.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
87.9 \\
280 \\
-681 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.6 \\
\hline 29 \\
485 \\
\hline .5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8.37 \\
297 \\
490 \\
\hline 5.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
r .01 \\
301 \\
-16.7 \\
\hline
\end{array}
\] & & \(\begin{array}{r}301 \\ 491 \\ .3 \\ \hline\end{array}\) & \begin{tabular}{l}
301 \\
496 \\
6.0 \\
\hline
\end{tabular} \\
\hline
\end{tabular}

04 P－05 A310－324－01 PW4152 12400000E5KG375 00185900011.0 ．0．003100 20．000．000．000 0 FCOM－B0－02－12－10－004－104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEQ 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - FL 330} \\
\hline \multicolumn{4}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { ISA }=-50^{\circ} \mathrm{C} \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{```
EGT }\mp@subsup{}{}{\circ}\textrm{C
EPR
KG/H/ENG
NM/1000KG
```} \\
\hline & \multicolumn{4}{|c|}{80} & \multicolumn{4}{|c|}{. 81} \\
\hline WEIGHT (1000KG) & ISA & ISA+ 10 & ISA+15 & ISA+20 & ISA & ISA+10 & ISA+15 & ISA+20 \\
\hline 85 & \[
\begin{array}{r}
303 \\
1.117 \\
1826 \\
122.7
\end{array}
\] & \[
\begin{array}{r}
331 \\
1119 \\
1954 \\
121.7
\end{array}
\] & \[
\begin{array}{r}
345 \\
1119 \\
1982 \\
121.3
\end{array}
\] & \[
\begin{array}{r}
359 \\
1.120 \\
2010 \\
120.8
\end{array}
\] & \[
\begin{array}{r}
306 \\
1.124 \\
1953 \\
120.6
\end{array}
\] & \[
\begin{array}{r}
334 \\
1.126 \\
2012 \\
119.7
\end{array}
\] & \[
\begin{array}{r}
348 \\
1.127 \\
.041 \\
199.2
\end{array}
\] & \[
\begin{array}{r}
362 \\
1.128 \\
2007 \\
118.8 \\
\hline
\end{array}
\] \\
\hline 90 & \[
\begin{array}{r}
305 \\
1.124 \\
192 \\
121.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
333 \\
1.126 \\
1980 \\
120.1
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.127 \\
2009 \\
119.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36.0 \\
1.128 \\
2037 \\
119.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
308 \\
1.131 \\
1978 \\
119.1
\end{array}
\] & \[
\begin{array}{r}
336 \\
1.133 \\
2038 \\
18.2
\end{array}
\] & \[
\begin{array}{r}
351 \\
1.134 \\
2067 \\
117.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
365 \\
1.135 \\
2097
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
307 \\
1.132 \\
1950 \\
119.3
\end{array}
\] & \[
\begin{array}{r}
335 \\
1.134 \\
.2009 \\
118.4
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.135 \\
1038 \\
118.0
\end{array}
\] & \[
\begin{array}{r}
363 \\
1.135 \\
2066 \\
117.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
310 \\
1.139 \\
2005 \\
117.5
\end{array}
\] & \[
\begin{array}{r}
339 \\
1.141 \\
2066 \\
116.6
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.142 \\
2096 \\
116.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.143 \\
2155 \\
115.7
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
309 \\
1.190 \\
1979 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
337 \\
1.142 \\
2039 \\
116.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
352 \\
1.143 \\
0.068 \\
116.2
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.144 \\
2097 \\
115.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
313 \\
1.148 \\
2037 \\
115.7
\end{array}
\] & \[
\begin{array}{r}
341 \\
150 \\
1098 \\
114.8
\end{array}
\] & \(\begin{array}{r}1356 \\ 1.151 \\ 2129 \\ 114.3 \\ \hline 1.368\end{array}\) & \[
\begin{array}{r}
370 \\
1.52 \\
2159 \\
113.9 \\
\hline
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
312 \\
1.50 \\
2012 \\
115.6
\end{array}
\] & \[
\begin{array}{r}
340 \\
1.151 \\
2073 \\
114.7
\end{array}
\] & \[
\begin{array}{r}
354 \\
1.152 \\
.104 \\
114.3
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.53 \\
1533 \\
113.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
315 \\
1.157 \\
2072 \\
113.7
\end{array}
\] & \[
\begin{array}{r}
344 \\
1.159 \\
2136 \\
112.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
358 \\
1.160 \\
2167 \\
112.3
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.61 \\
2198 \\
111.9 \\
\hline
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
315 \\
1.160 \\
2033 \\
113.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
343 \\
1.162 \\
.115 \\
112.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.163 \\
2146 \\
112.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.164 \\
2176 \\
111.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
318 \\
1.167 \\
210 \\
111.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.169 \\
2174 \\
110.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
361 \\
1.170 \\
2206 \\
110.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
375 \\
1.171 \\
2237 \\
109.9 \\
\hline
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
317 \\
1.171 \\
2095 \\
111.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
346 \\
1.173 \\
2159 \\
110.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.174 \\
.190 \\
109.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
375 \\
1.175 \\
2221 \\
109.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
321 \\
1.178 \\
2151 \\
109.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.180 \\
2217 \\
108.6
\end{array}
\] & \(\begin{array}{r}364 \\ 1.181 \\ 2249 \\ 108.2 \\ \hline\end{array}\) & \[
\begin{array}{r}
378 \\
1.182 \\
2281 \\
107.8 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
321 \\
1.184 \\
2143 \\
108.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.186 \\
2208 \\
107.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.186 \\
2240 \\
107.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.187 \\
2272 \\
106.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
324 \\
1.189 \\
2197 \\
107.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.191 \\
2063 \\
106.4 \\
\hline
\end{array}
\] & \(\begin{array}{r}367 \\ 1.192 \\ 2296 \\ 106.0 \\ \hline 1.3\end{array}\) & \[
\begin{array}{r}
382 \\
1.193 \\
2328 \\
105.6 \\
\hline
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
324 \\
1.97 \\
2194 \\
106.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.199 \\
2260 \\
105.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.199 \\
2992 \\
104.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
382 \\
1.200 \\
2325 \\
104.5
\end{array}
\] & \[
\begin{array}{r}
327 \\
1.202 \\
2246 \\
104.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
356 \\
1.205 \\
2314 \\
104.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
371 \\
1.206 \\
2347 \\
103.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
385 \\
1.207 \\
2380 \\
103.3 \\
\hline
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
328 \\
1.212 \\
2247 \\
103.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.214 \\
2315 \\
102.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.215 \\
2348 \\
102.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
386 \\
1.215 \\
2381 \\
102.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
331 \\
1.218 \\
2302 \\
102.3 \\
\hline
\end{array}
\] & \(\begin{array}{r}361 \\ 1.220 \\ 2371 \\ 101.5 \\ \hline 1.3\end{array}\) & \(\begin{array}{r}375 \\ 1.221 \\ 2405 \\ 101.2 \\ \hline 1.230\end{array}\) & \(\begin{array}{r}398 \\ 1222 \\ 2439 \\ 100.8 \\ \hline 1\end{array}\) \\
\hline 135 & \[
\begin{array}{r}
332 \\
1.29 \\
2309 \\
100.8
\end{array}
\] & \[
\begin{array}{r}
362 \\
1.231 \\
2378 \\
100.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.232 \\
1412 \\
2912 \\
99.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
391 \\
1.233 \\
2446 \\
99.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
336 \\
1.236 \\
2365 \\
99.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
365 \\
1.238 \\
2436 \\
98.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
380 \\
1.239 \\
2471 \\
98.5 \\
\hline
\end{array}
\] & \(\begin{array}{r}395 \\ 1.240 \\ \text { 2506 } \\ \text { 98.1 } \\ \hline 1\end{array}\) \\
\hline 140 & \[
\begin{array}{r}
338 \\
1.50 \\
2381 \\
97.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.252 \\
2452 \\
97.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
382 \\
1.253 \\
2488 \\
96.6
\end{array}
\] & \[
\begin{array}{r}
397 \\
1.254 \\
2522 \\
96.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
341 \\
1.257 \\
2441 \\
96.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
371 \\
1.259 \\
.2514 \\
95.8 \\
\hline
\end{array}
\] & \(\begin{array}{r}386 \\ 1.260 \\ 2550 \\ 95.4 \\ \hline\end{array}\) & \(\begin{array}{r}401 \\ \hline 1.261 \\ 2586 \\ 95.1 \\ \hline 1.4\end{array}\) \\
\hline 145 & \[
\begin{array}{r}
344 \\
1.255 \\
247 \\
94.1
\end{array}
\] & \[
\begin{array}{r}
374 \\
1.277 \\
2545 \\
93.4
\end{array}
\] & \[
\begin{array}{r}
389 \\
1.278 \\
\begin{array}{r}
2782 \\
93.1
\end{array}
\end{array}
\] & \[
\begin{array}{r}
404 \\
1.279 \\
2618 \\
92.8
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.283 \\
2531 \\
93.1
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.285 \\
2607 \\
92.4
\end{array}
\] & \[
\begin{array}{r}
393 \\
1.286 \\
2645 \\
92.0
\end{array}
\] & 408
1.287
2682
91.7 \\
\hline 150 & \[
\begin{array}{r}
351 \\
1.355 \\
2506 \\
90.3
\end{array}
\] & \[
\begin{array}{r}
382 \\
1.307 \\
2653 \\
89.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
397 \\
1.308 \\
2691 \\
89.3
\end{array}
\] & \[
\begin{array}{r}
412 \\
1.309 \\
2729 \\
89.0
\end{array}
\] & \[
\begin{array}{r}
355 \\
1.313 \\
2638 \\
89.3
\end{array}
\] & \[
\begin{array}{r}
385 \\
1315 \\
2718 \\
88.6
\end{array}
\] & \[
\begin{array}{r}
401 \\
1.316 \\
2757 \\
88.3
\end{array}
\] & \[
\begin{array}{r}
416 \\
1.388 \\
2795 \\
88.0 \\
\hline
\end{array}
\] \\
\hline 155 & \[
\begin{array}{r}
360 \\
1.341 \\
2702 \\
86.1
\end{array}
\] & \[
\begin{array}{r}
391 \\
1.343 \\
2782 \\
85.5
\end{array}
\] & \[
\begin{array}{r}
406 \\
1.345 \\
.822 \\
85.2
\end{array}
\] & \[
\begin{array}{r}
422 \\
1.346 \\
2861 \\
84.9
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.349 \\
2764 \\
85.2
\end{array}
\] & \[
\begin{array}{r}
395 \\
1.351 \\
2846 \\
84.6
\end{array}
\] & \[
\begin{array}{r}
410 \\
1.353 \\
2887 \\
84.3
\end{array}
\] & \[
\begin{array}{r}
420 \\
1.354 \\
2928 \\
82.0
\end{array}
\] \\
\hline IAS(kts)
TAS(kts) TAT( \(\left.{ }^{\circ} \mathrm{C}\right)\) & \[
\begin{array}{r}
284 \\
465 \\
-21.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
284 \\
476 \\
-10.6
\end{array}
\] & \[
\begin{array}{r}
284 \\
481 \\
-4.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
284 \\
486 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
288 \\
471 \\
-41.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
288 \\
482 \\
-9.8
\end{array}
\] & \[
\begin{array}{r}
288 \\
487 \\
-4.2 \\
\hline
\end{array}
\] & \(\begin{array}{r}288 \\ 492 \\ 1.5 \\ \hline\end{array}\) \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12400000E5KG375 00185900011.0 .0.003300 20.000.000.000 0 FCOM-B0-02-12-10-005-104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEO 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - FL 350} \\
\hline \multicolumn{4}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { ISA }=-54^{\circ} \mathrm{C} \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\begin{tabular}{l} 
EGT \({ }^{\circ} \mathrm{C}\) \\
EPR \\
KG/H/ENG \\
NM/1000KG \\
\hline
\end{tabular}} \\
\hline \multicolumn{5}{|c|}{80} & \multicolumn{4}{|c|}{81} \\
\hline WEIGHT & ISA & ISA+10 & ISA+15 & ISA+20 & ISA & 1SA+10 & ISA+15 & \(15 A+20\) \\
\hline 85 & \[
\begin{array}{r}
1298 \\
1.132 \\
137 \\
131.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3266 \\
1.133 \\
.1810 \\
130.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 341 \\
& 1.134 \\
& .1837 \\
& 129.7 \\
& \hline
\end{aligned}
\] &  & \[
\begin{array}{r}
302 \\
1.139 \\
1807 \\
129.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
330 \\
1.140 \\
1862 \\
128.2 \\
\hline
\end{array}
\] &  & \[
\begin{array}{r}
\hline 359 \\
1919 \\
1917 \\
127.2 \\
\hline
\end{array}
\] \\
\hline 90 & \[
\begin{array}{r}
301 \\
1.140 \\
1785 \\
1198 .
\end{array}
\] & \[
\begin{aligned}
& 10.2 \\
& 1.142 \\
& 1.182 \\
& 1820 \\
& 128.2
\end{aligned}
\] & \[
\begin{array}{r}
19.9 \\
1.143 \\
1.1867 \\
127.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 129.27 \\
& 1.147 \\
& 1.1894 \\
& 127.2
\end{aligned}
\] & \[
\begin{aligned}
& 189.24 \\
& \hline 1.148 \\
& \hline 187 \\
& 187.1 \\
& 127.1
\end{aligned}
\] & \[
\begin{array}{r}
18.2 \\
1.230 \\
1.850 \\
1893
\end{array}
\] & \[
\begin{aligned}
& 12.1 .17 \\
& 1.151 \\
& 1929 \\
& 125.6 \\
& \hline 125 .
\end{aligned}
\] &  \\
\hline 95 & \[
\begin{array}{r}
303 \\
1.151 \\
1817 \\
126.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 10232 \\
& 1.152 \\
& 1874 \\
& 125.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
346 \\
1.154 \\
.1902 \\
125.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.360 \\
1.155 \\
.1930 \\
124.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1307 \\
& 1.158 \\
& .1872 \\
& 124.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1236 \\
1.160 \\
1963 \\
123.7
\end{array}
\] & \[
\begin{array}{r}
150.0 \\
1.161 \\
1959 \\
123.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.163 \\
1988 \\
122.7 \\
\hline
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
1306 \\
\hline 162 \\
1647 \\
\hline 124.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1335 \\
& 1.164 \\
& 19615 \\
& 123.1
\end{aligned}
\] & \[
\begin{array}{r}
349 \\
1.165 \\
.1943 \\
122.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
\hline 1.166 \\
.1972 \\
122.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
310 \\
1.169 \\
1960 \\
122.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
338 \\
1.171 \\
\text { 1968 } \\
1961.3 \\
\hline 1
\end{array}
\] & \[
\begin{array}{r}
1353 \\
\hline 1.172 \\
\text { i } 998 \\
120.8 \\
\hline
\end{array}
\] &  \\
\hline 105 & \[
\begin{aligned}
& 12.10 \\
& 1.174 \\
& .900 \\
& 121.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1238 \\
& 1,376 \\
& 1976 \\
& 12054 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2.53 \\
1.177 \\
1988 \\
119.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 12.367 \\
& 1.178 \\
& 1019.4 \\
& \hline 19.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 12.23 \\
& 1.381 \\
& 1951 \\
& 119.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 13420 \\
& 1.183 \\
& 1010 \\
& 18.7
\end{aligned}
\] & \[
\begin{aligned}
& 10.0 .06 \\
& 1.184 \\
& .2041 \\
& 118.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 371 \\
& \hline 1.185 \\
& 1071 \\
& 117.8 \\
& \hline
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 12.43 \\
& 1.188 \\
& 1948 \\
& 118.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.420 \\
& 1.190 \\
& 1008 \\
& 117.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
356 \\
1.91 \\
\text { 1.938 } \\
117.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
371 \\
1.192 \\
.1067 \\
\hline 16.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 316 \\
& 1.194 \\
& 1996 \\
& 117.0 \\
& \hline
\end{aligned}
\] &  & \[
\begin{aligned}
& 360 \\
& 1.197 \\
& .1088 \\
& \hline 115.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
374 \\
1.198 \\
\text { ind } \\
115.1 \\
\hline
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
317 \\
1.203 \\
.998 \\
\hline 159.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 346 \\
& 1.205 \\
& \text { 12059 } \\
& 114.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.30 \\
1.206 \\
\text { 1.2090 } \\
\hline 114.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
375 \\
1.207 \\
.1120 \\
\hline 113.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3200 \\
1.209 \\
\text { i } 2046 \\
114.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 349 \\
& 1.211 \\
& 1210 \\
& 113.2 \\
& \hline 102
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& 1.212 \\
& .1140 \\
& 112.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|r}
\hline 379 \\
1.217 \\
\text { 1217 } \\
\hline 112.3 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
321 \\
1.220 \\
.2053 \\
\hline 122.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1350 \\
& 1.222 \\
& .2115 \\
& 111.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
365 \\
1.223 \\
.2427 \\
1140 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
380 \\
\hline 1224 \\
.2178 \\
110.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
325 \\
1.27 \\
.2704 \\
11110 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
354 \\
1.259 \\
.169 \\
.10 .1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
369 \\
1.230 \\
.2009 \\
\hline 109.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
384 \\
1.231 \\
12323 \\
109.3 \\
\hline
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
3226 \\
1.211 \\
108.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1356 \\
& 1.243 \\
& .282 \\
& 108.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
371 \\
1.244 \\
.214 \\
107.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
386 \\
1.245 \\
10246 \\
107.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
330 \\
1.248 \\
1071 \\
107.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.250 \\
.237 \\
\hline 106.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 375 \\
& 1.251 \\
& 10270 \\
& 106.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 389 \\
\hline 1253 \\
1253 \\
105.9 \\
\hline
\end{array}
\] \\
\hline 130 &  & \[
\begin{aligned}
& 362 \\
& 1.268 \\
& .2686 \\
& 104.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
377 \\
1.269 \\
.2699 \\
\hline 103.7 \\
\hline
\end{array}
\] &  &  & \[
\begin{aligned}
& 1366 \\
& 1.276 \\
& \text { 1323 } \\
& 102.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 381 \\
& 1.278 \\
& .2358 \\
& 102.38 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.396 \\
1.2392 \\
102.0 \\
\hline 102.0 \\
\hline
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
1340 \\
1.297 \\
1297 \\
100.4 \\
\hline
\end{array}
\] & \[
\begin{gathered}
370 \\
1_{2399}^{3769} \\
99.6 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
385 \\
\begin{array}{c}
3850 \\
\text { 1.301 } \\
99.3 \\
99.3
\end{array} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
401 \\
1.301 \\
.2436 \\
\hline 98.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
344 \\
1.305 \\
{ }_{2}^{2355} \\
\hline 99.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1374 \\
& 1.307 \\
& .3425 \\
& \hline 98.4 \\
& \hline 98
\end{aligned}
\] & \[
\begin{array}{r}
389 \\
\hline 1.309 \\
.2461 \\
\hline 98.1 \\
\hline
\end{array}
\] &  \\
\hline 140 & \[
\begin{array}{r}
349 \\
1.335 \\
.2316 \\
\hline 95.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
380 \\
1.337 \\
.2389 \\
\hline 94.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
396 \\
1.338 \\
\text { 1336 } \\
\text { S526 } \\
\hline 94.4 \\
\hline
\end{array}
\] &  & \[
\begin{array}{r}
353 \\
1.343 \\
.244 \\
\hline 944 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
384 \\
1.345 \\
\text { 1.548 } \\
\hline 93.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
400 \\
1.347 \\
.2586 \\
\hline 93.3 \\
\hline
\end{array}
\] &  \\
\hline 145 & \[
\begin{array}{r}
360 \\
1.381 \\
\text { 2351 } \\
90.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
392 \\
1.383 \\
.3630 \\
89.6 \\
\hline 89.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1407 \\
& 1.385 \\
& . \quad 669 \\
& 89.3 \\
& \hline 8
\end{aligned}
\] & \[
\begin{array}{r}
423 \\
1.386 \\
.2707 \\
\hline 89.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.390 \\
.3691 \\
89.4 \\
\hline 89 . \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1395 \\
\begin{array}{r}
396 \\
\hline 689 \\
\hline 88.8 \\
\hline
\end{array} \mathbf{8} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
411 \\
\hline 1.393 \\
.2729 \\
\hline 88.4 \\
\hline
\end{array}
\] & \\
\hline 150 &  & \[
\begin{array}{r}
408 \\
1.439 \\
.808 \\
84.1 \\
\hline 84.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
424 \\
\hline 1441 \\
\hline .841 \\
884.8 \\
\hline 83.8
\end{array}
\] & & \[
\begin{array}{r}
380 \\
1.478 \\
.489 \\
83.7 \\
\hline
\end{array}
\] &  & & \\
\hline 155 & & & & & & & & \\
\hline  & \[
\begin{array}{r}
272 \\
\text { 261 } \\
\hline 26.3
\end{array}
\] & \[
\begin{array}{r}
272 \\
\hline 472 \\
-15.1
\end{array}
\] & \[
\begin{aligned}
& 272 \\
& \hline 177 \\
& -9.4 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
272 \\
.882 \\
-3.8 \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
276 \\
-257 \\
-25.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
276 \\
477 \\
-14.3 \\
\hline
\end{array}
\] & \[
\begin{gathered}
276 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
276 \\
\hline
\end{gathered}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12400000E5KG375 00185900011.0 .0.003500 20.000 . 000 . 0000 FCOM-BO-02-12-10-006-104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12.10} \\
\hline & & PAGE & 7 \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEQ 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - FL 370} \\
\hline \multicolumn{4}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { ISA }=-57^{\circ} \mathrm{C} \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{EGT \({ }^{\circ} \mathrm{C}\)
EPR
KG/H/ENG
NM \(/ 1000 \mathrm{KG}\)} \\
\hline & \multicolumn{4}{|c|}{80} & \multicolumn{4}{|r|}{81} \\
\hline WEIGHT (1000KG) & ISA & ISA+10 & ISA+15 & 1SA+20 & ISA & ISA+10 & ISA+15 & ISA+20 \\
\hline 85 & \[
\begin{array}{r}
300 \\
1.150 \\
1642
\end{array}
\] & \[
\begin{array}{r}
328 \\
1152 \\
1694 \\
138.5
\end{array}
\] & \[
\begin{array}{r}
342 \\
1.153 \\
1720 \\
137.9
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.154 \\
1745 \\
137.4
\end{array}
\] & \[
\begin{array}{r}
303 \\
1.158 \\
1693 \\
1693
\end{array}
\] & \[
\begin{array}{r}
332 \\
1.160 \\
1746 \\
136.1
\end{array}
\] & \[
\begin{array}{r}
346 \\
1.161 \\
1772 \\
135.5
\end{array}
\] & \[
\begin{array}{r}
361 \\
1.162 \\
1799 \\
135.0
\end{array}
\] \\
\hline 90 & \[
\begin{array}{r}
303 \\
163 \\
1681 \\
136.4
\end{array}
\] & \[
\begin{array}{r}
331 \\
1165 \\
1734 \\
135.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
346 \\
1.166 \\
1761 \\
134.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.167 \\
1386 \\
134.2
\end{array}
\] & \[
\begin{array}{r}
306 \\
1.170 \\
1729 \\
134.3
\end{array}
\] & \[
\begin{array}{r}
335 \\
1.172 \\
1784 \\
133.2
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.173 \\
1811 \\
132.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.174 \\
1837 \\
132.1 \\
\hline
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
306 \\
1.176 \\
1723 \\
133.2
\end{array}
\] & \[
\begin{array}{r}
335 \\
1.178 \\
1777 \\
132.0
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.179 \\
1804 \\
131.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
364 \\
1.180 \\
1830 \\
131.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
309 \\
1.183 \\
1769 \\
131.3
\end{array}
\] & \[
\begin{array}{r}
338 \\
1.185 \\
1825 \\
130.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
353 \\
1.186 \\
1853 \\
129.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
368 \\
1.187 \\
1880 \\
129.2 \\
\hline
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
310 \\
1.191 \\
1771 \\
129.6
\end{array}
\] & \[
\begin{array}{r}
339 \\
1.193 \\
1826 \\
128.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
354 \\
1.194 \\
1854 \\
128.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
368 \\
1.195 \\
1881 \\
127.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
313 \\
1.197 \\
1814 \\
128.0
\end{array}
\] & \[
\begin{array}{r}
342 \\
1.199 \\
1871 \\
127.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.200 \\
1899 \\
126.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.201 \\
1927 \\
126.0 \\
\hline
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
314 \\
1.208 \\
1821 \\
126.0
\end{array}
\] & \[
\begin{array}{r}
343 \\
1210 \\
1878 \\
125.0
\end{array}
\] & \[
\begin{array}{r}
3588 \\
1.211 \\
1906 \\
124.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
373 \\
1.212 \\
1933 \\
124.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
317 \\
1.114 \\
1865 \\
124.6
\end{array}
\] & \[
\begin{array}{r}
347 \\
1.216 \\
1923 \\
123.6
\end{array}
\] & \[
\begin{array}{r}
362 \\
1217 \\
1951 \\
123.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.218 \\
1980 \\
122.6 \\
\hline
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
319 \\
1.227 \\
1877 \\
122.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
349 \\
1.230 \\
1935 \\
121.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
363 \\
1.231 \\
1964 \\
120.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.232 \\
1992 \\
120.4
\end{array}
\] & \[
\begin{array}{r}
3234 \\
1.2323 \\
190.8 \\
\hline 120.8
\end{array}
\] & \[
\begin{array}{r}
352 \\
1237 \\
1983 \\
119.8 \\
\hline
\end{array}
\] & \(\begin{array}{r}367 \\ 1.238 \\ 2012 \\ 119.4 \\ \hline\end{array}\) & \(\begin{array}{r}1382 \\ 1.239 \\ 11842 \\ 118.9 \\ \hline 1.269\end{array}\) \\
\hline 115 & \[
\begin{array}{r}
325 \\
1.251 \\
1945 \\
117.9
\end{array}
\] & \[
\begin{array}{r}
355 \\
1.253 \\
2006 \\
117.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
370 \\
1.255 \\
2036 \\
116.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
385 \\
1.256 \\
2065 \\
116.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
329 \\
1.259 \\
1995 \\
116.4
\end{array}
\] & \[
\begin{array}{r}
359 \\
1.261 \\
2057 \\
115.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
374 \\
1.263 \\
2088 \\
115.1 \\
\hline
\end{array}
\] & \(\begin{array}{r}389 \\ 1.264 \\ 2118 \\ 114.6 \\ \hline 1.297\end{array}\) \\
\hline 120 & \[
\begin{array}{r}
332 \\
1.282 \\
0234 \\
112.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
363 \\
1.284 \\
.2097 \\
111.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.285 \\
2128 \\
111.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
393 \\
1.286 \\
2158 \\
111.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
336 \\
1.289 \\
083 \\
111.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.292 \\
2148 \\
110.6 \\
\hline
\end{array}
\] & \(\begin{array}{r}381 \\ 1.293 \\ \text { 2179 } \\ 110.2 \\ \hline 1.332\end{array}\) & \(\begin{array}{r}31.6 \\ 1.297 \\ \text { 2211 } \\ 109.8 \\ \hline 1.407\end{array}\) \\
\hline 125 & \[
\begin{array}{r}
342 \\
1.319 \\
2141 \\
107.2
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.322 \\
2207 \\
106.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
388 \\
1.323 \\
2240 \\
105.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
403 \\
1.324 \\
2272 \\
105.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
345 \\
1.327 \\
192 \\
106.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.330 \\
2260 \\
105.1
\end{array}
\] & \(\begin{array}{r}1.392 \\ 1.331 \\ 2293 \\ 104.7 \\ \hline 1.37\end{array}\) & \(\begin{array}{r}\text { 407 } \\ 1.332 \\ 2326 \\ 104.4 \\ \hline 1.319\end{array}\) \\
\hline 130 & \[
\begin{array}{r}
353 \\
1.366 \\
2070 \\
101.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
384 \\
1.369 \\
2340 \\
100.3
\end{array}
\] & \[
\begin{array}{r}
400 \\
1.370 \\
2374 \\
99.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
415 \\
1.371 \\
2408 \\
99.6
\end{array}
\] & \[
\begin{array}{r}
356 \\
1.333 \\
339 \\
100.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
388 \\
1.376 \\
2390 \\
99.4
\end{array}
\] & \[
\begin{array}{r}
403 \\
1.377 \\
2426 \\
99.0
\end{array}
\] & 1819
1.378
2460
98.7 \\
\hline 135 & \[
\begin{array}{r}
368 \\
1.424 \\
2427 \\
94.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
400 \\
1.427 \\
2502 \\
93.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
416 \\
1.428 \\
2539 \\
93.5 \\
\hline
\end{array}
\] & & \[
\begin{array}{r}
372 \\
1.432 \\
2480 \\
93.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
404 \\
1435 \\
\hline 2557 \\
92.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
420 \\
1.436 \\
2595 \\
92.6 \\
\hline
\end{array}
\] & \\
\hline 140 & \[
\begin{array}{r}
384 \\
1.491 \\
2614 \\
87.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
416 \\
1.494 \\
2695 \\
87.1 \\
\hline
\end{array}
\] & & & & & & \\
\hline 145 & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { IAS(kts) } \\
& \text { TAS(kts) } \\
& \text { TAT } \left.{ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \[
\begin{array}{r}
260 \\
459 \\
-28.8
\end{array}
\] & \[
\begin{array}{r}
260 \\
469 \\
-17.5
\end{array}
\] & \[
\begin{array}{r}
260 \\
474 \\
-11.8
\end{array}
\] & \[
\begin{array}{r}
260 \\
480 \\
-6.2
\end{array}
\] & \[
\begin{array}{r}
263 \\
465 \\
-28.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
263 \\
475 \\
-16.8
\end{array}
\] & \[
\begin{array}{r}
263 \\
480 \\
-11.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
263 \\
486 \\
-5.4 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12400000E5KG375 00185900011.0 .0.003700 20.000 . 000 . 0000 FCOM-B0-02-12-10-007-104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEO 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - FL 390} \\
\hline \multicolumn{4}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { ISA }=-57^{\circ} \mathrm{C} \\
& \mathrm{CG}=37.5 \%
\end{aligned}
\]} & \multicolumn{2}{|l|}{EGT \({ }^{\circ} \mathrm{C}\) EPR KG/H/ENG NM/1000KG} \\
\hline & \multicolumn{4}{|c|}{80} & \multicolumn{4}{|c|}{81} \\
\hline WEIGHT & ISA & ISA+10 & 1SA+15 & 1SA+20 & ISA & ISA+10 & ISA+15 & ISA+20 \\
\hline 85 & \[
\begin{array}{r}
308 \\
\hline 1.175 \\
1566 \\
146.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
337 \\
1.177 \\
1614 \\
145.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.352 \\
& 1.178 \\
& .639 \\
& 144.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
366 \\
1.179 \\
1663 \\
144.1
\end{array}
\] & \[
\begin{array}{r}
312 \\
1.182 \\
.1808 \\
144.4 \\
\hline
\end{array}
\] &  & \[
\begin{aligned}
& 1.155 \\
& \begin{array}{l}
165 \\
.1683 \\
142.7
\end{array} \\
& \hline
\end{aligned}
\] &  \\
\hline 90 &  & \[
\begin{aligned}
& 1342 \\
& 1,193 \\
& 1462.2 \\
& 141.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
356 \\
1.195 \\
1687 \\
140.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 371 \\
& 1,1961 \\
& 17012 \\
& \hline 140.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1316 \\
& 1198 \\
& 1650 \\
& 140.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
345 \\
1.300 \\
1703 \\
13995 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
360 \\
1.201 \\
1729 \\
\hline 138.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.302 \\
& 138.3 \\
& 188.3 \\
& \hline
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 317 \\
& 1.210 \\
& \text { i } 662 \\
& 138.1
\end{aligned}
\] & \[
\begin{aligned}
& 346 \\
& 1.212 \\
& .1713 \\
& 137.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
361 \\
1.213 \\
\text { 1739 } \\
136.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.214 \\
\text { 1764 } \\
135.9 \\
\hline 15.9
\end{array}
\] & \[
\begin{array}{r}
320 \\
1.216 \\
1702 \\
136.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 350 \\
& 1.218 \\
& 1754 \\
& 135.5 \\
& \hline 15
\end{aligned}
\] & \[
\begin{aligned}
& 365 \\
& 1.219 \\
& \text { 1.780 } \\
& 134.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
380 \\
1.221 \\
\text { 1807 } \\
134.4 \\
\hline
\end{array}
\] \\
\hline 100 &  &  &  & \[
\begin{array}{r}
3822 \\
1.236 \\
1823 \\
131.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
326 \\
1.328 \\
1760 \\
132.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.366 \\
& 1.351 \\
& 1814 \\
& 131.0 \\
& \hline
\end{aligned}
\] &  & \[
\begin{array}{r}
386 \\
1.343 \\
1868 \\
\hline 129.9 \\
\hline
\end{array}
\] \\
\hline 105 &  & \[
\begin{aligned}
& 1.259 \\
& 1.260 \\
& 1843 \\
& \hline 127.3 \\
& \hline
\end{aligned}
\] &  & \[
\begin{array}{r}
389 \\
1.263 \\
\text { 189.9 } \\
\hline 126.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1233 \\
1.366 \\
183.3 \\
126.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
363 \\
1268 \\
1890 \\
125.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 378 \\
& 1.270 \\
& \text { i918 } \\
& 125.2 \\
& \hline
\end{aligned}
\] &  \\
\hline 110 & \[
\begin{aligned}
& 12.08 \\
& 1.293 \\
& 1897 \\
& 122.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 368 \\
& 1.295 \\
& 1993 \\
& 121.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
383 \\
1.296 \\
1966 \\
120.7
\end{array}
\] & \[
\begin{aligned}
& 399 \\
& 1.298 \\
& 1209.2 \\
& 120.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 341 \\
& 1.300 \\
& 1920 \\
& 120.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 372 \\
& 1.303 \\
& 1984 \\
& 19.8 \\
& \hline 19.8
\end{aligned}
\] & \[
\begin{aligned}
& 1.387 \\
& 1.304 \\
& .2013 \\
& 119.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
12.73 \\
1.305 \\
.2043 \\
118.8 \\
\hline
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
12.388 \\
1.337 \\
1992 \\
15.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 121.29 \\
& 1.339 \\
& 1.359 \\
& 114.3
\end{aligned}
\] & \[
\begin{array}{r}
120.7 \\
1395 \\
1.341 \\
2084 \\
113.8 \\
\hline
\end{array}
\] &  & \[
\begin{aligned}
& 12.352 \\
& 1.345 \\
& 1.241 \\
& 113.8 \\
& \hline 113.8
\end{aligned}
\] & \[
\begin{array}{r}
380 \\
1.388 \\
12103 \\
1103 \\
\hline 13.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
399 \\
1.349 \\
1129 \\
\hline 12.5 \\
\hline
\end{array}
\] & \[
\begin{array}{|r}
\hline 4.0 \\
1.550 \\
1.560 \\
112.1 \\
\hline
\end{array}
\] \\
\hline 120 & \[
\begin{aligned}
& 1362 \\
& 1.393 \\
& 12130 \\
& 107.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.393 \\
1.396 \\
\text { 120.9 } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 109 \\
& 1.397 \\
& .2927 \\
& \hline 106.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.425 \\
& 1.4268 \\
& 1268 \\
& \hline 106.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
365 \\
1.461 \\
12778 \\
106.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
397 \\
1.404 \\
1245 \\
105.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
413 \\
.4250 \\
.205 .4 \\
\hline 105.4 \\
\hline
\end{array}
\] & \\
\hline 125 & \[
\begin{array}{r}
380 \\
1.463 \\
.3606 \\
99.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
413 \\
1.466 \\
.1376 \\
\hline 98.8 \\
\hline
\end{array}
\] & & & \[
\begin{array}{r}
385 \\
1.377 \\
.2771 \\
98.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
418 \\
1.479 \\
.443 \\
\hline 97.3 \\
\hline
\end{array}
\] & & \\
\hline 130 & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { IAS(kts) } \\
& \text { TAS(kts) } \\
& \text { TAT } \left.{ }^{( } \mathrm{C}\right)
\end{aligned}
\] & \[
\begin{array}{r}
248 \\
-2898 \\
-28.8
\end{array}
\] & \[
\begin{array}{r}
248 \\
-1769 \\
\hline 17.5
\end{array}
\] & \[
\begin{array}{r}
248 \\
-4174 \\
-11.8
\end{array}
\] & \[
\begin{array}{r}
248 \\
\hline 80 \\
-6.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
251 \\
\hline 465 \\
-28.1
\end{array}
\] & \[
\begin{array}{r}
251 \\
-475 \\
-46.8
\end{array}
\] & \begin{tabular}{r}
251 \\
\hline 480 \\
-11.1
\end{tabular} & \[
\begin{array}{r}
251 \\
\hline 86 \\
\hline-5.4 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12400000E5KG375 00185900011.0 .0.003900 20.000 . 000 . 0000 FCOM-BO-02-12-10-008-104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12.10} \\
\hline & & PAGE & 9 \\
\hline & CRUISE TABLES 2 ENGINES & REV 33 & SEC 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - FL 410} \\
\hline \multicolumn{4}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { ISA }=-57^{\circ} \mathrm{C} \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{EGT \({ }^{\circ} \mathrm{C}\)
EPR
KG/H/ENG
NM/1000KG} \\
\hline & \multicolumn{4}{|c|}{80} & \multicolumn{4}{|c|}{81} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& (1000 \mathrm{KG})
\end{aligned}
\] & ISA & ISA+10 & ISA+15 & ISA+20 & ISA & ISA+10 & ISA+15 & ISA+20 \\
\hline 85 & \[
\begin{array}{r}
319 \\
1.208 \\
1507 \\
152.3 \\
\hline
\end{array}
\] &  & \[
\begin{array}{r}
363 \\
1.211 \\
1577 \\
150.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
378 \\
1.212 \\
1600 \\
149.9 \\
\hline
\end{array}
\] &  & \[
\begin{array}{r}
352 \\
1.216 \\
1591 \\
149.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
367 \\
1.217 \\
1615 \\
148.8
\end{array}
\] & \[
\begin{array}{r}
382 \\
1.219 \\
1638 \\
148.2 \\
\hline
\end{array}
\] \\
\hline 90 &  &  & \[
\begin{array}{r}
369 \\
1.234 \\
1633 \\
145.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
384 \\
1.235 \\
1657 \\
144.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
328 \\
1.237 \\
1599 \\
145.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
358 \\
1.240 \\
1649 \\
144.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
373 \\
1.241 \\
1674 \\
143.5 \\
\hline 201
\end{array}
\] & \[
\begin{array}{r}
388 \\
1.242 \\
1698 \\
143.0 \\
\hline 20
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
332 \\
1.259 \\
1630 \\
140.8 \\
\hline 211
\end{array}
\] &  & \[
\begin{array}{r}
377 \\
1.263 \\
1706 \\
139.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
392 \\
1.264 \\
1730 \\
138.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
335 \\
1.267 \\
1671 \\
139.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
366 \\
1.270 \\
1723 \\
137.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
381 \\
1.271 \\
1749 \\
137.3 \\
\hline 201
\end{array}
\] & \[
\begin{array}{r}
396 \\
1.272 \\
1775 \\
136.8 \\
\hline
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
341 \\
1.297 \\
1720 \\
133.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
372 \\
1.300 \\
1773 \\
132.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
387 \\
1.301 \\
1800 \\
131.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
403 \\
1.302 \\
1826 \\
131.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
345 \\
1.305 \\
1762 \\
131.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
376 \\
1.308 \\
1817 \\
130.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
391 \\
1.309 \\
1844 \\
130.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
407 \\
1.311 \\
1871 \\
129.7 \\
\hline
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
353 \\
1.347 \\
1836 \\
125.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
385 \\
1.350 \\
1893 \\
124.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
400 \\
1.351 \\
1921 \\
123.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
416 \\
1.352 \\
1949 \\
123.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
357 \\
1.356 \\
1880 \\
123.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
389 \\
1.359 \\
1938 \\
122.6 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
404 \\
1.360 \\
1967 \\
122.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
420 \\
1.361 \\
1996 \\
121.7 \\
\hline
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
369 \\
1.412 \\
1980 \\
115.8 \\
\hline
\end{array}
\] &  & \[
\begin{array}{r}
418 \\
1.417 \\
2072 \\
114.5
\end{array}
\] & & \[
\begin{array}{r}
373 \\
1.420 \\
2025 \\
114.7 \\
\hline
\end{array}
\] &  &  & \\
\hline 115 & \[
\begin{array}{r}
389 \\
1.492 \\
2165 \\
106.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
422 \\
1.495 \\
2232 \\
105.1 \\
\hline
\end{array}
\] & & & & & & \\
\hline \[
120
\] & & & & & & & & \\
\hline \[
\begin{aligned}
& \text { IAS(kts) } \\
& \text { TAS(kts) } \\
& \text { TAT } \left.{ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & \[
\begin{array}{r}
237 \\
459 \\
-28.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
237 \\
469 \\
-17.5
\end{array}
\] & \[
\begin{array}{r}
237 \\
474 \\
-11.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
237 \\
480 \\
-6.2
\end{array}
\] & \[
\begin{array}{r}
240 \\
465 \\
-28.1
\end{array}
\] & \[
\begin{array}{r}
240 \\
475 \\
-16.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
240 \\
480 \\
-11.1
\end{array}
\] & \[
\begin{array}{r}
240 \\
486 \\
-5.4 \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12400000E5KG375 00185900011.0 . 0 . 00410020.000 .000 . 0000 FCOM-B0-02-12-10-009-104
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\underbrace{(2)}\)} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10} \\
\hline & Cruise tables 2 engines & REV 21 & SEC 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{5}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & & & & & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM/1000KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& \text { (1000KG) } \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL 50} & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} \\
\hline 90 & \[
\begin{aligned}
& \hline 322 \\
& 1.002 \\
& 1852 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .424 \\
& 257 \\
& 275
\end{aligned}
\] & 105
1.008
1756
83.3 & \[
\begin{array}{r}
.458 \\
253 \\
292
\end{array}
\] & \[
\begin{aligned}
& 290 \\
& 1.016 \\
& 1694 \\
& 92.9
\end{aligned}
\] & \[
\begin{aligned}
& .502 \\
& 253 \\
& 315
\end{aligned}
\] & \[
\begin{aligned}
& \hline 289 \\
& 1.019 \\
& 1671 \\
& 94.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .508 \\
& 251 \\
& 317
\end{aligned}
\] & \[
\begin{aligned}
& \hline 288 \\
& 1.022 \\
& 1647 \\
& 97.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 514 \\
249 \\
320
\end{array}
\] & \[
\begin{aligned}
& \hline 287 \\
& 1.025 \\
& 1624 \\
& 99.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 520 \\
& 247 \\
& 322
\end{aligned}
\] & \[
\begin{aligned}
& \hline 286 \\
& 1.028 \\
& 1601 \\
& 101.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 526 \\
& 245 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& \hline 285 \\
& 1.031 \\
& 1585 \\
& 103.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 534 \\
& 244 \\
& 328
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& \hline 322 \\
& 1.004 \\
& 1912 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.429 \\
260 \\
279
\end{array}
\] & \[
\begin{aligned}
& 305 \\
& 1.010 \\
& 1844 \\
& 81.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.471 \\
260 \\
300
\end{array}
\] & \[
\begin{aligned}
& 293 \\
& 1.019 \\
& 1763 \\
& 90.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
511 \\
257 \\
320
\end{array}
\] & \[
\begin{aligned}
& 292 \\
& 1.022 \\
& 1737 \\
& 92.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 255 \\
& 322
\end{aligned}
\] & \[
\begin{aligned}
& 291 \\
& 1.025 \\
& 1712 \\
& 94.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 522 \\
& 253 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& 290 \\
& 1.028 \\
& 1690 \\
& 96.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 528 \\
& 251 \\
& 327
\end{aligned}
\] & \[
\begin{aligned}
& \hline 289 \\
& 1.032 \\
& 1675 \\
& 98.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
536 \\
250 \\
331
\end{array}
\] & \[
\begin{aligned}
& 289 \\
& 1.035 \\
& 1669 \\
& 100.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 547 \\
& 250 \\
& 336
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& \hline 322 \\
& 1.005 \\
& 1997 \\
& 71.6
\end{aligned}
\] & \[
\begin{aligned}
& .440 \\
& 266 \\
& 286
\end{aligned}
\] & \[
\begin{aligned}
& 305 \\
& 1.011 \\
& 1933 \\
& 79.7
\end{aligned}
\] & \[
\begin{aligned}
& .483 \\
& 267 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& 296 \\
& 1.022 \\
& 1829 \\
& 88.7
\end{aligned}
\] & \[
\begin{aligned}
& .518 \\
& 261 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& 295 \\
& 1.026 \\
& 1802 \\
& 90.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .523 \\
& 259 \\
& 327
\end{aligned}
\] & \[
\begin{aligned}
& 294 \\
& 1.029 \\
& 1782 \\
& 92.5
\end{aligned}
\] & \[
\begin{aligned}
& .530 \\
& 257 \\
& 330
\end{aligned}
\] & \[
\begin{aligned}
& \hline 293 \\
& 1.032 \\
& 1766 \\
& 94.4
\end{aligned}
\] & \[
\begin{aligned}
& .539 \\
& 256 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& \hline 293 \\
& 1.035 \\
& 1762 \\
& 96.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .550 \\
& 257 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 293 \\
& 1.039 \\
& 1753 \\
& 98.1
\end{aligned}
\] & \[
\begin{aligned}
& .560 \\
& 256 \\
& 344
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 321 \\
& 1.006 \\
& 2089 \\
& 70.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.451 \\
273 \\
293
\end{array}
\] & \[
\begin{aligned}
& 305 \\
& 1.013 \\
& 2020 \\
& 78.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.494 \\
.474 \\
316
\end{array}
\] & \[
\begin{aligned}
& 299 \\
& 1.026 \\
& 1894 \\
& 86.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 525 \\
& 265 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& 298 \\
& 1.029 \\
& 1875 \\
& 88.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 532 \\
& 263 \\
& 332
\end{aligned}
\] & \[
\begin{aligned}
& 297 \\
& 1.032 \\
& 1860 \\
& 90.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 541 \\
& 262 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& 297 \\
& 1.035 \\
& 1855 \\
& 92.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 552 \\
& 263 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& \hline 297 \\
& 1.039 \\
& 1845 \\
& 93.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 562 \\
& 262 \\
& 346
\end{aligned}
\] & \[
\begin{aligned}
& \hline 296 \\
& 1.043 \\
& 1836 \\
& 95.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 572 \\
& 262 \\
& 351
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 321 \\
& 1.007 \\
& 2179 \\
& 68.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .462 \\
& 280 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& 307 \\
& 1.015 \\
& 2100 \\
& 76.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.504 \\
279 \\
322
\end{array}
\] & \[
\begin{aligned}
& 302 \\
& 1.029 \\
& 1969 \\
& 84.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .534 \\
& 269 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& \hline 302 \\
& 1.032 \\
& 1956 \\
& 86.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.543 \\
269 \\
339
\end{array}
\] & \[
\begin{aligned}
& \hline 301 \\
& 1.035 \\
& 1949 \\
& 88.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .554 \\
& 269 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& \hline 301 \\
& 1.039 \\
& 1939 \\
& 90.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .564 \\
& 268 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& \hline 300 \\
& 1.043 \\
& 1929 \\
& 91.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .574 \\
& 268 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 300 \\
& 1.047 \\
& 1921 \\
& 93.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .584 \\
& 268 \\
& 359
\end{aligned}
\] \\
\hline 115 & \begin{tabular}{l}
321 \\
1.008 \\
2268 \\
67.6 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.472 \\
286 \\
307
\end{array}
\] & \[
\begin{aligned}
& 310 \\
& 1.017 \\
& 2170 \\
& 75.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.511 \\
283 \\
326
\end{array}
\] & 305
1.032
2050
83.1 & \[
\begin{aligned}
& \hline 544 \\
& 275 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& \hline 305 \\
& 1.035 \\
& 2044 \\
& 84.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 555 \\
275 \\
346
\end{array}
\] & \begin{tabular}{l}
305 \\
1.039 \\
2034 \\
86.3 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 565 \\
& 274 \\
& 351
\end{aligned}
\] & \[
\begin{aligned}
& \hline 304 \\
& 1.043 \\
& 2023 \\
& 87.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 575 \\
& 274 \\
& 356
\end{aligned}
\] & \[
\begin{aligned}
& \hline 304 \\
& 1.047 \\
& 2015 \\
& 89.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 585 \\
& 274 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& \hline 304 \\
& 1.052 \\
& 2014 \\
& 91.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 598 \\
& 274 \\
& 367
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 321 \\
& 1.009 \\
& 2357 \\
& 66.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .482 \\
& 292 \\
& 313
\end{aligned}
\] & \[
\begin{aligned}
& 312 \\
& 1.020 \\
& 2237 \\
& 73.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .517 \\
& 286 \\
& 330
\end{aligned}
\] & \[
\begin{aligned}
& 309 \\
& 1.035 \\
& 2138 \\
& 81.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 555 \\
& 280 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& 308 \\
& 1.039 \\
& 2128 \\
& 82.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& 280 \\
& 353
\end{aligned}
\] & \[
\begin{aligned}
& \hline 308 \\
& 1.043 \\
& 2118 \\
& 84.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 280 \\
& 358
\end{aligned}
\] & \[
\begin{aligned}
& 307 \\
& 1.047 \\
& 2109 \\
& 86.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.586 \\
280 \\
363
\end{array}
\] & \[
\begin{aligned}
& \hline 307 \\
& 1.051 \\
& 2110 \\
& 87.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 599 \\
& 280 \\
& 369
\end{aligned}
\] & \[
\begin{aligned}
& 309 \\
& 1.052 \\
& 2173 \\
& 89.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 629 \\
& 289 \\
& 387
\end{aligned}
\] \\
\hline 125 & \[
\begin{aligned}
& 321 \\
& 1.011 \\
& 2448 \\
& 65.3
\end{aligned}
\] & \[
\begin{aligned}
& .492 \\
& 298 \\
& 320
\end{aligned}
\] & \[
\begin{aligned}
& 314 \\
& 1.022 \\
& 2301 \\
& 72.4
\end{aligned}
\] & \[
\begin{aligned}
& .522 \\
& 289 \\
& 333
\end{aligned}
\] & \[
\begin{aligned}
& 312 \\
& 1.038 \\
& 2223 \\
& 79.7
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& 286 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& \hline 311 \\
& 1.042 \\
& 2212 \\
& 81.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 285 \\
& 359
\end{aligned}
\] & 311
1.046
2202
82.7 & \[
\begin{aligned}
& .586 \\
& 285 \\
& 364
\end{aligned}
\] & \[
\begin{aligned}
& 311 \\
& 1.050 \\
& 2205 \\
& 84.1
\end{aligned}
\] & \[
\begin{aligned}
& .599 \\
& 286 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& 313 \\
& 1.051 \\
& 2273 \\
& 85.5
\end{aligned}
\] & \[
\begin{aligned}
& .630 \\
& 296 \\
& 389
\end{aligned}
\] & 114
1.055
2304
86.9 & \[
\begin{aligned}
& .651 \\
& 300 \\
& 400
\end{aligned}
\] \\
\hline 130 & \[
\begin{aligned}
& \hline 322 \\
& 1.012 \\
& 2535 \\
& 64.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .501 \\
& 304 \\
& 326
\end{aligned}
\] & \[
\begin{aligned}
& 317 \\
& 1.025 \\
& 2369 \\
& 71.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
528 \\
293 \\
337
\end{array}
\] & 315
1.042
2307
78.1 & \[
\begin{array}{r}
575 \\
291 \\
360
\end{array}
\] & \begin{tabular}{l}
314 \\
1.046 \\
2296 \\
79.6 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 585 \\
& 290 \\
& 365
\end{aligned}
\] & \[
\begin{aligned}
& 314 \\
& 1.050 \\
& 2299 \\
& 80.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 599 \\
& 291 \\
& 372
\end{aligned}
\] & \[
\begin{aligned}
& \hline 316 \\
& 1.051 \\
& 2373 \\
& 82.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 630 \\
& 302 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 317 \\
& 1.054 \\
& 2405 \\
& 83.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
652 \\
306 \\
402
\end{array}
\] & \[
\begin{aligned}
& \hline 317 \\
& 1.061 \\
& 2403 \\
& 84.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 664 \\
& 306 \\
& 408
\end{aligned}
\] \\
\hline 135 & \[
\begin{aligned}
& 324 \\
& 1.014 \\
& 2604 \\
& 63.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .507 \\
& 307 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& 319 \\
& 1.028 \\
& 2447 \\
& 69.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.536 \\
297 \\
342
\end{array}
\] & \[
\begin{aligned}
& 318 \\
& 1.045 \\
& 2392 \\
& 76.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 585 \\
& 296 \\
& 366
\end{aligned}
\] & \[
\begin{aligned}
& 318 \\
& 1.049 \\
& 2393
\end{aligned}
\] & \[
\begin{aligned}
& .598 \\
& 297 \\
& 373
\end{aligned}
\] & \[
\begin{aligned}
& 320 \\
& 1.050 \\
& 2469 \\
& 79.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .629 \\
& 307 \\
& 391
\end{aligned}
\] & \[
\begin{aligned}
& \hline 321 \\
& 1.053 \\
& 2506 \\
& 80.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 651 \\
& 312 \\
& 403
\end{aligned}
\] &  & \[
\begin{aligned}
& 663 \\
& 312 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 320 \\
& 1.067 \\
& 2491 \\
& 83.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 674 \\
& 311 \\
& 414
\end{aligned}
\] \\
\hline 140 & \[
\begin{aligned}
& \hline 326 \\
& 1.016 \\
& 2674 \\
& 62.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .512 \\
& 311 \\
& 333
\end{aligned}
\] & \[
\begin{aligned}
& \hline 322 \\
& 1.030 \\
& 2533 \\
& 68.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .545 \\
& 302 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& 321 \\
& 1.048 \\
& 2487 \\
& 75.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 596 \\
302 \\
374
\end{array}
\] & \begin{tabular}{l}
323 \\
1.049 \\
2560 \\
76.3 \\
\hline 327
\end{tabular} & \[
\begin{array}{r}
.626 \\
311 \\
391
\end{array}
\] & \begin{tabular}{l}
324 \\
1.051 \\
2609 \\
77.5 \\
\hline 327
\end{tabular} & \[
\begin{aligned}
& .651 \\
& 318 \\
& 405
\end{aligned}
\] & \[
\begin{aligned}
& \hline 323 \\
& 1.058 \\
& 2605 \\
& 78.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .662 \\
& 318 \\
& 410
\end{aligned}
\] & \[
\begin{aligned}
& \hline 323 \\
& 1.065 \\
& 2590 \\
& 80.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
673 \\
317 \\
415
\end{array}
\] & \begin{tabular}{l}
323 \\
1.073 \\
2586 \\
81.3 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 685 \\
& 316 \\
& 421
\end{aligned}
\] \\
\hline 145 & \[
\begin{aligned}
& \hline 328 \\
& 1.018 \\
& 2741 \\
& 61.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.517 \\
314 \\
336
\end{array}
\] & \[
\begin{aligned}
& 325 \\
& 1.032 \\
& 2622 \\
& 67.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.554 \\
307 \\
354
\end{array}
\] & \[
\begin{aligned}
& 326 \\
& 1.049 \\
& 2648 \\
& 73.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .622 \\
& 315 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& 327 \\
& 1.050 \\
& 2710 \\
& 74.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .650 \\
& 323 \\
& 405
\end{aligned}
\] & \[
\begin{aligned}
& 327 \\
& 1.056 \\
& 2707 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
661 \\
323 \\
411
\end{array}
\] & \[
\begin{aligned}
& 326 \\
& 1.063 \\
& 2689 \\
& 77.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .671 \\
& 322 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 326 \\
& 1.071 \\
& 2682 \\
& 78.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .683 \\
& 321 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 326 \\
& 1.079 \\
& 2686 \\
& 79.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
697 \\
322 \\
428
\end{array}
\] \\
\hline 150 & \[
\begin{aligned}
& \hline 330 \\
& 1.020 \\
& 2806 \\
& 60.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.521 \\
316 \\
339
\end{array}
\] & \[
\begin{aligned}
& \hline 328 \\
& 1.035 \\
& 2709 \\
& 66.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .563 \\
& 312 \\
& 359
\end{aligned}
\] & \[
\begin{aligned}
& 330 \\
& 1.049 \\
& 2803 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .646 \\
& 328 \\
& 405
\end{aligned}
\] & \[
\begin{aligned}
& \hline 330 \\
& 1.055 \\
& 2809 \\
& 73.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.660 \\
329 \\
412
\end{array}
\] & \[
\begin{aligned}
& \hline 329 \\
& 1.062 \\
& 2790 \\
& 74.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
327 \\
416
\end{array}
\] & \[
\begin{aligned}
& \hline 329 \\
& 1.069 \\
& 2779 \\
& 75.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 680 \\
& 326 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 329 \\
& 1.077 \\
& 2782 \\
& 76.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 694 \\
& 327 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& \hline 330 \\
& 1.084 \\
& 2785 \\
& 78.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 708 \\
& 328 \\
& 435
\end{aligned}
\] \\
\hline 155 & \[
\begin{aligned}
& 332 \\
& 1.023 \\
& 2872 \\
& 59.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.526 \\
319 \\
342
\end{array}
\] & \[
\begin{aligned}
& 331 \\
& 1.038 \\
& 2795 \\
& 65.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.571 \\
317 \\
364
\end{array}
\] & \[
\begin{aligned}
& 333 \\
& 1.053 \\
& 2912 \\
& 70.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.658 \\
334 \\
412
\end{array}
\] &  & \[
\begin{aligned}
& .668 \\
& 333 \\
& 417
\end{aligned}
\] & \[
\begin{aligned}
& 332 \\
& 1.067 \\
& 2877 \\
& 73.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
677 \\
332 \\
421
\end{array}
\] & \[
\begin{aligned}
& 332 \\
& 1.074 \\
& 2878 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .691 \\
& 332 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& 332 \\
& 1.082 \\
& 2881 \\
& 75.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
705 \\
333 \\
435
\end{array}
\] & \[
\begin{aligned}
& 333 \\
& 1.090 \\
& 2882 \\
& 76.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 719 \\
& 333 \\
& 442
\end{aligned}
\] \\
\hline 160 & \[
\begin{aligned}
& \hline 334 \\
& 1.025 \\
& 2949 \\
& 58.6
\end{aligned}
\] & \[
\begin{array}{r}
.532 \\
323 \\
346
\end{array}
\] & \[
\begin{aligned}
& 333 \\
& 1.040 \\
& 2880 \\
& 64.1
\end{aligned}
\] & \[
\begin{array}{r}
.579 \\
321 \\
369
\end{array}
\] & \[
\begin{aligned}
& 335 \\
& 1.058 \\
& 2999 \\
& 69.6
\end{aligned}
\] & \[
\begin{aligned}
& .666 \\
& 338 \\
& 417
\end{aligned}
\] & \[
\begin{aligned}
& 334 \\
& 1.065 \\
& 2979 \\
& 70.7
\end{aligned}
\] & \[
\begin{aligned}
& .675 \\
& 337 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 334 \\
& 1.072 \\
& 2976 \\
& 71.8
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 337 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& 335 \\
& 1.080 \\
& 2979 \\
& 72.9
\end{aligned}
\] & \[
\begin{aligned}
& .702 \\
& 337 \\
& 434
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 1.088 \\
& 2981 \\
& 74.1
\end{aligned}
\] & \[
\begin{aligned}
& .716 \\
& 338 \\
& 442
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 1.097 \\
& 2955 \\
& 75.3
\end{aligned}
\] & \[
\begin{aligned}
& 724 \\
& 336 \\
& 445
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 11} \\
\hline & CRUISE TABLES 2 ENGINES & REV 21 & SEQ 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{11}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA } \\
C G=37.5 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM/1000KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& \text { (1000KG) } \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} & \multicolumn{2}{|l|}{FL290} & \multicolumn{2}{|l|}{FL310} & \multicolumn{2}{|l|}{FL330} & \multicolumn{2}{|l|}{FL350} & \multicolumn{2}{|l|}{FL370} & \multicolumn{2}{|l|}{FL390} & \multicolumn{2}{|l|}{FL410} \\
\hline 90 & \[
\begin{aligned}
& \hline 283 \\
& 1.050 \\
& 1553 \\
& 114.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .589 \\
& 244 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& \hline 284 \\
& 1.058 \\
& 1587 \\
& 118.5 \\
& \hline
\end{aligned}
\] & .630
251
376 & \[
\begin{aligned}
& \hline 285 \\
& 1.070 \\
& 1604 \\
& 122.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.664 \\
254 \\
393
\end{array}
\] & \[
\begin{aligned}
& \hline 285 \\
& 1.087 \\
& 1610 \\
& 126.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .696 \\
& 256 \\
& 408
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 286 \\
1.106 \\
1601 \\
131.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .724 \\
& 255 \\
& 421
\end{aligned}
\] & 286
1.128
1545
136.6 & \[
\begin{aligned}
& .732 \\
& 247 \\
& 422
\end{aligned}
\] & \[
\begin{aligned}
& \hline 292 \\
& 1.154 \\
& 1525 \\
& 141.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .750 \\
& 242 \\
& 430
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 310 \\
1.189 \\
1583 \\
143.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .791 \\
& 245 \\
& 454
\end{aligned}
\] & 127
1.235
1585
145.9 & \[
\begin{aligned}
& .806 \\
& 239 \\
& 462
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 288 \\
& 1.055 \\
& 1658 \\
& 110.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .611 \\
& 253 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 289 \\
& 1.063 \\
& 1701 \\
& 114.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.654 \\
261 \\
390
\end{array}
\] & \[
\begin{aligned}
& 289 \\
& 1.079 \\
& 1699 \\
& 118.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .682 \\
& 261 \\
& 404
\end{aligned}
\] & \[
\begin{aligned}
& 290 \\
& 1.096 \\
& 1706 \\
& 123.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.715 \\
263 \\
420
\end{array}
\] & \[
\begin{array}{|l|}
\hline 290 \\
1.117 \\
1661 \\
127.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .729 \\
& 257 \\
& 424
\end{aligned}
\] & \[
\begin{aligned}
& 290 \\
& 1.142 \\
& 1603 \\
& 132.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.736 \\
248 \\
424
\end{array}
\] & \[
\begin{aligned}
& 301 \\
& 1.171 \\
& 1644 \\
& 135.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 776 \\
251 \\
445
\end{array}
\] & \[
\begin{aligned}
& \hline 318 \\
& 1.211 \\
& 1671 \\
& 137.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.802 \\
249 \\
460
\end{array}
\] & \[
\begin{array}{|l|}
\hline 334 \\
1.265 \\
1658 \\
139.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 239 \\
& 463
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& 294 \\
& 1.057 \\
& 1796 \\
& 107.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 267 \\
& 387
\end{aligned}
\] & \[
\begin{aligned}
& 293 \\
& 1.071 \\
& 1797 \\
& 111.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .671 \\
& 268 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 294 \\
& 1.088 \\
& 1801 \\
& 115.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.701 \\
269 \\
415
\end{array}
\] & \[
\begin{aligned}
& 295 \\
& 1.107 \\
& 1782
\end{aligned}
\] & \[
\begin{aligned}
& .725 \\
& 267 \\
& 426
\end{aligned}
\] & \[
\begin{aligned}
& 294 \\
& 1.129 \\
& 1720 \\
& 124.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .733 \\
& 259 \\
& 426
\end{aligned}
\] & \[
\begin{aligned}
& 296 \\
& 1.155 \\
& 1698 \\
& 127.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 753 \\
& 254 \\
& 434
\end{aligned}
\] & \[
\begin{aligned}
& 309 \\
& 1.190 \\
& 1753 \\
& 130.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .795 \\
& 258 \\
& 456
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 325 \\
1.236 \\
1747 \\
132.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 250 \\
& 463
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 343 \\
1.302 \\
1744 \\
132.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .806 \\
& 239 \\
& 462
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 298 \\
& 1.063 \\
& 1902 \\
& 104.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .661 \\
& 275 \\
& 398
\end{aligned}
\] & \[
\begin{aligned}
& 298 \\
& 1.079 \\
& 1894 \\
& 108.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.687 \\
275 \\
410
\end{array}
\] & \[
\begin{aligned}
& \hline 299 \\
& 1.096 \\
& 1898 \\
& 112.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .719 \\
& 276 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& \hline 299 \\
& 1.117 \\
& 1842 \\
& 116.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .730 \\
& 269 \\
& 428
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 298 \\
1.141 \\
1777 \\
120.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .736 \\
& 260 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& \hline 305 \\
& 1.170 \\
& 1825 \\
& 123.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.780 \\
264 \\
450
\end{array}
\] & \[
\begin{aligned}
& \hline 315 \\
& 1.210 \\
& 1836 \\
& 125.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.803 \\
261 \\
461
\end{array}
\] & \[
\begin{array}{|l|}
\hline 332 \\
1.264 \\
1820 \\
127.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.807 \\
250 \\
463
\end{array}
\] & \[
\begin{array}{|l|}
\hline 354 \\
1.349 \\
1849 \\
124.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .803 \\
& 238 \\
& 461
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& \hline 301 \\
& 1.070 \\
& 1985 \\
& 102.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .673 \\
& 280 \\
& 405
\end{aligned}
\] & \[
\begin{aligned}
& 302 \\
& 1.087 \\
& 1991 \\
& 105.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .703 \\
& 282 \\
& 420
\end{aligned}
\] & \[
\begin{aligned}
& \hline 303 \\
& 1.106 \\
& 1969 \\
& 109.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .726 \\
& 280 \\
& 430
\end{aligned}
\] & \[
\begin{aligned}
& \hline 302 \\
& 1.128 \\
& 1901 \\
& 113.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.734 \\
271 \\
431
\end{array}
\] & \[
\begin{array}{|l|}
\hline 304 \\
1.153 \\
1876 \\
116.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .753 \\
& 266 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& \hline 312 \\
& 1.187 \\
& 1929 \\
& 118.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .795 \\
& 270 \\
& 458
\end{aligned}
\] & \[
\begin{aligned}
& \hline 321 \\
& 1.232 \\
& 1910 \\
& 121.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 262 \\
& 463
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 340 \\
1.297 \\
1906 \\
121.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .806 \\
& 250 \\
& 462
\end{aligned}
\] & 1268
1.409
1961
116.3 & \[
\begin{aligned}
& .796 \\
& 235 \\
& 456
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& 305 \\
& 1.078 \\
& 2083 \\
& 99.4
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 287 \\
& 414
\end{aligned}
\] & \[
\begin{aligned}
& 307 \\
& 1.095 \\
& 2088 \\
& 102.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.719 \\
289 \\
429
\end{array}
\] & \[
\begin{aligned}
& \hline 306 \\
& 1.115 \\
& 2029 \\
& 106.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .730 \\
& 281 \\
& 432
\end{aligned}
\] & \[
\begin{aligned}
& \hline 306 \\
& 1.139 \\
& 1959 \\
& 110.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 272 \\
& 432
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 312 \\
1.167 \\
2005 \\
112.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .777 \\
& 276 \\
& 452
\end{aligned}
\] & \[
\begin{aligned}
& 318 \\
& 1.205 \\
& 2011 \\
& 115.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 803 \\
& 273 \\
& 463
\end{aligned}
\] & \[
\begin{aligned}
& \hline 328 \\
& 1.257 \\
& 1980 \\
& 116.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
262 \\
463
\end{array}
\] & \[
\begin{array}{|l|}
\hline 350 \\
1.340 \\
2008 \\
114.7 \\
\hline
\end{array}
\] & 803
249
461 & \[
\begin{array}{|l}
\hline 385 \\
1.472 \\
2086 \\
108.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .787 \\
& 232 \\
& 451
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& \hline 310 \\
& 1.085 \\
& 2184 \\
& 96.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .703 \\
& 294 \\
& 423
\end{aligned}
\] & \[
\begin{aligned}
& 310 \\
& 1.104 \\
& 2160 \\
& 100.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .726 \\
& 292 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& \hline 310 \\
& 1.125 \\
& 2087 \\
& 104.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.733 \\
283 \\
434
\end{array}
\] & \[
\begin{aligned}
& \hline 312 \\
& 1.149 \\
& 2057 \\
& 107.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .752 \\
& 278 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 319 \\
& 1.182 \\
& 2115 \\
& 109.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .794 \\
& 282 \\
& 462
\end{aligned}
\] & \[
\begin{aligned}
& 323 \\
& 1.225 \\
& 2087 \\
& 111.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .806 \\
& 274 \\
& 465
\end{aligned}
\] & \[
\begin{aligned}
& \hline 335 \\
& 1.287 \\
& 2067 \\
& 112.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 262 \\
& 463
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 362 \\
1.393 \\
2130 \\
107.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .800 \\
& 248 \\
& 459
\end{aligned}
\] & & \\
\hline 125 & \[
\begin{array}{|l|}
\hline 314 \\
1.092 \\
2282 \\
94.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .718 \\
& 300 \\
& 432
\end{aligned}
\] & \[
\begin{aligned}
& 314 \\
& 1.112 \\
& 2222 \\
& 98.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .730 \\
& 293 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& \hline 313 \\
& 1.136 \\
& 2146 \\
& 101.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 284 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& \hline 319 \\
& 1.162 \\
& 2183 \\
& 103.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .773 \\
& 286 \\
& 454
\end{aligned}
\] & \[
\begin{aligned}
& \hline 325 \\
& 1.198 \\
& 2202 \\
& 105.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .802 \\
& 285 \\
& 466
\end{aligned}
\] & \[
\begin{aligned}
& \hline 329 \\
& 1.246 \\
& 2158 \\
& 107.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 275 \\
& 465
\end{aligned}
\] & \[
\begin{aligned}
& \hline 343 \\
& 1.322 \\
& 2160 \\
& 106.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.804 \\
261 \\
461
\end{array}
\] & \[
\begin{array}{|l|}
\hline 377 \\
1.449 \\
2243 \\
101.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .791 \\
& 245 \\
& 453
\end{aligned}
\] & & \\
\hline 130 & \[
\begin{array}{|l|}
\hline 317 \\
1.100 \\
2358 \\
92.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .725 \\
& 304 \\
& 437
\end{aligned}
\] & \[
\begin{aligned}
& 317 \\
& 1.121 \\
& 2281 \\
& 95.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.733 \\
295 \\
438
\end{array}
\] & \[
\begin{array}{|l|}
\hline 318 \\
1.145 \\
2223 \\
99.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.743 \\
287 \\
440
\end{array}
\] & \[
\begin{aligned}
& 326 \\
& 1.175 \\
& 2305 \\
& 100.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
791 \\
294 \\
464
\end{array}
\] & \[
\begin{array}{|l|}
\hline 330 \\
1.216 \\
2279 \\
102.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 806 \\
& 287 \\
& 469
\end{aligned}
\] & \[
\begin{aligned}
& 335 \\
& 1.272 \\
& 2238 \\
& 103.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 807 \\
& 275 \\
& 465
\end{aligned}
\] & \[
\begin{aligned}
& 353 \\
& 1.367 \\
& 2277 \\
& 100.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.801 \\
260 \\
460
\end{array}
\] & \[
\begin{array}{|l|}
\hline 391 \\
1.511 \\
2386 \\
94.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 785 \\
& 243 \\
& 450
\end{aligned}
\] & & \\
\hline 135 & \[
\begin{aligned}
& \hline 320 \\
& 1.108 \\
& 2422 \\
& 90.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .729 \\
& 306 \\
& 439
\end{aligned}
\] & \[
\begin{aligned}
& \hline 320 \\
& 1.131 \\
& 2340 \\
& 93.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 296 \\
& 439
\end{aligned}
\] & \[
\begin{array}{ll}
\hline 324 \\
1.156 \\
2342 \\
96.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .761 \\
& 294 \\
& 451
\end{aligned}
\] & \[
\begin{aligned}
& 331 \\
& 1.189 \\
& 2393 \\
& 98.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .799 \\
& 297 \\
& 469
\end{aligned}
\] & \[
\begin{aligned}
& \hline 335 \\
& 1.234 \\
& 2352 \\
& 99.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 470
\end{aligned}
\] & \[
\begin{aligned}
& 342 \\
& 1.301 \\
& 2326 \\
& 99.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .805 \\
& 274 \\
& 464
\end{aligned}
\] & \[
\begin{aligned}
& 365 \\
& 1.417 \\
& 2386 \\
& 95.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 793 \\
257 \\
455
\end{array}
\] & & & & \\
\hline 140 & \[
\begin{aligned}
& \hline 323 \\
& 1.116 \\
& 2480 \\
& 88.8
\end{aligned}
\] & \[
\begin{aligned}
& .732 \\
& 307 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& 323 \\
& 1.140 \\
& 2400 \\
& 91.8
\end{aligned}
\] & \[
\begin{aligned}
& .738 \\
& 297 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 331 \\
& 1.167 \\
& 2493 \\
& 93.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .787 \\
& 305 \\
& 466
\end{aligned}
\] & \begin{tabular}{l}
336 \\
1.205 \\
2475 \\
95.3 \\
\hline 1
\end{tabular} & \[
\begin{array}{r}
.804 \\
299 \\
472
\end{array}
\] & \[
\begin{aligned}
& \hline 340 \\
& 1.255 \\
& 2424 \\
& 96.8
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 470
\end{aligned}
\] & 351
1.337
2433
95.1 & \[
\begin{aligned}
& .803 \\
& 273 \\
& 463
\end{aligned}
\] & 379
1.470
2513
89.7 & \[
\begin{aligned}
& .786 \\
& 255 \\
& 451
\end{aligned}
\] & & & & \\
\hline 145 & \[
\begin{aligned}
& 326 \\
& 1.125 \\
& 2539
\end{aligned}
\] & \[
\begin{aligned}
& .735 \\
& 308 \\
& 442
\end{aligned}
\] & \[
\begin{aligned}
& 329 \\
& 1.148 \\
& 2515 \\
& 89.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .754 \\
& 304 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 1.180 \\
& 2588 \\
& 91.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .796 \\
& 309 \\
& 471
\end{aligned}
\] & \[
\begin{aligned}
& 340 \\
& 1.221 \\
& 2550 \\
& 92.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
300 \\
473
\end{array}
\] & \[
\begin{array}{|l|}
\hline 346 \\
1.280 \\
2513 \\
93.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 469
\end{aligned}
\] & \[
\begin{aligned}
& 361 \\
& 1.381 \\
& 2557 \\
& 90.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .801 \\
& 272 \\
& 461
\end{aligned}
\] & & & & & & \\
\hline 150 & \[
\begin{array}{|l|}
\hline 329 \\
1.133 \\
2598 \\
85.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 737 \\
& 309 \\
& 443
\end{aligned}
\] & \[
\begin{aligned}
& \hline 335 \\
& 1.159 \\
& 2655 \\
& 87.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .775 \\
& 313 \\
& 463
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.193 \\
& 2673 \\
& 88.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .802 \\
& 311 \\
& 475
\end{aligned}
\] & \begin{tabular}{l}
345 \\
1.239 \\
2622 \\
90.4 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .808 \\
& 300 \\
& 474
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 353 \\
1.308 \\
2601 \\
89.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .804 \\
& 286 \\
& 468
\end{aligned}
\] & \[
\begin{aligned}
& 372 \\
& 1.426 \\
& 2662 \\
& 85.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .792 \\
& 269 \\
& 456
\end{aligned}
\] & & & & & & \\
\hline 155 & \[
\begin{array}{|l|}
\hline 333 \\
1.141 \\
2696 \\
83.5
\end{array}
\] & \[
\begin{aligned}
& .748 \\
& 314 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& 341 \\
& 1.170 \\
& 2781 \\
& 84.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.791 \\
320 \\
472
\end{array}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.207 \\
& 2752 \\
& 86.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .805 \\
& 313 \\
& 477
\end{aligned}
\] & \[
\begin{aligned}
& 350 \\
& 1.259 \\
& 2701 \\
& 87.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
300 \\
474
\end{array}
\] & \[
\begin{aligned}
& 361 \\
& 1.343 \\
& 2716 \\
& 85.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .802 \\
& 285 \\
& 467
\end{aligned}
\] & \[
\begin{aligned}
& 385 \\
& 1.476 \\
& 2795 \\
& 81.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
786 \\
267 \\
453
\end{array}
\] & & & & & & \\
\hline 160 & \[
\begin{aligned}
& \hline 338 \\
& 1.150 \\
& 2795 \\
& 81.6
\end{aligned}
\] & \[
\begin{aligned}
& .758 \\
& 318 \\
& 456
\end{aligned}
\] & \[
\begin{aligned}
& 346 \\
& 1.181 \\
& 2869 \\
& 83.0
\end{aligned}
\] & \[
\begin{aligned}
& .798 \\
& 323 \\
& 476
\end{aligned}
\] & \[
\begin{aligned}
& \hline 350 \\
& 1.223 \\
& 2825 \\
& 84.6
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 314 \\
& 478
\end{aligned}
\] & \[
\begin{aligned}
& 356 \\
& 1.282 \\
& 2788 \\
& 84.9
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
300 \\
473
\end{array}
\] & \[
\begin{aligned}
& \hline 371 \\
& 1.384 \\
& 2843 \\
& 81.8
\end{aligned}
\] & \[
\begin{aligned}
& .800 \\
& 284 \\
& 465
\end{aligned}
\] & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\underbrace{\text { a }}\)} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 12} \\
\hline & CRUISE TAbles 2 encines & REV 21 & SEO 074 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{5}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & & & & & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA }+10 \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM/1000KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& \text { (1000KG) } \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL 50} & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} \\
\hline 90 & \[
\begin{aligned}
& \hline 345 \\
& 1.002 \\
& 1897 \\
& 73.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.423 \\
256 \\
280
\end{array}
\] & \[
\begin{aligned}
& \hline 328 \\
& 1.009 \\
& 1797 \\
& 82.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.457 \\
253 \\
297
\end{array}
\] & \[
\begin{aligned}
& \hline 313 \\
& 1.017 \\
& 1737 \\
& 92.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .502 \\
& 253 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& \hline 312 \\
& 1.019 \\
& 1714 \\
& 94.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .508 \\
& 251 \\
& 323
\end{aligned}
\] & \[
\begin{aligned}
& \hline 311 \\
& 1.022 \\
& 1690 \\
& 96.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .514 \\
& 249 \\
& 326
\end{aligned}
\] & \[
\begin{aligned}
& \hline 310 \\
& 1.025 \\
& 1666 \\
& 98.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .520 \\
& 247 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 309 \\
& 1.029 \\
& 1643 \\
& 100.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 526 \\
& 245 \\
& 331
\end{aligned}
\] & \[
\begin{aligned}
& \hline 309 \\
& 1.032 \\
& 1625 \\
& 102.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 533 \\
& 244 \\
& 334
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& \hline 345 \\
& 1.004 \\
& 1958 \\
& 72.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.429 \\
260 \\
284
\end{array}
\] & \[
\begin{aligned}
& \hline 328 \\
& 1.010 \\
& 1889 \\
& 80.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.470 \\
260 \\
306
\end{array}
\] & \[
\begin{aligned}
& 316 \\
& 1.020 \\
& 1807 \\
& 90.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
510 \\
257 \\
326
\end{array}
\] & \[
\begin{aligned}
& 315 \\
& 1.023 \\
& 1781 \\
& 92.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 255 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 315 \\
& 1.026 \\
& 1757 \\
& 94.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
522 \\
253 \\
331
\end{array}
\] & \[
\begin{aligned}
& 314 \\
& 1.029 \\
& 1735 \\
& 96.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 528 \\
& 251 \\
& 333
\end{aligned}
\] & \[
\begin{aligned}
& \hline 313 \\
& 1.032 \\
& 1719 \\
& 98.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
536 \\
250 \\
337
\end{array}
\] & \[
\begin{aligned}
& \hline 313 \\
& 1.036 \\
& 1712 \\
& 100.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 547 \\
& 250 \\
& 342
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& 344 \\
& 1.005 \\
& 2044 \\
& 71.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .439 \\
& 266 \\
& 291
\end{aligned}
\] & \[
\begin{aligned}
& 328 \\
& 1.012 \\
& 1980 \\
& 79.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .482 \\
& 267 \\
& 314
\end{aligned}
\] & \[
\begin{aligned}
& \hline 319 \\
& 1.023 \\
& 1874 \\
& 88.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .518 \\
& 261 \\
& 330
\end{aligned}
\] & \begin{tabular}{l}
318 \\
1.026 \\
1847 \\
90.0 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .523 \\
& 259 \\
& 333
\end{aligned}
\] & 318
1.029
1828
91.9 & \[
\begin{aligned}
& .530 \\
& 257 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& \hline 317 \\
& 1.033 \\
& 1813 \\
& 93.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .539 \\
& 256 \\
& 340
\end{aligned}
\] & \[
\begin{aligned}
& \hline 317 \\
& 1.036 \\
& 1808 \\
& 95.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .550 \\
& 256 \\
& 346
\end{aligned}
\] & \begin{tabular}{l}
1017 \\
1.040 \\
1799 \\
97.5 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .560 \\
& 256 \\
& 351
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 344 \\
& 1.006 \\
& 2137 \\
& 69.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
450 \\
273 \\
298
\end{array}
\] & \[
\begin{aligned}
& 328 \\
& 1.013 \\
& 2070 \\
& 77.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.494 \\
274 \\
321
\end{array}
\] & \[
\begin{aligned}
& 322 \\
& 1.026 \\
& 1941 \\
& 86.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 525 \\
& 264 \\
& 335
\end{aligned}
\] & \[
\begin{aligned}
& \hline 322 \\
& 1.030 \\
& 1921 \\
& 88.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 532 \\
& 263 \\
& 338
\end{aligned}
\] & \[
\begin{aligned}
& 321 \\
& 1.033 \\
& 1907 \\
& 89.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 541 \\
& 262 \\
& 343
\end{aligned}
\] & \[
\begin{aligned}
& \hline 321 \\
& 1.036 \\
& 1903 \\
& 91.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 552 \\
& 263 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& \hline 321 \\
& 1.040 \\
& 1894 \\
& 93.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 562 \\
& 262 \\
& 353
\end{aligned}
\] & \[
\begin{aligned}
& 321 \\
& 1.044 \\
& 1885 \\
& 95.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 572 \\
& 262 \\
& 358
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& \hline 344 \\
& 1.007 \\
& 2231 \\
& 68.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.461 \\
280 \\
305
\end{array}
\] & \[
\begin{aligned}
& 330 \\
& 1.015 \\
& 2151 \\
& 76.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .503 \\
& 279 \\
& 327
\end{aligned}
\] & \[
\begin{aligned}
& \hline 326 \\
& 1.030 \\
& 2018 \\
& 84.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .533 \\
& 269 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& \hline 325 \\
& 1.033 \\
& 2003 \\
& 86.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .542 \\
& 268 \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& \hline 325 \\
& 1.036 \\
& 1997 \\
& 87.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 553 \\
& 268 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& \hline 325 \\
& 1.040 \\
& 1989 \\
& 89.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .563 \\
& 268 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& \hline 325 \\
& 1.044 \\
& 1979 \\
& 91.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.573 \\
268 \\
361
\end{array}
\] & \begin{tabular}{l}
1224 \\
1.048 \\
1973 \\
92.8 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .584 \\
& 268 \\
& 366
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& 344 \\
& 1.009 \\
& 2323 \\
& 67.2
\end{aligned}
\] & \[
\begin{aligned}
& .472 \\
& 286 \\
& 312
\end{aligned}
\] & \[
\begin{aligned}
& 333 \\
& 1.018 \\
& 2223 \\
& 74.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .510 \\
& 283 \\
& 332
\end{aligned}
\] & \[
\begin{aligned}
& \hline 329 \\
& 1.033 \\
& 2102 \\
& 82.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 544 \\
274 \\
347
\end{array}
\] & \begin{tabular}{l}
329 \\
1.036 \\
2095 \\
84.2 \\
\hline 332
\end{tabular} & \[
\begin{array}{r}
\hline 554 \\
274 \\
353
\end{array}
\] & \[
\begin{aligned}
& 329 \\
& 1.040 \\
& 2085 \\
& 85.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 564 \\
& 274 \\
& 357
\end{aligned}
\] & \[
\begin{aligned}
& 328 \\
& 1.044 \\
& 2074 \\
& 87.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 574 \\
& 274 \\
& 362
\end{aligned}
\] & \[
\begin{aligned}
& \hline 328 \\
& 1.048 \\
& 2067 \\
& 89.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .585 \\
& 274 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& \hline 328 \\
& 1.053 \\
& 2065 \\
& 90.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 597 \\
& 274 \\
& 374
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 344 \\
& 1.010 \\
& 2415 \\
& 66.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.482 \\
292 \\
319
\end{array}
\] & \[
\begin{aligned}
& 335 \\
& 1.020 \\
& 2291 \\
& 73.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 286 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& \hline 333 \\
& 1.036 \\
& 2193 \\
& 80.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 555 \\
& 280 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 332 \\
& 1.039 \\
& 2182 \\
& 82.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& 280 \\
& 359
\end{aligned}
\] & \[
\begin{aligned}
& \hline 332 \\
& 1.043 \\
& 2171 \\
& 83.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 280 \\
& 364
\end{aligned}
\] & \[
\begin{aligned}
& \hline 332 \\
& 1.048 \\
& 2163 \\
& 85.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.586 \\
279 \\
370
\end{array}
\] & \[
\begin{aligned}
& \hline 332 \\
& 1.052 \\
& 2161 \\
& 87.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 598 \\
& 280 \\
& 376
\end{aligned}
\] & \[
\begin{aligned}
& 334 \\
& 1.054 \\
& 2220 \\
& 88.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 626 \\
& 288 \\
& 392
\end{aligned}
\] \\
\hline 125 & \[
\begin{aligned}
& 344 \\
& 1.011 \\
& 2506 \\
& 64.9
\end{aligned}
\] & \[
\begin{aligned}
& .492 \\
& 298 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& 338 \\
& 1.023 \\
& 2358 \\
& 72.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .522 \\
& 289 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 1.039 \\
& 2280 \\
& 79.2
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& 286 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& \hline 336 \\
& 1.043 \\
& 2269 \\
& 80.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 285 \\
& 366
\end{aligned}
\] & \[
\begin{aligned}
& 335 \\
& 1.047 \\
& 2260 \\
& 82.1
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& 285 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& 335 \\
& 1.051 \\
& 2260 \\
& 83.6
\end{aligned}
\] & \[
\begin{aligned}
& .598 \\
& 286 \\
& 378
\end{aligned}
\] & \[
\begin{aligned}
& 338 \\
& 1.053 \\
& 2325 \\
& 84.9
\end{aligned}
\] & \[
\begin{aligned}
& .628 \\
& 294 \\
& 395
\end{aligned}
\] & 339
1.056
2360
86.3 & \[
\begin{aligned}
& .650 \\
& 299 \\
& 407
\end{aligned}
\] \\
\hline 130 & \[
\begin{aligned}
& \hline 344 \\
& 1.012 \\
& 2594 \\
& 63.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
501 \\
304 \\
331
\end{array}
\] & \[
\begin{aligned}
& 340 \\
& 1.026 \\
& 2428 \\
& 70.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
528 \\
293 \\
343
\end{array}
\] & \[
\begin{aligned}
& \hline 339 \\
& 1.042 \\
& 2366 \\
& 77.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
575 \\
291 \\
367
\end{array}
\] & \[
\begin{aligned}
& \hline 339 \\
& 1.046 \\
& 2356 \\
& 79.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
585 \\
290 \\
372
\end{array}
\] & \[
\begin{aligned}
& \hline 339 \\
& 1.051 \\
& 2358 \\
& 80.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 598 \\
& 291 \\
& 379
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.052 \\
& 2426 \\
& 81.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
628 \\
300 \\
396
\end{array}
\] & \[
\begin{aligned}
& \hline 342 \\
& 1.055 \\
& 2463 \\
& 83.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
650 \\
305 \\
409
\end{array}
\] & \[
\begin{aligned}
& 342 \\
& 1.062 \\
& 2463 \\
& 84.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 663 \\
& 306 \\
& 415
\end{aligned}
\] \\
\hline 135 & \[
\begin{aligned}
& 347 \\
& 1.014 \\
& 2667 \\
& 62.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .506 \\
& 307 \\
& 335
\end{aligned}
\] & \[
\begin{aligned}
& 343 \\
& 1.028 \\
& 2509 \\
& 69.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.536 \\
297 \\
348
\end{array}
\] & \[
\begin{aligned}
& 342 \\
& 1.046 \\
& 2452
\end{aligned}
\] & \[
\begin{aligned}
& \hline 585 \\
& 296 \\
& 373
\end{aligned}
\] & \[
\begin{aligned}
& 342 \\
& 1.050 \\
& 2454
\end{aligned}
\] & \[
\begin{aligned}
& .597 \\
& 297 \\
& 380
\end{aligned}
\] & \[
\begin{aligned}
& 344 \\
& 1.051 \\
& 2525 \\
& 78.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& 306 \\
& 397
\end{aligned}
\] & \[
\begin{aligned}
& 346 \\
& 1.054 \\
& 2567 \\
& 70
\end{aligned}
\] & \[
\begin{aligned}
& \hline 650 \\
& 311 \\
& 410
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 1.061 \\
& 2565 \\
& 81.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 662 \\
& 311 \\
& 416
\end{aligned}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.068 \\
& 2557 \\
& 82.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
673 \\
311 \\
422
\end{array}
\] \\
\hline 140 & \[
\begin{aligned}
& \hline 349 \\
& 1.016 \\
& 2739 \\
& 61.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .512 \\
& 311 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 346 \\
& 1.031 \\
& 2596 \\
& 68.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.545 \\
302 \\
354
\end{array}
\] & \[
\begin{aligned}
& 345 \\
& 1.049 \\
& 2549 \\
& 74.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
596 \\
302 \\
380
\end{array}
\] & \begin{tabular}{l}
347 \\
1.050 \\
2622 \\
75.8 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.625 \\
311 \\
398
\end{array}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.053 \\
& 2669 \\
& 77.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .649 \\
& 317 \\
& 411
\end{aligned}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.059 \\
& 2669 \\
& 78.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .661 \\
& 317 \\
& 417
\end{aligned}
\] & \[
\begin{aligned}
& \hline 348 \\
& 1.066 \\
& 2658 \\
& 79.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .672 \\
& 316 \\
& 423
\end{aligned}
\] & \begin{tabular}{l} 
349 \\
1.074 \\
2655 \\
80.8 \\
\hline
\end{tabular} & \[
\begin{array}{r}
685 \\
316 \\
429
\end{array}
\] \\
\hline 145 & \[
\begin{aligned}
& \hline 351 \\
& 1.018 \\
& 2809 \\
& 60.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .517 \\
& 314 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& 349 \\
& 1.033 \\
& 2688 \\
& 67.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .554 \\
& 307 \\
& 360
\end{aligned}
\] & \[
\begin{aligned}
& 350 \\
& 1.049 \\
& 2713 \\
& 73.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .622 \\
& 315 \\
& 397
\end{aligned}
\] & \[
\begin{aligned}
& 352 \\
& 1.051 \\
& 2770 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .647 \\
& 322 \\
& 412
\end{aligned}
\] & \[
\begin{aligned}
& 352 \\
& 1.058 \\
& 2773 \\
& 75.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .660 \\
& 323 \\
& 418
\end{aligned}
\] & \[
\begin{aligned}
& 351 \\
& 1.065 \\
& 2762 \\
& 76.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .671 \\
& 322 \\
& 423
\end{aligned}
\] & \[
\begin{aligned}
& 352 \\
& 1.072 \\
& 2755 \\
& 770
\end{aligned}
\] & \[
\begin{aligned}
& .683 \\
& 321 \\
& 429
\end{aligned}
\] & \[
\begin{aligned}
& \hline 352 \\
& 1.080 \\
& 2758 \\
& 79.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .696 \\
& 322 \\
& 436
\end{aligned}
\] \\
\hline 150 & \[
\begin{aligned}
& \hline 353 \\
& 1.021 \\
& 2876 \\
& 60.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
522 \\
316 \\
345
\end{array}
\] & \[
\begin{aligned}
& \hline 352 \\
& 1.036 \\
& 2776 \\
& 65.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .562 \\
& 312 \\
& 366
\end{aligned}
\] & \[
\begin{aligned}
& \hline 355 \\
& 1.050 \\
& 2872 \\
& 71.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .645 \\
& 327 \\
& 412
\end{aligned}
\] & \[
\begin{aligned}
& \hline 355 \\
& 1.056 \\
& 2876 \\
& 72.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.659 \\
328 \\
419
\end{array}
\] & \[
\begin{aligned}
& 354 \\
& 1.063 \\
& 2865 \\
& 74.0
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
327 \\
424
\end{array}
\] & \[
\begin{aligned}
& 354 \\
& 1.070 \\
& 2856 \\
& 75.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 680 \\
& 327 \\
& 430
\end{aligned}
\] & \[
\begin{aligned}
& \hline 355 \\
& 1.078 \\
& 2858 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 694 \\
& 327 \\
& 437
\end{aligned}
\] & \[
\begin{aligned}
& \hline 356 \\
& 1.086 \\
& 2861 \\
& 77.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 708 \\
& 328 \\
& 444
\end{aligned}
\] \\
\hline 155 & \[
\begin{aligned}
& 355 \\
& 1.023 \\
& 2943 \\
& 59.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.526 \\
319 \\
348
\end{array}
\] & \[
\begin{aligned}
& 354 \\
& 1.038 \\
& 2863 \\
& 64.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.570 \\
317 \\
371
\end{array}
\] & \[
\begin{aligned}
& 358 \\
& 1.054 \\
& 2982 \\
& 70.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.657 \\
334 \\
420
\end{array}
\] & \[
\begin{aligned}
& 357 \\
& 1.061 \\
& 2969 \\
& 71.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 333 \\
& 424
\end{aligned}
\] & \[
\begin{aligned}
& 357 \\
& 1.068 \\
& 2955 \\
& 72.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.678 \\
332 \\
429
\end{array}
\] & \[
\begin{aligned}
& 358 \\
& 1.076 \\
& 2958 \\
& 73.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .691 \\
& 332 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& 358 \\
& 1.083 \\
& 2962 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
706 \\
333 \\
444
\end{array}
\] & \[
\begin{aligned}
& 359 \\
& 1.091 \\
& 2961 \\
& 76.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 720 \\
& 333 \\
& 451
\end{aligned}
\] \\
\hline 160 & \[
\begin{aligned}
& \hline 358 \\
& 1.025 \\
& 3021 \\
& 58.3
\end{aligned}
\] & \[
\begin{aligned}
& .532 \\
& 323 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& 357 \\
& 1.041 \\
& 2950 \\
& 63.7
\end{aligned}
\] & \[
\begin{array}{r}
.578 \\
321 \\
376
\end{array}
\] & \[
\begin{aligned}
& \hline 360 \\
& 1.059 \\
& 3075 \\
& 69.1
\end{aligned}
\] & \[
\begin{aligned}
& .665 \\
& 338 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& \hline 360 \\
& 1.066 \\
& 3056 \\
& 70.2
\end{aligned}
\] & \[
\begin{aligned}
& .675 \\
& 337 \\
& 429
\end{aligned}
\] & \[
\begin{aligned}
& \hline 360 \\
& 1.073 \\
& 3056 \\
& 71.3
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 337 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& 361 \\
& 1.081 \\
& 3060 \\
& 72.4
\end{aligned}
\] & \[
\begin{aligned}
& .702 \\
& 338 \\
& 443
\end{aligned}
\] & \[
\begin{aligned}
& 362 \\
& 1.089 \\
& 3064 \\
& 73.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .717 \\
& 338 \\
& 451
\end{aligned}
\] & \[
\begin{aligned}
& 362 \\
& 1.098 \\
& 3037 \\
& 74.8
\end{aligned}
\] & \[
\begin{aligned}
& 725 \\
& 336 \\
& 454
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & PAGE & \\
\hline & CRUISE TABLES 2 ENGINES & REV 21 & SEQ 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{11}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA+10 } \\
C G=37.5 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM/1000KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& (1000 \mathrm{KG}) \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} & \multicolumn{2}{|l|}{FL290} & \multicolumn{2}{|l|}{FL310} & \multicolumn{2}{|l|}{FL330} & \multicolumn{2}{|l|}{FL350} & \multicolumn{2}{|l|}{FL370} & \multicolumn{2}{|l|}{FL390} & \multicolumn{2}{|l|}{FL410} \\
\hline 90 & \[
\begin{aligned}
& \hline 308 \\
& 1.051 \\
& 1596 \\
& 113.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .589 \\
& 244 \\
& 362
\end{aligned}
\] & \[
\begin{aligned}
& \hline 309 \\
& 1.059 \\
& 1629 \\
& 117.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.629 \\
250 \\
383
\end{array}
\] & \[
\begin{array}{|l|}
\hline 310 \\
1.071 \\
1652 \\
121.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .664 \\
& 254 \\
& 402
\end{aligned}
\] & \begin{tabular}{l}
1811 \\
\hline 1.088 \\
1661 \\
125.8 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .697 \\
& 256 \\
& 418
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 313 \\
1.107 \\
1650 \\
130.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .724 \\
& 255 \\
& 430
\end{aligned}
\] & 113
1.130
1592
135.5 & \[
\begin{aligned}
& .732 \\
& 247 \\
& 432
\end{aligned}
\] & \[
\begin{aligned}
& \hline 320 \\
& 1.155 \\
& 1572 \\
& 139.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .750 \\
& 242 \\
& 440
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 339 \\
1.191 \\
1633 \\
142.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .791 \\
& 245 \\
& 464
\end{aligned}
\] & 157
1.237
1634
144.7 & \[
\begin{aligned}
& .806 \\
& 239 \\
& 473
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 313 \\
& 1.056 \\
& 1698 \\
& 110.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .609 \\
& 252 \\
& 374
\end{aligned}
\] & \[
\begin{aligned}
& 315 \\
& 1.064 \\
& 1746 \\
& 114.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .653 \\
& 260 \\
& 398
\end{aligned}
\] & \[
\begin{aligned}
& 315 \\
& 1.080 \\
& 1749
\end{aligned}
\] & \[
\begin{aligned}
& .682 \\
& 261 \\
& 412
\end{aligned}
\] & \[
\begin{aligned}
& 317 \\
& 1.098 \\
& 1758 \\
& 122.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.716 \\
263 \\
429
\end{array}
\] & \[
\begin{array}{|l|}
\hline 317 \\
1.119 \\
1712 \\
126.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .729 \\
& 257 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& 318 \\
& 1.144 \\
& 1651 \\
& 131.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.736 \\
248 \\
434
\end{array}
\] & \[
\begin{aligned}
& 329 \\
& 1.173 \\
& 1693
\end{aligned}
\] & \[
\begin{array}{r}
.775 \\
251 \\
455
\end{array}
\] & \[
\begin{aligned}
& 347 \\
& 1.213 \\
& 1724 \\
& 136.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.803 \\
249 \\
471
\end{array}
\] & \[
\begin{array}{|l|}
\hline 365 \\
1.267 \\
1710 \\
138.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 239 \\
& 473
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& 319 \\
& 1.059 \\
& 1835 \\
& 107.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 639 \\
265 \\
393
\end{array}
\] &  & \[
\begin{aligned}
& .669 \\
& 267 \\
& 408
\end{aligned}
\] & 320
1.089 1852 114.4 & \[
\begin{array}{r}
.701 \\
269 \\
424
\end{array}
\] & \[
\begin{aligned}
& 322 \\
& 1.108 \\
& 1834
\end{aligned}
\] & \[
\begin{aligned}
& .725 \\
& 267 \\
& 435
\end{aligned}
\] & \[
\begin{aligned}
& \hline 322 \\
& 1.131 \\
& 1772 \\
& 123.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .733 \\
& 259 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& 324 \\
& 1.156 \\
& 1749 \\
& 126.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 753 \\
& 254 \\
& 444
\end{aligned}
\] & \[
\begin{aligned}
& 338 \\
& 1.192 \\
& 1805 \\
& 129.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.794 \\
258 \\
466
\end{array}
\] & \[
\begin{array}{|l|}
\hline 355 \\
1.238 \\
1801 \\
131.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.807 \\
250 \\
473
\end{array}
\] & \[
\begin{array}{|l|}
\hline 374 \\
1.305 \\
1798 \\
131.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .805 \\
& 238 \\
& 472
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 1324 \\
& 1.064 \\
& 1954 \\
& 103.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .661 \\
& 275 \\
& 406
\end{aligned}
\] & \[
\begin{aligned}
& 324 \\
& 1.080 \\
& 1947 \\
& 107.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.687 \\
275 \\
419
\end{array}
\] & \[
\begin{array}{|l|}
\hline 326 \\
1.097 \\
1952 \\
111.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .718 \\
& 276 \\
& 434
\end{aligned}
\] & \[
\begin{aligned}
& \hline 326 \\
& 1.119 \\
& 1896 \\
& 115.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.730 \\
269 \\
437
\end{array}
\] & \[
\begin{array}{|l|}
\hline 326 \\
1.143 \\
1831 \\
119.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .736 \\
& 260 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& 333 \\
& 1.172 \\
& 1880 \\
& 122.2
\end{aligned}
\] & \[
\begin{array}{r}
\hline 779 \\
264 \\
459
\end{array}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.212 \\
& 1892 \\
& 124.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 261 \\
& 471
\end{aligned}
\] & \[
\begin{aligned}
& 362 \\
& 1.266 \\
& 1876 \\
& 126.2
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
250 \\
473
\end{array}
\] & \[
\begin{array}{|l|}
\hline 386 \\
1.352 \\
1906 \\
123.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .803 \\
& 238 \\
& 471
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 327 \\
& 1.072 \\
& 2042 \\
& 101.2
\end{aligned}
\] & \[
\begin{aligned}
& .673 \\
& 280 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 328 \\
& 1.088 \\
& 2050 \\
& 104.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .704 \\
& 282 \\
& 429
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 330 \\
1.107 \\
2025 \\
108.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .726 \\
& 279 \\
& 439
\end{aligned}
\] & \[
\begin{aligned}
& \hline 330 \\
& 1.130 \\
& 1957 \\
& 112.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .734 \\
& 270 \\
& 440
\end{aligned}
\] & \[
\begin{aligned}
& \hline 332 \\
& 1.155 \\
& 1934 \\
& 115.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .754 \\
& 266 \\
& 448
\end{aligned}
\] & \[
\begin{aligned}
& 341 \\
& 1.189 \\
& 1988 \\
& 117.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .795 \\
& 270 \\
& 469
\end{aligned}
\] & \[
\begin{aligned}
& \hline 351 \\
& 1.234 \\
& 1968 \\
& 120.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 262 \\
& 473
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 370 \\
1.300 \\
1965 \\
120.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .806 \\
& 250 \\
& 473
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 400 \\
1.411 \\
2022 \\
115.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .795 \\
& 235 \\
& 467
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& 331 \\
& 1.079 \\
& 2143 \\
& 98.6
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 287 \\
& 423
\end{aligned}
\] & \[
\begin{aligned}
& 333 \\
& 1.096 \\
& 2150 \\
& 102.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.719 \\
289 \\
439
\end{array}
\] & \[
\begin{array}{|l|}
\hline 333 \\
1.117 \\
2088 \\
105.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .730 \\
& 281 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 334 \\
& 1.141 \\
& 2016 \\
& 109.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 272 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.169 \\
& 2065 \\
& 111.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .777 \\
& 276 \\
& 462
\end{aligned}
\] & \[
\begin{aligned}
& 347 \\
& 1.207 \\
& 2073 \\
& 114.1
\end{aligned}
\] & \[
\begin{aligned}
& 803 \\
& 273 \\
& 473
\end{aligned}
\] & \[
\begin{aligned}
& \hline 357 \\
& 1.259 \\
& 2041 \\
& 116.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
262 \\
473
\end{array}
\] & \[
\begin{array}{|l|}
\hline 381 \\
1.342 \\
2070 \\
113.8 \\
\hline
\end{array}
\] & 803
249
471 & \[
\begin{array}{|l|}
\hline 418 \\
1.475 \\
2151 \\
107.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .787 \\
& 232 \\
& 462
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 336 \\
& 1.086 \\
& 2244 \\
& 96.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .703 \\
& 294 \\
& 432
\end{aligned}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.105 \\
& 2222 \\
& 99.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .726 \\
& 292 \\
& 442
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 337 \\
1.127 \\
2149 \\
103.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.733 \\
283 \\
443
\end{array}
\] & \[
\begin{aligned}
& \hline 339 \\
& 1.151 \\
& 2116 \\
& 106.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.751 \\
278 \\
450
\end{array}
\] & \[
\begin{array}{|l|}
\hline 348 \\
1.184 \\
2176 \\
108.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .793 \\
& 282 \\
& 471
\end{aligned}
\] & \[
\begin{aligned}
& 353 \\
& 1.227 \\
& 2150 \\
& 110.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 274 \\
& 475
\end{aligned}
\] & \[
\begin{aligned}
& \hline 365 \\
& 1.289 \\
& 2130 \\
& 111.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
262 \\
473
\end{array}
\] & \[
\begin{array}{|l|}
\hline 393 \\
1.396 \\
2195 \\
106.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .800 \\
& 248 \\
& 469
\end{aligned}
\] & & \\
\hline 125 & \[
\begin{aligned}
& \hline 340 \\
& 1.093 \\
& 2345 \\
& 94.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .717 \\
& 300 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.114 \\
& 2285 \\
& 97.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .730 \\
& 293 \\
& 445
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.137 \\
& 2208 \\
& 100.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 284 \\
& 445
\end{aligned}
\] & \[
\begin{aligned}
& \hline 347 \\
& 1.164 \\
& 2244 \\
& 103.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .772 \\
& 286 \\
& 463
\end{aligned}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.199 \\
& 2266 \\
& 105.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .801 \\
& 285 \\
& 476
\end{aligned}
\] & \[
\begin{aligned}
& 359 \\
& 1.248 \\
& 2223 \\
& 107.0
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 275 \\
& 476
\end{aligned}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.325 \\
& 2226 \\
& 105.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 261 \\
& 471
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 410 \\
1.451 \\
2312 \\
100.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 791 \\
& 245 \\
& 464
\end{aligned}
\] & & \\
\hline 130 & \[
\begin{aligned}
& 344 \\
& 1.102 \\
& 2424 \\
& 91.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
725 \\
304 \\
446
\end{array}
\] & \[
\begin{aligned}
& \hline 344 \\
& 1.123 \\
& 2345 \\
& 95.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.733 \\
295 \\
447
\end{array}
\] & \[
\begin{aligned}
& 345 \\
& 1.147 \\
& 2287 \\
& 98.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.743 \\
287 \\
449
\end{array}
\] & \[
\begin{aligned}
& 354 \\
& 1.177 \\
& 2372 \\
& 100.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
791 \\
294 \\
474
\end{array}
\] & \[
\begin{array}{|l|}
\hline 359 \\
1.218 \\
2347 \\
102.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline 806 \\
287 \\
479
\end{array}
\] & \[
\begin{aligned}
& 365 \\
& 1.274 \\
& 2306
\end{aligned}
\] & \[
\begin{array}{r}
807 \\
275 \\
476
\end{array}
\] & \[
\begin{aligned}
& 385 \\
& 1.370 \\
& 2347 \\
& 100.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.801 \\
260 \\
470
\end{array}
\] & & & & \\
\hline 135 & \[
\begin{aligned}
& 347 \\
& 1.110 \\
& 2490 \\
& 90.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .729 \\
& 306 \\
& 448
\end{aligned}
\] & \[
\begin{aligned}
& \hline 347 \\
& 1.132 \\
& 2406 \\
& 93.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .735 \\
& 296 \\
& 448
\end{aligned}
\] & \[
\begin{aligned}
& 352 \\
& 1.158 \\
& 2412 \\
& 95.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .762 \\
& 294 \\
& 461
\end{aligned}
\] & \[
\begin{aligned}
& 359 \\
& 1.191 \\
& 2463 \\
& 97.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .799 \\
& 297 \\
& 479
\end{aligned}
\] & \[
\begin{aligned}
& \hline 364 \\
& 1.236 \\
& 2421
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 480
\end{aligned}
\] & \[
\begin{aligned}
& \hline 372 \\
& 1.303 \\
& 2396 \\
& 99.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .805 \\
& 274 \\
& 474
\end{aligned}
\] & \[
\begin{aligned}
& \hline 397 \\
& 1.419 \\
& 2459 \\
& 94.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.793 \\
257 \\
465
\end{array}
\] & & & & \\
\hline 140 & \[
\begin{aligned}
& 350 \\
& 1.118 \\
& 2550 \\
& 88.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .732 \\
& 307 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& 351 \\
& 1.142 \\
& 2467 \\
& 91.1
\end{aligned}
\] & \[
\begin{aligned}
& .738 \\
& 297 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& \hline 360 \\
& 1.169 \\
& 2564 \\
& 92.7
\end{aligned}
\] & \[
\begin{aligned}
& .787 \\
& 305 \\
& 475
\end{aligned}
\] & 365
1.207
2548
94.6 & \[
\begin{aligned}
& \hline .804 \\
& 299 \\
& 482
\end{aligned}
\] & \[
\begin{aligned}
& \hline 370 \\
& 1.257 \\
& 2497 \\
& 96.1
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 480
\end{aligned}
\] & 381
1.340
2507
94.4 & \[
\begin{aligned}
& .803 \\
& 273 \\
& 473
\end{aligned}
\] & 412
1.473
2590
89.0 & \[
\begin{array}{r}
.786 \\
255 \\
461
\end{array}
\] & & & & \\
\hline 145 & \[
\begin{aligned}
& 353 \\
& 1.126 \\
& 2611 \\
& 86.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .735 \\
& 308 \\
& 451
\end{aligned}
\] & \[
\begin{aligned}
& 356 \\
& 1.150 \\
& 2585 \\
& 889
\end{aligned}
\] & \[
\begin{aligned}
& .754 \\
& 304 \\
& 460
\end{aligned}
\] & \[
\begin{aligned}
& 365 \\
& 1.182 \\
& 2662 \\
& 903
\end{aligned}
\] & \[
\begin{aligned}
& .796 \\
& 309 \\
& 481
\end{aligned}
\] & \[
\begin{aligned}
& 370 \\
& 1.223 \\
& 2625 \\
& 92.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 300 \\
& 484
\end{aligned}
\] & \[
\begin{aligned}
& 376 \\
& 1.282 \\
& 2587 \\
& 92.7
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 480
\end{aligned}
\] & \[
\begin{aligned}
& 392 \\
& 1.384 \\
& 2634 \\
& 89.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .801 \\
& 272 \\
& 472
\end{aligned}
\] & & & & & & \\
\hline 150 & \begin{tabular}{l}
356 \\
1.135 \\
2672 \\
84.7 \\
\hline 61
\end{tabular} & \[
\begin{array}{r}
.737 \\
309 \\
453
\end{array}
\] & \[
\begin{aligned}
& 363 \\
& 1.160 \\
& 2726 \\
& 86.5
\end{aligned}
\] & \[
\begin{aligned}
& \hline .774 \\
& 313 \\
& 472
\end{aligned}
\] & \[
\begin{aligned}
& \hline 369 \\
& 1.195 \\
& 2749 \\
& 88.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.801 \\
311 \\
485
\end{array}
\] & \[
\begin{aligned}
& 375 \\
& 1.241 \\
& 2698 \\
& 89.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .808 \\
& 300 \\
& 484
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 383 \\
1.310 \\
2679 \\
89.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .804 \\
& 286 \\
& 478
\end{aligned}
\] & \[
\begin{aligned}
& 404 \\
& 1.429 \\
& 2743 \\
& 85.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .792 \\
& 269 \\
& 467
\end{aligned}
\] & & & & & & \\
\hline 155 & \[
\begin{aligned}
& 361 \\
& 1.142 \\
& 2772 \\
& 82.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .748 \\
& 314 \\
& 460
\end{aligned}
\] & \[
\begin{aligned}
& 369 \\
& 1.171 \\
& 2859 \\
& 84.3
\end{aligned}
\] & \[
\begin{array}{r}
.791 \\
320 \\
482
\end{array}
\] & \[
\begin{array}{|l|}
\hline 374 \\
1.209 \\
2831 \\
86.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .805 \\
& 313 \\
& 487
\end{aligned}
\] & \[
\begin{aligned}
& 380 \\
& 1.261 \\
& 2778 \\
& 87.1
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
300 \\
484
\end{array}
\] & \[
\begin{array}{|l|}
\hline 392 \\
1.345 \\
2796 \\
85.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline 802 \\
.885 \\
477
\end{array}
\] & \[
\begin{aligned}
& 417 \\
& 1.479 \\
& 2880 \\
& 80.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
786 \\
267 \\
463
\end{array}
\] & & & & & & \\
\hline 160 & \[
\begin{aligned}
& 366 \\
& 1.151 \\
& 2875 \\
& 81.0
\end{aligned}
\] & \[
\begin{aligned}
& .758 \\
& 319 \\
& 466
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 1.183 \\
& 2951 \\
& 82.4
\end{aligned}
\] & \[
\begin{aligned}
& .797 \\
& 323 \\
& 486
\end{aligned}
\] & \[
\begin{aligned}
& \hline 379 \\
& 1.224 \\
& 2907 \\
& 83.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 314 \\
& 488
\end{aligned}
\] & \[
\begin{aligned}
& 386 \\
& 1.284 \\
& 2870 \\
& 84.2
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 300 \\
& 484
\end{aligned}
\] & \[
\begin{aligned}
& \hline 402 \\
& 1.387 \\
& 2926 \\
& 81.2
\end{aligned}
\] & \[
\begin{aligned}
& .800 \\
& 284 \\
& 475
\end{aligned}
\] & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\underbrace{\text { a }}\)} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 14} \\
\hline & CRUISE TABLES 2 encines & REV 21 & SEO 074 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{9}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA+15 } \\
\mathrm{CG}=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM/1000KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& (1000 \mathrm{KG})
\end{aligned}
\] & \multicolumn{2}{|l|}{FL 50} & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} \\
\hline 90 & \[
\begin{aligned}
& \hline 356 \\
& 1.002 \\
& 1920 \\
& 73.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.424 \\
256 \\
283
\end{array}
\] & \[
\begin{aligned}
& \hline 340 \\
& 1.009 \\
& 1818 \\
& 82.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.457 \\
253 \\
300
\end{array}
\] & \[
\begin{aligned}
& \hline 325 \\
& 1.017 \\
& 1759 \\
& 92.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .502 \\
& 253 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& \hline 324 \\
& 1.019 \\
& 1736 \\
& 94.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.508 \\
251 \\
326
\end{array}
\] & \[
\begin{aligned}
& \hline 323 \\
& 1.022 \\
& 1711 \\
& 96.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 514 \\
& 249 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& \hline 322 \\
& 1.026 \\
& 1686 \\
& 98.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
519 \\
247 \\
331
\end{array}
\] & \[
\begin{aligned}
& \hline 321 \\
& 1.029 \\
& 1663 \\
& 100.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .525 \\
& 245 \\
& 334
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 320 \\
1.032 \\
1645 \\
102.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.533 \\
243 \\
337
\end{array}
\] \\
\hline 95 & \[
\begin{aligned}
& 356 \\
& 1.004 \\
& 1982 \\
& 72.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.429 \\
260 \\
286
\end{array}
\] & \[
\begin{aligned}
& 340 \\
& 1.010 \\
& 1910 \\
& 80.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.470 \\
260 \\
308
\end{array}
\] & \[
\begin{aligned}
& 328 \\
& 1.020 \\
& 1829 \\
& 89.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.510 \\
257 \\
329
\end{array}
\] & \[
\begin{aligned}
& 327 \\
& 1.023 \\
& 1804 \\
& 91.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.516 \\
.555 \\
331
\end{array}
\] & \[
\begin{aligned}
& \hline 326 \\
& 1.026 \\
& 1779 \\
& 93.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 522 \\
& 253 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& \hline 325 \\
& 1.029 \\
& 1756 \\
& 95.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 528 \\
& 251 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& 325 \\
& 1.033 \\
& 1739 \\
& 97.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 536 \\
& 250 \\
& 340
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 325 \\
1.036 \\
1732 \\
99.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.546 \\
250 \\
346
\end{array}
\] \\
\hline 100 & \[
\begin{aligned}
& 356 \\
& 1.005 \\
& 2069 \\
& 70.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 439 \\
266 \\
293
\end{array}
\] & \[
\begin{aligned}
& 340 \\
& 1.012 \\
& 2003 \\
& 79.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.482 \\
267 \\
316
\end{array}
\] & \[
\begin{aligned}
& \hline 331 \\
& 1.023 \\
& 1898 \\
& 87.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .517 \\
& 261 \\
& 333
\end{aligned}
\] & \[
\begin{aligned}
& \hline 330 \\
& 1.026 \\
& 1871 \\
& 89.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .523 \\
& 259 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& \hline 330 \\
& 1.030 \\
& 1851 \\
& 91.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 530 \\
& 257 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 329 \\
& 1.033 \\
& 1836 \\
& 93.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 539 \\
& 256 \\
& 343
\end{aligned}
\] & \[
\begin{aligned}
& \hline 329 \\
& 1.036 \\
& 1830 \\
& 95.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .549 \\
& 256 \\
& 349
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 329 \\
1.040 \\
1821 \\
97.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.559 \\
256 \\
354
\end{array}
\] \\
\hline 105 & \[
\begin{aligned}
& \hline 356 \\
& 1.007 \\
& 2163 \\
& 69.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.450 \\
273 \\
300
\end{array}
\] & \[
\begin{aligned}
& \hline 340 \\
& 1.013 \\
& 2096 \\
& 77.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.494 \\
274 \\
324
\end{array}
\] & \[
\begin{aligned}
& \hline 334 \\
& 1.027 \\
& 1965 \\
& 86.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.524 \\
264 \\
338
\end{array}
\] & \[
\begin{aligned}
& \hline 334 \\
& 1.030 \\
& 1946 \\
& 87.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline .532 \\
263 \\
341
\end{array}
\] & \[
\begin{aligned}
& \hline 333 \\
& 1.033 \\
& 1931 \\
& 89.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 540 \\
& 262 \\
& 346
\end{aligned}
\] & \[
\begin{aligned}
& \hline 333 \\
& 1.036 \\
& 1927 \\
& 91.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 552 \\
& 263 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& \hline 333 \\
& 1.040 \\
& 1918 \\
& 93.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .562 \\
& 262 \\
& 357
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 333 \\
1.044 \\
1908 \\
94.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .572 \\
& 262 \\
& 362
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 355 \\
& 1.008 \\
& 2256 \\
& 68.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.461 \\
279 \\
308
\end{array}
\] & \[
\begin{aligned}
& 341 \\
& 1.015 \\
& 2177 \\
& 75.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .503 \\
& 279 \\
& 330
\end{aligned}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.030 \\
& 2042 \\
& 84.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .533 \\
& 269 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.033 \\
& 2028 \\
& 85.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .542 \\
& 268 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.036 \\
& 2023 \\
& 87.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .553 \\
& 268 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.040 \\
& 2014 \\
& 89.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
563 \\
268 \\
359
\end{array}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.044 \\
& 2005 \\
& 90.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.573 \\
268 \\
364
\end{array}
\] & \[
\begin{array}{|l|}
\hline 337 \\
1.049 \\
1998 \\
92.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.584 \\
268 \\
370
\end{array}
\] \\
\hline 115 & \[
\begin{aligned}
& 355 \\
& 1.009 \\
& 2350 \\
& 67.0
\end{aligned}
\] & \[
\begin{array}{r}
.472 \\
286 \\
315
\end{array}
\] & \[
\begin{aligned}
& 344 \\
& 1.018 \\
& 2250 \\
& 74.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .510 \\
& 283 \\
& 335
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.033 \\
& 2126 \\
& 82.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .543 \\
& 274 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.036 \\
& 2120 \\
& 83.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .554 \\
& 274 \\
& 356
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.040 \\
& 2110 \\
& 85.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 564 \\
& 274 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& 341 \\
& 1.044 \\
& 2100
\end{aligned}
\] & \[
\begin{aligned}
& 574 \\
& 274 \\
& 366
\end{aligned}
\] & \[
\begin{aligned}
& \hline 340 \\
& 1.048 \\
& 2094 \\
& 88.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 585 \\
& 274 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.053 \\
& 2092 \\
& 007
\end{aligned}
\] & \[
\begin{array}{r}
.597 \\
274 \\
378
\end{array}
\] \\
\hline 120 & \[
\begin{aligned}
& 355 \\
& 1.010 \\
& 2443 \\
& 65.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .482 \\
& 292 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& 347 \\
& 1.020 \\
& 2318 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.516 \\
286 \\
339
\end{array}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.036 \\
& 2219 \\
& 80.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .555 \\
& 280 \\
& 358
\end{aligned}
\] & \[
\begin{aligned}
& 344 \\
& 1.040 \\
& 2208 \\
& 82.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.565 \\
280 \\
363
\end{array}
\] & \[
\begin{aligned}
& 344 \\
& 1.044 \\
& 2197 \\
& 83.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 279 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& \hline 344 \\
& 1.048 \\
& 2189 \\
& 85.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
585 \\
279 \\
373
\end{array}
\] & \[
\begin{aligned}
& 344 \\
& 1.053 \\
& 2189 \\
& 86.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .598 \\
& 280 \\
& 379
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 346 \\
1.055 \\
2245 \\
88.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 625 \\
& 287 \\
& 395
\end{aligned}
\] \\
\hline 125 & \[
\begin{aligned}
& \hline 355 \\
& 1.011 \\
& 2536 \\
& 64.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
492 \\
298 \\
328
\end{array}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.023 \\
& 2386 \\
& 71.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.522 \\
289 \\
342
\end{array}
\] & \[
\begin{aligned}
& \hline 348 \\
& 1.039 \\
& 2308 \\
& 78.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& 286 \\
& 364
\end{aligned}
\] & \[
\begin{aligned}
& \hline 348 \\
& 1.043 \\
& 2296 \\
& 80.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 285 \\
& 369
\end{aligned}
\] & \[
\begin{aligned}
& 347 \\
& 1.047 \\
& 2287 \\
& 010
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& 285 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& \hline 348 \\
& 1.052 \\
& 2286 \\
& 007
\end{aligned}
\] & \[
\begin{aligned}
& 598 \\
& 285 \\
& 381
\end{aligned}
\] & \[
\begin{aligned}
& \hline 350 \\
& 1.054 \\
& 2347 \\
& 84.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .626 \\
& 294 \\
& 397
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 351 \\
1.057 \\
2384 \\
86.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline .648 \\
& 299 \\
& 410
\end{aligned}
\] \\
\hline 130 & \[
\begin{aligned}
& 356 \\
& 1.013 \\
& 2626 \\
& 63.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.501 \\
304 \\
334
\end{array}
\] & \[
\begin{aligned}
& 352 \\
& 1.026 \\
& 2457 \\
& 70.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.528 \\
293 \\
346
\end{array}
\] & \[
\begin{aligned}
& 351 \\
& 1.043 \\
& 2395 \\
& 77.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.575 \\
291 \\
371
\end{array}
\] & \[
\begin{aligned}
& 351 \\
& 1.047 \\
& 2386 \\
& 78.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.585 \\
290 \\
376
\end{array}
\] & \[
\begin{aligned}
& \hline 351 \\
& 1.051 \\
& 2387 \\
& 80.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 598 \\
& 291 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.053 \\
& 2453 \\
& 81.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 627 \\
& 300 \\
& 399
\end{aligned}
\] & \[
\begin{aligned}
& 355 \\
& 1.056 \\
& 2490 \\
& 82.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .649 \\
& 305 \\
& 412
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 355 \\
1.062 \\
2492 \\
84.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.662 \\
305 \\
419
\end{array}
\] \\
\hline 135 & 358
1.015
2698
62.6 & .506
307
338 & 355
1.028
2538
69.2 & \[
\begin{array}{r}
.536 \\
297 \\
351
\end{array}
\] & \[
\begin{aligned}
& 354 \\
& 1.046 \\
& 2483 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .585 \\
& 296 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 354 \\
& 1.050 \\
& 2485 \\
& 77.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.597 \\
297 \\
384
\end{array}
\] & \begin{tabular}{l}
357 \\
1.052 \\
2553 \\
78.4 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .626 \\
& 305 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 358 \\
& 1.054 \\
& 2595 \\
& 79.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 649 \\
311 \\
413
\end{array}
\] & \[
\begin{aligned}
& \hline 358 \\
& 1.061 \\
& 2596 \\
& 80.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .661 \\
& 311 \\
& 420
\end{aligned}
\] & \begin{tabular}{l}
358 \\
1.069 \\
2590 \\
82.2 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.673 \\
311 \\
426
\end{array}
\] \\
\hline 140 & \[
\begin{aligned}
& \hline 361 \\
& 1.017 \\
& 2771 \\
& 61.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline .512 \\
310 \\
342
\end{array}
\] & \[
\begin{aligned}
& 358 \\
& 1.031 \\
& 2627 \\
& 68.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .545 \\
& 302 \\
& 357
\end{aligned}
\] & \[
\begin{aligned}
& \hline 357 \\
& 1.049 \\
& 2581 \\
& 74.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .596 \\
& 302 \\
& 384
\end{aligned}
\] & \[
\begin{aligned}
& \hline 360 \\
& 1.051 \\
& 2650 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.624 \\
310 \\
400
\end{array}
\] & \begin{tabular}{l}
361 \\
1.053 \\
2699 \\
76.8 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .648 \\
& 316 \\
& 414
\end{aligned}
\] & \[
\begin{aligned}
& \hline 361 \\
& 1.060 \\
& 2701 \\
& 78.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 661 \\
317 \\
421
\end{array}
\] & \begin{tabular}{l}
361 \\
1.067 \\
2692 \\
79.2 \\
\hline
\end{tabular} & \[
\begin{array}{r}
\hline 672 \\
316 \\
427
\end{array}
\] & \begin{tabular}{l}
361 \\
1.075 \\
2691 \\
80.5 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 685 \\
& 316 \\
& 433
\end{aligned}
\] \\
\hline 145 & \[
\begin{aligned}
& 363 \\
& 1.019 \\
& 2841 \\
& 60.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
517 \\
313 \\
345
\end{array}
\] & \[
\begin{aligned}
& \hline 361 \\
& 1.033 \\
& 2720 \\
& 66.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.554 \\
307 \\
363
\end{array}
\] & \[
\begin{aligned}
& 362 \\
& 1.050 \\
& 2746 \\
& 72.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .621 \\
& 315 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& 1.052 \\
& 2802 \\
& 74.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .646 \\
& 322 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& \hline 364 \\
& 1.058 \\
& 2806 \\
& 75.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .660 \\
& 322 \\
& 422
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& 1.065 \\
& 2795 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .670 \\
& 322 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& \hline 364 \\
& 1.073 \\
& 2790 \\
& 77.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .682 \\
& 321 \\
& 433
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 365 \\
1.081 \\
2795 \\
78.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .697 \\
& 322 \\
& 441
\end{aligned}
\] \\
\hline 150 & \[
\begin{aligned}
& 365 \\
& 1.021 \\
& 2909 \\
& 59.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .521 \\
& 316 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& 1.036 \\
& 2810 \\
& 65.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .562 \\
& 312 \\
& 369
\end{aligned}
\] & \[
\begin{aligned}
& \hline 367 \\
& 1.051 \\
& 2904 \\
& 71.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .644 \\
& 327 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 367 \\
& 1.056 \\
& 2911 \\
& 72.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .658 \\
& 328 \\
& 423
\end{aligned}
\] & \[
\begin{aligned}
& 367 \\
& 1.063 \\
& 2902 \\
& 73.7
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 327 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& 367 \\
& 1.071 \\
& 2892 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 680 \\
& 327 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& \hline 368 \\
& 1.078 \\
& 2895 \\
& 76.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 327 \\
& 441
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 369 \\
1.086 \\
2897 \\
77.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .708 \\
& 328 \\
& 448
\end{aligned}
\] \\
\hline 155 & \[
\begin{aligned}
& \hline 367 \\
& 1.023 \\
& 2979 \\
& 58.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
526 \\
319 \\
351
\end{array}
\] & \[
\begin{aligned}
& 366 \\
& 1.039 \\
& 2898 \\
& 64.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.570 \\
317 \\
374
\end{array}
\] & \[
\begin{aligned}
& 370 \\
& 1.055 \\
& 3017 \\
& 70.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .657 \\
& 333 \\
& 423
\end{aligned}
\] & \[
\begin{aligned}
& 370 \\
& 1.061 \\
& 3007 \\
& 71.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 333 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& 370 \\
& 1.069 \\
& 2995 \\
& 72.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .678 \\
& 332 \\
& 434
\end{aligned}
\] & \[
\begin{aligned}
& 370 \\
& 1.076 \\
& 2996 \\
& 73.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
691 \\
332 \\
440
\end{array}
\] & \[
\begin{aligned}
& \hline 371 \\
& 1.084 \\
& 3000 \\
& 74.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.705 \\
333 \\
448
\end{array}
\] & \[
\begin{array}{|l|}
\hline 372 \\
1.092 \\
2999 \\
75.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.719 \\
333 \\
455
\end{array}
\] \\
\hline 160 & \[
\begin{aligned}
& 369 \\
& 1.025 \\
& 3058 \\
& 58.0
\end{aligned}
\] & \[
\begin{aligned}
& .532 \\
& 323 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& 369 \\
& 1.041 \\
& 2986 \\
& 63.5
\end{aligned}
\] & \[
\begin{array}{r}
.578 \\
321 \\
379
\end{array}
\] & \[
\begin{aligned}
& 373 \\
& 1.059 \\
& 3114 \\
& 68.8
\end{aligned}
\] & \[
\begin{aligned}
& .665 \\
& 338 \\
& 429
\end{aligned}
\] & \[
\begin{aligned}
& 373 \\
& 1.066 \\
& 3097 \\
& 70.0
\end{aligned}
\] & \[
\begin{aligned}
& .675 \\
& 337 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& 373 \\
& 1.074 \\
& 3097 \\
& 71.1
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 337 \\
& 440
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 1.082 \\
& 3101 \\
& 72.2
\end{aligned}
\] & \[
\begin{aligned}
& .702 \\
& 338 \\
& 448
\end{aligned}
\] & \[
\begin{aligned}
& 375 \\
& 1.089 \\
& 3104 \\
& 73.3
\end{aligned}
\] & \[
\begin{aligned}
& .717 \\
& 338 \\
& 455
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 375 \\
1.099 \\
3076 \\
74.5
\end{array}
\] & \[
\begin{aligned}
& .725 \\
& 336 \\
& 458
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 15} \\
\hline & CRUISE TABLES 2 ENGINES & REV 21 & SEQ 104 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{11}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA+15 } \\
C G=37.5 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM/1000KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& (1000 \mathrm{KG}) \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} & \multicolumn{2}{|l|}{FL290} & \multicolumn{2}{|l|}{FL310} & \multicolumn{2}{|l|}{FL330} & \multicolumn{2}{|l|}{FL350} & \multicolumn{2}{|l|}{FL370} & \multicolumn{2}{|l|}{FL390} & \multicolumn{2}{|l|}{FL410} \\
\hline 90 & 320
1.052
1617
113.1 & \[
\begin{aligned}
& .589 \\
& 244 \\
& 366
\end{aligned}
\] & \[
\begin{aligned}
& \hline 322 \\
& 1.059 \\
& 1650 \\
& 117.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .628 \\
& 250 \\
& 387
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 323 \\
1.072 \\
1674 \\
121.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .664 \\
& 254 \\
& 406
\end{aligned}
\] & 105
1.089
1683
125.3 & \[
\begin{aligned}
& .697 \\
& 256 \\
& 422
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 327 \\
1.108 \\
1673 \\
129.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .724 \\
& 255 \\
& 435
\end{aligned}
\] & \[
\begin{aligned}
& \hline 327 \\
& 1.131 \\
& 1615 \\
& 135.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .732 \\
& 247 \\
& 436
\end{aligned}
\] & 1834
1.156
1597
139.3 & \[
\begin{aligned}
& .751 \\
& 242 \\
& 445
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 354 \\
1.192 \\
1656 \\
141.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .791 \\
& 245 \\
& 469
\end{aligned}
\] & 1372
1.238
1658
144.2 & \[
\begin{aligned}
& .806 \\
& 239 \\
& 478
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 325 \\
& 1.056 \\
& 1720 \\
& 109.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .609 \\
& 252 \\
& 378
\end{aligned}
\] & \[
\begin{aligned}
& 328 \\
& 1.065 \\
& 1769 \\
& 113.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .653 \\
& 260 \\
& 402
\end{aligned}
\] & \[
\begin{aligned}
& 328 \\
& 1.081 \\
& 1774 \\
& 117.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .682 \\
& 261 \\
& 417
\end{aligned}
\] & \[
\begin{aligned}
& 330 \\
& 1.098 \\
& 1785 \\
& 121.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.716 \\
264 \\
434
\end{array}
\] & \[
\begin{array}{|l|}
\hline 331 \\
1.120 \\
1736 \\
126.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .729 \\
& 257 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& 332 \\
& 1.144 \\
& 1675 \\
& 130.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
736 \\
248 \\
438
\end{array}
\] & \[
\begin{aligned}
& 344 \\
& 1.174 \\
& 1720 \\
& 133.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 776 \\
251 \\
460
\end{array}
\] & \[
\begin{aligned}
& 362 \\
& 1.215 \\
& 1749 \\
& 136.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .802 \\
& 249 \\
& 476
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 380 \\
1.269 \\
1735 \\
137.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 239 \\
& 479
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& 331 \\
& 1.059 \\
& 1859 \\
& 106.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 639 \\
265 \\
396
\end{array}
\] &  & \[
\begin{aligned}
& .669 \\
& 267 \\
& 412
\end{aligned}
\] & \[
\begin{aligned}
& 334 \\
& 1.090 \\
& 1879 \\
& 114.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.701 \\
269 \\
428
\end{array}
\] & \[
\begin{aligned}
& 335 \\
& 1.109 \\
& 1861 \\
& 118.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .725 \\
& 267 \\
& 440
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 336 \\
1.131 \\
1798 \\
122.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .733 \\
& 259 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& 338 \\
& 1.157 \\
& 1774 \\
& 126.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 753 \\
& 254 \\
& 449
\end{aligned}
\] & \[
\begin{aligned}
& 352 \\
& 1.192 \\
& 1830
\end{aligned}
\] & \[
\begin{aligned}
& .794 \\
& 257 \\
& 471
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 370 \\
1.239 \\
1828 \\
130.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.807 \\
250 \\
479
\end{array}
\] & \[
\begin{array}{|l|}
\hline 389 \\
1.306 \\
1824 \\
130.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .805 \\
& 238 \\
& 478
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 336 \\
& 1.065 \\
& 1978 \\
& 103.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 660 \\
275 \\
410
\end{array}
\] & \[
\begin{aligned}
& 337 \\
& 1.081 \\
& 1972 \\
& 107.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .686 \\
& 274 \\
& 422
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 339 \\
1.098 \\
1979 \\
110.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .718 \\
& 276 \\
& 439
\end{aligned}
\] & \[
\begin{aligned}
& \hline 339 \\
& 1.119 \\
& 1924 \\
& 114.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.730 \\
269 \\
442
\end{array}
\] & \[
\begin{array}{|l|}
\hline 340 \\
1.144 \\
1858 \\
119.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .736 \\
& 260 \\
& 442
\end{aligned}
\] & \[
\begin{aligned}
& 347 \\
& 1.173 \\
& 1906 \\
& 121.7
\end{aligned}
\] & \[
\begin{array}{r}
\hline 779 \\
264 \\
464
\end{array}
\] & \[
\begin{aligned}
& \hline 359 \\
& 1.213 \\
& 1919 \\
& 124.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 261 \\
& 476
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 377 \\
1.267 \\
1904 \\
125.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.807 \\
250 \\
479
\end{array}
\] & \[
\begin{array}{|l|}
\hline 401 \\
1.353 \\
1934 \\
123.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.803 \\
238 \\
476
\end{array}
\] \\
\hline 110 & \[
\begin{aligned}
& 340 \\
& 1.072 \\
& 2069 \\
& 100.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .672 \\
& 280 \\
& 417
\end{aligned}
\] & \[
\begin{aligned}
& 342 \\
& 1.089 \\
& 2078 \\
& 104.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .704 \\
& 282 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& \hline 343 \\
& 1.108 \\
& 2053 \\
& 108.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .726 \\
& 279 \\
& 443
\end{aligned}
\] & \[
\begin{aligned}
& \hline 343 \\
& 1.130 \\
& 1985 \\
& 112.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.734 \\
270 \\
444
\end{array}
\] & \[
\begin{aligned}
& \hline 346 \\
& 1.155 \\
& 1962 \\
& 115.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .754 \\
& 266 \\
& 453
\end{aligned}
\] & \[
\begin{aligned}
& 355 \\
& 1.190 \\
& 2017 \\
& 117.4
\end{aligned}
\] & \[
\begin{array}{r}
.795 \\
270 \\
474
\end{array}
\] & 1266
1.235
1997
119.8 & \[
\begin{aligned}
& .807 \\
& 262 \\
& 479
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 386 \\
1.301 \\
1994 \\
119.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .806 \\
& 250 \\
& 478
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 416 \\
1.413 \\
2051 \\
115.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .795 \\
& 235 \\
& 472
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& 344 \\
& 1.080 \\
& 2173 \\
& 98.3
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 287 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& \hline 347 \\
& 1.097 \\
& 2179 \\
& 101.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.719 \\
289 \\
443
\end{array}
\] & \[
\begin{array}{ll}
\hline 347 \\
1.118 \\
2116 \\
105.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .730 \\
& 281 \\
& 446
\end{aligned}
\] & \[
\begin{aligned}
& \hline 347 \\
& 1.141 \\
& 2044 \\
& 109.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 272 \\
& 446
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 355 \\
1.169 \\
2096 \\
111.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .778 \\
& 276 \\
& 467
\end{aligned}
\] & \[
\begin{aligned}
& 361 \\
& 1.208 \\
& 2104 \\
& 113.7
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 273 \\
& 478
\end{aligned}
\] & \[
\begin{aligned}
& \hline 372 \\
& 1.260 \\
& 2071 \\
& 115.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
262 \\
479
\end{array}
\] & \[
\begin{array}{|l|}
\hline 396 \\
1.344 \\
2101 \\
113.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .803 \\
& 249 \\
& 476
\end{aligned}
\] & & \\
\hline 120 & \[
\begin{aligned}
& 349 \\
& 1.087 \\
& 2276 \\
& 95.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .703 \\
& 294 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& \hline 350 \\
& 1.106 \\
& 2253 \\
& 99.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .726 \\
& 292 \\
& 447
\end{aligned}
\] & \[
\begin{aligned}
& \hline 351 \\
& 1.127 \\
& 2178 \\
& 102.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.733 \\
282 \\
448
\end{array}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.151 \\
& 2146 \\
& 106.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .751 \\
& 278 \\
& 455
\end{aligned}
\] & \[
\begin{aligned}
& \hline 362 \\
& 1.185 \\
& 2208 \\
& 107.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .793 \\
& 282 \\
& 477
\end{aligned}
\] & \[
\begin{aligned}
& 368 \\
& 1.228 \\
& 2182 \\
& 110.1
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
274 \\
481
\end{array}
\] & \[
\begin{aligned}
& \hline 380 \\
& 1.290 \\
& 2161 \\
& 110.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 262 \\
& 478
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 409 \\
1.397 \\
2228 \\
106.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .800 \\
& 248 \\
& 475
\end{aligned}
\] & & \\
\hline 125 & 353
1.094
2377
93.7 & \[
\begin{aligned}
& .718 \\
& 300 \\
& 445
\end{aligned}
\] & \[
\begin{aligned}
& \hline 354 \\
& 1.114 \\
& 2317 \\
& 97.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .730 \\
& 293 \\
& 449
\end{aligned}
\] & \[
\begin{aligned}
& \hline 354 \\
& 1.138 \\
& 2239 \\
& 100.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 284 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& \hline 361 \\
& 1.164 \\
& 2275 \\
& 102.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .772 \\
& 286 \\
& 467
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 368 \\
1.200 \\
2298 \\
104.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .801 \\
& 285 \\
& 481
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 1.250 \\
& 2256 \\
& 106.6
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 275 \\
& 481
\end{aligned}
\] & \[
\begin{aligned}
& \hline 389 \\
& 1.326 \\
& 2259 \\
& 105.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 261 \\
& 476
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 426 \\
1.453 \\
2345 \\
99.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.791 \\
245 \\
469
\end{array}
\] & & \\
\hline 130 & \[
\begin{aligned}
& 357 \\
& 1.102 \\
& 2456 \\
& 91.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.725 \\
304 \\
450
\end{array}
\] & \[
\begin{aligned}
& 357 \\
& 1.123 \\
& 2378 \\
& 94.9
\end{aligned}
\] & \[
\begin{aligned}
& 733 \\
& 295 \\
& 451
\end{aligned}
\] & \[
\begin{aligned}
& 359 \\
& 1.148 \\
& 2316 \\
& 97.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.742 \\
286 \\
453
\end{array}
\] & \[
\begin{aligned}
& 368 \\
& 1.178 \\
& 2405 \\
& 99.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
791 \\
293 \\
479
\end{array}
\] & \[
\begin{array}{|l|}
\hline 374 \\
1.219 \\
2380 \\
101.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 805 \\
& 287 \\
& 484
\end{aligned}
\] & \[
\begin{aligned}
& 380 \\
& 1.275 \\
& 2341 \\
& 102.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 807 \\
& 275 \\
& 481
\end{aligned}
\] &  & \[
\begin{array}{r}
.801 \\
260 \\
475
\end{array}
\] & & & & \\
\hline 135 & \[
\begin{aligned}
& 360 \\
& 1.110 \\
& 2522 \\
& 89.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .729 \\
& 305 \\
& 452
\end{aligned}
\] & \[
\begin{aligned}
& \hline 361 \\
& 1.133 \\
& 2439 \\
& 92.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .735 \\
& 296 \\
& 453
\end{aligned}
\] & \[
\begin{aligned}
& 366 \\
& 1.158 \\
& 2444 \\
& 95.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .762 \\
& 294 \\
& 465
\end{aligned}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.192 \\
& 2497 \\
& 96.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .799 \\
& 297 \\
& 484
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 379 \\
1.237 \\
2456 \\
98.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 485
\end{aligned}
\] & \[
\begin{aligned}
& \hline 387 \\
& 1.304 \\
& 2431 \\
& 98.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .805 \\
& 274 \\
& 480
\end{aligned}
\] & \[
\begin{aligned}
& \hline 413 \\
& 1.421 \\
& 2494 \\
& 94.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .793 \\
& 257 \\
& 470
\end{aligned}
\] & & & & \\
\hline 140 & \[
\begin{aligned}
& 364 \\
& 1.119 \\
& 2584 \\
& 87.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .732 \\
& 307 \\
& 454
\end{aligned}
\] & \[
\begin{aligned}
& \hline 364 \\
& 1.142 \\
& 2501 \\
& 90.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.738 \\
297 \\
454
\end{array}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.170 \\
& 2600 \\
& 92.4
\end{aligned}
\] & \[
\begin{aligned}
& .786 \\
& 305 \\
& 480
\end{aligned}
\] & \[
\begin{aligned}
& \hline 379 \\
& 1.207 \\
& 2584 \\
& 94.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .804 \\
& 299 \\
& 487
\end{aligned}
\] & \[
\begin{aligned}
& \hline 385 \\
& 1.258 \\
& 2532 \\
& 95.8
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 485
\end{aligned}
\] & \[
\begin{aligned}
& 397 \\
& 1.341 \\
& 2544 \\
& 94.0
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 273 \\
& 478
\end{aligned}
\] & & & & & & \\
\hline 145 & \[
\begin{aligned}
& 367 \\
& 1.127 \\
& 2646 \\
& 86.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .734 \\
& 308 \\
& 456
\end{aligned}
\] & \[
\begin{aligned}
& \hline 370 \\
& 1.151 \\
& 2621 \\
& 88.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .754 \\
& 304 \\
& 464
\end{aligned}
\] & \[
\begin{aligned}
& 379 \\
& 1.183 \\
& 2700 \\
& 90.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .796 \\
& 309 \\
& 486
\end{aligned}
\] & \[
\begin{aligned}
& 384 \\
& 1.224 \\
& 2661 \\
& 91.8
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
300 \\
489
\end{array}
\] & \[
\begin{array}{|l|}
\hline 391 \\
1.283 \\
2624 \\
92.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 485
\end{aligned}
\] & \[
\begin{aligned}
& 408 \\
& 1.385 \\
& 2673 \\
& 89.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .801 \\
& 272 \\
& 477
\end{aligned}
\] & & & & & & \\
\hline 150 & 370
1.135
2707
84.4
37 & \[
\begin{array}{r}
737 \\
309 \\
457
\end{array}
\] & \[
\begin{aligned}
& 377 \\
& 1.161 \\
& 2763 \\
& 86.2
\end{aligned}
\] & \[
\begin{aligned}
& .774 \\
& 312 \\
& 477
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 384 \\
1.195 \\
2787 \\
87.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.801 \\
311 \\
490
\end{array}
\] & \[
\begin{aligned}
& \hline 389 \\
& 1.242 \\
& 2736 \\
& 89.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 300 \\
& 489
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 398 \\
1.312 \\
2717 \\
88.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .804 \\
& 286 \\
& 483
\end{aligned}
\] & \[
\begin{aligned}
& 420 \\
& 1.430 \\
& 2783 \\
& 84.8
\end{aligned}
\] & \[
\begin{aligned}
& .792 \\
& 269 \\
& 472
\end{aligned}
\] & & & & & & \\
\hline 155 & \[
\begin{aligned}
& 374 \\
& 1.144 \\
& 2789 \\
& 82.6
\end{aligned}
\] & \[
\begin{aligned}
& .743 \\
& 312 \\
& 461
\end{aligned}
\] & \[
\begin{aligned}
& 383 \\
& 1.172 \\
& 2897 \\
& 84.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.790 \\
320 \\
487
\end{array}
\] & \[
\begin{array}{|l|}
\hline 389 \\
1.210 \\
2870 \\
85.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .805 \\
& 313 \\
& 492
\end{aligned}
\] & \[
\begin{aligned}
& 395 \\
& 1.262 \\
& 2817 \\
& 86.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
300 \\
489
\end{array}
\] & \[
\begin{array}{|l|}
\hline 407 \\
1.346 \\
2836 \\
85.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.802 \\
285 \\
482
\end{array}
\] & & & & & & & & \\
\hline 160 & \[
\begin{aligned}
& 379 \\
& 1.152 \\
& 2913 \\
& 80.7
\end{aligned}
\] & \[
\begin{aligned}
& .758 \\
& 318 \\
& 470
\end{aligned}
\] & \[
\begin{aligned}
& 388 \\
& 1.184 \\
& 2990 \\
& 82.1
\end{aligned}
\] & \[
\begin{aligned}
& .797 \\
& 323 \\
& 491
\end{aligned}
\] & \[
\begin{aligned}
& 393 \\
& 1.225 \\
& 2947 \\
& 83.7
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 314 \\
& 493
\end{aligned}
\] & \[
\begin{aligned}
& 401 \\
& 1.285 \\
& 2911 \\
& 83.9
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 300 \\
& 489
\end{aligned}
\] & \[
\begin{aligned}
& \hline 417 \\
& 1.388 \\
& 2967 \\
& 81.0
\end{aligned}
\] & \[
\begin{aligned}
& .799 \\
& 284 \\
& 480
\end{aligned}
\] & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\underbrace{\text { a }}\)} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 16} \\
\hline & CRUISE TAbles 2 encines & REV 21 & SEO 074 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{5}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & & & & & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA }+20 \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { EGT }^{\circ} \mathrm{C} \\
& \text { EPR } \\
& \text { KG/H/ENG } \\
& \text { NM/1000KG } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|r|}{\[
\begin{array}{r}
\text { MACH } \\
\text { IAS } \\
\text { TAS }
\end{array}
\]} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& \text { (1000KG) }
\end{aligned}
\] & FL & & FL & & FL & & FL & & FL1 & & FL & & FL & & & \\
\hline 90 & \begin{tabular}{l}
107 \\
1.003 \\
1942 \\
73.3 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .423 \\
& 256 \\
& 285
\end{aligned}
\] & \begin{tabular}{l}
151 \\
1.009 \\
1839 \\
82.2 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.457 \\
253 \\
302
\end{array}
\] & \[
\begin{aligned}
& 336 \\
& 1.017 \\
& 1779 \\
& 91.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .502 \\
& 253 \\
& 326
\end{aligned}
\] & \[
\begin{aligned}
& \hline 336 \\
& 1.020 \\
& 1756 \\
& 93.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.508 \\
251 \\
329
\end{array}
\] & \[
\begin{aligned}
& \hline 335 \\
& 1.023 \\
& 1731 \\
& 95.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.513 \\
249 \\
331
\end{array}
\] & \[
\begin{aligned}
& \hline 334 \\
& 1.026 \\
& 1706 \\
& 97.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .519 \\
& 247 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& \hline 333 \\
& 1.029 \\
& 1683 \\
& 100.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 525 \\
& 245 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& \hline 333 \\
& 1.033 \\
& 1667 \\
& 102.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 533 \\
& 243 \\
& 340
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 368 \\
& 1.004 \\
& 2004 \\
& 72.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.429 \\
260 \\
289
\end{array}
\] & \[
\begin{aligned}
& \hline 351 \\
& 1.011 \\
& 1931 \\
& 80.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.469 \\
260 \\
311
\end{array}
\] & \[
\begin{aligned}
& 340 \\
& 1.020 \\
& 1852 \\
& 89.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 510 \\
& 257 \\
& 332
\end{aligned}
\] & \[
\begin{aligned}
& \hline 339 \\
& 1.023 \\
& 1826 \\
& 91.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 255 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& \hline 338 \\
& 1.026 \\
& 1800 \\
& 93.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
521 \\
253 \\
337
\end{array}
\] & \[
\begin{aligned}
& 337 \\
& 1.030 \\
& 1777 \\
& 95.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 528 \\
& 251 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.033 \\
& 1760 \\
& 97.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
536 \\
250 \\
343
\end{array}
\] & \[
\begin{aligned}
& \hline 337 \\
& 1.036 \\
& 1754 \\
& 99.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 546 \\
& 250 \\
& 349
\end{aligned}
\] \\
\hline 100 & \begin{tabular}{l}
367 \\
1.006 \\
2093 \\
70.6 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .439 \\
& 266 \\
& 296
\end{aligned}
\] & \[
\begin{aligned}
& \hline 351 \\
& 1.012 \\
& 2025 \\
& 78.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .482 \\
& 267 \\
& 319
\end{aligned}
\] & \[
\begin{aligned}
& \hline 343 \\
& 1.024 \\
& 1921 \\
& 87.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .518 \\
& 261 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& \hline 342 \\
& 1.027 \\
& 1894 \\
& 89.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.523 \\
259 \\
339
\end{array}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.030 \\
& 1873 \\
& 91.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .530 \\
& 257 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.033 \\
& 1857 \\
& 93.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .538 \\
& 256 \\
& 346
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.037 \\
& 1852 \\
& 95.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .549 \\
& 256 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& \hline 341 \\
& 1.040 \\
& 1843 \\
& 96.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
559 \\
256 \\
357
\end{array}
\] \\
\hline 105 & \[
\begin{aligned}
& \hline 367 \\
& 1.007 \\
& 2188 \\
& 69.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.450 \\
273 \\
303
\end{array}
\] & \[
\begin{aligned}
& 351 \\
& 1.014 \\
& 2119 \\
& 77.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
494 \\
273 \\
327
\end{array}
\] & \[
\begin{aligned}
& 346 \\
& 1.027 \\
& 1989 \\
& 85.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 524 \\
& 264 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 1.030 \\
& 1970 \\
& 87.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 532 \\
& 263 \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.033 \\
& 1956 \\
& 89.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 541 \\
& 262 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.037 \\
& 1951 \\
& 90.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 551 \\
& 263 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& 345 \\
& 1.041 \\
& 1941 \\
& 92.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 561 \\
& 262 \\
& 360
\end{aligned}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.045 \\
& 1931 \\
& 94.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 571 \\
& 262 \\
& 365
\end{aligned}
\] \\
\hline 110 & \begin{tabular}{l}
367 \\
1.008 \\
2282 \\
68.0 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.461 \\
279 \\
310
\end{array}
\] & \[
\begin{aligned}
& 353 \\
& 1.016 \\
& 2203 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.503 \\
279 \\
333
\end{array}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.030 \\
& 2067 \\
& 83.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.533 \\
269 \\
347
\end{array}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.033 \\
& 2053 \\
& 85.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .542 \\
& 268 \\
& 351
\end{aligned}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.037 \\
& 2049 \\
& 87.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
553 \\
269 \\
357
\end{array}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.041 \\
& 2039 \\
& 88.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .563 \\
& 268 \\
& 362
\end{aligned}
\] & \[
\begin{aligned}
& \hline 349 \\
& 1.045 \\
& 2029 \\
& 90.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .573 \\
& 268 \\
& 367
\end{aligned}
\] & \begin{tabular}{l}
149 \\
1.049 \\
2023 \\
92.2 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 584 \\
& 268 \\
& 373
\end{aligned}
\] \\
\hline 115 & \begin{tabular}{l}
367 \\
1.009 \\
2375 \\
66.7 \\
\hline 367
\end{tabular} & \[
\begin{array}{r}
.471 \\
286 \\
317
\end{array}
\] & \begin{tabular}{l}
356 \\
1.018 \\
2276 \\
74.2 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .510 \\
& 283 \\
& 338
\end{aligned}
\] & \[
\begin{aligned}
& 353 \\
& 1.033 \\
& 2152 \\
& 82.1
\end{aligned}
\] & \[
\begin{array}{r}
\hline 543 \\
274 \\
353
\end{array}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.037 \\
& 2146 \\
& 83.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 554 \\
274 \\
359
\end{array}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.040 \\
& 2137 \\
& 85.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 564 \\
& 274 \\
& 364
\end{aligned}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.044 \\
& 2127 \\
& 86.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 574 \\
& 274 \\
& 369
\end{aligned}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.049 \\
& 2120 \\
& 88.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 585 \\
274 \\
375
\end{array}
\] & \[
\begin{aligned}
& \hline 353 \\
& 1.053 \\
& 2118 \\
& 90.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 597 \\
& 274 \\
& 381
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& \hline 367 \\
& 1.010 \\
& 2471 \\
& 65.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .481 \\
& 292 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& 358 \\
& 1.021 \\
& 2346 \\
& 72.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 286 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& 357 \\
& 1.036 \\
& 2245 \\
& 80.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 555 \\
& 280 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& 356 \\
& 1.040 \\
& 2234 \\
& 81.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .564 \\
& 280 \\
& 366
\end{aligned}
\] & \[
\begin{aligned}
& \hline 356 \\
& 1.044 \\
& 2224 \\
& 83.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.574 \\
279 \\
371
\end{array}
\] & \[
\begin{aligned}
& 356 \\
& 1.048 \\
& 2217 \\
& 84.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
585 \\
279 \\
377
\end{array}
\] & \[
\begin{aligned}
& \hline 357 \\
& 1.053 \\
& 2216 \\
& 86.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 597 \\
& 280 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 359 \\
& 1.055 \\
& 2270 \\
& 87.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 624 \\
& 287 \\
& 399
\end{aligned}
\] \\
\hline 125 & \[
\begin{aligned}
& 367 \\
& 1.011 \\
& 2566 \\
& 64.5
\end{aligned}
\] & \[
\begin{array}{r}
.491 \\
298 \\
331
\end{array}
\] & \[
\begin{aligned}
& 361 \\
& 1.023 \\
& 2414 \\
& 71.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .522 \\
& 289 \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 1.040 \\
& 2335 \\
& 78.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& 285 \\
& 367
\end{aligned}
\] & \[
\begin{aligned}
& \hline 360 \\
& 1.044 \\
& 2323 \\
& 80.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 285 \\
& 372
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 1.048 \\
& 2315 \\
& 81.6
\end{aligned}
\] & \[
\begin{aligned}
& .585 \\
& 285 \\
& 378
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 1.052 \\
& 2313 \\
& 83.0
\end{aligned}
\] & \[
\begin{aligned}
& .597 \\
& 285 \\
& 384
\end{aligned}
\] & \[
\begin{aligned}
& 362 \\
& 1.054 \\
& 2373 \\
& 84.4
\end{aligned}
\] & \[
\begin{aligned}
& .625 \\
& 293 \\
& 400
\end{aligned}
\] & 364
1.058
2409
85.7 & \[
\begin{aligned}
& \hline 647 \\
& 298 \\
& 413
\end{aligned}
\] \\
\hline 130 & \[
\begin{aligned}
& \hline 367 \\
& 1.013 \\
& 2658 \\
& 63.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
501 \\
304 \\
337
\end{array}
\] & \[
\begin{aligned}
& 363 \\
& 1.026 \\
& 2485 \\
& 70.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
528 \\
292 \\
349
\end{array}
\] & \[
\begin{aligned}
& 363 \\
& 1.043 \\
& 2424 \\
& 77.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
575 \\
291 \\
374
\end{array}
\] & \[
\begin{aligned}
& \hline 363 \\
& 1.047 \\
& 2414 \\
& 78.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
585 \\
290 \\
379
\end{array}
\] & \[
\begin{aligned}
& \hline 363 \\
& 1.052 \\
& 2414 \\
& 79.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
597 \\
291 \\
386
\end{array}
\] & \[
\begin{aligned}
& \hline 366 \\
& 1.053 \\
& 2476 \\
& 81.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 625 \\
& 299 \\
& 402
\end{aligned}
\] & \[
\begin{aligned}
& \hline 367 \\
& 1.056 \\
& 2516 \\
& 82.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
647 \\
304 \\
415
\end{array}
\] & \[
\begin{aligned}
& \hline 367 \\
& 1.063 \\
& 2521 \\
& 83.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 661 \\
& 305 \\
& 422
\end{aligned}
\] \\
\hline 135 & \[
\begin{aligned}
& \hline 370 \\
& 1.015 \\
& 2731 \\
& 62.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .506 \\
& 307 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& 366 \\
& 1.029 \\
& 2567 \\
& 69.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.535 \\
297 \\
354
\end{array}
\] & \[
\begin{aligned}
& 366 \\
& 1.046 \\
& 2514 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 585 \\
& 296 \\
& 380
\end{aligned}
\] & \[
\begin{aligned}
& \hline 367 \\
& 1.051 \\
& 2514 \\
& 76.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .597 \\
& 296 \\
& 387
\end{aligned}
\] & \[
\begin{aligned}
& 369 \\
& 1.052 \\
& 2580
\end{aligned}
\] & \[
\begin{aligned}
& \hline 625 \\
& 305 \\
& 403
\end{aligned}
\] & \[
\begin{aligned}
& 371 \\
& 1.055 \\
& 2623 \\
& 79.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 648 \\
& 310 \\
& 417
\end{aligned}
\] & \[
\begin{aligned}
& 371 \\
& 1.062 \\
& 2626
\end{aligned}
\] & \[
\begin{aligned}
& 661 \\
& 311 \\
& 424
\end{aligned}
\] & \[
\begin{aligned}
& \hline 371 \\
& 1.069 \\
& 2622 \\
& 81.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 673 \\
& 310 \\
& 430
\end{aligned}
\] \\
\hline 140 & \[
\begin{aligned}
& 372 \\
& 1.017 \\
& 2804 \\
& 61.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.512 \\
310 \\
344
\end{array}
\] & \[
\begin{aligned}
& 370 \\
& 1.031 \\
& 2657 \\
& 67.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 544 \\
302 \\
360
\end{array}
\] & \[
\begin{aligned}
& 370 \\
& 1.050 \\
& 2613 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 596 \\
& 302 \\
& 388
\end{aligned}
\] & \begin{tabular}{l}
372 \\
1.051 \\
2678 \\
75.3 \\
\hline 37
\end{tabular} & \[
\begin{array}{r}
.623 \\
310 \\
403
\end{array}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.054 \\
& 2728 \\
& 76.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 647 \\
& 316 \\
& 417
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& 1.060 \\
& 2732 \\
& 77.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .660 \\
& 316 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.067 \\
& 2726 \\
& 78.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .672 \\
& 316 \\
& 430
\end{aligned}
\] & \begin{tabular}{l}
174 \\
1.075 \\
2726 \\
80.2 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 685 \\
& 316 \\
& 437
\end{aligned}
\] \\
\hline 145 & \[
\begin{aligned}
& 374 \\
& 1.019 \\
& 2874 \\
& 60.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .517 \\
& 313 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& 373 \\
& 1.034 \\
& 2752 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.554 \\
307 \\
366
\end{array}
\] & \[
\begin{aligned}
& 375 \\
& 1.051 \\
& 2774 \\
& 72.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .620 \\
& 314 \\
& 403
\end{aligned}
\] & \[
\begin{aligned}
& \hline 377 \\
& 1.053 \\
& 2832 \\
& 73.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.645 \\
321 \\
418
\end{array}
\] & \[
\begin{aligned}
& 377 \\
& 1.059 \\
& 2838 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.659 \\
.322 \\
425
\end{array}
\] & \[
\begin{aligned}
& \hline 377 \\
& 1.066 \\
& 2830 \\
& 76.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .670 \\
& 322 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& \hline 377 \\
& 1.073 \\
& 2827 \\
& 77.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .682 \\
& 321 \\
& 437
\end{aligned}
\] &  & \[
\begin{array}{r}
697 \\
322 \\
445
\end{array}
\] \\
\hline 150 & \[
\begin{aligned}
& \hline 376 \\
& 1.021 \\
& 2942 \\
& 59.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.521 \\
316 \\
351
\end{array}
\] & \[
\begin{aligned}
& \hline 376 \\
& 1.036 \\
& 2843 \\
& 65.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.562 \\
312 \\
372
\end{array}
\] & \[
\begin{aligned}
& 379 \\
& 1.051 \\
& 2935 \\
& 71.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.643 \\
326 \\
418
\end{array}
\] & \[
\begin{aligned}
& \hline 380 \\
& 1.057 \\
& 2943 \\
& 72.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .657 \\
& 328 \\
& 426
\end{aligned}
\] & \[
\begin{aligned}
& \hline 380 \\
& 1.064 \\
& 2936 \\
& 73.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .668 \\
& 327 \\
& 432
\end{aligned}
\] & \[
\begin{aligned}
& \hline 380 \\
& 1.071 \\
& 2927 \\
& 74.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 680 \\
& 326 \\
& 437
\end{aligned}
\] & \[
\begin{aligned}
& \hline 381 \\
& 1.079 \\
& 2932 \\
& 75.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 694 \\
& 327 \\
& 445
\end{aligned}
\] & \[
\begin{aligned}
& \hline 382 \\
& 1.087 \\
& 2936 \\
& 77.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 708 \\
& 328 \\
& 452
\end{aligned}
\] \\
\hline 155 &  & \[
\begin{array}{r}
.526 \\
319 \\
354
\end{array}
\] &  & \[
\begin{array}{r}
.570 \\
317 \\
377
\end{array}
\] & \[
\begin{aligned}
& 383 \\
& 1.055 \\
& 3051 \\
& 69.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .656 \\
& 333 \\
& 427
\end{aligned}
\] &  & \[
\begin{aligned}
& .668 \\
& 333 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& 383 \\
& 1.069 \\
& 3032 \\
& 72.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
678 \\
332 \\
437
\end{array}
\] & \[
\begin{aligned}
& 383 \\
& 1.077 \\
& 3034 \\
& 73.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
691 \\
332 \\
444
\end{array}
\] & \[
\begin{aligned}
& 384 \\
& 1.085 \\
& 3037 \\
& 74.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 705 \\
& 333 \\
& 452
\end{aligned}
\] & \[
\begin{aligned}
& 386 \\
& 1.093 \\
& 3038 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 719 \\
& 333 \\
& 459
\end{aligned}
\] \\
\hline 160 & \[
\begin{aligned}
& \hline 381 \\
& 1.026 \\
& 3094 \\
& 57.9
\end{aligned}
\] & \[
\begin{aligned}
& .532 \\
& 323 \\
& 358
\end{aligned}
\] & \[
\begin{aligned}
& \hline 381 \\
& 1.042 \\
& 3022 \\
& 63.3
\end{aligned}
\] & \[
\begin{array}{r}
.578 \\
321 \\
383
\end{array}
\] & \[
\begin{aligned}
& \hline 385 \\
& 1.060 \\
& 3153 \\
& 68.6
\end{aligned}
\] & \[
\begin{aligned}
& .665 \\
& 338 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& 385 \\
& 1.067 \\
& 3137 \\
& 69.7
\end{aligned}
\] & \[
\begin{aligned}
& .675 \\
& 337 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& \hline 386 \\
& 1.074 \\
& 3137 \\
& 70.8
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 337 \\
& 444
\end{aligned}
\] & \[
\begin{aligned}
& \hline 387 \\
& 1.082 \\
& 3140 \\
& 71.9
\end{aligned}
\] & \[
\begin{aligned}
& .702 \\
& 338 \\
& 452
\end{aligned}
\] & \[
\begin{aligned}
& 388 \\
& 1.090 \\
& 3142 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .716 \\
& 338 \\
& 459
\end{aligned}
\] & \[
\begin{aligned}
& 389 \\
& 1.100 \\
& 3115 \\
& 74.3
\end{aligned}
\] & \[
\begin{aligned}
& 725 \\
& 336 \\
& 463
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12 .10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 17} \\
\hline & CRUISE TABLES 2 ENGINES & REV 21 & SEC 230 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{LONG RANGE CRUISE} \\
\hline \multicolumn{11}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA }+20 \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM \(/ 1000 \mathrm{KG}\) & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& \text { (1000KG) } \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} & \multicolumn{2}{|l|}{FL290} & \multicolumn{2}{|l|}{FL310} & \multicolumn{2}{|l|}{FL330} & \multicolumn{2}{|l|}{FL350} & \multicolumn{2}{|l|}{FL370} & \multicolumn{2}{|l|}{FL390} & \multicolumn{2}{|l|}{FL410} \\
\hline 90 & \[
\begin{aligned}
& 332 \\
& 1.052 \\
& 1637 \\
& 112.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .589 \\
& 244 \\
& 369
\end{aligned}
\] & \[
\begin{aligned}
& \hline 334 \\
& 1.060 \\
& 1667 \\
& 116.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .626 \\
& 249 \\
& 389
\end{aligned}
\] & \[
\begin{aligned}
& 336 \\
& 1.072 \\
& 1694 \\
& 120.8
\end{aligned}
\] & \[
\begin{array}{r}
.663 \\
254 \\
409
\end{array}
\] & \[
\begin{aligned}
& \hline 338 \\
& 1.090 \\
& 1706 \\
& 124.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .696 \\
& 256 \\
& 426
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 340 \\
1.109 \\
1697 \\
129.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .723 \\
& 255 \\
& 439
\end{aligned}
\] & \[
\begin{aligned}
& 341 \\
& 1.131 \\
& 1638 \\
& 134.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 732 \\
& 247 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 348 \\
& 1.157 \\
& 1621 \\
& 138.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .751 \\
& 242 \\
& 450
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 368 \\
1.193 \\
1680 \\
141.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .791 \\
& 245 \\
& 474
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 387 \\
1.239 \\
1682 \\
143.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .806 \\
& 239 \\
& 483
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 338 \\
& 1.057 \\
& 1742 \\
& 109.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.608 \\
252 \\
381
\end{array}
\] & \[
\begin{aligned}
& 340 \\
& 1.065 \\
& 1791 \\
& 113.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .652 \\
& 260 \\
& 405
\end{aligned}
\] & \[
\begin{aligned}
& 341 \\
& 1.081 \\
& 1798 \\
& 117.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .682 \\
& 261 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 344 \\
& 1.099 \\
& 1810 \\
& 121.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .716 \\
& 263 \\
& 438
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 345 \\
1.120 \\
1760 \\
125.7 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.729 \\
257 \\
442
\end{array}
\] & \[
\begin{aligned}
& 345 \\
& 1.145 \\
& 1699 \\
& 130.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 736 \\
& 248 \\
& 443
\end{aligned}
\] & \[
\begin{aligned}
& \hline 358 \\
& 1.175 \\
& 1746 \\
& 133.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.776 \\
251 \\
465
\end{array}
\] & \[
\begin{array}{|l|}
\hline 377 \\
1.216 \\
1774 \\
135.5 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.802 \\
249 \\
481
\end{array}
\] & \[
\begin{aligned}
& \hline 395 \\
& 1.270 \\
& 1760 \\
& 137.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
239 \\
484
\end{array}
\] \\
\hline 100 & \[
\begin{aligned}
& 344 \\
& 1.060 \\
& 1881 \\
& 106.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .638 \\
& 265 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& \hline 345 \\
& 1.073 \\
& 1894 \\
& 109.8
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 267 \\
& 416
\end{aligned}
\] & \[
\begin{aligned}
& 347 \\
& 1.090 \\
& 1907 \\
& 11.5
\end{aligned}
\] & \[
\begin{aligned}
& .702 \\
& 269 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& 349 \\
& 1.109 \\
& 1887 \\
& 117.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .725 \\
& 267 \\
& 444
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 349 \\
1.132 \\
1823 \\
122.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.733 \\
259 \\
445
\end{array}
\] & \[
\begin{aligned}
& \hline 352 \\
& 1.158 \\
& 1799 \\
& 125.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 753 \\
254 \\
453
\end{array}
\] & \begin{tabular}{l}
367 \\
1.193 \\
1859 \\
128.1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .794 \\
& 258 \\
& 476
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 384 \\
1.240 \\
1854 \\
130.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 250 \\
& 484
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 405 \\
1.307 \\
1850 \\
130.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .805 \\
& 238 \\
& 483
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 349 \\
& 1.066 \\
& 2002 \\
& 103.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
659 \\
274 \\
413
\end{array}
\] & \[
\begin{aligned}
& \hline 350 \\
& 1.081 \\
& 1998 \\
& 106.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .686 \\
& 274 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 352 \\
& 1.099 \\
& 2007 \\
& 110.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.719 \\
276 \\
443
\end{array}
\] & \[
\begin{aligned}
& 353 \\
& 1.120 \\
& 1951 \\
& 114.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.730 \\
269 \\
447
\end{array}
\] & \[
\begin{array}{|l|}
\hline 354 \\
1.145 \\
1884 \\
118.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 736 \\
& 260 \\
& 447
\end{aligned}
\] & \[
\begin{aligned}
& \hline 362 \\
& 1.174 \\
& 1931 \\
& 121.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 778 \\
& 264 \\
& 468
\end{aligned}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.214 \\
& 1947 \\
& 123.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 261 \\
& 481
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 392 \\
1.268 \\
1932 \\
125.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .807 \\
& 250 \\
& 484
\end{aligned}
\] & \[
\begin{aligned}
& 417 \\
& 1.355 \\
& 1961 \\
& 122.7
\end{aligned}
\] & \[
\begin{array}{r}
.803 \\
238 \\
481
\end{array}
\] \\
\hline 110 & \[
\begin{aligned}
& 353 \\
& 1.073 \\
& 2094 \\
& 100.5
\end{aligned}
\] & \[
\begin{aligned}
& .672 \\
& 280 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 355 \\
& 1.090 \\
& 2105 \\
& 103.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .703 \\
& 282 \\
& 437
\end{aligned}
\] & \[
\begin{aligned}
& 357 \\
& 1.108 \\
& 2081 \\
& 107.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.726 \\
279 \\
448
\end{array}
\] & \[
\begin{aligned}
& 357 \\
& 1.131 \\
& 2013 \\
& 111.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .734 \\
& 271 \\
& 449
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 360 \\
1.156 \\
1990 \\
114.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .753 \\
& 266 \\
& 457
\end{aligned}
\] & \[
\begin{aligned}
& 370 \\
& 1.191 \\
& 2045 \\
& 117.0
\end{aligned}
\] & \[
\begin{aligned}
& .795 \\
& 270 \\
& 479
\end{aligned}
\] & \[
\begin{aligned}
& \hline 381 \\
& 1.236 \\
& 2025 \\
& 119.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 262 \\
& 484
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 401 \\
1.302 \\
2023 \\
119.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .806 \\
& 250 \\
& 483
\end{aligned}
\] & \[
\begin{aligned}
& \hline 432 \\
& 1.414 \\
& 2081 \\
& 114.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .795 \\
& 235 \\
& 477
\end{aligned}
\] \\
\hline 115 & 357
1.080
2202
97.9 & \[
\begin{aligned}
& .688 \\
& 287 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& 360 \\
& 1.097 \\
& 2207 \\
& 101.3
\end{aligned}
\] & \[
\begin{aligned}
& .719 \\
& 289 \\
& 447
\end{aligned}
\] & \[
\begin{aligned}
& 361 \\
& 1.118 \\
& 2145 \\
& 105.0
\end{aligned}
\] & \[
\begin{aligned}
& .730 \\
& 281 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& \hline 361 \\
& 1.142 \\
& 2074 \\
& 108.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 272 \\
& 451
\end{aligned}
\] & \[
\begin{aligned}
& 369 \\
& 1.170 \\
& 2125 \\
& 111.1
\end{aligned}
\] & \[
\begin{aligned}
& .777 \\
& 276 \\
& 472
\end{aligned}
\] & 376
1.209
2133
113.3 & \[
\begin{array}{r}
.803 \\
273 \\
483
\end{array}
\] & 1887
1.261
2101
115.1 & \[
\begin{aligned}
& .807 \\
& 262 \\
& 484
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 412 \\
1.345 \\
2132 \\
112.9 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.803 \\
249 \\
481
\end{array}
\] & & \\
\hline 120 & \[
\begin{aligned}
& 362 \\
& 1.088 \\
& 2308 \\
& 95.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .704 \\
& 294 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& 1.106 \\
& 2283 \\
& 98.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .726 \\
& 292 \\
& 451
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& 1.128 \\
& 2208 \\
& 102.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .733 \\
& 282 \\
& 452
\end{aligned}
\] & \[
\begin{aligned}
& \hline 367 \\
& 1.152 \\
& 2178 \\
& 105.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .752 \\
& 278 \\
& 460
\end{aligned}
\] & \[
\begin{aligned}
& 376 \\
& 1.185 \\
& 2240 \\
& 107
\end{aligned}
\] & \[
\begin{aligned}
& .793 \\
& 282 \\
& 482
\end{aligned}
\] & \[
\begin{aligned}
& \hline 382 \\
& 1.229 \\
& 2213 \\
& 109.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .806 \\
& 274 \\
& 486
\end{aligned}
\] & \[
\begin{aligned}
& 395 \\
& 1.291 \\
& 2192 \\
& 110.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .806 \\
& 262 \\
& 483
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 425 \\
1.398 \\
2260 \\
106.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .800 \\
& 248 \\
& 480
\end{aligned}
\] & & \\
\hline 125 & \[
\begin{aligned}
& \hline 367 \\
& 1.095 \\
& 2409 \\
& 93.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .718 \\
& 300 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& \hline 367 \\
& 1.115 \\
& 2347 \\
& 96.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .730 \\
& 293 \\
& 454
\end{aligned}
\] & \[
\begin{aligned}
& 368 \\
& 1.138 \\
& 2269 \\
& 100.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 283 \\
& 454
\end{aligned}
\] & \[
\begin{aligned}
& \hline 375 \\
& 1.165 \\
& 2307 \\
& 102.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .772 \\
& 286 \\
& 472
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 382 \\
1.201 \\
2332 \\
104.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .801 \\
& 285 \\
& 486
\end{aligned}
\] & \[
\begin{aligned}
& \hline 388 \\
& 1.251 \\
& 2288 \\
& 106.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 275 \\
& 486
\end{aligned}
\] & \[
\begin{aligned}
& 404 \\
& 1.327 \\
& 2291 \\
& 105.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .803 \\
& 261 \\
& 482
\end{aligned}
\] & & & & \\
\hline 130 & \[
\begin{aligned}
& \hline 370 \\
& 1.103 \\
& 2489 \\
& 91.3
\end{aligned}
\] & \[
\begin{aligned}
& 725 \\
& 304 \\
& 454
\end{aligned}
\] & \[
\begin{aligned}
& 371 \\
& 1.124 \\
& 2410 \\
& 94.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .733 \\
& 295 \\
& 456
\end{aligned}
\] & \[
\begin{aligned}
& 373 \\
& 1.149 \\
& 2347 \\
& 97.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .742 \\
& 286 \\
& 458
\end{aligned}
\] & \[
\begin{aligned}
& \hline 382 \\
& 1.179 \\
& 2437 \\
& 99.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .790 \\
& 293 \\
& 484
\end{aligned}
\] & \[
\begin{aligned}
& \hline 388 \\
& 1.220 \\
& 2414 \\
& 101.3
\end{aligned}
\] & \[
\begin{aligned}
& .806 \\
& 287 \\
& 489
\end{aligned}
\] & \[
\begin{aligned}
& \hline 395 \\
& 1.276 \\
& 2374 \\
& 102.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
275 \\
486
\end{array}
\] & 416
1.372
2415
99.4 & \[
\begin{array}{r}
.801 \\
260 \\
480
\end{array}
\] & & & & \\
\hline 135 & \[
\begin{aligned}
& 374 \\
& 1.111 \\
& 2555 \\
& 89.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .729 \\
& 305 \\
& 457
\end{aligned}
\] & \[
\begin{aligned}
& \hline 375 \\
& 1.133 \\
& 2472 \\
& 92.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .735 \\
& 296 \\
& 457
\end{aligned}
\] & \[
\begin{aligned}
& 379 \\
& 1.159 \\
& 2472 \\
& 94.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .760 \\
& 294 \\
& 469
\end{aligned}
\] & \[
\begin{aligned}
& \hline 388 \\
& 1.193 \\
& 2531 \\
& 96.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .798 \\
& 297 \\
& 489
\end{aligned}
\] & \[
\begin{aligned}
& \hline 394 \\
& 1.238 \\
& 2490 \\
& 98.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
287 \\
490
\end{array}
\] & \[
\begin{aligned}
& \hline 403 \\
& 1.306 \\
& 2465 \\
& 98.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .805 \\
& 274 \\
& 485
\end{aligned}
\] & & & & & & \\
\hline 140 & \[
\begin{aligned}
& 377 \\
& 1.119 \\
& 2618 \\
& 87.6
\end{aligned}
\] & \[
\begin{aligned}
& .732 \\
& 307 \\
& 459
\end{aligned}
\] & \[
\begin{aligned}
& \hline 378 \\
& 1.143 \\
& 2535 \\
& 90.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.738 \\
297 \\
459
\end{array}
\] & \[
\begin{aligned}
& 388 \\
& 1.171 \\
& 2633 \\
& 92.1
\end{aligned}
\] & \[
\begin{aligned}
& .786 \\
& 305 \\
& 485
\end{aligned}
\] & \[
\begin{aligned}
& \hline 394 \\
& 1.208 \\
& 2619 \\
& 94.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .804 \\
& 299 \\
& 492
\end{aligned}
\] & \[
\begin{aligned}
& \hline 400 \\
& 1.259 \\
& 2568 \\
& 95.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 490
\end{aligned}
\] & \[
\begin{aligned}
& \hline 412 \\
& 1.342 \\
& 2580 \\
& 93.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.803 \\
273 \\
484
\end{array}
\] & & & & & & \\
\hline 145 & \[
\begin{aligned}
& 380 \\
& 1.128 \\
& 2681 \\
& 85.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .734 \\
& 308 \\
& 460
\end{aligned}
\] & \[
\begin{aligned}
& 384 \\
& 1.151 \\
& 2658 \\
& 88.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .754 \\
& 304 \\
& 469
\end{aligned}
\] & \[
\begin{aligned}
& 393 \\
& 1.183 \\
& 2736 \\
& 89.7
\end{aligned}
\] & \[
\begin{array}{r}
.795 \\
309 \\
491
\end{array}
\] & \[
\begin{aligned}
& \hline 399 \\
& 1.225 \\
& 2698 \\
& 91.5
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 300 \\
& 494
\end{aligned}
\] & \[
\begin{aligned}
& 406 \\
& 1.284 \\
& 2661 \\
& 92.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 287 \\
& 490
\end{aligned}
\] & \[
\begin{aligned}
& \hline 423 \\
& 1.387 \\
& 2711 \\
& 88.9
\end{aligned}
\] & \[
\begin{aligned}
& .801 \\
& 272 \\
& 482
\end{aligned}
\] & & & & & & \\
\hline 150 & \[
\begin{aligned}
& \hline 384 \\
& 1.136 \\
& 2743 \\
& 84.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .736 \\
& 309 \\
& 461
\end{aligned}
\] & \[
\begin{aligned}
& \hline 391 \\
& 1.162 \\
& 2800 \\
& 85.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .774 \\
& 312 \\
& 481
\end{aligned}
\] & \[
\begin{aligned}
& 398 \\
& 1.196 \\
& 2825 \\
& 87.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.801 \\
311 \\
494
\end{array}
\] & \[
\begin{aligned}
& \hline 404 \\
& 1.243 \\
& 2774 \\
& 89.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
300 \\
494
\end{array}
\] & \[
\begin{array}{|l|}
\hline 414 \\
1.313 \\
2755 \\
88.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .804 \\
& 286 \\
& 488
\end{aligned}
\] & & & & & & & & \\
\hline 155 & \[
\begin{aligned}
& 387 \\
& 1.145 \\
& 2824 \\
& 82.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .742 \\
& 311 \\
& 465
\end{aligned}
\] & \[
\begin{aligned}
& 398 \\
& 1.173 \\
& 2935 \\
& 83.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .790 \\
& 320 \\
& 491
\end{aligned}
\] & \[
\begin{aligned}
& \hline 403 \\
& 1.211 \\
& 2910 \\
& 85.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .805 \\
& 313 \\
& 497
\end{aligned}
\] & \[
\begin{aligned}
& \hline 410 \\
& 1.263 \\
& 2856 \\
& 86.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .807 \\
& 300 \\
& 494
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 423 \\
1.347 \\
2876 \\
84.7
\end{array}
\] & \[
\begin{aligned}
& .802 \\
& 285 \\
& 487
\end{aligned}
\] & & & & & & & & \\
\hline 160 & \[
\begin{aligned}
& \hline 393 \\
& 1.153 \\
& 2951 \\
& 80.4
\end{aligned}
\] & \[
\begin{aligned}
& .758 \\
& 318 \\
& 475
\end{aligned}
\] & \[
\begin{aligned}
& 402 \\
& 1.184 \\
& 3029 \\
& 81.8
\end{aligned}
\] & \[
\begin{aligned}
& .797 \\
& 323 \\
& 496
\end{aligned}
\] & \[
\begin{aligned}
& 408 \\
& 1.226 \\
& 2987 \\
& 83.4
\end{aligned}
\] & \[
\begin{array}{r}
.807 \\
314 \\
498
\end{array}
\] & \[
\begin{aligned}
& 416 \\
& 1.286 \\
& 2950 \\
& 83.7
\end{aligned}
\] & \[
\begin{aligned}
& .806 \\
& 300 \\
& 494
\end{aligned}
\] & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{CRUISE} & \multicolumn{2}{|r|}{2.12.10} \\
\hline & & PAGE & \\
\hline & CRUISE TABLES 2 ENGINES & REV 29 & SEQ 001 \\
\hline
\end{tabular}

\section*{LEFT INTENTIONALLY BLANK}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{HOLDING} & \multicolumn{3}{|c|}{2.13.00} \\
\hline & & PAGE 1 & & \\
\hline & CONTENTS & REV 06 & \multicolumn{2}{|l|}{SEQ 001} \\
\hline
\end{tabular}

\section*{Pages}
2.13.10 HOLDING CHART 2 ENGINES

Introduction . . . . . . . . . . . . . . 1
Clean Configuration -
R
Clean Configuration -
Green Dot . 3

Slats 15 - Flaps up
170 KTS . . . . . . . . . . . . . . . . 4
Slats 15 - Flaps up
S........................... 5
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{HOLDING} & \multicolumn{2}{|r|}{2.13 .10} \\
\hline & & PAGE & 1 \\
\hline & HOLDING CHART 2 ENGINES & REV 14 & SEO 001 \\
\hline
\end{tabular}

\section*{INTRODUCTION}

Holding charts are established for 2 different configurations :
- clean configuration at 210 kt and at «Green Dot» speed
- slats 15/Flaps 0 at 170 kt and at « S » speed
« Green Dot » in clean configuration and « S » in 15/0 are speeds situated between minimum fuel speed and minimum drag speed.

These charts are established with air conditioning in economic mode. When using normal air conditioning, fuel consumption is increased by \(0.8 \%\).

All charts are established with a center of gravity location corresponding to \(27 \%\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{HOLDING - 210 KT} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
MAX. CRUISE THRUST LIMITS CLEAN CONFIGURATION \\
ECON. AIR CONDITIONING \\
ANTI-ICING OFF
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { EPR } \\
& \text { FF (KG/H/ENG) }
\end{aligned}
\]} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& (1000 \mathrm{KG}) \\
& \hline
\end{aligned}
\] & FL 15 & FL 50 & FL100 & FL120 & FL140 & FL160 & FL180 & FL200 & FL250 & FL290 \\
\hline 90 & \[
\begin{array}{r}
1.012 \\
1654
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.016 \\
1576
\end{array}
\] & \[
\begin{array}{r}
1.022 \\
1480
\end{array}
\] & \[
\begin{array}{r}
1.025 \\
1447
\end{array}
\] & \[
\begin{array}{r}
1.029 \\
1426
\end{array}
\] & \[
\begin{array}{r}
1.034 \\
1409
\end{array}
\] & \[
\begin{array}{r}
1.039 \\
1392
\end{array}
\] & \[
\begin{array}{r}
1.045 \\
1377
\end{array}
\] & \[
\begin{array}{r}
1.065 \\
1347
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.089 \\
1337
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r|}
\hline 1.016 \\
1695 \\
\hline
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.019 \\
1618 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.027 \\
1525
\end{array}
\] & \[
\begin{array}{r}
1.031 \\
1494
\end{array}
\] & \[
\begin{array}{r}
1.035 \\
1472
\end{array}
\] & \[
\begin{array}{r}
1.040 \\
1456
\end{array}
\] & \[
\begin{array}{r}
1.046 \\
1440
\end{array}
\] & \[
\begin{array}{r}
1.053 \\
1426
\end{array}
\] & \[
\begin{array}{r}
1.074 \\
1397
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.102 \\
1390
\end{array}
\] \\
\hline 100 & \[
\begin{array}{|r|}
\hline 1.019 \\
1738 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.023 \\
1662 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.032 \\
1572
\end{array}
\] & \[
\begin{array}{r}
1.036 \\
1541
\end{array}
\] & \[
\begin{array}{r}
1.041 \\
1521
\end{array}
\] & \[
\begin{array}{r}
1.047 \\
1505
\end{array}
\] & \[
\begin{array}{r}
1.053 \\
1490
\end{array}
\] & \[
\begin{array}{r}
1.060 \\
1477
\end{array}
\] & \[
\begin{array}{r}
1.084 \\
1449
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.115 \\
1450
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
1.022 \\
1784
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.027 \\
1710
\end{array}
\] & \[
\begin{array}{r}
1.037 \\
1622
\end{array}
\] & \[
\begin{array}{r}
1.042 \\
1594
\end{array}
\] & \[
\begin{array}{r}
1.048 \\
1574
\end{array}
\] & \[
\begin{array}{r}
1.054 \\
1561
\end{array}
\] & \[
\begin{array}{r}
1.060 \\
1548
\end{array}
\] & \[
\begin{array}{r}
1.068 \\
1535
\end{array}
\] & \[
\begin{array}{r}
1.096 \\
1508
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.129 \\
1517
\end{array}
\] \\
\hline 110 & \[
\begin{array}{|r|}
\hline 1.026 \\
1836
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.032 \\
1763 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.043 \\
1679
\end{array}
\] & \[
\begin{array}{r}
1.049 \\
1651
\end{array}
\] & \[
\begin{array}{r}
1.054 \\
1636
\end{array}
\] & \[
\begin{array}{r}
1.061 \\
1623
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
1610
\end{array}
\] & \[
\begin{array}{r}
1.078 \\
1597
\end{array}
\] & \[
\begin{array}{r}
\hline 1.108 \\
1573
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.144 \\
1587
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
1.031 \\
1890
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.037 \\
1819
\end{array}
\] & \[
\begin{array}{r}
1.049 \\
1737
\end{array}
\] & \[
\begin{array}{r}
1.055 \\
1715
\end{array}
\] & \[
\begin{array}{r}
1.061 \\
1701
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
1688
\end{array}
\] & \[
\begin{array}{r}
1.077 \\
1675
\end{array}
\] & \[
\begin{array}{r}
1.087 \\
1662
\end{array}
\] & \[
\begin{array}{r}
1.121 \\
1643
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.160 \\
1659
\end{array}
\] \\
\hline 120 & \[
\begin{array}{|r|}
\hline 1.035 \\
1947
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.042 \\
1877
\end{array}
\] & \[
\begin{array}{r}
1.055 \\
1803
\end{array}
\] & \[
\begin{array}{r}
1.061 \\
1784
\end{array}
\] & \[
\begin{array}{r}
1.068 \\
1769
\end{array}
\] & \[
\begin{array}{r}
1.076 \\
1756
\end{array}
\] & \[
\begin{array}{r}
1.086 \\
1743
\end{array}
\] & \[
\begin{array}{r}
1.097 \\
1730
\end{array}
\] & \[
\begin{array}{r}
1.134 \\
1716
\end{array}
\] & \[
\begin{array}{r}
1.176 \\
1734
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
1.039 \\
2006
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.047 \\
1938 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.061 \\
1873
\end{array}
\] & \[
\begin{array}{r}
1.068 \\
1854
\end{array}
\] & \[
\begin{array}{r}
1.076 \\
1841
\end{array}
\] & \[
\begin{array}{r}
1.085 \\
1827
\end{array}
\] & \[
\begin{array}{r}
1.095 \\
1814
\end{array}
\] & \[
\begin{array}{r}
1.107 \\
1804
\end{array}
\] & \[
\begin{array}{r}
1.148 \\
1791
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.193 \\
1812
\end{array}
\] \\
\hline 130 & \[
\begin{array}{|r|}
\hline 1.044 \\
2067
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.053 \\
2004 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.068 \\
1945
\end{array}
\] & \[
\begin{array}{r}
1.075 \\
1928
\end{array}
\] & \[
\begin{array}{r}
1.084 \\
1915
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1901
\end{array}
\] & \[
\begin{array}{r}
1.105 \\
1890
\end{array}
\] & \[
\begin{array}{r}
1.118 \\
1882
\end{array}
\] & \[
\begin{array}{r}
1.162 \\
1869
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.212 \\
1896
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
1.049 \\
2131
\end{array}
\] & \[
\begin{array}{|l|}
\hline 1.058 \\
2077
\end{array}
\] & \[
\begin{array}{r}
1.074 \\
2021
\end{array}
\] & \[
\begin{array}{r}
1.082 \\
2005
\end{array}
\] & \[
\begin{array}{r}
1.092 \\
1992
\end{array}
\] & \[
\begin{array}{r}
1.102 \\
1979
\end{array}
\] & \[
\begin{array}{r}
1.115 \\
1971
\end{array}
\] & \[
\begin{array}{r}
1.129 \\
1963
\end{array}
\] & \[
\begin{array}{r}
1.177 \\
1950
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.232 \\
1984 \\
\hline
\end{array}
\] \\
\hline 140 & \[
\begin{array}{|r|}
\hline 1.054 \\
2203 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.064 \\
2152 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline 1.081 \\
2099
\end{array}
\] & \[
\begin{array}{r}
1.090 \\
2085
\end{array}
\] & \[
\begin{array}{r}
1.100 \\
2072
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
2064
\end{array}
\] & \[
\begin{array}{r}
1.125 \\
2055
\end{array}
\] & \[
\begin{array}{r}
1.141 \\
2047
\end{array}
\] & \[
\begin{array}{r}
\hline 1.192 \\
2034
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.254 \\
2077
\end{array}
\] \\
\hline 145 & \[
\begin{array}{|r|}
\hline 1.059 \\
2278 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.069 \\
2229
\end{array}
\] & \[
\begin{array}{r}
1.089 \\
2180
\end{array}
\] & \[
\begin{array}{r}
1.098 \\
2167
\end{array}
\] & \[
\begin{array}{r}
1.109 \\
2159
\end{array}
\] & \[
\begin{array}{r}
1.121 \\
2151
\end{array}
\] & \[
\begin{array}{r}
1.136 \\
2143
\end{array}
\] & \[
\begin{array}{r}
1.153 \\
2133
\end{array}
\] & \[
\begin{array}{r}
1.209 \\
2123
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.277 \\
2179
\end{array}
\] \\
\hline 150 & \[
\begin{array}{r}
1.064 \\
2357 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.075 \\
2310 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.096 \\
2264
\end{array}
\] & \[
\begin{array}{r}
1.106 \\
2256
\end{array}
\] & \[
\begin{array}{r}
1.118 \\
2250
\end{array}
\] & \[
\begin{array}{r}
1.131 \\
2242
\end{array}
\] & \[
\begin{array}{r}
1.147 \\
2233
\end{array}
\] & \[
\begin{array}{r}
1.166 \\
2219
\end{array}
\] & \[
\begin{array}{r}
\hline 1.226 \\
2218
\end{array}
\] & \\
\hline 155 & \[
\begin{array}{r}
1.070 \\
2438
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.082 \\
2393 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.104 \\
2353
\end{array}
\] & \[
\begin{array}{r}
1.114 \\
2350
\end{array}
\] & \[
\begin{array}{r}
1.127 \\
2344
\end{array}
\] & \[
\begin{array}{r}
\hline 1.142 \\
2335
\end{array}
\] & \[
\begin{array}{r}
1.159 \\
2321
\end{array}
\] & \[
\begin{array}{r}
1.179 \\
2307
\end{array}
\] & \[
\begin{array}{r}
1.245 \\
2316
\end{array}
\] & \\
\hline 160 & \[
\begin{array}{r}
1.075 \\
2522
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.088 \\
2479 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
2448
\end{array}
\] & \[
\begin{array}{r}
1.123 \\
2447
\end{array}
\] & \[
\begin{array}{r}
1.137 \\
2441
\end{array}
\] & \[
\begin{array}{r}
1.152 \\
2430
\end{array}
\] & \[
\begin{array}{r}
\hline 1.171 \\
2411
\end{array}
\] & \[
\begin{array}{r}
1.192 \\
2398
\end{array}
\] & & \\
\hline
\end{tabular}

Per degree above (below) ISA add (subtract) \(5 \mathrm{~kg} / \mathrm{h} / \mathrm{eng}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{HOLDING AT GREEN DOT SPEED} \\
\hline \multicolumn{7}{|l|}{\begin{tabular}{l}
MAX. CRUISE THRUST LIMITS CLEAN CONFIGURATION \\
ECON. AIR CONDITIONING \\
ANTI-ICING OFF
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { EPR } \\
& \text { FF (KG/H/ENG) }
\end{aligned}
\]} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& \text { (1000KG) } \\
& \hline
\end{aligned}
\] & FL 15 & FL 50 & FL100 & FL120 & FL140 & FL160 & FL180 & FL200 & FL250 & FL290 \\
\hline 90 & \[
\begin{array}{r}
1.020 \\
1584
\end{array}
\] & \[
\begin{array}{r}
1.025 \\
1512
\end{array}
\] & \[
\begin{array}{r}
1.032 \\
1423
\end{array}
\] & \[
\begin{array}{r}
1.036 \\
1393
\end{array}
\] & \[
\begin{array}{r}
1.041 \\
1366
\end{array}
\] & \[
\begin{array}{r}
1.047 \\
1342
\end{array}
\] & \[
\begin{array}{r}
1.053 \\
1323
\end{array}
\] & \[
\begin{array}{r}
1.059 \\
1313
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.072 \\
1306
\end{array}
\] & \[
\begin{array}{r}
1.091 \\
1323
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
1.022 \\
1647
\end{array}
\] & \[
\begin{array}{r}
1.026 \\
1574
\end{array}
\] & \[
\begin{array}{r}
1.035 \\
1486
\end{array}
\] & \[
\begin{array}{r}
1.039 \\
1456
\end{array}
\] & \[
\begin{array}{r}
1.045 \\
1429
\end{array}
\] & \[
\begin{array}{r}
1.051 \\
1407
\end{array}
\] & \[
\begin{array}{r}
1.057 \\
1395
\end{array}
\] & \[
\begin{array}{r}
1.064 \\
1384
\end{array}
\] & \[
\begin{array}{r}
1.078 \\
1373
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.101 \\
1398
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
1.023 \\
1710
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.028 \\
1637 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.038 \\
1549
\end{array}
\] & \[
\begin{array}{r}
1.042 \\
1520
\end{array}
\] & \[
\begin{array}{r}
1.048 \\
1495
\end{array}
\] & \[
\begin{array}{r}
1.054 \\
1478
\end{array}
\] & \[
\begin{array}{r}
1.061 \\
1467
\end{array}
\] & \[
\begin{array}{r}
1.068 \\
1455
\end{array}
\] & \[
\begin{array}{r}
1.086 \\
1445
\end{array}
\] & \[
\begin{array}{r}
1.111 \\
1479
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
1.025 \\
1773
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.030 \\
1700 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.040 \\
1613
\end{array}
\] & \[
\begin{array}{r}
1.046 \\
1585
\end{array}
\] & \[
\begin{array}{r}
1.051 \\
1562
\end{array}
\] & \[
\begin{array}{r}
1.057 \\
1550
\end{array}
\] & \[
\begin{array}{r}
1.065 \\
1538
\end{array}
\] & \[
\begin{array}{r}
1.073 \\
1526
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1518
\end{array}
\] & \[
\begin{array}{r}
1.122 \\
1563
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
1.026 \\
1836
\end{array}
\] & \[
\begin{array}{r}
1.032 \\
1763
\end{array}
\] & \[
\begin{array}{r}
1.043 \\
1679
\end{array}
\] & \[
\begin{array}{r}
1.049 \\
1651
\end{array}
\] & \[
\begin{array}{r}
1.054 \\
1636
\end{array}
\] & \[
\begin{array}{r}
1.061 \\
1623
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
1610
\end{array}
\] & \[
\begin{array}{r}
1.078 \\
1597
\end{array}
\] & \[
\begin{array}{r}
1.100 \\
1592
\end{array}
\] & \[
\begin{array}{r}
1.134 \\
1651
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
1.028 \\
1900
\end{array}
\] & \[
\begin{array}{r}
1.034 \\
1828
\end{array}
\] & \[
\begin{array}{r}
1.046 \\
1745
\end{array}
\] & \[
\begin{array}{r}
1.051 \\
1722
\end{array}
\] & \[
\begin{array}{r}
1.057 \\
1709
\end{array}
\] & \[
\begin{array}{r}
1.064 \\
1696
\end{array}
\] & \[
\begin{array}{r}
1.073 \\
1682
\end{array}
\] & \[
\begin{array}{r}
1.082 \\
1669
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.108 \\
1670
\end{array}
\] & \[
\begin{array}{r}
1.145 \\
1741
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
1.029 \\
1964
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.036 \\
1893 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.048 \\
1811
\end{array}
\] & \[
\begin{array}{r}
1.054 \\
1796
\end{array}
\] & \[
\begin{array}{r}
1.060 \\
1782
\end{array}
\] & \[
\begin{array}{r}
1.068 \\
1768
\end{array}
\] & \[
\begin{array}{r}
1.077 \\
1754
\end{array}
\] & \[
\begin{array}{r}
1.087 \\
1741
\end{array}
\] & \[
\begin{array}{r}
1.115 \\
1750
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.157 \\
1833
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
1.031 \\
2029
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.037 \\
1958
\end{array}
\] & \[
\begin{array}{r}
1.051 \\
1884
\end{array}
\] & \[
\begin{array}{r}
1.056 \\
1870
\end{array}
\] & \[
\begin{array}{r}
1.063 \\
1856
\end{array}
\] & \[
\begin{array}{r}
1.071 \\
1841
\end{array}
\] & \[
\begin{array}{r}
1.081 \\
1827
\end{array}
\] & \[
\begin{array}{r}
1.092 \\
1812
\end{array}
\] & \[
\begin{array}{r}
1.124 \\
1840
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.170 \\
1927
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
1.032 \\
2095
\end{array}
\] & \[
\begin{array}{r}
1.039 \\
2025
\end{array}
\] & \[
\begin{array}{r}
1.053 \\
1959
\end{array}
\] & \[
\begin{array}{r}
1.059 \\
1944
\end{array}
\] & \[
\begin{array}{r}
1.066 \\
1929
\end{array}
\] & \[
\begin{array}{r}
1.075 \\
1914
\end{array}
\] & \[
\begin{array}{r}
1.085 \\
1899
\end{array}
\] & \[
\begin{array}{r}
1.097 \\
1887
\end{array}
\] & \[
\begin{array}{r}
1.133 \\
1932
\end{array}
\] & \[
\begin{array}{r|}
\hline 1.183 \\
2023
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
1.033 \\
2161
\end{array}
\] & \[
\begin{array}{r}
1.041 \\
2092
\end{array}
\] & \[
\begin{array}{r}
1.055 \\
2034
\end{array}
\] & \[
\begin{array}{r}
1.062 \\
2019
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
2003
\end{array}
\] & \[
\begin{array}{r}
1.078 \\
1987
\end{array}
\] & \[
\begin{array}{r}
1.089 \\
1972
\end{array}
\] & \[
\begin{array}{r}
1.102 \\
1965
\end{array}
\] & \[
\begin{array}{r}
1.143 \\
2026
\end{array}
\] & \[
\begin{array}{r}
1.197 \\
2121
\end{array}
\] \\
\hline 140 & \[
\begin{array}{r}
1.035 \\
2228
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.043 \\
2160 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.057 \\
2110
\end{array}
\] & \[
\begin{array}{r}
1.064 \\
2093
\end{array}
\] & \[
\begin{array}{r}
1.072 \\
2077
\end{array}
\] & \[
\begin{array}{r}
1.082 \\
2061
\end{array}
\] & \[
\begin{array}{r}
1.094 \\
2047
\end{array}
\] & \[
\begin{array}{r}
1.107 \\
2046
\end{array}
\] & \[
\begin{array}{r}
1.152 \\
2123
\end{array}
\] & \[
\begin{array}{r}
1.210 \\
2219
\end{array}
\] \\
\hline 145 & \[
\begin{array}{r}
1.036 \\
2295
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.045 \\
2232 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.059 \\
2185
\end{array}
\] & \[
\begin{array}{r}
1.067 \\
2168
\end{array}
\] & \[
\begin{array}{r}
1.075 \\
2151
\end{array}
\] & \[
\begin{array}{r}
1.086 \\
2134
\end{array}
\] & \[
\begin{array}{r}
1.098 \\
2126
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
2128
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.162 \\
2220 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.223 \\
2309
\end{array}
\] \\
\hline 150 & \[
\begin{array}{r}
1.037 \\
2363
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.046 \\
2308 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.062 \\
2261
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
2243
\end{array}
\] & \[
\begin{array}{r}
1.079 \\
2226
\end{array}
\] & \[
\begin{array}{r}
1.089 \\
2212
\end{array}
\] & \[
\begin{array}{r}
1.103 \\
2207
\end{array}
\] & \[
\begin{array}{r}
1.118 \\
2212
\end{array}
\] & \[
\begin{array}{r}
1.172 \\
2320
\end{array}
\] & \[
\begin{array}{r}
1.236 \\
2400
\end{array}
\] \\
\hline 155 & \[
\begin{array}{r}
1.039 \\
2432
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.048 \\
2384 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.064 \\
2336
\end{array}
\] & \[
\begin{array}{r}
1.072 \\
2318
\end{array}
\] & \[
\begin{array}{r}
1.082 \\
2300
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
2291
\end{array}
\] & \[
\begin{array}{r}
1.107 \\
2290
\end{array}
\] & \[
\begin{array}{r}
1.124 \\
2304
\end{array}
\] & \[
\begin{array}{|r}
\hline 1.182 \\
2421 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.249 \\
2493
\end{array}
\] \\
\hline 160 & \[
\begin{array}{r}
1.040 \\
2504
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.049 \\
2461 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.066 \\
2413
\end{array}
\] & \[
\begin{array}{r}
1.075 \\
2394
\end{array}
\] & \[
\begin{array}{r}
1.085 \\
2379
\end{array}
\] & \[
\begin{array}{r}
1.097 \\
2372
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
2375
\end{array}
\] & \[
\begin{array}{r}
1.130 \\
2402
\end{array}
\] & \[
\begin{array}{r}
1.193 \\
2524
\end{array}
\] & \[
\begin{array}{r}
1.264 \\
2590
\end{array}
\] \\
\hline
\end{tabular}

Per degree above (below) ISA add (subtract) \(5 \mathrm{~kg} / \mathrm{h} / \mathrm{eng}\).


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{HOLDING - 170 KT} \\
\hline \multicolumn{5}{|l|}{MAX. CRUISE THRUST LIMITS CONFIGURATION 15/0 ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \text { EPR } \\
& \text { FF (KG/H/ENG) }
\end{aligned}
\]} \\
\hline \[
\begin{array}{|l}
\hline \text { WEIGHT } \\
(1000 K G)
\end{array}
\] & FL 15 & FL 50 & FL100 & FL120 & FL140 & FL160 & FL180 & FL200 \\
\hline & \[
\begin{array}{r}
1.040 \\
1694
\end{array}
\] & \[
\begin{array}{r}
1.048 \\
1631
\end{array}
\] & \[
\begin{array}{r}
1.063 \\
1569
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
1547
\end{array}
\] & \[
\begin{array}{r}
1.076 \\
1527
\end{array}
\] & \[
\begin{array}{r}
1.084 \\
1510
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1496
\end{array}
\] & \[
\begin{array}{r}
1.103 \\
1485
\end{array}
\] \\
\hline & \[
\begin{array}{r}
1.044 \\
1756
\end{array}
\] & \[
\begin{array}{r}
1.054 \\
1699
\end{array}
\] & \[
\begin{array}{r}
1.070 \\
1641
\end{array}
\] & \[
\begin{array}{r}
1.077 \\
1620
\end{array}
\] & \[
\begin{array}{r}
1.084 \\
1602
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1586
\end{array}
\] & \[
\begin{array}{r}
1.103 \\
1574
\end{array}
\] & \[
\begin{array}{r}
1.113 \\
1569
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
1.049 \\
1822
\end{array}
\] & \[
\begin{array}{r}
1.060 \\
1774
\end{array}
\] & \[
\begin{array}{r}
1.077 \\
1718
\end{array}
\] & \[
\begin{array}{r}
1.085 \\
1697
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1680
\end{array}
\] & \[
\begin{array}{r}
1.103 \\
1667
\end{array}
\] & \[
\begin{array}{r}
1.113 \\
1661
\end{array}
\] & \[
\begin{array}{r}
1.125 \\
1657
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
1.054 \\
1898
\end{array}
\] & \[
\begin{array}{r}
1.066 \\
1852
\end{array}
\] & \[
\begin{array}{r}
1.085 \\
1798
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1779
\end{array}
\] & \[
\begin{array}{r}
1.102 \\
1764
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
1757
\end{array}
\] & \[
\begin{array}{r}
1.124 \\
1752
\end{array}
\] & \[
\begin{array}{r}
1.137 \\
1749
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
1.060 \\
1979
\end{array}
\] & \[
\begin{array}{r}
1.072 \\
1934
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1883
\end{array}
\] & \[
\begin{array}{r}
1.102 \\
1867
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
1859
\end{array}
\] & \[
\begin{array}{r}
1.123 \\
1854
\end{array}
\] & \[
\begin{array}{r}
1.135 \\
1850
\end{array}
\] & \[
\begin{array}{r}
1.150 \\
1850
\end{array}
\] \\
\hline & \[
\begin{array}{r}
1.067 \\
2072
\end{array}
\] & \[
\begin{array}{r}
1.080 \\
2029
\end{array}
\] & \[
\begin{array}{r}
1.103 \\
1983
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
1974
\end{array}
\] & \[
\begin{array}{r}
1.123 \\
1967
\end{array}
\] & \[
\begin{array}{r}
1.135 \\
1963
\end{array}
\] & \[
\begin{array}{r}
1.149 \\
1961
\end{array}
\] & \[
\begin{array}{r}
1.165 \\
1952
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
1.074 \\
2170
\end{array}
\] & \[
\begin{array}{r}
1.088 \\
2128
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
2093
\end{array}
\] & \[
\begin{array}{r}
1.122 \\
2085
\end{array}
\] & \[
\begin{array}{r}
1.134 \\
2079
\end{array}
\] & \[
\begin{array}{r}
1.147 \\
2076
\end{array}
\] & \[
\begin{array}{r}
1.163 \\
2068
\end{array}
\] & \[
\begin{array}{r}
1.181 \\
2059
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
1.081 \\
2271
\end{array}
\] & \[
\begin{array}{r}
1.096 \\
2231
\end{array}
\] & \[
\begin{array}{r}
1.122 \\
2208
\end{array}
\] & \[
\begin{array}{r}
1.133 \\
2201
\end{array}
\] & \[
\begin{array}{r}
1.146 \\
2197
\end{array}
\] & \[
\begin{array}{r}
1.161 \\
2189
\end{array}
\] & \[
\begin{array}{r}
1.178 \\
2179
\end{array}
\] & \[
\begin{array}{r}
1.197 \\
2170
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
1.088 \\
2377
\end{array}
\] & \[
\begin{array}{r}
1.105 \\
2345
\end{array}
\] & \[
\begin{array}{r}
1.132 \\
2327
\end{array}
\] & \[
\begin{array}{r}
1.144 \\
2321
\end{array}
\] & \[
\begin{array}{r}
1.158 \\
2314
\end{array}
\] & \[
\begin{array}{r}
1.174 \\
2304
\end{array}
\] & \[
\begin{array}{r}
1.193 \\
2294
\end{array}
\] & \[
\begin{array}{r}
1.216 \\
2300
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
1.096 \\
2487
\end{array}
\] & \[
\begin{array}{r}
1.113 \\
2467
\end{array}
\] & \[
\begin{array}{r}
1.142 \\
2451
\end{array}
\] & \[
\begin{array}{r}
1.156 \\
2444
\end{array}
\] & \[
\begin{array}{r}
1.171 \\
2434
\end{array}
\] & \[
\begin{array}{r}
1.189 \\
2424
\end{array}
\] & \[
\begin{array}{r}
1.210 \\
2424
\end{array}
\] & \[
\begin{array}{r}
1.236 \\
2439
\end{array}
\] \\
\hline 140 & \[
\begin{array}{r}
1.104 \\
2607
\end{array}
\] & \[
\begin{array}{r}
1.122 \\
2594
\end{array}
\] & \[
\begin{array}{r}
1.153 \\
2578
\end{array}
\] & \[
\begin{array}{r}
1.168 \\
2568
\end{array}
\] & \[
\begin{array}{r}
1.185 \\
2558
\end{array}
\] & \[
\begin{array}{r}
1.204 \\
2552
\end{array}
\] & \[
\begin{array}{r}
1.229 \\
2566
\end{array}
\] & \[
\begin{array}{r}
1.257 \\
2582
\end{array}
\] \\
\hline 145 & \[
\begin{array}{r}
1.112 \\
2739
\end{array}
\] & \[
\begin{array}{r}
1.131 \\
2726
\end{array}
\] & \[
\begin{array}{r}
1.165 \\
2708
\end{array}
\] & \[
\begin{array}{r}
1.181 \\
2697
\end{array}
\] & \[
\begin{array}{r}
1.199 \\
2687
\end{array}
\] & \[
\begin{array}{r}
1.222 \\
2699
\end{array}
\] & \[
\begin{array}{r}
1.249 \\
2714
\end{array}
\] & \[
\begin{array}{r}
1.280 \\
2729
\end{array}
\] \\
\hline 150 & \[
\begin{array}{r}
1.120 \\
2876
\end{array}
\] & \[
\begin{array}{r}
1.141 \\
2864
\end{array}
\] & \[
\begin{array}{r}
1.177 \\
2842
\end{array}
\] & \[
\begin{array}{r}
1.194 \\
2832
\end{array}
\] & \[
\begin{array}{r}
1.215 \\
2837
\end{array}
\] & \[
\begin{array}{r}
1.241 \\
2851
\end{array}
\] & \[
\begin{array}{r}
1.270 \\
2865
\end{array}
\] & \[
\begin{array}{r}
1.303 \\
2882
\end{array}
\] \\
\hline 155 & \[
\begin{array}{r}
1.129 \\
3018
\end{array}
\] & \[
\begin{array}{r}
1.151 \\
3005
\end{array}
\] & \[
\begin{array}{r}
1.189 \\
2981
\end{array}
\] & \[
\begin{array}{r}
1.209 \\
2979
\end{array}
\] & \[
\begin{array}{r}
1.233 \\
2992
\end{array}
\] & \[
\begin{array}{r}
1.260 \\
3006
\end{array}
\] & \[
\begin{array}{r}
1.291 \\
3021
\end{array}
\] & \[
\begin{array}{r}
1.328 \\
3046
\end{array}
\] \\
\hline 160 & \[
\begin{array}{r}
1.137 \\
3164
\end{array}
\] & \[
\begin{array}{r}
1.161 \\
3149
\end{array}
\] & \[
\begin{array}{r}
1.202 \\
3127
\end{array}
\] & \[
\begin{array}{r}
1.225 \\
3139
\end{array}
\] & \[
\begin{array}{r}
1.251 \\
3153
\end{array}
\] & \[
\begin{array}{r}
1.280 \\
3166
\end{array}
\] & \[
\begin{array}{r}
1.314 \\
3185
\end{array}
\] & \[
\begin{array}{r}
1.355 \\
3217
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-32401 PW4152 14100000E5KG270 001859015011.0 . 0.0001170 .000 .000 .000 \(\quad\) FCOM-B0-02-13-10-004-074
Per degree above (below) ISA add (subtract) \(5 \mathrm{~kg} / \mathrm{h} /\) eng.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{HOLDING - S} \\
\hline \multicolumn{5}{|l|}{MAX. CRUISE THRUST LIMITS CONFIGURATION 15/0 ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { EPR } \\
& \text { FF (KG/H/ENG) }
\end{aligned}
\]} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& (1000 K G)
\end{aligned}
\] & FL 15 & FL 50 & FL100 & FL120 & FL140 & FL160 & FL180 & FL200 \\
\hline 90 & \[
\begin{array}{r}
1.040 \\
1688
\end{array}
\] & \[
\begin{array}{r}
1.049 \\
1626
\end{array}
\] & \[
\begin{array}{r}
1.064 \\
1565
\end{array}
\] & \[
\begin{array}{r}
1.070 \\
1543
\end{array}
\] & \[
\begin{array}{r}
1.077 \\
1524
\end{array}
\] & \[
\begin{array}{r}
1.085 \\
1507
\end{array}
\] & \[
\begin{array}{r}
1.094 \\
1493
\end{array}
\] & \[
\begin{array}{r|}
\hline 1.104 \\
1483
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
1.044 \\
1762
\end{array}
\] & \[
\begin{array}{r}
1.053 \\
1703
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
1644
\end{array}
\] & \[
\begin{array}{r}
1.075 \\
1623
\end{array}
\] & \[
\begin{array}{r}
1.083 \\
1604
\end{array}
\] & \[
\begin{array}{r}
1.091 \\
1588
\end{array}
\] & \[
\begin{array}{r}
1.101 \\
1576
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
1570
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
1.047 \\
1839
\end{array}
\] & \[
\begin{array}{r}
1.057 \\
1786
\end{array}
\] & \[
\begin{array}{r}
1.073 \\
1725
\end{array}
\] & \[
\begin{array}{r}
1.080 \\
1705
\end{array}
\] & \[
\begin{array}{r}
1.088 \\
1687
\end{array}
\] & \[
\begin{array}{r}
1.097 \\
1672
\end{array}
\] & 1.107
1664 & \[
\begin{array}{r}
1.118 \\
1660
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
1.050 \\
1915
\end{array}
\] & \[
\begin{array}{r}
1.061 \\
1868
\end{array}
\] & \[
\begin{array}{r}
1.077 \\
1806
\end{array}
\] & \[
\begin{array}{r}
1.085 \\
1786
\end{array}
\] & \[
\begin{array}{r}
1.093 \\
1769
\end{array}
\] & \[
\begin{array}{r}
1.103 \\
1758
\end{array}
\] & \[
\begin{array}{r}
1.114 \\
1752
\end{array}
\] & \[
\begin{array}{r}
1.126 \\
1750
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
1.054 \\
1997
\end{array}
\] & \[
\begin{array}{r}
1.065 \\
1948
\end{array}
\] & \[
\begin{array}{r}
1.082 \\
1888
\end{array}
\] & \[
\begin{array}{r}
1.090 \\
1869
\end{array}
\] & \[
\begin{array}{r}
1.099 \\
1853
\end{array}
\] & \[
\begin{array}{r}
1.109 \\
1846
\end{array}
\] & \[
\begin{array}{r}
1.121 \\
1842
\end{array}
\] & \[
\begin{array}{r}
1.134 \\
1837
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
1.058 \\
2079
\end{array}
\] & \[
\begin{array}{r}
1.069 \\
2029
\end{array}
\] & \[
\begin{array}{r}
1.086 \\
1971
\end{array}
\] & \[
\begin{array}{r}
1.095 \\
1953
\end{array}
\] & \[
\begin{array}{r}
1.104 \\
1941
\end{array}
\] & \[
\begin{array}{r}
1.115 \\
1936
\end{array}
\] & \[
\begin{array}{r}
1.128 \\
1933
\end{array}
\] & \[
\begin{array}{r}
1.142 \\
1924
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
1.062 \\
2163
\end{array}
\] & \[
\begin{array}{r}
1.072 \\
2111
\end{array}
\] & \[
\begin{array}{r}
1.091 \\
2054
\end{array}
\] & \[
\begin{array}{r}
1.100 \\
2038
\end{array}
\] & \[
\begin{array}{r}
1.110 \\
2031
\end{array}
\] & \[
\begin{array}{r}
1.121 \\
2027
\end{array}
\] & \[
\begin{array}{r}
1.135 \\
2021
\end{array}
\] & \[
\begin{array}{r}
1.151 \\
2010
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
1.065 \\
2245
\end{array}
\] & \[
\begin{array}{r}
1.076 \\
2194
\end{array}
\] & \[
\begin{array}{r}
1.095 \\
2139
\end{array}
\] & \[
\begin{array}{r}
1.105 \\
2127
\end{array}
\] & \[
\begin{array}{r}
1.116 \\
2122
\end{array}
\] & \[
\begin{array}{r}
1.128 \\
2119
\end{array}
\] & \[
\begin{array}{r}
1.142 \\
2108
\end{array}
\] & \[
\begin{array}{r}
1.159 \\
2093
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
1.068 \\
2327
\end{array}
\] & \[
\begin{array}{r}
1.079 \\
2277
\end{array}
\] & \[
\begin{array}{r|}
\hline 1.100 \\
2226
\end{array}
\] & \[
\begin{array}{r}
1.110 \\
2218
\end{array}
\] & \[
\begin{array}{r}
1.121 \\
2214
\end{array}
\] & \[
\begin{array}{r}
1.134 \\
2207
\end{array}
\] & \[
\begin{array}{r}
1.150 \\
2196
\end{array}
\] & \[
\begin{array}{r}
1.168 \\
2176
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
1.071 \\
2411
\end{array}
\] & \[
\begin{array}{r}
1.083 \\
2362
\end{array}
\] & \[
\begin{array}{r}
\hline 1.104 \\
2316
\end{array}
\] & \[
\begin{array}{r}
1.115 \\
2310
\end{array}
\] & \[
\begin{array}{r}
1.127 \\
2306
\end{array}
\] & \[
\begin{array}{r}
1.141 \\
2295
\end{array}
\] & \[
\begin{array}{r}
1.158 \\
2279
\end{array}
\] & \[
\begin{array}{r}
1.177 \\
2260
\end{array}
\] \\
\hline 140 & \[
\begin{array}{r}
1.074 \\
2495
\end{array}
\] & \[
\begin{array}{r}
1.086 \\
2447
\end{array}
\] & \[
\begin{array}{r}
1.109 \\
2408
\end{array}
\] & \[
\begin{array}{r}
1.120 \\
2402
\end{array}
\] & \[
\begin{array}{r}
1.133 \\
2395
\end{array}
\] & \[
\begin{array}{r}
1.148 \\
2383
\end{array}
\] & \[
\begin{array}{r}
1.165 \\
2363
\end{array}
\] & \[
\begin{array}{r}
1.185 \\
2346
\end{array}
\] \\
\hline 145 & \[
\begin{array}{r}
1.077 \\
2578
\end{array}
\] & \[
\begin{array}{r}
1.091 \\
2532
\end{array}
\] & \[
\begin{array}{r}
1.114 \\
2499
\end{array}
\] & \[
\begin{array}{r}
1.126 \\
2495
\end{array}
\] & \[
\begin{array}{r}
1.139 \\
2484
\end{array}
\] & \[
\begin{array}{r}
1.155 \\
2468
\end{array}
\] & \[
\begin{array}{r}
1.174 \\
2447
\end{array}
\] & \[
\begin{array}{r}
1.195 \\
2432
\end{array}
\] \\
\hline 150 & \[
\begin{array}{r}
1.080 \\
2663
\end{array}
\] & \[
\begin{array}{r}
1.094 \\
2619
\end{array}
\] & \[
\begin{array}{r}
1.119 \\
2592
\end{array}
\] & \[
\begin{array}{r}
1.131 \\
2585
\end{array}
\] & \[
\begin{array}{r}
1.146 \\
2573
\end{array}
\] & \[
\begin{array}{r}
1.163 \\
2552
\end{array}
\] & \[
\begin{array}{r}
1.182 \\
2533
\end{array}
\] & \[
\begin{array}{r|}
\hline 1.204 \\
2523
\end{array}
\] \\
\hline 155 & \[
\begin{array}{r}
1.084 \\
2748
\end{array}
\] & \[
\begin{array}{r}
1.098 \\
2705
\end{array}
\] & \[
\begin{array}{r}
1.124 \\
2685
\end{array}
\] & \[
\begin{array}{r}
1.137 \\
2675
\end{array}
\] & \[
\begin{array}{r}
1.153 \\
2660
\end{array}
\] & \[
\begin{array}{r}
1.171 \\
2637
\end{array}
\] & \[
\begin{array}{r}
1.191 \\
2620
\end{array}
\] & \[
\begin{array}{r}
1.215 \\
2616
\end{array}
\] \\
\hline 160 & \[
\begin{array}{r}
1.087 \\
2835
\end{array}
\] & \[
\begin{array}{r}
1.102 \\
2796
\end{array}
\] & \[
\begin{array}{r}
1.129 \\
2778
\end{array}
\] & \[
\begin{array}{r}
1.143 \\
2765
\end{array}
\] & \[
\begin{array}{r}
1.159 \\
2745
\end{array}
\] & \[
\begin{array}{r}
1.178 \\
2723
\end{array}
\] & \[
\begin{array}{r}
1.199 \\
2708
\end{array}
\] & \[
\begin{array}{r}
1.225 \\
2710
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 14100000E5KG270 001859015011.3 .0.0001168.000.000.000 0 FCOM-BO-02-13-10-005-085
Per degree above (below) ISA add (subtract) \(5 \mathrm{~kg} / \mathrm{h} / \mathrm{eng}\).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{DESCENT APPROACH} & \multicolumn{2}{|r|}{2.14.00} \\
\hline & & PAGE & 1 \\
\hline & CONTENTS & REV 31 & SEQ 070 \\
\hline
\end{tabular}
Pages
2.14.10 DESCENT CHART 2ENGINES
Descent 2 Engines ..... 1
Emergency Descent ..... 2
2.14.20 APPROACH CLIMB
Requirements ..... 1
Limiting weight - Nominal
Thrust - Slats 15 - Flaps 15. ..... 2
Limiting weight - Nominal
Thrust - Slats 20 - Flaps 20 . . ..... 3/4
Limiting weight - CAT II -
Slats 15 - Flaps 15 ..... 5
Limiting weight - CAT II -
Slats 20 - Flaps 20 ..... 6
Limiting weight for FTDM
Slats 15 - Flaps 15 ..... 7
Limiting weight for FTDMSlats 20 - Flaps 208
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{DESCENT APPROACH} & \multicolumn{2}{|r|}{2.14.00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 14 & SEQ 001 \\
\hline
\end{tabular}

INTRODUCTION
Descent charts are established with air conditioning in economic mode.

When using normal air conditioning, increase fuel R consumption by \(0.8 \%\).

All tables are established with a center of gravity location corresponding to \(27 \%\).
alight cimew operating manual
DESCENT APPROACH
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.14 .10} \\
\hline \multicolumn{2}{|c|}{ PAGE 1} & \\
\hline REV 20 & SEO 074 \\
\hline
\end{tabular}

ISA

\section*{DESCENT 2 ENGINES}

M 0.80/300/250 KT
MAX CABIN RATE OF DESCENT 350 FT/MIN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
WEIGHT \\
(1000KG)
\end{tabular} & \multicolumn{4}{|c|}{100} & \multicolumn{4}{|c|}{130} & \\
\hline FL & TIME (MIN) & FUEL (KG) & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & - EPR & \begin{tabular}{l}
TIME \\
(MIN)
\end{tabular} & FUEL (KG) & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & EPR & \[
\begin{aligned}
& \text { IRS } \\
& (K T)
\end{aligned}
\] \\
\hline 410 & 18.6 & 388 & 118 & 1.039 & & & & & \\
\hline 390 & 15.8 & 323 & 104 & 1.020 & 18.1 & 313 & 111 & IDLE & 248 \\
\hline 370 & 15.2 & 268 & 92 & IDLE & 17.5 & 305 & 106 & IDLE & . 260 \\
\hline 350 & 14.6 & 260 & 87 & IDLE & 16.8 & 297 & 101 & IDLE & 272 \\
\hline \[
330
\] & 14.0 & 252 & 83 & IDLE & 15.2 & 288 & 96 & IDLE & 284 \\
\hline 310 & 13.5 & 245 & 79 & IDLE & 15.5 & 280 & 91 & IDLE & 297 \\
\hline 290 & 12.8 & 235 & 73 & IDLE & 14.7 & 269 & 85 & IDLE & .300 \\
\hline \[
270
\] & 12.1 & 225 & 68 & IDLE & 13.9 & 257 & 79 & IDLE & . 300 \\
\hline \[
250
\] & 11.3 & 215 & 62 & IDLE & 13.0 & 245 & 72 & IDLE & . 300 \\
\hline 240 & 10.9 & 210 & 60 & IDLE & 12.6 & 239 & 69 & IDLE & . 300 \\
\hline \[
220
\] & 10.2 & 199 & 54 & IDLE & 11.7 & 226 & 63 & IDLE & . 300 \\
\hline 200 & 9.4 & 190 & 49 & IDLE & 10.8 & 216 & 57 & IDLE & . 300 \\
\hline 180 & 8.7 & 182 & 44 & IDLE & 9.9 & 205 & 51 & IDLE & . 300 \\
\hline 150 & 7.9 & 172 & 40 & IDLE & 9.0 & 195 & 45 & IDLE & .300 \\
\hline 140 & 7.2 & 163 & 35 & IDLE & 8.1 & 183 & 40 & IDLE & . 300 \\
\hline \[
120
\] & 6.4 & 152 & 30 & IDLE & 7.2 & 170 & 34 & IDLE & 300 \\
\hline \[
100
\] & 5.6 & 140 & 25 & IDLE & 6.3 & 156 & 29 & IDLE & 300 \\
\hline \[
50
\] & 2.1 & 52 & 9 & IDLE & 2.4 & 69 & 10 & IDLE & 250 \\
\hline \[
15
\] & 0.0 & 0 & 0 & IDLE & 0.0 & 0 & 0 & IDLE & . 250 \\
\hline
\end{tabular}

DESCENT APPROACH
DESCENT CHART 2 ENGINES
EMERGENCY DESCENT
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.14 .10} \\
\hline \multicolumn{2}{|c|}{ PAGE 2 } & \\
\hline REV 33 & SEO 105 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
DESCENT APPROACH \\
APPROACH CLIMB \\
REQUIREMENTS
\end{tabular}} & \multicolumn{2}{|r|}{2.14.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & REV 31 & SEQ 070 \\
\hline
\end{tabular}

In the approach configuration corresponding to the all engine procedure, the steady gradient one engine inoperative required by the regulations is equal to \(2,1 \%\).
The following graph allows to determine the approach climb limiting weight which satisfies the required gradient with the certified approach configurations 20/20 and 15/15.
The required gradient of \(2,1 \%\) is considered at the airport reference altitude. The power setting to «GO AROUND " thrust with the air conditioning ON. The speed is 1.3 Vs of the specified configuration.

Nominal Thrust : The graphs are on pages 2 and 3.
Fan Thrust deterioration Mode (FTDM). The FTDM phenomenon, which occurs after 500 to 1250 flight cycles since the last fan blade overhaul, produces a thrust decrease of approximately 2.5 \%.
The French DGAC Airworthiness Directive AD 2001-086 (B) R2 stipulates that a restoration of the leading edge contour of fan blades must be achieved every 450 engine cycles, in order to recover the nominal thrust.
The graphs for affected aircraft are in pages 7 and 8.

\section*{PROCEDURE}

According to airport pressure altitude and temperature determine if the slats/flaps setting must be restricted as a function of the landing weight, in order to meet the approach climb gradient requirement of 2,1 \%.
Establish the final approach configuration with one more step of flaps. If the approach is interrupted, retract the flaps by one step during the go-around.
In case of Category II approach, JAR-OPS requires a regulatory approach climb gradient of \(2.5 \%\) to be maintained. Use the graphs for CAT II approach to determine the maximum approach climb limiting weight according to airport pressure altitude and temperature.
Notes: 1. If circumstances dictate, landing may be made at a weight corresponding to the maximum structural take off wieght.
At this weight maximum vertical speed should not exceed \(6 \mathrm{ft} / \mathrm{s}\).
Air conditioning should be shut off.
If slats 20/flaps 20 approach climb limited, the approach shall be performed in slats 15/flaps 15 and landing in slats 20/ffaps 20.
2. When icing conditions are encountered during the flight and TAT during the approach is below \(8^{\circ} \mathrm{C}\), if there is evidence of significant ice accretion, to take into account ice formation on non heated structure :
- decrease the approach climb limiting weight by \(3 \%\)
- for landing :
. The minimum approach speed is VLS \(+5 k t\).
. Multiply landing distance by 1.1.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
DESCENT APPROACH \\
APPROACH CLIMB LIMITING WEIGHT SLATS 15 - FLAPS 15
\end{tabular}} & \multicolumn{2}{|r|}{2.14 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 31 & SEQ 170 \\
\hline
\end{tabular}

R
NOMINAL THRUST

ONE ENGINE OUT
ONE ENGINE AT GO AROUND THRUST

GRADIENT 2.1 \% AIR CONDITIONING ON ANTI ICING OFF


Notes : 1. If air conditioning is OFF, an additional 2.5 tons ( 5500 lb ) may be added to the limiting weight. 2. If nacelle anti-ice is ON, subtract 0.5 tons (1100 lb) to the limiting weight. 3. If total anti-ice is ON, subtract 2.5 tons ( 5500 lb ) to the limiting weight.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
DESCENT APPROACH \\
APPROACH CLIMB LIMITING WEIGHT \\
SLATS 20 - FLAPS 20
\end{tabular}} & \multicolumn{3}{|c|}{2.14.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3 / 4} & \\
\hline & & REV 31 & & 170 \\
\hline
\end{tabular}

R
NOMINAL THRUST
\begin{tabular}{lr} 
ONE ENGINE OUT & \begin{tabular}{r} 
GRADIENT \(2.1 \%\) \\
ONE ENGINE AT GO AROUND THRUST
\end{tabular}\(\quad\) AIR CONDITIONING ON \\
ANTI ICING OFF
\end{tabular}


Notes : 1. If air conditioning is OFF, an additional 2.5 tons ( 5500 lb ) may be added to the limiting weight.
2. If nacelle anti-ice is ON , subtract 0.5 tons \((1100 \mathrm{lb})\) to the limiting weight.
3. If total anti-ice is ON, subtract 1 tons ( 2200 lb ) to the limiting weight.

ONE ENGINE OUT
ONE ENGINE AT GO AROUND THRUST

\section*{GRADIENT 2.5 \% AIR CONDITIONING ON ANTI ICING OFF}
( 1000 KG ) WEIGHT
( 1000 LB )


OUTSIDE AIR TEMPERATURE (DG.C)
Notes : 1. If air conditioning is OFF, an additional 2.5 tons ( 5500 lb ) may be added to the limiting weight.
2. If nacelle anti-ice is ON, subtract 0.5 tons \((1100 \mathrm{lb})\) to the limiting weight.
3. If total anti-ice is ON, subtract 2.5 tons \((5500 \mathrm{lb})\) to the limiting weight.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
DESCENT APPROACH \\
APPROACH CLIMB LIMITING WEIGHT CATEGORY II - SLATS 20 - FLAPS 20
\end{tabular}} & \multicolumn{2}{|r|}{2.14.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & & REV 27 & SEO 150 \\
\hline
\end{tabular}

ONE ENGINE OUT
ONE ENGINE AT GO AROUND THRUST

GRADIENT 2.5 \% AIR CONDITIONING ON ANTI ICING OFF
(1000 KG) WEIGHT
( 1000 LB )

-50. -40. -30. -20. -10. 0. 10. 20. 30. 40. 50.
OUTSIDE AIR TEMPERATURE (DG.C)

Notes : 1. If air conditioning is OFF, an additional 2.5 tons (5500 Ib) may be added to the limiting weight.
2. If nacelle anti-ice is ON, subtract 0.5 tons (1100 lb) to the limiting weight.
3. If total anti-ice is ON, subtract 1 tons \((2200 \mathrm{lb})\) to the limiting weight.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
DESCENT APPROACH \\
APPROACH CLIMB LIMITING WEIGHT SLATS 15 - FLAPS 15
\end{tabular}} & \multicolumn{2}{|r|}{2.14.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & & REV 31 & SEO 170 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
ONE ENGINE OUT
ONE ENGINE AT GO AROUND THRUST

GRADIENT 2.1 \% AIR CONDITIONING ON ANTI ICING OFF

\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.14 .20} \\
\hline \multicolumn{2}{|c|}{ PAGE 8 } & \\
\hline REV 31 & SEO 170 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
ONE ENGINE OUT
ONE ENGINE AT GO AROUND THRUST

> GRADIENT \(2.1 \%\) AIR CONDITIONING ON ANTI ICING OFF


\footnotetext{
Notes : 1. If air conditioning is OFF, an additional 2.5 tons ( 5500 lb ) may be added to the limiting weight.
2. If nacelle anti-ice is ON , subtract 0.5 tons (1100 lb) to the limiting weight.
3. If total anti-ice is ON, subtract 1 tons ( 2200 lb ) to the limiting weight.
}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LANDING} & \multicolumn{3}{|c|}{2.15.00} \\
\hline & & \multicolumn{3}{|l|}{PAGE 1 / 2} \\
\hline & CONTENTS & REV 24 & SEC & 001 \\
\hline
\end{tabular}

\subsection*{2.15.10 LANDING}

OPERATING SPEEDS . . . . . . . . . . . . \(1 / 2\)

\subsection*{2.15.20 LANDING DISTANCES}
- General . . . . . . . . . . . . . . . . . . . . . . 1
- Landing Distance ISA . . . . . . . . 1 to 3
- Configuration correction for failures . . . . . . . . . . . . . . . . . . . 4

\subsection*{2.15.30 USE OF THE AUTOBRAKE SYSTEM}

R - General............................. 1

R
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LANDING} & \multicolumn{2}{|r|}{2.15 .10} \\
\hline & & PAGE & \\
\hline & LANDING OPERATING SPEEDS & REV 26 & SEO 120 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{LANDING CONFIGURATION} & SLATS 20\%/FLAPS \(20^{\circ}\) & SLATS \(30^{\circ} /\) FLAPS \(40^{\circ}\) \\
\hline WEIGHT (1000 KG) & \[
\begin{gathered}
\text { F (KT IAS) } \\
1.25 \mathrm{Vs} 15^{\circ} / 0^{\circ}
\end{gathered}
\] & \[
\begin{aligned}
& \hline 1.3 \text { Vs } 20^{\circ} / 20^{\circ} \\
& \text { (KT IASS } \\
& \text { VREF + } 10
\end{aligned}
\] & \begin{tabular}{l}
Vref (KT IAS) \\
\(1.3 \mathrm{Vs} \mathrm{30} / 40^{\circ}\)
\end{tabular} \\
\hline 80 & 128 & 121 & 111 \\
\hline 82 & 129 & 123 & 113 \\
\hline 84 & 130 & 124 & 114 \\
\hline 86 & 132 & 126 & 116 \\
\hline 88 & 133 & 127 & 117 \\
\hline 90 & 134 & 128 & 118 \\
\hline 92 & 135 & 130 & 120 \\
\hline 94 & 137 & 131 & 121 \\
\hline 96 & 138 & 132 & 122 \\
\hline 98 & 140 & 133 & 123 \\
\hline 100 & 141 & 135 & 125 \\
\hline 102 & 142 & 136 & 126 \\
\hline 104 & 144 & 137 & 127 \\
\hline 106 & 145 & 138 & 128 \\
\hline 108 & 147 & 139 & 129 \\
\hline 110 & 148 & 141 & 131 \\
\hline 112 & 149 & 142 & 132 \\
\hline 114 & 151 & 143 & 133 \\
\hline 116 & 152 & 144 & 134 \\
\hline 118 & 153 & 145 & 135 \\
\hline 120 & 154 & 147 & 137 \\
\hline 122 & 156 & 148 & 138 \\
\hline 124 & 157 & 149 & 139 \\
\hline 126 & 158 & 150 & 140 \\
\hline 128 & 159 & 151 & 141 \\
\hline 130 & 161 & 152 & 142 \\
\hline 132 & 162 & 153 & 143 \\
\hline 134 & 163 & 154 & 144 \\
\hline 136 & 164 & 155 & 145 \\
\hline 138 & 166 & 156 & 146 \\
\hline 140 & 167 & 157 & 147 \\
\hline 142 & 167 & 159 & 149 \\
\hline 144 & 169 & 160 & 150 \\
\hline 146 & 170 & 161 & 151 \\
\hline 148 & 171 & 162 & 152 \\
\hline 150 & 172 & 163 & 153 \\
\hline 152 & 173 & 164 & 154 \\
\hline 154 & 174 & 165 & 155 \\
\hline 156 & 175 & 166 & 156 \\
\hline 158 & 177 & 167 & 157 \\
\hline 160 & 178 & 168 & 158 \\
\hline
\end{tabular}

LANDING
\begin{tabular}{|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{2.15 .20} \\
\hline \multicolumn{2}{|c|}{ PAGE 1} & \\
\hline \multicolumn{2}{|c|}{ REV 33 } & SEO 200 \\
\hline
\end{tabular}

\section*{1. GENERAL :}

The actual landing distance is the distance measured between a point 50 feet above the runway threshold and the point where the complete stop of the aircraft is achieved, as demonstrated during the certification program. In normal landing configuration approach speed is 1.3 Vs of the configuration. The deceleration means are the brakes supplied by the green hydraulic system and the ground spoilers. Antiskid system is operative.
Regulation defines the required landing distance as the actual landing distance divided by 0.6 , assuming the surface is dry.

If the surface is wet, the required landing distance must be at least \(115 \%\) of that for a dry surface, i.e. 1.92 times the actual landing distance on dry runway.
It must be checked before departure that the available runway length at destination is at least equal to the required landing distance for the forecasted landing weight.
Note : The required landing distance can be less than the actual landing distance on contaminated or icy runway. Neither certification nor dispatch regulations take into account such conditions and the operating judgment of the pilot is paramount in assuring a safe operation.

\section*{2. ACTUAL LANDING DISTANCE - ISA \\ SLATS \(30^{\circ} /\) FLAPS \(40^{\circ}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{LANDING DISTANCE (METERS)} \\
\hline & & WEIGHT (1000 KG) & 90 & 100 & 110 & 120 & 130 & 140 & 150 \\
\hline & & Vref (KT IAS) & 118 & 125 & 131 & 137 & 142 & 147 & 153 \\
\hline R & & DRY & 720 & 780 & 820 & 880 & 950 & 1040 & 1160 \\
\hline N & & WET & 980 & 1060 & 1150 & 1240 & 1320 & 1420 & 1510 \\
\hline A & C & 6.3 MM (1/4 IN) WATER & 1280 & 1420 & 1600 & 1780 & 2000 & 2230 & 2420 \\
\hline c & v & 12.7 MM (1/2 IN) WATER & 1230 & 1350 & 1530 & 1700 & 1900 & 2100 & 2310 \\
\hline O & \(\stackrel{R}{R}\) & 6.3 MM (1/4 IN) SLUSH & 1280 & 1420 & 1550 & 1700 & 1870 & 2050 & 2280 \\
\hline D & D & 12.7 MM (1/2 IN) SLUSH & 1320 & 1450 & 1600 & 1750 & 1900 & 2100 & 2330 \\
\hline T & W & COMPACTED SNOW & 1140 & 1240 & 1340 & 1480 & 1530 & 1630 & 1730 \\
\hline O & H & ICE & 2700 & 2860 & 3040 & 3240 & 3420 & 3620 & 3820 \\
\hline
\end{tabular}

SLATS \(20^{\circ} /\) FLAPS \(20^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{LANDING DISTANCE (METERS)} \\
\hline \multicolumn{3}{|r|}{WEIGHT (1000 KG)} & 90 & 100 & 110 & 120 & 130 & 140 & 150 \\
\hline \multicolumn{3}{|r|}{1.3 Vs (KT IAS)} & 128 & 135 & 141 & 147 & 152 & 157 & 163 \\
\hline \multirow[t]{8}{*}{} & \multicolumn{2}{|r|}{DRY} & 780 & 840 & 900 & 970 & 1060 & 1170 & 1320 \\
\hline & \multicolumn{2}{|r|}{WET} & 1100 & 1200 & 1300 & 1410 & 1510 & 1610 & 1730 \\
\hline & \multicolumn{2}{|l|}{c \(6.3 \mathrm{MM} \mathrm{(1/4} \mathrm{IN)} \mathrm{WATER}\)} & 1560 & 1810 & 2110 & 2350 & 2650 & 2960 & 3280 \\
\hline & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{O} \\
& \mathrm{~V} \\
& \mathrm{E} \\
& \mathrm{R} \\
& \mathrm{E} \\
& \mathrm{D}
\end{aligned}
\]} & 12.7 MM (1/2 IN) WATER & 1500 & 1730 & 1950 & 2220 & 2500 & 2780 & 3080 \\
\hline & & 6.3 MM (1/4 IN) SLUSH & 1550 & 1730 & 1950 & 2200 & 2480 & 2750 & 3050 \\
\hline & & 12.7 MM (1/2 IN) SLUSH & 1450 & 1670 & 1870 & 2100 & 2350 & 2630 & 2920 \\
\hline & w & COMPACTED SNOW & 1330 & 1430 & 1550 & 1590 & 1740 & 1870 & 1990 \\
\hline & H & ICE & 3320 & 3560 & 3720 & 3880 & 4200 & 4440 & 4680 \\
\hline
\end{tabular}

\section*{CORRECTION ON LANDING DISTANCES}
- Wind : per 5 kt tailwind add \(10 \%\)
- Airport Elevation : per 1000 ft above sea level add \(5 \%\)

\section*{- With two reverses :}

Landing distances are decreased by :
- \(5 \%\) on dry runway
- \(11 \%\) on wet runway
- \(18 \%\) on runway covered with water or slush
- \(15 \%\) on runway covered with compacted snow
- \(35 \%\) on icy runway
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LANDING} & \multicolumn{2}{|r|}{2.15.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & LANDING DISTANCES & REV 33 & SEQ 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LANDING} & \multicolumn{2}{|r|}{2.15.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & LANDING DISTANCES & REV 33 & SEQ 001 \\
\hline
\end{tabular}

INTENTIONALLY LEFT BLANK
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{LANDING} & \multicolumn{2}{|r|}{2.15 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & LANDING DISTANCES & REV 28 & SEO 100 \\
\hline
\end{tabular}

\section*{LEFT BLANK INTENTIONALLY}

\section*{GENERAL}

The autobrake system is designed to help the pilot in case of :
- aborted take-off or
landing on short runways or
operation with low visibility weather conditions
Furthermore, it assures a straight roll out and an optimized landing distance on contaminated runways. The table has been established for :
. dry runway
. wet runway
. runway covered with water, slush or compacted snow.

At landing the braking mode has to be selected according to :
. runway length
configuration
runway condition

\section*{Recommendations}
max mode is not recommended
. on a long and dry runway, use of the autobrake system is not necessary
In order to save the brakes, use of reverse thrust is recommended.

\section*{SLATS \(30^{\circ} /\) FLAPS \(40^{\circ}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{LANDING DISTANCE (METERS)} & \multicolumn{4}{|c|}{CORRECTION
ON LANDING DISTANCE} \\
\hline \multicolumn{3}{|c|}{WEIGHT (1000 KG)} & \multirow[b]{2}{*}{80} & \multirow[b]{2}{*}{90} & \multirow[b]{2}{*}{100} & \multirow[b]{2}{*}{110} & \multirow[b]{2}{*}{120} & \multirow[b]{2}{*}{130} & \multirow[b]{2}{*}{140} & \multirow[b]{2}{*}{150} & \multirow[t]{2}{*}{AIRPORT
ELEV. ADD
\(\%\) per 1000 FT} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { REVERSE } \\
& \text { THRUST } \\
& \text { SUB \% } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{5 KT
TAILWIND
ADD \%} & \multirow[t]{2}{*}{\[
\begin{gathered}
5 \text { KT } \\
\text { HEADWIND } \\
\text { SUB \% } \\
\hline
\end{gathered}
\]} \\
\hline & UNWAY CONDITION & MODE & & & & & & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{DRY}} & MAX & 650 & 720 & 780 & 840 & 890 & 950 & 1040 & 1160 & & 5 & & \\
\hline & & MED & 810 & 890 & 970 & 1050 & 1140 & 1220 & 1300 & 1380 & 4 & 0 & 11 & 2 \\
\hline & & LOW & 1370 & 1500 & 1630 & 1760 & 1890 & 2020 & 2160 & 2290 & & 8 & & \\
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{WET}} & MAX & 900 & 990 & 1070 & 1160 & 1250 & 1330 & 1420 & 1510 & & 10 & & \\
\hline & & MED & 910 & 1000 & 1080 & 1170 & 1260 & 1340 & 1430 & 1520 & 4 & 5 & 11 & 2 \\
\hline & & LOW & 1370 & 1500 & 1630 & 1760 & 1890 & 2020 & 2160 & 2290 & & 8 & & \\
\hline \multirow[t]{10}{*}{\begin{tabular}{c|}
\hline \(\mathbf{C}\) \\
\(\mathbf{O}\) \\
V \\
E \\
R \\
E \\
D \\
\\
W \\
I \\
T \\
H \\
\hline
\end{tabular}} & 6.3 MM (1/4 IN) & MAX or MED & 1230 & 1370 & 1510 & 1710 & 1920 & 2160 & 2390 & 2630 & & 19 & & \\
\hline & WATER & LOW & 1410 & 1550 & 1700 & 1860 & 2020 & 2190 & 2410 & 2650 & 6 & 16 & 10 & 2 \\
\hline & 12.7 MM ( \(1 / 2 \mathrm{IN}\) ) & MAX or MED & 1190 & 1320 & 1460 & 1630 & 1840 & 2050 & 2260 & 2500 & 6 & 17 & 10 & \\
\hline & WATER & LOW & 1360 & 1500 & 1640 & 1790 & 1950 & 2110 & 2310 & 2530 & 6 & 15 & 10 & 2 \\
\hline & 6.3 MM (1/4 IN) & MAX or MED & 1200 & 1330 & 1470 & 1610 & 1750 & 1910 & 2130 & 2350 & & 19 & & \\
\hline & SLUSH & LOW & 1370 & 1510 & 1650 & 1790 & 1940 & 2090 & 2250 & 2410 & 8 & 14 & 10 & 2 \\
\hline & 12.7 MM (1/2 IN) & MAX or MED & 1160 & 1290 & 1420 & 1560 & 1690 & 1850 & 2040 & 2250 & 8 & 18 & 10 & 2 \\
\hline & SLUSH & LOW & 1330 & 1470 & 1600 & 1740 & 1880 & 2020 & 2180 & 2340 & 8 & 14 & 10 & 2 \\
\hline & COMPACTED SNOW & MAX or MED & 1050 & 1150 & 1250 & 1350 & 1440 & 1540 & 1640 & 1730 & 5 & 14 & 10 & 2 \\
\hline & COMPACTED SNOW & LOW & 1350 & 1480 & 1600 & 1730 & 1850 & 1980 & 2110 & 2230 & 5 & 8 & 10 & 2 \\
\hline
\end{tabular}

\section*{SLATS \(20^{\circ} /\) FLAPS \(20^{\circ}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{LANDING DISTANCE (METERS)} & \multicolumn{4}{|c|}{CORRECTION
ON LANDING DISTANCE} \\
\hline \multicolumn{3}{|c|}{WEIGHT (1000 KG)} & \multirow[b]{2}{*}{80} & \multirow[b]{2}{*}{90} & \multirow[b]{2}{*}{100} & \multirow[b]{2}{*}{110} & \multirow[b]{2}{*}{120} & \multirow[b]{2}{*}{130} & \multirow[b]{2}{*}{140} & \multirow[b]{2}{*}{150} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { AIRPORT } \\
\text { ELEV. ADD } \\
\% \text { per } 1000 \text { FT }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { REVERSE } \\
& \text { THRUST } \\
& \text { SUB \% } \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
5 \text { KT } \\
\text { TAILWIND } \\
\text { ADD \% } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { 5 KT } \\
\text { HEADWIND } \\
\text { SUB } \% \\
\hline
\end{array}
\]} \\
\hline & UNWAY CONDITION & MODE & & & & & & & & & & & & \\
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{DRY}} & MAX & 710 & 770 & 840 & 910 & 980 & 1060 & 1190 & 1330 & & 6 & & \\
\hline & & MED & 890 & 990 & 1070 & 1170 & 1260 & 1350 & 1450 & 1550 & 4 & 1 & 14 & 2 \\
\hline & & LOW & 1570 & 1720 & 1880 & 2030 & 2180 & 2330 & 2480 & 2630 & & 8 & & \\
\hline \multicolumn{2}{|r|}{\multirow{3}{*}{WET}} & MAX & 1010 & 1110 & 1210 & 1310 & 1420 & 1530 & 1630 & 1750 & & 13 & & \\
\hline & & MED & 1020 & 1120 & 1220 & 1320 & 1420 & 1530 & 1640 & 1750 & 4 & 8 & 14 & 2 \\
\hline & & LOW & 1570 & 1720 & 1880 & 2030 & 2180 & 2330 & 2480 & 2630 & & 8 & & \\
\hline \multirow[t]{6}{*}{\[
\begin{array}{|l|}
\hline \mathrm{C} \\
\mathbf{O} \\
\mathrm{~V} \\
\mathrm{E} \\
\mathrm{R} \\
\mathrm{E} \\
\mathrm{D}
\end{array}
\]} & 6.3 MM (1/4 IN) & MAX or MED & 1460 & 1660 & 1940 & 2230 & 2530 & 2860 & 3200 & 3560 & 6 & 24 & 10 & 2 \\
\hline & WATER & LOW & 1650 & 1830 & 2030 & 2250 & 2580 & 2890 & 3240 & 3600 & 6 & 21 & 10 & 2 \\
\hline & 12.7 MM (1/2 IN) & MAX or MED & 1400 & 1570 & 1830 & 2090 & 2380 & 2670 & 2990 & 3320 & 6 & 23 & 10 & 2 \\
\hline & WATER & LOW & 1570 & 1740 & 1930 & 2130 & 2410 & 2710 & 3030 & 3370 & & 19 & 10 & 2 \\
\hline & 6.3 MM (1/4 IN) & MAX or MED & 1420 & 1590 & 1750 & 1950 & 2220 & 2510 & 2790 & 3110 & 8 & 24 & 10 & 2 \\
\hline & SLUSH & LOW & 1620 & 1780 & 1950 & 2130 & 2330 & 2350 & 2810 & 3130 & 8 & 21 & 10 & 2 \\
\hline & 12.7 MM (1/2 IN) & MAX or MED & 1370 & 1520 & 1680 & 1860 & 2100 & 2370 & 2640 & 2930 & 7 & 23 & 10 & 2 \\
\hline \multirow[t]{2}{*}{W} & SLUSH & LOW & 1550 & 1710 & 1870 & 2040 & 2230 & 2420 & 2670 & 2960 & 7 & 19 & 10 & 2 \\
\hline & COMPACTED SNO & MAX or MED & 1200 & 1310 & 1420 & 1540 & 1650 & 1770 & 1880 & 2000 & 5 & 16 & 10 & 2 \\
\hline H & MPACTED SN & LOW & 1550 & 1700 & 1840 & 1990 & 2130 & 2280 & 2430 & 2570 & 5 & 9 & 10 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{LANDING
USE OF THE AUTOBRAKE SYSTEM} & \multicolumn{2}{|r|}{2.15.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 33 & SEO 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & CONTENTS & REV 24 & SEO 001 \\
\hline
\end{tabular}

Pages
2.16.10 GENERAL

Introduction . . . . . . . . . . . . 1
Flight preparation . . . . . . . . . 1
Diversion strategies . . . . . . . . 1
2.16.20 CEILINGS 1
2.16.30 STANDARD STRATEGY

General . . . . . . . . . . . . . . . . 1
Example . . . . . . . . . . . . . . . . . 1
Descent MCT / . 80 / 300 kt . . 2
Cruise long range
- ISA . . . . . . . . . . . . . . . . . 3
- ISA + 10 ............... 4
- ISA + 20 . . . . . . . . . . . . . 5

Fuel and time to landing . . . . 6
2.16.40 OBSTACLE STRATEGY

General . . . . . . . . . . . . . . . . 1
Example . . . . . . . . . . . . . . . . . 1
Descent MCT / green dot
Speed . . . . . . . . . . . . . . . . 2
R
2.16.50 FIXED SPEED STRATEGY

General . . . . . . . . . . . . . . . . 1
Example . . . . . . . . . . . . . . . . 1
Descent:
- MCT / . 80 / 320 kt . . . . . . 2
- MCT / . 80 / 340 kt . . . . . . 3

Cruise MCT/300 kt
- ISA . . . . . . . . . . . . . . . . . 4
- ISA + 10 .............. . 5
- ISA + 20 . . . . . . . . . . . . . . 6

Cruise MCT/320 kt
- ISA . . . . . . . . . . . . . . . . . 7
- ISA + 10 . . . . . . . . . . . . 8
- ISA + 20 . . . . . . . . . . . . . . 9

Cruise MCT / 340 kt
- ISA . . . . . . . . . . . . . . . . . 10
- ISA + 10 .............. 11
- ISA + 20 . . . . . . . . . . . . 12

Fuel and time to landing
- MCT / . 80 / 300 kt . . . . . . 12
- MCT / . 80 / 320 kt . . . . . . 15
- MCT / . 80 / 340 kt . . . . . . 17
2.16.60 DESCENT AND HOLDING Pages
216.60 DESCENT AND HOLDING

Descent . 80 / 300 kt / 250 kt .. 1
Holding at green dot speed. . 2
2.16.70 GROUND DISTANCE/ 1 AIR DISTANCE CONVERSION.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.10} \\
\hline & & PAGE & \\
\hline & GENERAL & REV 24 & SEQ 001 \\
\hline
\end{tabular}

\section*{1. INTRODUCTION}

R This chapter provides the single engine performance data \(R\) to be used for the conduct and monitoring of the flight \(R \quad\) following an engine failure.

If an engine failure occurs after the PNR, the aircraft will drift down on course. If the failure occurs before the PNR, the aircraft will have to turn back.

\section*{2. FLIGHT PREPARATION}

\section*{ETOPS :}

General information on ETOPS is given in chapter 2.18.70.
Montaneous area :
Obstacle clearance must be shown taking into account the applicable operational regulation which usually requires that, with one engine out, the net flight path clears the obstacle on the climb part by 1000 ft and on the drift down part by 2000 ft using the «EN ROUTE NET FLIGHT PATH » and « DRIFT DOWN NET CEILING » graphs. Refer to Flight Manual chapter 5. Obstacles at least 5 NM each side of the route must be considered. If the flight level and gross weight selected do not allow clearance of the en route obstacles, a point of no return (PNR) must be determined.


The diversion strategy (descent and cruise speed schedules) shall be selected, and specified in the operator's routes specifications, as a function of the prevailing operational factors (e.g. obstacles clearance requirements and/or ETOPS operation).

R Note: If severe icing conditions are encountered, the
Note: If severe icing conditions are encountered, the
ceiling is reduced by 2000 ft , due to ice accretion on non heated surfaces of the aircraft.

\section*{3. DIVERSION STRATEGIES}

Data for the following engine out diversion strategies are given in section 2.16.30, 2.16.40 and 2.16.50.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & STANDARD STRATEGY & \begin{tabular}{l}
OBSTACLE \\
STRATEGY
\end{tabular} & \multicolumn{3}{|c|}{FIXED SPEED STRATEGIES} \\
\hline INITIAL DESCENT thrust limit & \[
\begin{gathered}
.80 / 300 \\
\text { MCT }
\end{gathered}
\] & \begin{tabular}{l}
GREEN DOT \\
MCT
\end{tabular} & \[
\begin{gathered}
.80 / 300 \\
\text { MCT }
\end{gathered}
\] & \begin{tabular}{l}
.80/320 \\
MCT
\end{tabular} & \begin{tabular}{l}
\[
.80 / 340
\] \\
MCT
\end{tabular} \\
\hline \begin{tabular}{l}
CRUISE \\
thrust limit speed
\end{tabular} & \begin{tabular}{l}
LRC ceiling \\
MCT \\
LRC
\end{tabular} & Drift down ceiling MCT green dot & \[
\begin{array}{|c|}
\hline \text { FL } 210^{*} \\
\text { MCT } \\
.80 / 300
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { FL } 190^{*} \\
\text { MCT } \\
.80 / 320
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { FL 180* } \\
\text { MCT } \\
.80 / 340
\end{array}
\] \\
\hline FINAL DESCENT & \multicolumn{5}{|c|}{\[
\begin{gathered}
\hline \text { IDLE } \\
300 / 250
\end{gathered}
\]} \\
\hline HOLDING & \multicolumn{5}{|c|}{GREEN DOT SPEED} \\
\hline
\end{tabular}
* or a predetermined altitude which clears the obstacles.

For ETOPS operations, any one of the above diversions strategies can be used provided that the selected strategy and speed schedule is used in :
. establishing the area of operation (maximum diversion distance), as described in Section 2.18.70,
. calculating the diversion fuel requirements for the single-engine ETOPS critical scenario, as provided in section 2.18.70
demonstrating the applicable obstacle clearance requirements (net flight path and net ceiling).
During the diversion, the flight crew is expected to use the planned speed schedule. However, based on the evaluation of the actual situation, the pilot in command has the authority to deviate from this planned one-engineinoperative speed.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1 / 2} \\
\hline & CEILINGS & REV 31 & SEQ 150 \\
\hline
\end{tabular}

ONE ENGINE GROSS CEILINGS
ANTI-ICING OFF - ONE AIR CONDITIONING PACK ON
MAX CONTINUOUS THRUST
C.G. POSITION = 27 \% NOMINAL THRUST

\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{2}{c|}{} & \(\leqslant 1 S A+15\) & ISA +20 \\
\hline \multirow{2}{*}{ DRIFT DOWN } & ENG ANTIIICE ON & -200 ft & -220 ft \\
\cline { 2 - 4 } & TOTAL ANTI-ICE ON & -50 ft & -600 ft \\
\hline \multirow{2}{*}{ LONG RANGE } & ENG ANTIICE ON & -175 ft & -200 ft \\
\cline { 2 - 4 } & TOTAL ANTI-ICE ON & -600 ft & -700 ft \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE
For weight \(\leq 130000 \mathrm{~kg} / 287000 \mathrm{lb}\). Ceiling value must be decreased by 600 ft .
For weight \(\geq 140000 \mathrm{~kg} / 309000 \mathrm{lb}\). Ceiling value must be decreased by 800 ft .
Linear variation of altitude decrement between the two weights.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & STANDARD STRATEGY & REV 21 & SEO 150 \\
\hline
\end{tabular}

\section*{1. GENERAL}

Except if a specific procedure has been established before dispatch (ETOPS, mountaneous area) the recommended procedure is as follows :


\section*{2. EXAMPLE}
- ASSUMED DATA

\section*{STANDARD STRATEGY IS APPLIED}

Gross weight at engine failure : 140000 kg
Flight level at engine failure : 330
Temperature : ISA
Distance to selected airport : 550 NM
No wind
- FIND FROM
\[
\begin{array}{lll}
\text { 2.16.20 page } 1 / 2 & \text { Gross ceiling } & \text { FL } 220 \\
2.16 .30 \text { page } 2 & &
\end{array}
\]
\begin{tabular}{|l|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & FL 330 & FL 220 & Initial Descent \\
\hline Time (min) & 42 & 24 & 18 \\
\hline Fuel burn \((\mathrm{kg})\) & 2804 & 1552 & 1252 \\
\hline Distance(NM) & 285 & 151 & 134 \\
\hline
\end{tabular}

R Initial Long Range Cruise gross weight \(=138748 \mathrm{~kg}\)
R Remaining cruise distance \(=550-134=416 \mathrm{NM}\)
2.16.30 page 6

Time to landing \(\simeq 1 \mathrm{H} 19\)
Fuel to landing \(\simeq 4311+24 \times 25=4911 \mathrm{~kg}\)
- SUMMARY

For the total distance from point of engine failure to the selected airport 6163 kg of fuel are required, total flight time is 1 H 37 min .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & STANDARD STRATEGY & REV 21 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{DESCENT M. 80 / 300 KT - 1 ENGINE OUT} \\
\hline \multicolumn{3}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|l|}{MINIMUM RATE OF DESCENT \(=500 \mathrm{FT} / \mathrm{MIN}\)} \\
\hline \[
\begin{gathered}
\hline \text { WEIGHT } \\
(1000 \mathrm{KG})
\end{gathered}
\] & \multicolumn{4}{|c|}{90} & \multicolumn{4}{|c|}{140} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { IAS } \\
& \text { (KT) }
\end{aligned}
\]} \\
\hline FL & \[
\begin{aligned}
& \hline \text { TIME } \\
& \text { (MIN) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FUEL } \\
& (\mathrm{KG})
\end{aligned}
\] & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & MODE & \begin{tabular}{l}
TIME \\
(MIN)
\end{tabular} & \[
\begin{aligned}
& \hline \text { FUEL } \\
& \text { (KG) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { DIST. } \\
& \text { (NM) }
\end{aligned}
\] & MODE & \\
\hline 410 & 53.8 & 3233 & 375 & MCT & & & & & 237 \\
\hline 390 & 51.7 & 3135 & 358 & MCT & & & & & 248 \\
\hline 370 & 49.2 & 3013 & 339 & MCT & 44.9 & 2963 & 306 & MCT & 260 \\
\hline 350 & 46.6 & 2873 & 319 & MCT & 43.6 & 2894 & 296 & MCT & 272 \\
\hline 330 & 44.0 & 2724 & 299 & MCT & 42.1 & 2804 & 285 & MCT & 284 \\
\hline 310 & 41.6 & 2569 & 280 & MCT & 40.3 & 2693 & 271 & MCT & 297 \\
\hline 290 & 38.0 & 2332 & 253 & V/S & 37.7 & 2512 & 250 & MCT & 300 \\
\hline 270 & 34.0 & 2071 & 222 & V/S & 34.0 & 2250 & 223 & V/S & 300 \\
\hline 250 & 30.0 & 1819 & 193 & V/S & 30.0 & 1965 & 193 & V/S & 300 \\
\hline 240 & 28.0 & 1695 & 179 & V/S & 28.0 & 1826 & 179 & V/S & 300 \\
\hline 220 & 24.0 & 1448 & 151 & V/S & 24.0 & 1552 & 151 & V/S & 300 \\
\hline 200 & 20.0 & 1203 & 124 & V/S & 20.0 & 1283 & 124 & V/S & 300 \\
\hline 180 & 16.0 & 959 & 98 & V/S & 16.0 & 1019 & 98 & V/S & 300 \\
\hline 160 & 12.0 & 718 & 72 & V/S & 12.0 & 760 & 72 & V/S & 300 \\
\hline 140 & 8.0 & 477 & 47 & V/S & 8.0 & 504 & 47 & V/S & 300 \\
\hline 120 & 4.0 & 238 & 23 & V/S & 4.0 & 251 & 23 & V/S & 300 \\
\hline 100 & . 0 & 0 & 0 & V/S & . 0 & 0 & 0 & V/S & 300 \\
\hline CORRE & TIon O & UEL CO & MPTIO & KG) At I & DISTANC & BETWE & L330 A & FL 100 & \\
\hline INITIAL & EIGHT & ENG.AN & CE ON & TOTAL & ICE ON & & ( per & bove IS & \\
\hline 9000 & & & & & & & NEG & & \\
\hline 14000 & & & & & & & NEG & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & STANDARD STRATEGY & REV 21 & SEO 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{LONG RANGE CRUISE 1 ENGINE OUT} \\
\hline \multicolumn{11}{|l|}{MAX. CONTINUOUS THRUST LIMITS NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{|lr|}
\hline EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
\hline EPR & IAS \\
KG/H & TAS \\
NM \(/ 1000 \mathrm{KG}\) & \\
\hline
\end{tabular}} \\
\hline WEIGH (1000KG) & \multicolumn{2}{|l|}{FL 50} & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL220} & \multicolumn{2}{|l|}{FL240} & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} & \multicolumn{2}{|l|}{FL290} \\
\hline 85 & \[
\begin{array}{|l|l|}
\hline 359.104 \\
1.1080 \\
\hline 2980 \\
\hline 8.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .390 \\
& .356 \\
& 235 \\
& \hline 25
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 351 \\
1.135 \\
2997 \\
92.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .434 \\
& 240 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& 343 \\
& 1.178 \\
& 2970 \\
& 1010
\end{aligned}
\] & \[
\begin{aligned}
& .480 \\
& \hline 242 \\
& 301
\end{aligned}
\] & \[
\begin{aligned}
& 343 \\
& \hline 1.227 \\
& 2828 \\
& 111.0 \\
& \hline 128
\end{aligned}
\] & \[
\begin{aligned}
& .511 \\
& \hline 33 \\
& 314
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 346 \\
1,252 \\
2768 \\
114.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .521 \\
& \hline 228 \\
& 318
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 351 \\
1.284 \\
2756 \\
177.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .536 \\
& \hline 226 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& 3543 \\
& 1.303 \\
& 2764 \\
& 178.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .546 \\
& . \\
& \hline 255 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& \hline 1.349 \\
& 2799 \\
& 121.3
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 374 \\
& \hline 1.401 \\
& 2771 \\
& 127.8 \\
& 12 .
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& \hline
\end{aligned}
\] \\
\hline 90 & \[
\begin{aligned}
& 364 \\
& \hline 1.110 \\
& 3116 \\
& \hline 82.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .400 \\
& \hline 242 \\
& 260
\end{aligned}
\] & \[
\begin{aligned}
& \hline 352 \\
& 1.146 \\
& 3202 \\
& 89.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .450 \\
& \hline 288 \\
& 287
\end{aligned}
\] & \[
\begin{aligned}
& 346 \\
& \hline 1.190 \\
& 3117 \\
& 98.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .490 \\
& \hline 247 \\
& 307
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 350 \\
1.243 \\
2967 \\
107.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .519 \\
& \begin{array}{l}
237 \\
339
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 354 \\
& \hline 1.271 \\
& 29200 \\
& 2100.5 \\
& \hline 102
\end{aligned}
\] & \[
\begin{aligned}
& .530 \\
& \hline 232 \\
& 323
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 361 \\
\hline 1.308 \\
2934 \\
113.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .548 \\
& \hline 231 \\
& 332
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 10.9 \\
\hline 166 \\
1.930 \\
2945 \\
114.0
\end{array}
\] & \[
\begin{aligned}
& .558 \\
& \begin{array}{l}
230 \\
336
\end{array}
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 21.3 \\
\hline 1.374 \\
\hline 2937 \\
115.9
\end{array}
\] & \[
\begin{aligned}
& .570 \\
& \hline 276 \\
& \hline 240
\end{aligned}
\] & \[
\begin{aligned}
& 122.8 \\
& \hline 388 \\
& 1.449 \\
& 2995 \\
& 116.8
\end{aligned}
\] & \[
\begin{aligned}
& .591 \\
& \hline 224 \\
& 350
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 366 \\
& 1.119 \\
& 3342 \\
& 80.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .412 \\
& .450 \\
& 258
\end{aligned}
\] & \[
\begin{aligned}
& \hline 355 \\
& \hline 1.58 \\
& 3403 \\
& 87.2 \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& .4657 \\
& \hline 257 \\
& 297
\end{aligned}
\] & \[
\begin{aligned}
& \hline 350 \\
& \hline 1.202 \\
& 3260 \\
& 95.9 \\
& \hline 9.9
\end{aligned}
\] & \[
\begin{aligned}
& .499 \\
& \hline 251 \\
& 313
\end{aligned}
\] & \[
\begin{aligned}
& 357 \\
& \hline 1.59 \\
& 3099 \\
& 104.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .525 \\
& \hline 29 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& 363 \\
& \hline 1.293 \\
& 3107 \\
& 106.4
\end{aligned}
\] & \[
\begin{aligned}
& .542 \\
& \begin{array}{l}
238 \\
331
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 3723 \\
& 1.235 \\
& 319 \\
& 108.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .560 \\
& \hline 236 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 376 \\
& 1.358 \\
& 316 \\
& 109.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .567 \\
& \hline 234 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& 388 \\
& 1.46 \\
& 31416 \\
& 310.6 \\
& 110.6
\end{aligned}
\] & \[
\begin{aligned}
& .582 \\
& \begin{array}{l}
33 \\
347
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 401 \\
& 1.496 \\
& 3187 \\
& 111.0 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
.598 \\
298 \\
254 \\
\hline
\end{tabular} \\
\hline 100 & \[
\begin{aligned}
& 367 \\
& 1.128 \\
& 355.5 \\
& \hline 8.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .427 \\
& \hline 277 \\
& \hline 277
\end{aligned}
\] & \[
\begin{aligned}
& \hline 358 \\
& \hline 1.168 \\
& 3568 \\
& 85.1
\end{aligned}
\] & \[
\begin{aligned}
& .4753 \\
& .263 \\
& 304
\end{aligned}
\] & \[
\begin{aligned}
& \hline 356 \\
& \hline 1.123 \\
& 3384 \\
& 93.4 \\
& \hline 18
\end{aligned}
\] & \[
\begin{aligned}
& .504 \\
& \hline 254 \\
& 316
\end{aligned}
\] & \[
\begin{aligned}
& 365 \\
& \hline 1.278 \\
& 327 \\
& 100.4 \\
& 100 .
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& \hline 245 \\
& 329 \\
& \hline 29
\end{aligned}
\] & \[
\begin{aligned}
& 372 \\
& 1.35 \\
& 3286 \\
& 128.5
\end{aligned}
\] & \[
\begin{aligned}
& .553 \\
& \hline 243 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& \hline 381 \\
& \hline 1.361 \\
& 3287 \\
& 124.4
\end{aligned}
\] & \[
\begin{aligned}
& .568 \\
& \hline 293 \\
& 343
\end{aligned}
\] & \[
\begin{aligned}
& 386 \\
& \hline 1.386 \\
& 3884 \\
& 125.0
\end{aligned}
\] & \[
\begin{aligned}
& .537 \\
& \hline 237 \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& \hline 401 \\
& \hline 1.459 \\
& 3356 \\
& 105.6
\end{aligned}
\] & \[
\begin{aligned}
& .594 \\
& .359 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& 418 \\
& 1.553 \\
& 343 \\
& 105.1 \\
& 105
\end{aligned}
\] & -617
235
365 \\
\hline 105 & \[
\begin{aligned}
& \hline 368 \\
& 1.137 \\
& 3784 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
442 \\
268 \\
887
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 36178 \\
& 1.178 \\
& 3718 \\
& 83.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
484 \\
288 \\
309
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 362 \\
& 1.226 \\
& 35238 \\
& 90.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .513 \\
& \hline 258 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& \hline 374 \\
& 1.298 \\
& 3464 \\
& 97.0
\end{aligned}
\] & \[
\begin{aligned}
& .547 \\
& \hline 250 \\
& 356
\end{aligned}
\] & \[
\begin{aligned}
& 383 \\
& 1.340 \\
& 3477 \\
& 98.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .564 \\
& \hline 244 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& \hline 392 \\
& 1.388 \\
& 3462 \\
& 100.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .574 \\
& \hline 242 \\
& 347
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.9923 \\
& 19923 \\
& 100.5 \\
& \hline 102
\end{aligned}
\] & \[
\begin{aligned}
& .585 \\
& \hline 242 \\
& \hline 352
\end{aligned}
\] & \[
\begin{aligned}
& \hline 413 \\
& \hline 1.54 \\
& 3571 \\
& 357 \\
& 108
\end{aligned}
\]
\[
100.8
\] & \[
\begin{aligned}
& .639 \\
& \hline 390 \\
& 360
\end{aligned}
\] & \[
\begin{aligned}
& 438 \\
& \hline 1.608 \\
& 3711 \\
& 99.4 \\
& \hline
\end{aligned}
\] & .633
241
375 \\
\hline 110 & \[
\begin{aligned}
& 370 \\
& 1.146 \\
& 3971 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .453 \\
& . \\
& \hline 274 \\
& 294
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& \hline 1.188 \\
& 3866 \\
& 81.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.492 \\
\hline 274 \\
374
\end{array}
\] & \[
\begin{aligned}
& 368 \\
& \hline 1.238 \\
& 3680 \\
& 88.4 \\
& \hline 8.4
\end{aligned}
\] & \[
\begin{aligned}
& .519 \\
& \hline 262 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& 383 \\
& \hline 1.39 \\
& 3642 \\
& 93.8 \\
& 9.8
\end{aligned}
\] & \begin{tabular}{r}
556 \\
\\
\hline 254 \\
34
\end{tabular} & \[
\begin{aligned}
& 391 \\
& \hline 1.363 \\
& 3635 \\
& 95.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .569 \\
& \hline 257 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& \hline 04.424 \\
& 1.424 \\
& 3687 \\
& 96.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& \hline 288 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 411 \\
& \hline 1.462 \\
& 3771 \\
& 96.4
\end{aligned}
\] & \[
\begin{aligned}
& .595 \\
& . \\
& \hline 248 \\
& 358
\end{aligned}
\] & \[
\begin{aligned}
& \hline 129 \\
& \hline 1.56 \\
& 3859 \\
& 95.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .620 \\
& \hline 246 \\
& 370
\end{aligned}
\] & & \\
\hline 115 & \[
\begin{aligned}
& \hline 372 \\
& 1.156 \\
& 4170 \\
& 72.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
465 \\
882 \\
382
\end{array} \\
& \hline 02
\end{aligned}
\] & \[
\begin{aligned}
& \hline 368 \\
& \hline 1.198 \\
& 4018 \\
& 79.5 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
.500 \\
\hline 277 \\
319
\end{gathered}
\] & \[
\begin{aligned}
& \hline 374 \\
& \hline 1.251 \\
& 3819 \\
& 86.1 \\
& 869
\end{aligned}
\] & \[
\begin{aligned}
& .525 \\
& \hline 265 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& \hline 392 \\
& \hline 1.32 \\
& 3831 \\
& 90.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& \hline
\end{aligned} \begin{aligned}
& 259 \\
& 347
\end{aligned}
\] & \[
\begin{aligned}
& \hline 401 \\
& \hline 1.389 \\
& 3818 \\
& 91.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline 251 \\
& 351
\end{aligned}
\] & \[
\begin{aligned}
& 416 \\
& \hline 1.462 \\
& 3905 \\
& 92.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .597 \\
& \hline 252 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& \hline 423 \\
& 1.505 \\
& 3998 \\
& 92.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .651 \\
& \hline 265 \\
& \hline 365
\end{aligned}
\] & \[
\begin{aligned}
& \hline 448 \\
& \hline 1.607 \\
& 4160 \\
& 91.1
\end{aligned}
\] & \[
\begin{aligned}
& .635 \\
& \hline 253 \\
& 379
\end{aligned}
\] & & \\
\hline 120 & \[
\begin{aligned}
& 375 \\
& 1.165 \\
& 4348 \\
& 71.0
\end{aligned}
\] & \[
\begin{aligned}
& .475 \\
& \begin{array}{l}
388 \\
309
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 372 \\
& 1.207 \\
& 4141 \\
& 77.7
\end{aligned}
\] & \[
\begin{aligned}
& .504 \\
& \hline 299 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& 380 \\
& 1.165 \\
& 3976 \\
& 83.7
\end{aligned}
\] & \[
\begin{aligned}
& .531 \\
& .588 \\
& 333
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& \hline 1.363 \\
& 3989 \\
& 87.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .570 \\
& \begin{array}{l}
261 \\
355
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 413 \\
& 1.42 \\
& 4049 \\
& 88.4 \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& .588 \\
& \begin{array}{l}
258 \\
358
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 428 \\
& \hline 1.50 \\
& 4138 \\
& 88.7 \\
& \hline 88
\end{aligned}
\] & \[
\begin{aligned}
& .607 \\
& 257 \\
& 367
\end{aligned}
\] & \[
\begin{aligned}
& 438 \\
& 1.553 \\
& 4243 \\
& 88.2 \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& .622 \\
& \begin{array}{l}
258 \\
374
\end{array}
\end{aligned}
\] & & & & \\
\hline 125 & \[
\begin{array}{|l|l|}
\hline 377 \\
1.173 \\
4505 \\
69.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .483 \\
& \hline 292 \\
& 314
\end{aligned}
\] & \[
\begin{aligned}
& \hline 3771216 \\
& 1.278 \\
& 76.0 \\
& \hline 6.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{r}
510 \\
282 \\
325
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 38781 \\
& \hline 1.161 \\
& 41.36 \\
& 81.3
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \hline 273 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 4098 \\
& \hline 1.136 \\
& 447.8 \\
& 84.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline 264 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& \hline 424 \\
& \hline 1.58 \\
& 4278 \\
& 85.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .598 \\
& \hline 264 \\
& 365
\end{aligned}
\] & \[
\begin{aligned}
& 442 \\
& \hline 1.548 \\
& 4429 \\
& 84.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .622 \\
& \hline 263 \\
& 376
\end{aligned}
\] & \[
\begin{aligned}
& \hline 455 \\
& \hline 1.599 \\
& 4548 \\
& 84.2
\end{aligned}
\] & \[
\begin{aligned}
& .636 \\
& \hline 264 \\
& 883
\end{aligned}
\] & & & & \\
\hline 130 & \[
\begin{aligned}
& \hline 380 \\
& 1.181 \\
& 4657 \\
& 68.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 489 \\
& \hline 297 \\
& \hline 38
\end{aligned}
\] & \[
\begin{aligned}
& \hline 382 \\
& \hline 1.227 \\
& 4430 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
516 \\
386 \\
329
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 394 \\
& \hline 1.29 \\
& 4355 \\
& 79.1 \\
& \hline 9 .
\end{aligned}
\] & \[
\begin{aligned}
& .550 \\
& \hline 278 \\
& 374
\end{aligned}
\] & \[
\begin{aligned}
& \hline 420 \\
& 1.416 \\
& 4399 \\
& 81.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& \hline 269 \\
& \hline 600
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 434 \\
1.494 \\
4493 \\
82.2
\end{array}
\] & \[
\begin{aligned}
& \hline .606 \\
& \hline 269 \\
& 369
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 458 \\
1.5927 \\
47727 \\
81.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 635 \\
& \hline 269 \\
& 884
\end{aligned}
\] & & & & & & \\
\hline 135 & \[
\begin{array}{|l|l|}
\hline 382 \\
1.189 \\
4810 \\
67.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \begin{array}{l}
496 \\
301 \\
323
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 387 \\
& \hline 1.237 \\
& 4570 \\
& \hline 72.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
521 \\
382 \\
382
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 402 \\
& 1.314 \\
& 4529 \\
& 77.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .556 \\
& 281 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& \hline 431 \\
& 1.450 \\
& 4649 \\
& 79.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .599 \\
& \hline 275 \\
& \hline 688
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 47 \\
1.535 \\
4785 \\
78.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .620 \\
& \hline 273 \\
& 378
\end{aligned}
\] & & & & & & & & \\
\hline 140 & \[
\begin{aligned}
& 386 \\
& \hline 1.197 \\
& 4954 \\
& 65.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .502 \\
& \hline 3204 \\
& 326
\end{aligned}
\] & \[
\begin{aligned}
& \hline 392 \\
& \hline 1.27 \\
& 4714 \\
& 771.2
\end{aligned}
\] & \[
\begin{gathered}
.526 \\
\hline 291 \\
351
\end{gathered}
\] & \[
\begin{aligned}
& 409 \\
& \hline 1.932 \\
& 4721 \\
& 74.9
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& \hline 285 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 440 \\
& \hline 1.482 \\
& 4860 \\
& 76.5
\end{aligned}
\] & \[
\begin{aligned}
& .605 \\
& \hline 278 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 462 \\
& \hline 1.576 \\
& 5087 \\
& 75.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .632 \\
& \hline 279 \\
& 385
\end{aligned}
\] & & & & & & & & \\
\hline 145 & \[
\begin{array}{|l|l|}
\hline 389 \\
\hline 1.204 \\
5081 \\
64.7
\end{array}
\] & \[
\begin{aligned}
& .505 \\
& .506 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& 397 \\
& 1.58 \\
& 4868 \\
& 49.6 \\
& \hline 18.6
\end{aligned}
\] & \[
\begin{aligned}
& .531 \\
& \hline 294 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 417 \\
& \hline 1.31 \\
& 4910 \\
& 73.0
\end{aligned}
\] & \[
\begin{aligned}
& .572 \\
& \begin{array}{l}
289 \\
358
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 45219 \\
& 1.519 \\
& 5144 \\
& 73.8
\end{aligned}
\] & \[
\begin{aligned}
& .618 \\
& \hline 284 \\
& 380
\end{aligned}
\] & & & & & & & & & & \\
\hline 150 & \[
\begin{aligned}
& 393 \\
& 1.211 \\
& 52004 \\
& 63.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .509 \\
& \hline \\
& \hline 301
\end{aligned}
\] & \[
\begin{aligned}
& \hline 403 \\
& \hline 1.271 \\
& 5054 \\
& 68.0
\end{aligned}
\] & \[
\begin{gathered}
.538 \\
\hline 294 \\
348
\end{gathered}
\] & \[
\begin{aligned}
& 423 \\
& \hline 1.367 \\
& 5052 \\
& 71.1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
.573 \\
290 \\
395
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& \hline 1.57 \\
& 5434 \\
& 71.1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 2300 \\
& \hline 287 \\
& 387
\end{aligned}
\] & & & & & & & & & & \\
\hline 155 & \[
\begin{aligned}
& 398 \\
& \hline 1.220 \\
& 5360 \\
& 62.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .514 \\
& \hline \\
& 312 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& \hline 409 \\
& \hline 1.284 \\
& 5288 \\
& 66.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .546 \\
& \hline \\
& 303 \\
& 303
\end{aligned}
\] & \[
\begin{aligned}
& \hline 431 \\
& 1.387 \\
& 5253 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .579 \\
& \hline 293 \\
& 393
\end{aligned}
\] & & & & & & & & & & & & \\
\hline 160 & \[
\begin{aligned}
& \hline 402 \\
& 1.228 \\
& 5506 \\
& 61.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .518 \\
& \hline \\
& 314 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& 415 \\
& \hline 1.297 \\
& 5437 \\
& 64.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .553 \\
& 307 \\
& 353 \\
& 3
\end{aligned}
\] & \[
\begin{aligned}
& 441 \\
& \hline 1.41 \\
& 5494 \\
& 67.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .588 \\
& 298 \\
& 369
\end{aligned}
\] & & & & & & & & & & & & \\
\hline & ngine ON & & \multicolumn{6}{|c|}{\(\triangle\) FUEL \(=+0.6 \%\)} & & \multicolumn{3}{|l|}{Total
Anti-ice ON} & \multicolumn{6}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.30} \\
\hline & & PAGE & 4 \\
\hline & STANDARD STRATEGY & REV 21 & SEO 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l} 
LON \\
\hline MAX. CONTINUOUS THRUST LIMITS \\
NORMAL AIR CONDITIONING \\
ANTI-ICING OFF
\end{tabular}}} & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { ISA+10 } \\
C G=27.0 \%
\end{gathered}
\]}} & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H & TAS \\
NM/1000KG & \\
\hline
\end{tabular}}} \\
\hline & & & & & & & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& \text { (1000KG) } \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL 50} & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL220} & \multicolumn{2}{|l|}{FL240} & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} & \multicolumn{2}{|l|}{FL290} \\
\hline 85 & \[
\begin{aligned}
& 382 \\
& 1.104 \\
& 3045 \\
& 84.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .389 \\
& 235 \\
& 257
\end{aligned}
\] & \[
\begin{aligned}
& \hline 375 \\
& 1.135 \\
& 3072 \\
& 91.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.434 \\
239 \\
282
\end{array}
\] & \[
\begin{aligned}
& \hline 368 \\
& 1.178 \\
& 3046 \\
& 100.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .480 \\
& 241 \\
& 306
\end{aligned}
\] & \[
\begin{aligned}
& \hline 370 \\
& 1.229 \\
& 2902 \\
& 110.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.511 \\
233 \\
320
\end{array}
\] & \[
\begin{aligned}
& \hline 373 \\
& 1.253 \\
& 2845 \\
& 113.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 521 \\
228 \\
324
\end{array}
\] & \[
\begin{array}{|l|}
\hline 379 \\
1.286 \\
2831 \\
116.8 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.536 \\
225 \\
331
\end{array}
\] & \[
\begin{aligned}
& \hline 383 \\
& 1.305 \\
& 2836 \\
& 118.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
545 \\
225 \\
335
\end{array}
\] & \[
\begin{aligned}
& \hline 393 \\
& 1.350 \\
& 2853 \\
& 120.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .564 \\
& 223 \\
& 343
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 404 \\
1.403 \\
2849 \\
121.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .574 \\
& 218 \\
& 347
\end{aligned}
\] \\
\hline 90 & \[
\begin{aligned}
& 388 \\
& 1.111 \\
& 3219 \\
& 82.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.399 \\
242 \\
264
\end{array}
\] & \[
\begin{aligned}
& \hline 377 \\
& 1.146 \\
& 3278 \\
& 89.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .449 \\
& 248 \\
& 292
\end{aligned}
\] & \[
\begin{aligned}
& \hline 372 \\
& 1.191 \\
& 3198 \\
& 97.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .490 \\
& 247 \\
& 313
\end{aligned}
\] & \[
\begin{aligned}
& \hline 377 \\
& 1.244 \\
& 3044 \\
& 106.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .518 \\
& 237 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& \hline 381 \\
& 1.273 \\
& 3003 \\
& 109.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.530 \\
232 \\
329
\end{array}
\] & \[
\begin{array}{|l|}
\hline 389 \\
1.310 \\
3016 \\
112.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .548 \\
& 231 \\
& 338
\end{aligned}
\] & \[
\begin{aligned}
& \hline 395 \\
& 1.332 \\
& 3028 \\
& 113.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 558 \\
230 \\
343
\end{array}
\] & \[
\begin{aligned}
& \hline 404 \\
& 1.380 \\
& 3019 \\
& 115.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .570 \\
& 225 \\
& 347
\end{aligned}
\] & \[
\begin{aligned}
& \hline 419 \\
& 1.450 \\
& 3074 \\
& 115.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.589 \\
224 \\
356
\end{array}
\] \\
\hline 95 & \[
\begin{aligned}
& 390 \\
& 1.119 \\
& 3422 \\
& 79.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.412 \\
249 \\
273
\end{array}
\] & \[
\begin{aligned}
& \hline 380 \\
& 1.159 \\
& 3488 \\
& 86.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& 257 \\
& 302
\end{aligned}
\] & \[
\begin{aligned}
& 376 \\
& 1.202 \\
& 3343 \\
& 99.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 499 \\
& 251 \\
& 318
\end{aligned}
\] & \[
\begin{aligned}
& \hline 384 \\
& 1.260 \\
& 3177 \\
& 103.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 524 \\
& 239 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 391 \\
& 1.294 \\
& 3190 \\
& 105.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 542 \\
& 238 \\
& 337
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 401 \\
1.337 \\
3210 \\
107.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 560 \\
& 236 \\
& 346
\end{aligned}
\] & \[
\begin{aligned}
& \hline 405 \\
& 1.360 \\
& 3203 \\
& 108.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 567 \\
& 234 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& \hline 418 \\
& 1.418 \\
& 3229 \\
& 109.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 581 \\
& 230 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 432 \\
& 1.498 \\
& 3271 \\
& 10.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.596 \\
226 \\
361
\end{array}
\] \\
\hline 100 & \[
\begin{aligned}
& 392 \\
& 1.128 \\
& 3643 \\
& 77.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.427 \\
258 \\
282
\end{array}
\] & \[
\begin{aligned}
& \hline 383 \\
& 1.169 \\
& 3657 \\
& 84.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 475 \\
& 263 \\
& 309
\end{aligned}
\] & \[
\begin{aligned}
& \hline 382 \\
& 1.214 \\
& 3472 \\
& 92.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .504 \\
& 254 \\
& 322
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 392 \\
1.279 \\
3360 \\
99.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .535 \\
& 244 \\
& 335
\end{aligned}
\] & \[
\begin{aligned}
& \hline 401 \\
& 1.317 \\
& 3374 \\
& 101.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
553 \\
243 \\
344
\end{array}
\] & \[
\begin{array}{|l|}
\hline 411 \\
1.362 \\
3376 \\
103.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 567 \\
& 239 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& \hline 417 \\
& 1.388 \\
& 3381 \\
& 104.2
\end{aligned}
\] & \[
\begin{aligned}
& 573 \\
& 237 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& 431 \\
& 1.461 \\
& 3446 \\
& 104.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& 235 \\
& 361
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 450 \\
1.554 \\
3557 \\
104.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .614 \\
& 233 \\
& 371
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& \hline 393 \\
& 1.138 \\
& 3873 \\
& 75.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.441 \\
267 \\
292
\end{array}
\] & \[
\begin{aligned}
& \hline 387 \\
& 1.179 \\
& 3811 \\
& 82.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
484 \\
268 \\
315
\end{array}
\] & \[
\begin{aligned}
& \hline 389 \\
& 1.227 \\
& 3627 \\
& 90.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 512 \\
258 \\
327
\end{array}
\] & \begin{tabular}{l} 
402 \\
1.299 \\
3555 \\
96.3 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .546 \\
& 250 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& 411 \\
& 1.342 \\
& 3568 \\
& 98.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.563 \\
248 \\
350
\end{array}
\] & \[
\begin{array}{|l|}
\hline 422 \\
1.390 \\
3557 \\
99.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .574 \\
& 242 \\
& 354
\end{aligned}
\] & \begin{tabular}{l}
130 \\
1.425 \\
3605 \\
99.8 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 585 \\
& 242 \\
& 360
\end{aligned}
\] & \[
\begin{aligned}
& \hline 445 \\
& 1.507 \\
& 3667 \\
& 100.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 602 \\
& 239 \\
& 367
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 471 \\
1.611 \\
3869 \\
98.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .631 \\
& 240 \\
& 381
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 395 \\
& 1.147 \\
& 4066 \\
& 73.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.453 \\
274 \\
299
\end{array}
\] & \[
\begin{aligned}
& \hline 390 \\
& 1.189 \\
& 3963 \\
& 80.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .492 \\
& 272 \\
& 320
\end{aligned}
\] & \[
\begin{aligned}
& \hline 395 \\
& 1.239 \\
& 3773 \\
& 87.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.519 \\
261 \\
331
\end{array}
\] & \[
\begin{aligned}
& \hline 411 \\
& 1.320 \\
& 3738 \\
& 93.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .555 \\
& 254 \\
& 348
\end{aligned}
\] &  & \[
\begin{aligned}
& .568 \\
& 250 \\
& 353
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 434 \\
1.426 \\
3787 \\
95.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .586 \\
& 247 \\
& 361
\end{aligned}
\] & 442 1.465 3818 95.7 & \[
\begin{aligned}
& .595 \\
& 246 \\
& 365
\end{aligned}
\] & \[
\begin{aligned}
& \hline 462 \\
& 1.559 \\
& 3966 \\
& 95.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.619 \\
246 \\
377
\end{array}
\] & & \\
\hline 115 & \[
\begin{aligned}
& 397 \\
& 1.157 \\
& 4276 \\
& 72.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .465 \\
& 282 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& \hline 393 \\
& 1.199 \\
& 4117 \\
& 78.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 500 \\
& 277 \\
& 325
\end{aligned}
\] & \[
\begin{aligned}
& \hline 401 \\
& 1.252 \\
& 3913 \\
& 85.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .524 \\
& 264 \\
& 335
\end{aligned}
\] & \[
\begin{aligned}
& \hline 421 \\
& 1.343 \\
& 3935 \\
& 90.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& 259 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 431 \\
& 1.391 \\
& 3919 \\
& 91.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& 253 \\
& 358
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 446 \\
1.464 \\
4003 \\
91.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 595 \\
& 252 \\
& 367
\end{aligned}
\] & \begin{tabular}{l}
454 \\
1.507 \\
4051 \\
91.7 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 604 \\
& 250 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& \hline 481 \\
& 1.610 \\
& 4276 \\
& 90.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 634 \\
& 252 \\
& 386
\end{aligned}
\] & & \\
\hline 120 & \[
\begin{aligned}
& 400 \\
& 1.165 \\
& 4456 \\
& 70.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.475 \\
288 \\
314
\end{array}
\] & \[
\begin{aligned}
& 398 \\
& 1.208 \\
& 4242 \\
& 77.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.504 \\
279 \\
328
\end{array}
\] & \[
\begin{aligned}
& \hline 407 \\
& 1.266 \\
& 4076 \\
& 83.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .531 \\
& 268 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 429 \\
& 1.364 \\
& 4092 \\
& 87.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.570 \\
261 \\
357
\end{array}
\] & \[
\begin{aligned}
& \hline 443 \\
& 1.425 \\
& 4158 \\
& 87.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.587 \\
258 \\
365
\end{array}
\] & \[
\begin{array}{|l|}
\hline 458 \\
1.504 \\
4234 \\
88.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.604 \\
256 \\
373
\end{array}
\] & \begin{tabular}{l}
170 \\
1.554 \\
4348 \\
87.5 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.619 \\
257 \\
381
\end{array}
\] & & & & \\
\hline 125 & \[
\begin{aligned}
& 402 \\
& 1.174 \\
& 4615 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.482 \\
292 \\
319
\end{array}
\] & \[
\begin{aligned}
& \hline 403 \\
& 1.217 \\
& 4383 \\
& 75.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .509 \\
& 282 \\
& 331
\end{aligned}
\] & \[
\begin{aligned}
& \hline 415 \\
& 1.282 \\
& 4271 \\
& 80.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.540 \\
273 \\
345
\end{array}
\] & \[
\begin{aligned}
& \hline 439 \\
& 1.388 \\
& 4283 \\
& 84.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 264 \\
& 361
\end{aligned}
\] & \begin{tabular}{l}
454 \\
1.460 \\
4385 \\
84.6 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .597 \\
& 263 \\
& 371
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 473 \\
1.550 \\
4538 \\
84.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .620 \\
& 262 \\
& 382
\end{aligned}
\] & \[
\begin{aligned}
& \hline 488 \\
& 1.601 \\
& 4659 \\
& 83.5 \\
& \hline
\end{aligned}
\] & .633
263
389 & & & & \\
\hline 130 & \begin{tabular}{l}
405 \\
1. 182 \\
4769 \\
67.8
\end{tabular} & \[
\begin{array}{r}
.489 \\
296 \\
324
\end{array}
\] & \[
\begin{aligned}
& \hline 408 \\
& 1.228 \\
& 4540 \\
& 73.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .515 \\
& 285 \\
& 335
\end{aligned}
\] & \[
\begin{aligned}
& 422 \\
& 1.299 \\
& 4468 \\
& 78.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .550 \\
& 277 \\
& 351
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& 1.418 \\
& 4518 \\
& 81.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& 269 \\
& 367
\end{aligned}
\] & \[
\begin{aligned}
& \hline 465 \\
& 1.496 \\
& 4612 \\
& 81.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .605 \\
& 267 \\
& 376
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& 1.594 \\
& 4848
\end{aligned}
\] & \[
\begin{aligned}
& .633 \\
& 268 \\
& 390
\end{aligned}
\] & & & & & & \\
\hline 135 & \[
\begin{aligned}
& \hline 408 \\
& 1.190 \\
& 4923 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.496 \\
300 \\
328
\end{array}
\] & \[
\begin{aligned}
& \hline 414 \\
& 1.238 \\
& 4684 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .520 \\
& 288 \\
& 338
\end{aligned}
\] & \[
\begin{aligned}
& 430 \\
& 1.316 \\
& 4648 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .557 \\
& 281 \\
& 355
\end{aligned}
\] & \[
\begin{aligned}
& \hline 461 \\
& 1.451 \\
& 4767 \\
& 78.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .598 \\
& 274 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& \hline 479 \\
& 1.538 \\
& 4906 \\
& 78.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.618 \\
273 \\
384
\end{array}
\] & & & & & & & & \\
\hline 140 & 411
1.197 5074 65.4 & \[
\begin{aligned}
& .501 \\
& 304 \\
& 332
\end{aligned}
\] & \[
\begin{aligned}
& \hline 419 \\
& 1.248 \\
& 4832 \\
& 70.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.525 \\
291 \\
342
\end{array}
\] & \[
\begin{aligned}
& 438 \\
& 1.334 \\
& 4845 \\
& 74.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .564 \\
& 285 \\
& 360
\end{aligned}
\] & \[
\begin{aligned}
& \hline 471 \\
& 1.483 \\
& 4970 \\
& 76.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .603 \\
& 277 \\
& 378
\end{aligned}
\] & \[
\begin{aligned}
& \hline 494 \\
& 1.578 \\
& 5218 \\
& 75.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
279 \\
392
\end{array}
\] & & & & & & & & \\
\hline 145 & \[
\begin{aligned}
& 415 \\
& 1.205 \\
& 5203 \\
& 64.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
505 \\
306 \\
334
\end{array}
\] & \[
\begin{aligned}
& 424 \\
& 1.260 \\
& 4989 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .530 \\
& 294 \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& 446 \\
& 1.352 \\
& 5034 \\
& 72.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .571 \\
& 289 \\
& 365
\end{aligned}
\] & \[
\begin{aligned}
& 483 \\
& 1.521 \\
& 5267 \\
& 73.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .616 \\
& 283 \\
& 386
\end{aligned}
\] & & & & & & & & & & \\
\hline 150 & \[
\begin{aligned}
& 419 \\
& 1.212 \\
& 5332 \\
& 63.1
\end{aligned}
\] & \[
\begin{aligned}
& .508 \\
& 308 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& \hline 430 \\
& 1.272 \\
& 5184 \\
& 67.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
538 \\
298 \\
350
\end{array}
\] & \[
\begin{aligned}
& \hline 452 \\
& 1.369 \\
& 5183 \\
& 70.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.573 \\
290 \\
366
\end{array}
\] & \begin{tabular}{l}
496 \\
1.559 \\
5574 \\
70.6 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .628 \\
& 289 \\
& 393
\end{aligned}
\] & & & & & & & & & & \\
\hline 155 & \[
\begin{aligned}
& 424 \\
& 1.221 \\
& 5494 \\
& 61.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.514 \\
312 \\
340
\end{array}
\] & \[
\begin{aligned}
& 437 \\
& 1.286 \\
& 5382 \\
& 65.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.546 \\
303 \\
355
\end{array}
\] & \[
\begin{aligned}
& \hline 461 \\
& 1.388 \\
& 5384 \\
& 68.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .578 \\
& 292 \\
& 369
\end{aligned}
\] & & & & & & & & & & & & \\
\hline 160 & \[
\begin{aligned}
& 428 \\
& 1.229 \\
& 5645 \\
& 60.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .518 \\
& 314 \\
& 343
\end{aligned}
\] & \[
\begin{aligned}
& \hline 443 \\
& 1.299 \\
& 5575 \\
& 64.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .553 \\
& 307 \\
& 359
\end{aligned}
\] & \[
\begin{aligned}
& 470 \\
& 1.413 \\
& 5632 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .588 \\
& 297 \\
& 375 \\
& \hline
\end{aligned}
\] & & & & & & & & & & & & \\
\hline \multicolumn{3}{|c|}{Engine Anti-ice ON} & \multicolumn{6}{|l|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{4}{|c|}{Total Anti-ice ON} & \multicolumn{6}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & STANDARD STRATEGY & REV 21 & SEO 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{LONG RANGE CRUISE 1 ENGINE OUT} \\
\hline \multicolumn{11}{|l|}{MAX. CONTINUOUS THRUST LIMITS NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA }+20 \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{|lr|}
\hline EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
\hline EPR & IAS \\
KG/H & TAS \\
NM \(/ 1000 \mathrm{KG}\) & \\
\hline
\end{tabular}} \\
\hline WEIGH (1000KG) & \multicolumn{2}{|l|}{FL 50} & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL220} & \multicolumn{2}{|l|}{FL240} & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} & \multicolumn{2}{|l|}{FL290} \\
\hline 85 & \[
\begin{aligned}
& \hline 407 \\
& 1.104 \\
& 3118 \\
& 83.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .389 \\
& \begin{array}{l}
385 \\
265
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& \hline 1.136 \\
& 3143 \\
& 9142 \\
& \hline 19.2
\end{aligned}
\] & \[
\begin{aligned}
& .433 \\
& .237 \\
& 287
\end{aligned}
\] & \[
\begin{aligned}
& \hline 394 \\
& \hline 1.179 \\
& 3116 \\
& 100.0
\end{aligned}
\] & \[
\begin{array}{r}
479 \\
\hline 24 \\
312
\end{array}
\] & \[
\begin{aligned}
& \hline 397 \\
& \hline 1.230 \\
& 2981 \\
& 109.5 \\
& \hline 109.5
\end{aligned}
\] & \[
\begin{aligned}
& .511 \\
& . \\
& 323 \\
& 323
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& \hline 1.254 \\
& 2917 \\
& 113.1
\end{aligned}
\] & \[
\begin{aligned}
& .520 \\
& \begin{array}{c}
228 \\
330
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 406 \\
& 1.287 \\
& 2082 \\
& 116.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .535 \\
& \hline 257 \\
& 337
\end{aligned}
\] & \[
\begin{aligned}
& 411 \\
& \hline 1.366 \\
& 2907 \\
& 1197.3
\end{aligned}
\] & \[
\begin{gathered}
.544 \\
\hline 244 \\
344
\end{gathered}
\] & \[
\begin{aligned}
& \hline 422 \\
& \hline 1.352 \\
& 2928 \\
& 119.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .563 \\
& \hline 233 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& 435 \\
& 1.406 \\
& 2937 \\
& 1030 . \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& .218 \\
& 355
\end{aligned}
\] \\
\hline 90 & \[
\begin{aligned}
& 412 \\
& \hline 1.11 \\
& 3295 \\
& 81.4 \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& .399 \\
& .341 \\
& 268
\end{aligned}
\] & \[
\begin{aligned}
& \hline 402 \\
& \hline 1.17 \\
& 3360 \\
& 38.4
\end{aligned}
\] & \[
\begin{aligned}
& .449 \\
& \hline 248 \\
& 297
\end{aligned}
\] & \[
\begin{aligned}
& 398 \\
& \hline 1.191 \\
& 3272 \\
& 97.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .489 \\
& 246 \\
& 318
\end{aligned}
\] & \[
\begin{aligned}
& 404 \\
& \hline 1.24 \\
& 3125 \\
& 3106.0 \\
& 106
\end{aligned}
\] & \[
\begin{aligned}
& .519 \\
& \hline 237 \\
& 331
\end{aligned}
\] & \[
\begin{aligned}
& 409 \\
& \hline 1.274 \\
& 3079 \\
& 109.0
\end{aligned}
\] & \[
\begin{aligned}
& .529 \\
& \hline 232 \\
& 336
\end{aligned}
\] & \[
\begin{aligned}
& \hline 4181 \\
& 1.311 \\
& 3092 \\
& 111.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .547 \\
& \hline 230 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& 423 \\
& \hline 1.334 \\
& 3106 \\
& 3112.4
\end{aligned}
\] & \[
\begin{aligned}
& .557 \\
& \hline 230 \\
& 349
\end{aligned}
\] & \[
\begin{aligned}
& 434 \\
& 1.382 \\
& 3092 \\
& 3094.2
\end{aligned}
\] & \[
\begin{aligned}
& .569 \\
& \hline 254 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& \text { 450 } \\
& \begin{array}{l}
1.453 \\
3157 \\
115.0
\end{array} \\
& 105
\end{aligned}
\] & .589
223
363 \\
\hline 95 & \[
\begin{aligned}
& \hline 415 \\
& 1.119 \\
& 3496 \\
& 79.1
\end{aligned}
\] & \[
\begin{aligned}
& .411 \\
& \hline 299 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& 405 \\
& 1.59 \\
& 3573 \\
& 86.0 \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& .464 \\
& \hline 257 \\
& 307
\end{aligned}
\] & \[
\begin{aligned}
& \hline 402 \\
& 1.203 \\
& 3423 \\
& 94.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 498 \\
& \hline 251 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& 411 \\
& \hline 1.261 \\
& 3260 \\
& 102.6
\end{aligned}
\] & \[
\begin{aligned}
& .524 \\
& \hline 234 \\
& 334
\end{aligned}
\] & \[
\begin{aligned}
& 419 \\
& \hline 1.296 \\
& 3275 \\
& 104.9
\end{aligned}
\] & \[
\begin{aligned}
& .542 \\
& .238 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& 430 \\
& 1.338 \\
& 3238 \\
& 107.0
\end{aligned}
\] & \[
\begin{aligned}
& .560 \\
& \hline 238 \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& 435 \\
& \hline 1.361 \\
& 3283 \\
& 107.9
\end{aligned}
\] & \[
\begin{aligned}
& .566 \\
& . \\
& \hline 23 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 448 \\
& 1.420 \\
& 3314 \\
& 108.9
\end{aligned}
\] & \[
\begin{aligned}
& .580 \\
& \hline
\end{aligned} \begin{aligned}
& 30 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 1.501
\end{aligned}
\]
\[
336
\]
\[
109.4
\] & \begin{tabular}{l}
.596 \\
226 \\
368 \\
\hline
\end{tabular} \\
\hline 100 & \[
\begin{aligned}
& \hline 416 \\
& \hline 1.128 \\
& 3725 \\
& 76.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .426 \\
& \hline 287 \\
& 287
\end{aligned}
\] & \[
\begin{aligned}
& \hline 409770 \\
& \hline 3741 \\
& 83.9
\end{aligned}
\] & \[
\begin{aligned}
& .475 \\
& \hline 263 \\
& 314
\end{aligned}
\] & \[
\begin{aligned}
& \hline 408 \\
& \hline 1.25 \\
& 3559 \\
& 92.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .504 \\
& \hline 254 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 420 \\
& \hline 1.280 \\
& 3446 \\
& 99.0
\end{aligned}
\] & \[
\begin{aligned}
& .534 \\
& \hline 24 \\
& 344 \\
& \hline 1
\end{aligned}
\] & \[
\begin{aligned}
& 430 \\
& \hline 1.39 \\
& 3466 \\
& 101.1
\end{aligned}
\] & \[
\begin{aligned}
& .553 \\
& \hline 243 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& \hline 4404 \\
& 1.364 \\
& 3464 \\
& 102.9
\end{aligned}
\] & \[
\begin{aligned}
& .567 \\
& \hline 237 \\
& 357
\end{aligned}
\] & \[
\begin{aligned}
& \hline 447 \\
& 1.390 \\
& 3470 \\
& 103.4
\end{aligned}
\] & \[
\begin{aligned}
& .537 \\
& \hline 239 \\
& 359
\end{aligned}
\] & \[
\begin{aligned}
& \hline 462 \\
& 1.463 \\
& 3529 \\
& 104.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .531 \\
& \hline 234 \\
& \hline 367
\end{aligned}
\] &  & \[
\begin{aligned}
& .612 \\
& \hline 233 \\
& 338
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& \begin{array}{l}
418 \\
1.138 \\
3969 \\
74.9 \\
\hline
\end{array} \mathbf{y} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 441 \\
& \hline 267 \\
& 297
\end{aligned}
\] & \[
\begin{aligned}
& \hline 412 \\
& \hline 1.180 \\
& 3899 \\
& 82.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& . \begin{array}{l}
.483 \\
360 \\
320
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 41528 \\
& \hline 1.228 \\
& 3720 \\
& 89.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 512 \\
& \hline 535 \\
& 353
\end{aligned}
\] & \[
\begin{aligned}
& \hline 429 \\
& \hline 1.300 \\
& 3640 \\
& 95.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .545 \\
& \hline 249 \\
& 348
\end{aligned}
\] & \[
\begin{aligned}
& \hline 441.344 \\
& 3.363 \\
& 97.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .563 \\
& \hline 247 \\
& 357
\end{aligned}
\] & \[
\begin{aligned}
& \hline 4522 \\
& 1.392 \\
& 3655 \\
& 98.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline{ }_{2}^{572} \\
& 361 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& 460 \\
& \hline 1.428 \\
& 3720 \\
& 99.0
\end{aligned}
\] & \[
\begin{aligned}
& .585 \\
& \hline 242 \\
& 367
\end{aligned}
\] & \[
\begin{aligned}
& 476 \\
& \hline 1.508 \\
& 3753 \\
& 99.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .599 \\
& \hline 373 \\
& \hline 37
\end{aligned}
\] & & \\
\hline 110 & \[
\begin{array}{|l|l}
\hline 419 \\
1.147 \\
4164 \\
73.1
\end{array}
\] & \[
\begin{aligned}
& .452 \\
& .454 \\
& 304
\end{aligned}
\] & \[
\begin{aligned}
& 415 \\
& \hline 1.190 \\
& 4058 \\
& 80.2
\end{aligned}
\] & \[
\begin{array}{r}
.492 \\
\hline 272 \\
325
\end{array}
\] & \[
\begin{aligned}
& 422 \\
& \hline 1.20 \\
& 3868 \\
& 37.2 \\
& \hline 8
\end{aligned}
\] & \[
\begin{array}{|}
\hline .519 \\
337 \\
\hline 261
\end{array}
\] & \[
\begin{aligned}
& 439 \\
& \hline 1.322 \\
& 3831 \\
& 92.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .555 \\
& \hline 554 \\
& 354
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& \hline 1.366 \\
& 3820 \\
& 94.1
\end{aligned}
\] & \[
\begin{aligned}
& .567 \\
& \hline 249 \\
& 360
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& 1.429 \\
& 3894 \\
& 94.8
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& \hline 288 \\
& 369
\end{aligned}
\] & \[
\begin{aligned}
& 473 \\
& \hline 1.467 \\
& 3961 \\
& 95.0 \\
& 95
\end{aligned}
\] & \[
\begin{aligned}
& .594 \\
& .596 \\
& 3724
\end{aligned}
\] & \[
\begin{aligned}
& 494 \\
& \hline 1.560 \\
& 4060 \\
& 964.4 \\
& \hline 9
\end{aligned}
\] & \[
\begin{aligned}
& .616 \\
& \hline 245 \\
& 283
\end{aligned}
\] & & \\
\hline 115 & \[
\begin{aligned}
& \hline 422 \\
& 1.157 \\
& 4377 \\
& 71.4
\end{aligned}
\] & \[
\begin{aligned}
& .465 \\
& \hline 827 \\
& 381
\end{aligned}
\] & \[
\begin{aligned}
& 419 \\
& \hline 1.99 \\
& 42196 \\
& 78.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .500 \\
& \hline 271 \\
& 331
\end{aligned}
\] & \[
\begin{aligned}
& \hline 428 \\
& 1.253 \\
& 4008 \\
& 84.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .524 \\
& \hline 264 \\
& 344
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& \hline 1.350 \\
& 4035 \\
& 89.4 \\
& \hline 8
\end{aligned}
\] & \[
\begin{aligned}
& .565 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 461 \\
& \hline 1.193 \\
& 4010 \\
& 90.6 \\
& \hline 90.6
\end{aligned}
\] & \[
\begin{aligned}
& .574 \\
& \hline 253 \\
& 364
\end{aligned}
\] & \[
\begin{aligned}
& 477 \\
& \hline 1.466 \\
& 4108 \\
& 91.1
\end{aligned}
\] & \[
\begin{aligned}
& .595 \\
& \hline 251 \\
& 374
\end{aligned}
\] & \[
\begin{aligned}
& 486 \\
& \hline 1.510 \\
& 4158 \\
& 91.0
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& \hline 200 \\
& 377
\end{aligned}
\] & & & & \\
\hline 120 & \[
\begin{aligned}
& 425 \\
& \hline 1.166 \\
& 4562 \\
& 70.0
\end{aligned}
\] & \[
\begin{gathered}
.474 \\
.888 \\
319
\end{gathered}
\] & \[
\begin{aligned}
& 424 \\
& \hline 1.209 \\
& 4344 \\
& 76.7
\end{aligned}
\] & \[
\begin{aligned}
& .504 \\
& .599 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 434 \\
& \hline 1.267 \\
& 4 i 75 \\
& 82.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .530 \\
& \hline 267 \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& 1.365 \\
& 4190 \\
& 8606
\end{aligned}
\] & \[
\begin{aligned}
& .568 \\
& \begin{array}{l}
268 \\
363
\end{array} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 473 \\
& \hline 1.466 \\
& 42661 \\
& 87.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& \begin{array}{l}
258 \\
372
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& \hline 1.507 \\
& 4346 \\
& 87.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& .65 \\
& 380
\end{aligned}
\] & \[
\begin{aligned}
& 502 \\
& 1.557 \\
& 4463 \\
& 86.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .619 \\
& \hline 25 \\
& 388
\end{aligned}
\] & & & & \\
\hline 125 & \[
\begin{array}{|l|l}
\hline 127 \\
1.174 \\
4726 \\
68.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .482 \\
& \hline 292 \\
& 324
\end{aligned}
\] & \[
\begin{aligned}
& \hline 429 \\
& \hline 1.218 \\
& 4492 \\
& 75.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
.509 \\
387 \\
38
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 4428 \\
& \hline 1.83 \\
& 4374 \\
& 80.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .540 \\
& \hline 272 \\
& 351
\end{aligned}
\] & \[
\begin{aligned}
& 469 \\
& \hline 1.390 \\
& 4392 \\
& 83.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .575 \\
& \hline 267 \\
& 367
\end{aligned}
\] & \[
\begin{aligned}
& \hline 485 \\
& 1.461 \\
& 4486 \\
& 84.1
\end{aligned}
\] & \[
\begin{aligned}
& .595 \\
& \hline 267 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.553 \\
& 1653 \\
& 83.6 \\
& \hline 8.6
\end{aligned}
\] & \[
\begin{aligned}
& \hline .618 \\
& \hline 262 \\
& 389
\end{aligned}
\] & & & & & & \\
\hline 130 & \[
\begin{aligned}
& 430 \\
& \hline 1.182 \\
& 4888 \\
& 67.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .489 \\
& \hline 296 \\
& \hline 229 \\
& \hline 29
\end{aligned}
\] & \[
\begin{aligned}
& 435 \\
& \hline 1.29 \\
& 4650 \\
& 73.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .515 \\
& \hline 285 \\
& 341
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& \hline 1.300 \\
& 4557 \\
& 78.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .549 \\
& \hline
\end{aligned} \begin{aligned}
& 277 \\
& 357
\end{aligned}
\] & \[
\begin{aligned}
& \hline 480 \\
& \hline 1.420 \\
& 4636 \\
& 80.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .586 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.19 \\
& \hline 1.98 \\
& 4715 \\
& 81.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .602 \\
& \hline 265 \\
& 382 \\
& 382
\end{aligned}
\] & & & & & & & & \\
\hline 135 & \[
\begin{aligned}
& 433 \\
& \hline 1.90 \\
& 5043 \\
& 66.1 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
.495 \\
330 \\
33
\end{gathered}
\] & \[
\begin{aligned}
& 440 \\
& \hline 1.239 \\
& 4797 \\
& 771.7
\end{aligned}
\] & \[
\begin{gathered}
.520 \\
\hline 284 \\
348
\end{gathered}
\] & \[
\begin{aligned}
& 458 \\
& 1.37 \\
& 4762 \\
& 75.9
\end{aligned}
\] & \[
\begin{aligned}
& .556 \\
& .581 \\
& 362
\end{aligned}
\] & \[
\begin{aligned}
& 492 \\
& \hline 1.45 \\
& 4835 \\
& 78.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .597 \\
& \hline 881 \\
& \hline 89
\end{aligned}
\] & \[
\begin{aligned}
& 510 \\
& \hline 1.559 \\
& 5018 \\
& 777.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .61616 \\
& \begin{array}{l}
272 \\
390
\end{array}
\end{aligned}
\] & & & & & & & & \\
\hline 140 & \[
\begin{aligned}
& \hline 336 \\
& \hline 1.198 \\
& 5196 \\
& 64.9
\end{aligned}
\] & \[
\begin{aligned}
& .501 \\
& \hline \\
& 304 \\
& 304
\end{aligned}
\] & \[
\begin{aligned}
& 445 \\
& \hline 1.29 \\
& 4949 \\
& 70.2
\end{aligned}
\] & \[
\begin{aligned}
& .5251 \\
& \hline 297 \\
& 397
\end{aligned}
\] & \[
\begin{aligned}
& \hline 466 \\
& \hline 1.35 \\
& 4965 \\
& 73.9
\end{aligned}
\] & \[
\begin{aligned}
& .564 \\
& \hline 285 \\
& 367
\end{aligned}
\] & \[
\begin{aligned}
& \hline 501 \\
& 1.184 \\
& 5085 \\
& 75.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .601 \\
& \hline 276 \\
& 384
\end{aligned}
\] & & & & & & & & & & \\
\hline 145 & \[
\begin{aligned}
& 440 \\
& \hline 1.206 \\
& 5328 \\
& 63.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .505 \\
& \hline 340 \\
& 340
\end{aligned}
\] & \[
\begin{aligned}
& 451 \\
& \hline 1.260 \\
& 5103 \\
& 68.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .530 \\
& .593 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& 474 \\
& \hline 1.54 \\
& 5156 \\
& 71.9
\end{aligned}
\] & \[
\begin{gathered}
.571 \\
\hline 281 \\
381
\end{gathered}
\] & \[
\begin{array}{|l|l|}
\hline 515 \\
1.523 \\
5399 \\
72.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .615 \\
& \hline 282 \\
& 392
\end{aligned}
\] & & & & & & & & & & \\
\hline 150 & \[
\begin{aligned}
& 445 \\
& \hline 1.213 \\
& 5462 \\
& 62.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .508 \\
& \hline \\
& 3082 \\
& 342
\end{aligned}
\] & \[
\begin{aligned}
& \hline 457 \\
& \hline 1.274 \\
& 5305 \\
& 67.0
\end{aligned}
\] & \[
\begin{aligned}
& .538 \\
& \hline 296 \\
& 356
\end{aligned}
\] & \[
\begin{aligned}
& \hline 481 \\
& 1.370 \\
& 53515 \\
& 70.1
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
.573 \\
287 \\
372
\end{array}
\end{aligned}
\] & & & & & & & & & & & & \\
\hline 155 & \[
\begin{array}{|l|l}
\hline 450 \\
\hline 1.222 \\
5624 \\
61.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.514 \\
.314 \\
346
\end{array}
\] & \[
\begin{aligned}
& 464 \\
& \hline 1.287 \\
& 5.511 \\
& 65.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .545 \\
& \hline \\
& 302 \\
& 361
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& \hline 1.390 \\
& 5522 \\
& 68.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .578 \\
& .592 \\
& 376
\end{aligned}
\] & & & & & & & & & & & & \\
\hline 160 & \[
\begin{array}{l|l|l|}
\hline 454 \\
\hline 1.230 \\
5778 \\
60.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.518 \\
\hline 341 \\
349
\end{array}
\] & \[
\begin{aligned}
& \hline 970 \\
& \hline 47.30 \\
& 5710 \\
& 510 \\
& 610
\end{aligned}
\] & \[
\begin{aligned}
& .552 \\
& \hline 306 \\
& 366
\end{aligned}
\] & \[
\begin{aligned}
& 501 \\
& \hline 1.45 \\
& 5778 \\
& 578
\end{aligned}
\]
\[
6
\] & \[
\begin{aligned}
& \hline 288 \\
& \hline 287 \\
& 382
\end{aligned}
\] & & & & & & & & & & & & \\
\hline & ngine ON & & \multicolumn{6}{|c|}{\(\triangle\) FUEL \(=+0.6 \%\)} & & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { Total } \\
\text { Anti-ice } \\
\text { ON } \\
\hline
\end{gathered}
\]} & \multicolumn{6}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & STANDARD STRATEGY & REV 21 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{IN CRUISE QUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING - ONE ENGINE FAILURE LONG RANGE CRUISE - DESCENT M. 80/300KT/250KT - IMC PROCEDURE 360KG/6MIN} \\
\hline \multicolumn{5}{|l|}{REF. INITIAL WEIGHT \(=115000\) KG NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline AIR
DIST. & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 100 & 150 & 200 & 220 & 240 & 250 & 270 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL150 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL220 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL240 } \\
& \text { FL250 } \\
& \hline
\end{aligned}
\] & FL270 \\
\hline 100 & 1385
0.26 & 1149
0.25 & 984
0.24 & 925
0.24 & 869
0.24 & 842
0.23 & 795
0.23 & 3 & 1 & 0 & 0 \\
\hline 125 & 1698
0.30 & 1437
0.30 & 1259
0.29 & 1195
0.28 & 1138
0.28 & 1111
0.28 & 1068 & 4 & 3 & 3 & 2 \\
\hline & 2010 & 1726 & 1533 & 1465 & 1407 & 1381 & 1340 & 6 & 5 & 5 & 5 \\
\hline 150 & 0.35 & 0.34 & 0.33 & 0.33 & 0.32 & 0.32 & 0.31 & & & & \\
\hline 175 & 2322
0.40 & 2015
0.39 & 1807
0.37 & 1736
0.37 & 1676
0.36 & 1650
0.36 & 1613
0.35 & 7 & 7 & 7 & 7 \\
\hline 200 & 2634
045 & 2303
0.43 & 2081 & 2006
0.41 & \begin{tabular}{l}
1946 \\
040 \\
\hline 1
\end{tabular} & 1919
0
0 & \({ }^{1886}\) & 9 & 9 & 9 & 10 \\
\hline & \begin{tabular}{l}
2945 \\
\hline 2045
\end{tabular} & 0.43
2590 & 0.42
2353 & 0.41 & 0.40
2213 & 0.40
2186 & 2156 & 10 & 11 & 12 & 12 \\
\hline 225 & 0.49 & 0.48 & 0.46 & 0.45 & 0.44 & 0.44 & 0.43 & & & & \\
\hline 250 & \begin{tabular}{l}
3256 \\
0.54 \\
\hline
\end{tabular} & 2877
0.52 & 2625
0.50 & 2542
0.50 & 2480
0.49 & 2452
0 & 2426
047 & 12 & 12 & 14 & 14 \\
\hline & 3566 & 3164 & 2897 & 2810 & 2747 & 2719 & 2696 & 13 & 14 & 16 & 17 \\
\hline 275 & 0.59 & 0.57 & 0.55 & 0.54 & 0.53 & 0.52 & 0.51 & & & & \\
\hline 300 & 3877 & 3451 & 3170
0
0 & 3078 & 3013 & 2986 & 2965 & 15 & 16 & 18 & 19 \\
\hline 325 & 4186 & 3737 & 3440 & 3344 & 3278 & 3250 & 3232 & 16 & 18 & 21 & 22 \\
\hline 350 & 4494
1.13 & 1.11 & 1.08
1.08 & 3610
1.07 & 3543
1.05 & 3514
1.05 & 3500
1.03 & 18 & 20 & 23 & 24 \\
\hline 375 & 4803
1.18 & 4307
1.15 & 3980
1.12 & 3876
1.11 & 3808
1.09 & 3778
1.09 & 3767
1.07 & 19 & 22 & 25 & 26 \\
\hline 400 & 5112 & 4592 & 4251 & 4142 & 4073 & 4042 & 4034 & 21 & 24 & 27 & 29 \\
\hline & 1.23
5419 & 1.20
4876 & 1.16
4519 & 1.16
4406 & 1.14
4335 & 1.13
4303 & 1.11 & 22 & 25 & 29 & 31 \\
\hline 425 & 1.27 & 1.25 & 1.21 & 1.20 & 1.18 & 1.18 & 1.15 & & 25 & & 31 \\
\hline 450 & 5727
1 & 5160 & 4787 & 4669 & 4597 & 4565 & 4562 & 23 & 27 & 32 & 33 \\
\hline & 6034 & 5443 & 5055 & 4933 & 4859 & 4827 & 4826 & 25 & 29 & 34 & 36 \\
\hline 475 & 1.37 & 1.34 & 1.30 & 1.29 & 1.26 & 1.26 & 1.23 & & & & \\
\hline 500 & 6341 & \({ }_{5}^{5727}\) & 5323 & 5197 & 5122 & 5089 & 5090 & 26 & 31 & 36 & 38 \\
\hline & 1.42
6647 & 1.39
6009 & 1.34
5589 & 1.33
5458 & 1.31
5382 & 1.30
5348 & 1.27
5351 & 28 & 33 & 38 & 40 \\
\hline 525 & 1.47 & 1.43 & 1.38 & 1.37 & 1.35 & 1.34 & 1.31 & & & & \\
\hline 550 & 6952 & 6291
1.48 & 5856
1.43 & 5720 & 5642
139 & 5608 & 5612 & 29 & 35 & 40 & 42 \\
\hline 575 & 7258 & 6573 & 6122 & 5981 & 5902 & 5868 & 5874 & 31 & 36 & 42 & 45 \\
\hline 575 & 1.56 & 1.52 & 1.47 & 1.46 & 1.43 & 1.43 & 1.39 & & & & \\
\hline 600 & \(\begin{array}{r}7563 \\ 2.01 \\ \hline\end{array}\) & 6855
1.57 & 6388
1.52 & 6243
1.50 & 6162
1.48 & 6127
1.47 & 6135
1.43 & 32 & 38 & 44 & 47 \\
\hline & 7867 & 7136 & \({ }^{6652}\) & 6503 & \({ }^{6420}\) & 6385 & 6393 & 33 & 40 & 47 & 49 \\
\hline 625 & 2.06 & 2.02 & 1.56 & 1.55 & 1.52 & 1.51 & 1.48 & & & & \\
\hline 650 & 8171
2.11 & 7416
2.06 & 6917
2.00 & 6762
1.59 & 6678
1.56 & 6642
1.55 & 6652
1.52 & 35 & 42 & 49 & 51 \\
\hline 675 & 8475 & 7697 & 7181 & 7022 & 6935 & 6899 & 6911 & 36 & 43 & 51 & 53 \\
\hline & 2.15
8779 & 2.11
7977 & 2.05 & 2.03 & 2.00
7193 & 1.59
7157 & 1.56
7169 & 38 & 45 & 53 & 56 \\
\hline 700 & 2.20 & 2.16 & 2.09 & 2.08 & 2.05 & 2.04 & 2.00 & & & & \\
\hline 725 & 9081
2.25 & 8256
2.20 & 7708
2.14 & 7539
2.12 & 7449
2.09 & 7412
2.08 & 7425
2.04 & 39 & 47 & 55 & 58 \\
\hline & 9383 & 8535 & 7971 & 7797 & 7705 & 7667 & 7681 & 40 & 49 & 57 & 60 \\
\hline 750 & 2.30 & 2.25 & 2.18 & 2.16 & 2.13 & 2.12 & 2.08 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7/8} \\
\hline & Standard strategy & REV 21 & SEC 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{IN CRUISE QUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING - ONE ENGINE FAILURE LONG RANGE CRUISE - DESCENT M.80/300KT/250KT - IMC PROCEDURE 360KG/6MIN} \\
\hline \multicolumn{5}{|l|}{REF. INITIAL WEIGHT \(=115000 \mathrm{KG}\) NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { AIR } \\
& \text { DIST. }
\end{aligned}
\] & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline \[
(\mathrm{NM})
\] & 100 & 150 & 200 & 220 & 240 & 250 & 270 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL150 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL220 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL240 } \\
& \text { FL250 }
\end{aligned}
\] & FL270 \\
\hline 750 & 9383
2.30 & 8535
2.25 & 7971
2.18 & 7797
2.16 & 7705
2.13 & \[
\begin{array}{r}
7667 \\
2.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7681 \\
2.08 \\
\hline
\end{array}
\] & 40 & 49 & 57 & 60 \\
\hline 775 & \[
\begin{array}{r}
9686 \\
2.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8.2013 \\
2.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8234 \\
2.23 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8055 \\
& 2.21
\end{aligned}
\] & \[
\begin{array}{r}
7961 \\
2.18
\end{array}
\] & \[
\begin{array}{r}
7922 \\
2.16
\end{array}
\] & \[
\begin{array}{r}
7937 \\
2.12
\end{array}
\] & 42 & 51 & 59 & 62 \\
\hline 800 & \[
\begin{aligned}
& 9988 \\
& 2.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.292 \\
& 2.34 \\
& \hline
\end{aligned}
\] & 8497
2.27 & 8313
2.25 & 8217
2.22 & \[
\begin{array}{r}
8178 \\
2.20 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8193 \\
& 2.16 \\
& \hline
\end{aligned}
\] & 43 & 52 & 61 & 64 \\
\hline 825 & \[
\begin{array}{r}
2.40 \\
\hline 10289 \\
2.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9369 \\
2.39 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.27 \\
& 8758 \\
& 2.31 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.20 \\
& 8569 \\
& 2.30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.22 \\
& 8470 \\
& 2.26 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2.20 \\
& 8431 \\
& 2.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.10 \\
& 2.20 \\
& \hline
\end{aligned}
\] & 45 & 54 & 63 & 66 \\
\hline 850 & \[
\begin{array}{r}
10589 \\
2.49 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9.057 \\
& 9647 \\
& 2.43 \\
& \hline
\end{aligned}
\] & 9.319
2.36 & \[
\begin{aligned}
& 8825 \\
& 2.34 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8724 \\
& 2.30 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2.20 \\
8684 \\
2.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8699 \\
2.24 \\
\hline
\end{array}
\] & 46 & 56 & 65 & 68 \\
\hline 875 & \[
\begin{array}{r}
10890 \\
2.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9924 \\
2.48 \\
\hline
\end{array}
\] & 9281
2.40 & \[
\begin{array}{r}
9081 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.50 \\
\hline 8978 \\
2.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.29 \\
8937 \\
2.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.24 \\
8953 \\
2.28 \\
\hline
\end{array}
\] & 47 & 57 & 67 & 70 \\
\hline 900 & \[
\begin{array}{r}
11190 \\
2.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10201 \\
2.53 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9542 \\
& 2.45 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9337 \\
2.43 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 9232 \\
& \hline 2.39 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9190 \\
& 2.37 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2206 \\
& 9206 \\
& 2.33 \\
& \hline
\end{aligned}
\] & 49 & 59 & 69 & 72 \\
\hline 925 & \[
\begin{array}{r}
11490 \\
3.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10477 \\
2.57 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9801 \\
& 2.49 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9592 \\
& 2.47 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9483 \\
& 2.43 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9441 \\
& 2.42 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9457 \\
& 2.37 \\
& \hline
\end{aligned}
\] & 50 & 61 & 71 & 74 \\
\hline 950 & \[
\begin{array}{r}
11789 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10752 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.45 \\
10061 \\
2.54 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9846 \\
& 2.51 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9735 \\
2.48 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9692 \\
& 2.46 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.07 \\
9707 \\
2.41 \\
\hline
\end{array}
\] & 52 & 63 & 73 & 76 \\
\hline 975 & \[
\begin{array}{r}
12088 \\
3.14
\end{array}
\] & \[
\begin{array}{r}
11028 \\
3.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10321 \\
2.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10101 \\
2.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9987 \\
2.52
\end{array}
\] & \[
\begin{aligned}
& 9943 \\
& 2.50
\end{aligned}
\] & \[
\begin{array}{r}
9958 \\
2.45 \\
\hline
\end{array}
\] & 53 & 64 & 75 & 78 \\
\hline 1000 & \[
\begin{array}{r}
12387 \\
3.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11303 \\
3.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10580 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10355 \\
3.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10239 \\
2.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10194 \\
2.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10209 \\
2.49 \\
\hline
\end{array}
\] & 54 & 66 & 77 & 80 \\
\hline 1025 & \[
\begin{array}{r}
12684 \\
3.23
\end{array}
\] & \[
\begin{array}{r}
11577 \\
3.16
\end{array}
\] & \[
\begin{array}{r}
10838 \\
3.07
\end{array}
\] & \[
\begin{array}{r}
10608 \\
3.04
\end{array}
\] & \[
\begin{array}{r}
10488 \\
3.01
\end{array}
\] & \[
\begin{array}{r}
10443 \\
2.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10457 \\
2.53
\end{array}
\] & 56 & 68 & 79 & 82 \\
\hline 1050 & \[
\begin{array}{r}
12982 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11851 \\
3.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11095 \\
3.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10860 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10738 \\
3.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10692 \\
3.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10706 \\
2.57 \\
\hline
\end{array}
\] & 57 & 69 & 81 & 84 \\
\hline 1075 & \[
\begin{array}{r}
13279 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12125 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11353 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11113 \\
3.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10988 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10941 \\
3.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10954 \\
3.02 \\
\hline
\end{array}
\] & 58 & 71 & 83 & 86 \\
\hline 1100 & \[
\begin{array}{r}
13577 \\
3.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12399 \\
3.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11610 \\
3.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11366 \\
3.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11238 \\
3.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11190 \\
3.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11202 \\
3.06 \\
\hline
\end{array}
\] & 60 & 73 & 85 & 88 \\
\hline 1125 & \[
\begin{array}{r}
13873 \\
3.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12671 \\
3.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11866 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11617 \\
3.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11485 \\
3.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11436 \\
3.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11449 \\
3.10 \\
\hline
\end{array}
\] & 61 & 74 & 87 & 90 \\
\hline 1150 & \[
\begin{array}{r}
14169 \\
3.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12943 \\
3.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12122 \\
3.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11868 \\
3.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11733 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11683 \\
3.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11695 \\
3.14 \\
\hline
\end{array}
\] & 62 & 76 & 89 & 92 \\
\hline 1175 & \[
\begin{array}{r}
14465 \\
3.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13216 \\
3.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12377 \\
3.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12119 \\
3.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11980 \\
3.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11929 \\
3.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11941 \\
3.18 \\
\hline
\end{array}
\] & 64 & 78 & 90 & 94 \\
\hline 1200 & \[
\begin{array}{r}
14760 \\
3.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13488 \\
3.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12633 \\
3.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12370 \\
3.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12228 \\
3.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12176 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12188 \\
3.22 \\
\hline
\end{array}
\] & 65 & 79 & 92 & 96 \\
\hline 1225 & \[
\begin{array}{r}
15055 \\
4.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13759 \\
3.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12887 \\
3.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12619 \\
3.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12473 \\
3.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12420 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12432 \\
3.27 \\
\hline
\end{array}
\] & 67 & 81 & 94 & 98 \\
\hline 1250 & \[
\begin{array}{r}
15349 \\
4.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14030 \\
3.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13140 \\
3.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12868 \\
3.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12719 \\
3.40
\end{array}
\] & \[
\begin{array}{r}
12665 \\
3.37
\end{array}
\] & \[
\begin{array}{r}
12676 \\
3.31 \\
\hline
\end{array}
\] & 68 & 82 & 96 & 100 \\
\hline 1275 & \[
\begin{array}{r}
15643 \\
4.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14300 \\
4.03 \\
\hline
\end{array}
\] & \(\begin{array}{r}13394 \\ 3.52 \\ \hline\end{array}\) & 13118
3.48 & 12964
3.44 & 12909
3.41 & \[
\begin{array}{r}
12920 \\
3.35 \\
\hline
\end{array}
\] & 69 & 84 & 98 & 102 \\
\hline 1300 & \[
\begin{array}{r}
15937 \\
4.18
\end{array}
\] & \[
\begin{array}{r}
14571 \\
4.08
\end{array}
\] & \[
\begin{array}{r}
13648 \\
3.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13367 \\
3.52
\end{array}
\] & \[
\begin{array}{r}
13210 \\
3.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13154 \\
3.45
\end{array}
\] & \[
\begin{array}{r}
13165 \\
3.39
\end{array}
\] & 71 & 86 & 100 & 104 \\
\hline 1325 & \[
\begin{array}{r}
46230 \\
4.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14840 \\
4.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13900 \\
4.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13615 \\
3.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13453 \\
3.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13397 \\
3.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13407 \\
3.43 \\
\hline
\end{array}
\] & 72 & 87 & 101 & 106 \\
\hline 1350 & 16523
4.27 & 15109
4.17 & 14153
4.05 & 13863
4.01 & 13697
3.58 & \[
\begin{array}{r}
13639 \\
3.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13649 \\
3.47 \\
\hline
\end{array}
\] & 73 & 89 & 103 & 108 \\
\hline 1375 & \[
\begin{array}{r}
16815 \\
4.32
\end{array}
\] & \[
\begin{array}{r}
15378 \\
4.22
\end{array}
\] & \[
\begin{array}{r}
14405 \\
4.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14110 \\
4.05
\end{array}
\] & \[
\begin{array}{r}
13941 \\
4.02
\end{array}
\] & \[
\begin{array}{r}
13882 \\
3.58
\end{array}
\] & \[
\begin{array}{r}
13891 \\
3.52
\end{array}
\] & 75 & 90 & 105 & 110 \\
\hline 1400 & \[
\begin{array}{r}
17108 \\
4.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4.22 \\
\hline 4.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14657 \\
4.14
\end{array}
\] & \[
\begin{array}{r}
14358 \\
4.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7.182 \\
4.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14124 \\
4.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14133 \\
3.56 \\
\hline
\end{array}
\] & 76 & 92 & 107 & 112 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & OBSTACLE STRATEGY & REV 21 & SEO 150 \\
\hline
\end{tabular}

\section*{1. GENERAL}

In order to maintain the highest level possible, the drift down procedure must be used.

The drift-down procedure requires maximum continuous thrust on the remaining engine at green dot speed.
- If, having reached drift-down ceiling altitude, obstacle problem persists, the drift-down procedure is continued to make an ascending cruise.
- If, after drift-down, obstacles are cleared, the subsequent cruise should be made using either, the long range cruise (LRC) by adjusting speed as a function of aircraft weight, or, by maintaining the speed given at the start of the LRC.

Note: Due to the fact that the LRC speed is higher than the drift-down speed, cruise will be made at an altitude lower than the drift down ceiling. (See graph "ONE ENGINE GROSS CEILINGS » 2.16.20 page 1/2).

* IF V/S BECOMES < \(500 \mathrm{Ft} / \mathrm{min}\) SELECT V/S MODE
. EXAMPLE
ASSUMED DATA :

\section*{DRIFT DOWN PROCEDURE IS SELECTED}

Gross weight at engine failure \(=140000 \mathrm{~kg}\)
Flight level at engine failure
Temperature
\(=330\)

Distance to selected airport
= ISA
No wind.
FIND FROM :
2.16.40 page 2 : Initial drift down speed \(=254 \mathrm{kt}\)

Drift down distance \(=312\) NM
Drift down fuel \(=3680 \mathrm{~kg}\) Drift down time \(=52 \mathrm{~min}\) Gross ceiling \(=24200 \mathrm{ft}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & OBSTACLE STRATEGY & REV 21 & SEO 150 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{3}{|c|}{2.16.40} \\
\hline & & PAGE 3 & & \\
\hline & OBSTACLE STRATEGY & REV 20 & & 001 \\
\hline
\end{tabular}

FOR CRUISE AT LONG RANGE SPEED REFER TO 2.16.30 PAGES 3 TO 5

FOR IN CRUISE QUICK CHECK FOR ANY MOMENT IN CRUISE TO LANDING AT LONG RANGE SPEED REFER TO 2.16.30 P 6 and \(7 / 8\).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}

\section*{1. GENERAL}
\(R \quad\) This section provides single engine performance data for
R three fixed speed diversion strategies (fixed descent and
R cruise speed schedules) recommended for ETOPS operation.


\section*{2. EXAMPLE}

ASSUMED DATA :
\(\square\)
Gross weight at engine failure \(=140000 \mathrm{~kg}\)
Flight level at engine failure \(=330\)
Temperature = ISA
Distance to selected airport \(=550 \mathrm{NM}\)
No wind.
Speed selected before dispatch \(=340 \mathrm{kt}\)
Flight level for diversion selected before dispatch \(=180\)

FIND FROM :
2.16.50 page 17

Total flight time \(\simeq 1\) h 25
Total fuel to landing \(\simeq 6578+10 \times 11=6688 \mathrm{~kg}\)

\section*{3. INITIAL DESCENT}

Refer to 2.16 .30 page 2
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{DESCENT M. 80 / 320 KT - 1 ENGINE OUT} \\
\hline \multicolumn{3}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|l|}{MINIMUM RATE OF DESCENT \(=500 \mathrm{FT} / \mathrm{MIN}\)} \\
\hline \[
\begin{gathered}
\hline \text { WEIGHT } \\
(1000 \mathrm{KG})
\end{gathered}
\] & \multicolumn{4}{|c|}{90} & \multicolumn{4}{|c|}{140} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { IAS } \\
& \text { (KT) }
\end{aligned}
\]} \\
\hline FL & \[
\begin{aligned}
& \hline \text { TIME } \\
& \text { (MIN) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FUEL } \\
& (\mathrm{KG})
\end{aligned}
\] & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & MODE & \begin{tabular}{l}
TIME \\
(MIN)
\end{tabular} & \[
\begin{aligned}
& \hline \text { FUEL } \\
& \text { (KG) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { DIST. } \\
& \text { (NM) }
\end{aligned}
\] & MODE & \\
\hline 410 & 51.2 & 3427 & 370 & MCT & & & & & 237 \\
\hline 390 & 49.0 & 3329 & 353 & MCT & & & & & 248 \\
\hline 370 & 46.5 & 3208 & 334 & MCT & 42.2 & 3063 & 300 & MCT & 260 \\
\hline 350 & 43.9 & 3067 & 314 & MCT & 40.9 & 2994 & 290 & MCT & 272 \\
\hline 330 & 41.4 & 2918 & 294 & MCT & 39.3 & 2904 & 279 & MCT & 284 \\
\hline 310 & 38.9 & 2763 & 275 & MCT & 37.6 & 2794 & 265 & MCT & 297 \\
\hline 290 & 36.5 & 2605 & 257 & MCT & 35.7 & 2666 & 250 & MCT & 311 \\
\hline 270 & 34.0 & 2416 & 236 & MCT & 33.4 & 2497 & 232 & MCT & 320 \\
\hline 250 & 30.0 & 2116 & 206 & V/S & 30.0 & 2231 & 206 & V/S & 320 \\
\hline 240 & 28.0 & 1968 & 190 & V/S & 28.0 & 2072 & 190 & V/S & 320 \\
\hline 220 & 24.0 & 1680 & 161 & V/S & 24.0 & 1762 & 161 & V/S & 320 \\
\hline 200 & 20.0 & 1397 & 132 & V/S & 20.0 & 1458 & 132 & V/S & 320 \\
\hline 180 & 16.0 & 1115 & 104 & V/S & 16.0 & 1160 & 104 & V/S & 320 \\
\hline 160 & 12.0 & 835 & 77 & V/S & 12.0 & 865 & 77 & V/S & 320 \\
\hline 140 & 8.0 & 555 & 50 & V/S & 8.0 & 573 & 50 & V/S & 320 \\
\hline 120 & 4.0 & 277 & 25 & V/S & 4.0 & 285 & 25 & V/S & 320 \\
\hline 100 & . 0 & 0 & 0 & V/S & . 0 & 0 & 0 & V/S & 320 \\
\hline CORRE & TIon O & UEL CO & MPTIO & KG) At I & DISTANC & BETWE & L330 A & FL 100 & \\
\hline INITIAL & EIGHT & ENG.AN & CE ON & TOTAL & ICE ON & & ( per & bove IS & \\
\hline 9000 & & & & & & & & & \\
\hline 14000 & & & & & & & NEG & & \\
\hline
\end{tabular}


R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{DESCENT M. 80 / 340 KT - 1 ENGINE OUT} \\
\hline \multicolumn{3}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|l|}{MINIMUM RATE OF DESCENT \(=500\) FT/MIN} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& (1000 \mathrm{KG})
\end{aligned}
\] & \multicolumn{4}{|c|}{90} & \multicolumn{4}{|c|}{140} & \multirow[b]{2}{*}{\begin{tabular}{l}
IAS \\
(KT)
\end{tabular}} \\
\hline FL & TIME (MIN) & FUEL (KG) & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & MODE & TIME (MIN) & FUEL (KG) & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & MODE & \\
\hline 410 & 48.1 & 3529 & 358 & MCT & & & & & 237 \\
\hline 390 & 45.9 & 3431 & 341 & MCT & & & & & 248 \\
\hline 370 & 43.4 & 3309 & 322 & MCT & 39.2 & 3119 & 290 & MCT & 260 \\
\hline 350 & 40.8 & 3169 & 302 & MCT & 38.0 & 3050 & 280 & MCT & 272 \\
\hline 330 & 38.2 & 3019 & 283 & MCT & 36.4 & 2960 & 268 & MCT & 284 \\
\hline 310 & 35.8 & 2865 & 263 & MCT & 34.7 & 2850 & 255 & MCT & 297 \\
\hline 290 & 33.4 & 2707 & 245 & MCT & 32.8 & 2722 & 240 & MCT & 311 \\
\hline 270 & 31.2 & 2544 & 227 & MCT & 30.8 & 2578 & 224 & MCT & 324 \\
\hline 250 & 29.1 & 2381 & 211 & MCT & 28.8 & 2423 & 209 & MCT & 338 \\
\hline 240 & 27.8 & 2270 & 200 & MCT & 27.5 & 2314 & 198 & MCT & 340 \\
\hline 220 & 24.0 & 1944 & 170 & V/S & 24.0 & 2007 & 170 & V/S & 340 \\
\hline 200 & 20.0 & 1610 & 140 & V/S & 20.0 & 1657 & 140 & V/S & 340 \\
\hline 180 & 16.0 & 1285 & 110 & V/S & 16.0 & 1318 & 110 & V/S & 340 \\
\hline 160 & 12.0 & 963 & 81 & V/S & 12.0 & 985 & 81 & V/S & 340 \\
\hline 140 & 8.0 & 641 & 54 & V/S & 8.0 & 654 & 54 & V/S & 340 \\
\hline 120 & 4.0 & 320 & 26 & V/S & 4.0 & 325 & 26 & V/S & 340 \\
\hline 100 & . 0 & 0 & 0 & V/S & . 0 & 0 & 0 & V/S & 340 \\
\hline \multicolumn{10}{|l|}{CORRECTION ON FUEL CONSUMPTION (KG) AT ISO-DISTANCE BETWEEN FL330 AND FL 100 DUE TO} \\
\hline \multicolumn{2}{|l|}{INITIAL WEIGHT} & \multicolumn{2}{|l|}{ENG.ANTI ICE ON} & \multicolumn{2}{|l|}{TOTAL ANTI ICE ON} & \multicolumn{4}{|c|}{\(\triangle I S A\left(\right.\) per \(1^{\circ}\) above ISA )} \\
\hline \multicolumn{2}{|l|}{90000 KG} & \multicolumn{2}{|c|}{30} & \multicolumn{2}{|c|}{90} & \multicolumn{4}{|c|}{NEGLIGIBLE} \\
\hline \multicolumn{2}{|l|}{\[
140000 \text { KG }
\]} & \multicolumn{2}{|c|}{20} & \multicolumn{2}{|c|}{70} & \multicolumn{4}{|c|}{NEGLIGIBLE} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3A} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEO 150 \\
\hline
\end{tabular}

EMERGENCY DESCENT M. 84 / 340 KT - 1 ENGINE OUT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{IDLE THRUST
NORMAL AIR CONDITIONING
ANTI-ICING OFF} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{AIRBRAKES EXTENDED} \\
\hline \[
\begin{array}{c|}
\hline \text { WEIGHT } \\
\text { (1000KG) }) \\
\hline
\end{array}
\] & \multicolumn{4}{|c|}{90} & \multicolumn{4}{|c|}{140} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { IAS } \\
& \text { (KT) }
\end{aligned}
\]} \\
\hline FL & TIME (MIN) & \[
\begin{aligned}
& \hline \text { FUEL } \\
& (\mathrm{KG})
\end{aligned}
\] & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & EPR & \[
\begin{aligned}
& \hline \text { TIME } \\
& (\mathrm{MIN})
\end{aligned}
\] & \[
\begin{gathered}
\text { FUEL } \\
\text { (KG) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { DIST. } \\
& \text { (NM) }
\end{aligned}
\] & EPR & \\
\hline 410 & 3.4 & 25 & 26 & IDLE & & & & & 250 \\
\hline 390 & 3.2 & 24 & 24 & IDLE & & & & & 262 \\
\hline 370 & 3.0 & 22 & 22 & IDLE & 4.1 & 31 & 31 & IDLE & 274 \\
\hline 350 & 2.8 & 21 & 21 & IDLE & 3.9 & 29 & 29 & IDLE & 287 \\
\hline 330 & 2.6 & 20 & 19 & IDLE & 3.7 & 28 & 27 & IDLE & 300 \\
\hline 310 & 2.5 & 19 & 18 & IDLE & 3.5 & 26 & 26 & IDLE & 314 \\
\hline 290 & 2.3 & 18 & 17 & IDLE & 3.3 & 25 & 24 & IDLE & 328 \\
\hline 270 & 2.2 & 16 & 16 & IDLE & 3.1 & 23 & 23 & IDLE & 340 \\
\hline 250 & 1.9 & 15 & 14 & IDLE & 2.8 & 21 & 20 & IDLE & 340 \\
\hline 240 & 1.8 & 14 & 13 & IDLE & 2.6 & 19 & 19 & IDLE & 340 \\
\hline 220 & 1.6 & 11 & 11 & IDLE & 2.2 & 16 & 16 & IDLE & 340 \\
\hline 200 & 1.3 & 9 & 9 & IDLE & 1.9 & 14 & 13 & IDLE & 340 \\
\hline 180 & 1.1 & 7 & 7 & IDLE & 1.5 & 11 & 10 & IDLE & 340 \\
\hline 160 & . 8 & 5 & 5 & IDLE & 1.2 & 8 & 8 & IDLE & 340 \\
\hline 140 & . 5 & 4 & 4 & IDLE & . 8 & 5 & 5 & IDLE & 340 \\
\hline 120 & . 3 & 2 & 2 & IDLE & . 4 & 3 & 3 & IDLE & 340 \\
\hline 100 & . 0 & 0 & 0 & IDLE & . 0 & 0 & 0 & IDLE & 340 \\
\hline
\end{tabular}


D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{CRUISE - MCT/300KT - 1 ENGINE OUT} \\
\hline \multicolumn{9}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\[
\begin{array}{|l|}
\hline \text { EGT }{ }^{\circ} \mathrm{C} \\
\text { EPR } \\
\text { KG/H } \\
\text { NM } / 1000 \mathrm{KG} \\
\hline
\end{array}
\]} \\
\hline WEIGHT
\((1000 \mathrm{KG})\) & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL210} \\
\hline 85 & \[
\begin{aligned}
& \hline 374.193 \\
& \hline 1294 \\
& 81.3 \\
& \hline 8.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& .540 \\
& 345 \\
& 345
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 388 \\
\hline 1.527 \\
4294 \\
86.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .593 \\
& 3701 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& 391 \\
& \begin{array}{l}
3925 \\
4317 \\
87.3
\end{array}, ~
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 3700 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 1395 \\
& 1.293 \\
& 4393 \\
& 88.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& \hline 300 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 3991.35 \\
& 1.362 \\
& 496.0 \\
& \hline 89.0
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& \hline 300 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& 404 \\
& 1.338 \\
& 4386 \\
& 89.9
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 300 \\
& 394
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 410 \\
4.315 \\
4415 \\
906
\end{array}
\] & \[
\begin{aligned}
& .651 \\
& 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 417 \\
& \hline 1.390 \\
& 4492 \\
& 91.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 406
\end{aligned}
\] \\
\hline 90 & \[
\begin{aligned}
& 375 \\
& \hline 1.196 \\
& 4288 \\
& 80.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \hline \\
& 300 \\
& 305
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.1 .263 \\
& 4345 \\
& 85.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& \hline 371 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& \hline 394.281 \\
& 1.269 \\
& 466.3 \\
& 86.3
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& \hline 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& \hline 398 \\
& 1.300 \\
& 4393 \\
& 87.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 615 \\
& \hline 300 \\
& 303
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.223 \\
& 4417 \\
& 87.9
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& \hline 388 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& \hline 407 \\
& 1.347 \\
& 4442 \\
& 88.7
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
639 \\
304 \\
399
\end{array}
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 414 \\
1.374 \\
4478 \\
89.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline .651 \\
& \hline 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 421 \\
& \hline 1.400 \\
& 4490 \\
& 90.4
\end{aligned}
\] & \[
\begin{aligned}
& \hline .664 \\
& \hline 306 \\
& 406
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 377 \\
& 1.200 \\
& 4333 \\
& 79.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& .540 \\
& 345
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 392 \\
\hline 1.270 \\
4400 \\
84.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .593 \\
& \begin{array}{c}
300 \\
377
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 396 \\
& \hline 1.288 \\
& 4486 \\
& 85.2 \\
& 856
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& \hline 400 \\
& 1.309 \\
& 4451 \\
& 86.0
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& 380 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 405 \\
& 1.332 \\
& 4475 \\
& 86.8
\end{aligned}
\] & \[
\begin{array}{r}
.627 \\
\hline 300 \\
388
\end{array}
\] & \[
\begin{aligned}
& 410 \\
& \hline 1.157 \\
& 4506 \\
& 87.5
\end{aligned}
\] & \[
\begin{array}{|c}
.639 \\
300 \\
394
\end{array}
\] & \[
\begin{aligned}
& 418 \\
& \hline 1.35 \\
& 4544 \\
& 88.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& 300 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& 425 \\
& 1.42 \\
& 4560 \\
& 89.1
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 400 \\
& 406
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& \hline 379 \\
& \hline 1.205 \\
& 4301 \\
& 78.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& .300 \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& \hline 394 \\
& \hline 1.76 \\
& 4456 \\
& 83.4 \\
& \hline 8.4
\end{aligned}
\] & \[
\begin{array}{r}
.593 \\
370 \\
377
\end{array}
\] & \[
\begin{aligned}
& 398 \\
& \hline 1.295 \\
& 4483 \\
& 84.1
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& \hline 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& \text { 403 } \\
& 1.37 \\
& 4507 \\
& 84.9
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& \hline 300 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 107 \\
& 1.340 \\
& 4530 \\
& 85.7
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& \hline 300 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& \hline 1.1467 \\
& 4571 \\
& \hline 86.2
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& \hline 304 \\
& 399
\end{aligned}
\] & \[
\begin{aligned}
& 422 \\
& \hline 1.35 \\
& 4610 \\
& 86.0 \\
& \hline 6.8
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& \hline 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 428 \\
& 1.424 \\
& 4628 \\
& 87.8
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 300
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& \hline 381 \\
& \hline 1.1010 \\
& 4433 \\
& 779 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \begin{array}{l}
\text { 300 } \\
345
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 397 \\
& \hline 1.84 \\
& 4516 \\
& 82.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& \hline \\
& 370 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 401 \\
& 1.303 \\
& 4543 \\
& 83.0
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& \hline \\
& 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 105 \\
& \hline 1.525 \\
& 4568 \\
& 83.8
\end{aligned}
\] & \[
\begin{aligned}
& \hline .615 \\
& 380 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 410 \\
& \hline 1.550 \\
& 4595 \\
& 84.5
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
.627 \\
300 \\
388
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 418 \\
& \hline 1.377 \\
& 4639 \\
& 85.0
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 394
\end{aligned}
\] & \[
\begin{aligned}
& 426 \\
& \hline 1.47 \\
& 4678 \\
& 85.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& \hline 800 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 432 \\
& 1.437 \\
& 4699 \\
& 86.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& \hline 006
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 383 \\
& \hline 1.25 \\
& 4490 \\
& 76.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.541 \\
\hline \\
300 \\
305
\end{array}
\] & \[
\begin{array}{|l|l|}
\hline 399 \\
\hline 15991 \\
450.1 \\
81.1 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.593 \\
\hline 301 \\
371
\end{array}
\] & \[
\begin{aligned}
& 404 \\
& 1.312 \\
& 460 \\
& 81.8 \\
& \hline 8
\end{aligned}
\] & \[
\begin{gathered}
.604 \\
\hline 307 \\
377
\end{gathered}
\] & \[
\begin{aligned}
& 108 \\
& 1.335 \\
& 4633 \\
& 82.6
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& \hline 300 \\
& 303
\end{aligned}
\] & \[
\begin{aligned}
& 414 \\
& 1.360 \\
& 4668 \\
& 83.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .620 \\
& .600 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& \hline 422 \\
& 1.388 \\
& 4714 \\
& 83.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 304 \\
& 39
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 430 \\
1.402 \\
4755 \\
84.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline .651 \\
& \hline 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 436 \\
& \hline 1.451 \\
& 4799 \\
& 85.0
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 406
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& 385 \\
& \hline 1.202 \\
& 4540 \\
& 76.0
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 402 \\
& \hline 1.29 \\
& 4645 \\
& 80.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& \hline \\
& 370 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 407 \\
& \hline 1.321 \\
& 4674 \\
& 80.6
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& \hline \\
& 300 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 411 \\
& \hline 1,345 \\
& 4702 \\
& 81.4
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& \hline 300 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 419 \\
& 1,772 \\
& 4748 \\
& 81.8
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& \hline 300 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& \hline 427 \\
& \hline 1.47 \\
& 4795 \\
& 82.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 3904
\end{aligned}
\] & \[
\begin{aligned}
& 434 \\
& \hline 1.434 \\
& 4837 \\
& 82.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& \hline 800 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 440 \\
& \hline 1.467 \\
& 4873 \\
& 83.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 406
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 387 \\
& \hline 1.226 \\
& 4608 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.541 \\
. \\
300 \\
345
\end{array}
\] & \[
\begin{aligned}
& 405 \\
& 1.309 \\
& 4721 \\
& 78.7
\end{aligned}
\] & \[
\begin{gathered}
.593 \\
370 \\
377
\end{gathered}
\] & \[
\begin{aligned}
& 410 \\
& 1.331 \\
& 4750 \\
& 79.4
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 415 \\
& 1.356 \\
& 4784 \\
& \hline
\end{aligned}
\]
\[
\begin{aligned}
& 4804 \\
& 80.0
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& 300 \\
& 303
\end{aligned}
\] & \[
\begin{aligned}
& 423 \\
& \hline 1.38 \\
& 4834 \\
& 80.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& .300 \\
& 388
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 431 \\
1.415 \\
4880 \\
80.8 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 304 \\
& 39
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 138 \\
1.49 \\
4923 \\
81.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .651 \\
& .600 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 445 \\
& \hline 1.485 \\
& 4974 \\
& 81.7
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 406
\end{aligned}
\] \\
\hline 125 & \[
\begin{aligned}
& 389 \\
& \hline 1.23 \\
& 4677 \\
& 73.8 \\
& \hline 18
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \hline \text { So0 } \\
& 345
\end{aligned}
\] & \[
\begin{aligned}
& 409 \\
& \hline 1.39 \\
& 4798 \\
& 77.4 \\
& \hline 19
\end{aligned}
\] & \[
\begin{array}{|c}
.593 \\
370 \\
377
\end{array}
\] & \[
\begin{aligned}
& 413 \\
& \hline 1.32 \\
& 4829 \\
& 78.1
\end{aligned}
\] & \[
\begin{aligned}
& \hline 604 \\
& \hline 800 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 420 \\
& 1.368 \\
& 4874 \\
& 78.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 615 \\
& \hline 380 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& \hline 128 \\
& 1.397 \\
& 4924 \\
& 78.9
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{c}
627 \\
380 \\
388
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 435 \\
& \hline 1.430 \\
& 4971 \\
& 79.3
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 394
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 44264 \\
1.467 \\
5026 \\
79.6 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .651 \\
& 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& \hline 1.503 \\
& 5081 \\
& 79.9
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 406
\end{aligned}
\] \\
\hline 130 & \[
\begin{aligned}
& 392 \\
& \hline 1.240 \\
& 4747 \\
& 72.7
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 412 \\
& \hline 1.30 \\
& 4881 \\
& 76.1
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& \hline \\
& 377 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 147 \\
& 1.354 \\
& 4961 \\
& 76.7
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& \hline 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 425 \\
& \hline 1.31 \\
& 4971 \\
& 77.0
\end{aligned}
\] & \[
\begin{aligned}
& \hline .615 \\
& 300 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 433 \\
& 1.412 \\
& 5021 \\
& 77.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& \hline 380 \\
& 380
\end{aligned}
\] & \[
\begin{aligned}
& \hline 440 \\
& \hline 1.46 \\
& 5068 \\
& 77.8
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 3904
\end{aligned}
\] & \[
\begin{aligned}
& 447 \\
& \hline 1.45 \\
& 5136 \\
& 777.9
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& \hline 80 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 456 \\
& 1.523 \\
& 5200 \\
& 78.1
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& \hline 004 \\
& 406
\end{aligned}
\] \\
\hline 135 & \[
\begin{aligned}
& 395 \\
& 1.247 \\
& 4826 \\
& 71.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.541 \\
\hline \\
345 \\
345
\end{array}
\] & \[
\begin{aligned}
& \hline 416 \\
& 1.31 \\
& 4969 \\
& 74.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{|c}
.593 \\
370 \\
377
\end{array}
\] & \[
\begin{aligned}
& 422 \\
& 1.367 \\
& 5018 \\
& 75.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 3700 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 431 \\
& 1.395 \\
& 5072 \\
& 75.4
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& \hline 300 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 438 \\
& 1.428 \\
& 5120 \\
& 75.8
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& \hline 300 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 .0 \\
& \hline 1465 \\
& 5178 \\
& 76.1
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 304 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 453 \\
& \hline 1.505 \\
& 5253 \\
& 76.2
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& 300 \\
& 300
\end{aligned}
\] & \[
\begin{aligned}
& 462 \\
& \hline 1.545 \\
& 5327 \\
& 76.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 300 \\
& 406
\end{aligned}
\] \\
\hline 140 & \[
\begin{aligned}
& 398 \\
& \hline 1.55 \\
& 4908 \\
& 70.4
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \begin{array}{l}
\text { 300 } \\
345
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 420 \\
& \hline 1.530 \\
& 5062 \\
& 73.4 \\
& \hline 7.4
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& \hline \\
& 370 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 428 \\
& \hline 1.300 \\
& 7122 \\
& 73.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& \hline \\
& 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 436 \\
& 1.41 \\
& 5176 \\
& 73.9
\end{aligned}
\] & \[
\begin{aligned}
& \hline .615 \\
& 380 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 442 \\
& \hline 1.45 \\
& 52426 \\
& 74.3
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
627 \\
300 \\
388
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 1500 \\
& 1.485 \\
& 7300 \\
& 74.4
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 394
\end{aligned}
\] & \[
\begin{aligned}
& 459 \\
& \hline 1.57 \\
& 5388 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& \hline 800 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 463 \\
& 1.558 \\
& 5328 \\
& 74.7
\end{aligned}
\] & \[
\begin{aligned}
& \hline .651 \\
& \hline 298 \\
& 398
\end{aligned}
\] \\
\hline 145 & \[
\begin{aligned}
& 401 \\
& \hline 1.263 \\
& 4995 \\
& 69.1
\end{aligned}
\] & \[
\begin{gathered}
.541 \\
.540 \\
345 \\
345
\end{gathered}
\] & \[
\begin{aligned}
& 425 \\
& 1.367 \\
& 5177 \\
& 71.8
\end{aligned}
\] & \[
\begin{gathered}
.593 \\
370 \\
377
\end{gathered}
\] & \[
\begin{aligned}
& 434 \\
& 1.396 \\
& 5240 \\
& 71.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 441 \\
& 1.429 \\
& 5293 \\
& 72.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& 380 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 448 \\
& \hline 1.46 \\
& 5356 \\
& 725.5
\end{aligned}
\] & \[
\begin{gathered}
.627 \\
380 \\
388
\end{gathered}
\] & \[
\begin{aligned}
& 456 \\
& 1.507 \\
& 5439 \\
& 72.5
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 300 \\
& 394
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 465 \\
1.50 \\
5515 \\
72.3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.649 \\
\hline 299 \\
399
\end{array}
\] & \[
\begin{aligned}
& 464 \\
& 1.568 \\
& 5278 \\
& 73.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .632 \\
& \hline 885 \\
& 387
\end{aligned}
\] \\
\hline 150 & \[
\begin{aligned}
& \hline 104 \\
& \hline 10273 \\
& 67.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \hline \\
& 300 \\
& 305
\end{aligned}
\] & \[
\begin{aligned}
& 431 \\
& \hline 1.382 \\
& 5288 \\
& 70.1 \\
& \hline 0.1
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& \hline \\
& 370 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& \hline 439 \\
& 1.43 \\
& 5361 \\
& 70.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .604 \\
& \hline 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 146 \\
& \hline 1.48 \\
& 5416 \\
& 70.6
\end{aligned}
\] & \[
\begin{aligned}
& \hline 615 \\
& \hline 300 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 1548 \\
& 1.488 \\
& 5406 \\
& 70.7
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
.627 \\
380 \\
388
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 1633 \\
& 1.532 \\
& 7594 \\
& 70.5
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 304 \\
& 3904
\end{aligned}
\] & \[
\begin{aligned}
& 466 \\
& \hline 1.59 \\
& 5470 \\
& 71.0
\end{aligned}
\] & \[
\begin{aligned}
& .632 \\
& .929 \\
& 388
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 464 \\
1.581 \\
5206 \\
71.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .606 \\
& .873 \\
& 371
\end{aligned}
\] \\
\hline 155 & \[
\begin{aligned}
& \hline 408 \\
& 1.282 \\
& 5188 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .541 \\
& \begin{array}{c}
500 \\
335
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 437 \\
& \hline 1.37 \\
& 5424 \\
& 58.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& 370 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& 444 \\
& \hline 1.43 \\
& 5484 \\
& 687 \\
& 68.7
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 300 \\
& 37
\end{aligned}
\] & \[
\begin{aligned}
& 452 \\
& \hline 1.469 \\
& 5.553 \\
& 68.9
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& 380 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 16.1 \\
& \hline 160 \\
& 1.511 \\
& 5642 \\
& 68.8
\end{aligned}
\] & \[
\begin{aligned}
& .627 \\
& \hline 300 \\
& 388 \\
& 380
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& 1.544 \\
& 5582 \\
& 69.1
\end{aligned}
\] & \[
\begin{aligned}
& .625 \\
& \hline 293 \\
& 385
\end{aligned}
\] & \[
\begin{aligned}
& 166 \\
& \hline 1.561 \\
& 5405 \\
& 5905 \\
& \hline 9.1 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
.608 \\
\hline 279 \\
374
\end{gathered}
\] & \[
\begin{aligned}
& 464 \\
& 1.599 \\
& 5099 \\
& 68.0
\end{aligned}
\] & \[
\begin{aligned}
& .567 \\
& \hline 245 \\
& 347
\end{aligned}
\] \\
\hline 160 & \[
\begin{aligned}
& 411 \\
& \hline 1.292 \\
& 5288 \\
& 65.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.541 \\
\hline \\
300 \\
305
\end{array}
\] & \[
\begin{aligned}
& 442 \\
& \hline 1.45 \\
& 5546 \\
& 67.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .593 \\
& \hline 370 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& 1.450 \\
& 5610 \\
& 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 300 \\
& 377
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& 1.492 \\
& 5696 \\
& 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .615 \\
& \hline 380 \\
& 383
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& \hline 1.529 \\
& 5699 \\
& \hline 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .618 \\
& \hline 983 \\
& \hline 98
\end{aligned}
\] & \[
\begin{aligned}
& \hline 465 \\
& \hline 1.56 \\
& 5516 \\
& \hline 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .601 \\
& \hline 281 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& \hline 1.58 \\
& 5313 \\
& 66.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .574 \\
& .83 \\
& 353
\end{aligned}
\] & & \\
\hline \multicolumn{5}{|c|}{Engine
Anti-ice ON} & \multicolumn{4}{|r|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { Total } \\
& \text { Anti-ice } \\
& \text { ON }
\end{aligned}
\]} & \multicolumn{4}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}


D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - MCT/300KT - 1 ENGINE OUT} \\
\hline \multicolumn{5}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\hline \text { ISA }+10 \\
C G=27.0 \%
\end{gathered}
\]} & \[
1000
\] & AS \\
\hline & FL100 & FL150 & FL160 & FL170 & FL180 & FL190 & FL200 & FL210 \\
\hline 85 &  &  &  &  &  & \[
\begin{array}{ll}
433 \\
\hline
\end{array}
\] &  &  \\
\hline 90 &  &  &  &  &  &  &  &  \\
\hline 95 &  &  &  &  &  &  &  &  \\
\hline 100 &  &  &  &  &  &  &  &  \\
\hline 105 &  &  &  &  &  &  &  &  \\
\hline 110 &  &  &  &  &  &  &  &  \\
\hline 115 &  &  &  &  &  &  &  &  \\
\hline 120 &  &  &  &  &  &  &  &  \\
\hline 125 &  &  &  &  &  &  &  &  \\
\hline 130 &  &  &  &  &  &  &  &  \\
\hline 135 &  &  &  &  &  &  &  &  \\
\hline 140 &  &  &  &  &  &  &  &  \\
\hline 145 &  &  &  &  &  &  &  &  \\
\hline 150 &  &  &  &  &  &  &  &  \\
\hline 155 &  &  &  &  &  &  &  &  \\
\hline 160 &  &  &  &  &  &  &  & \\
\hline \multicolumn{3}{|c|}{\[
\begin{aligned}
& \frac{84.9}{\text { Engine }} \\
& \text { Anti-ice } \\
& \text { ON }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Total. } \\
\begin{array}{c}
\text { Thtai-ice } \\
\text { ON }
\end{array}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(3^{\text {a }}\) a \({ }^{\text {a310 }}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
ONE ENGINE INOPERATIVE \\
FIXED SPEED STRATEGY
\end{tabular}} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & & REV 24 & SEO 150 \\
\hline
\end{tabular}



D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{CRUISE - MCT/320KT - 1 ENGINE OUT} \\
\hline \multicolumn{9}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA } \\
C \mathrm{G}=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\[
\begin{array}{|l|}
\hline \text { EGT }{ }^{\circ} \mathrm{C} \\
\text { EPR } \\
\text { KG/H } \\
\text { NM } / 1000 \mathrm{KG} \\
\hline
\end{array}
\]} \\
\hline WEIGHT
\((1000 \mathrm{KG})\) & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL210} \\
\hline 85 & \[
\begin{aligned}
& \hline 392 \\
& 1.222 \\
& 4829 \\
& 76.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline 308 \\
& 368
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 408 \\
1.302 \\
4917 \\
80.4 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 413 \\
& 4.324 \\
& 4924 \\
& 812
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 300 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 417 \\
& 1.36 \\
& \text { 4956 } \\
& \text { 82 }
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline 300 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 423 \\
& 1.370 \\
& 4962 \\
& \hline 83.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.667 \\
\hline 300 \\
413
\end{array}
\] & \[
\begin{aligned}
& 430 \\
& \begin{array}{l}
4.35 \\
4.976 \\
\hline 897
\end{array} \\
& \hline 84 .
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& \hline 320 \\
& 419
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 436 \\
1.423 \\
4999 \\
85.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .692 \\
& \hline 300 \\
& 422
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 444 \\
\hline 1.43 \\
5062 \\
85.9 \\
\hline 85
\end{array}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 332
\end{aligned}
\] \\
\hline 90 & \[
\begin{aligned}
& 393 \\
& \hline 1.226 \\
& 4866 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline \\
& 368 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 41.9 \\
& \hline 1.308 \\
& 4963 \\
& 79.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 41.2 \\
& \hline 1.30 \\
& 4988 \\
& 8084
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 420 \\
& \hline 1.554 \\
& 5050 \\
& 81.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 655 \\
& \hline 300 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 426 \\
& 1.38 \\
& 5018 \\
& 82.3
\end{aligned}
\] & \[
\begin{aligned}
& \hline 667 \\
& \hline 820 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 433 \\
& \hline 1.404 \\
& 5043 \\
& 83.2 \\
& \hline 8.2
\end{aligned}
\] & \[
\begin{aligned}
& \hline 680 \\
& \hline 320 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 440 \\
& \hline 1.43 \\
& 5062 \\
& 54.0 \\
& \hline 84 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& 1447 \\
& \hline 1.465 \\
& 5096 \\
& 84.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 332
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 395 \\
& \hline 1.230 \\
& 4910 \\
& 74.9
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline
\end{aligned} \begin{aligned}
& 320 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 41212 \\
& \hline 1.314 \\
& 5013 \\
& 78.9
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 417 \\
& 1.337 \\
& 5039 \\
& 79.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 123 \\
& 1.362 \\
& 5062 \\
& 80.4
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 1298 \\
& \hline 1.386 \\
& 5076 \\
& 81.4
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& \hline \\
& 320 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 436 \\
& \hline 1.413 \\
& 5096 \\
& 82.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& \hline 320 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 443 \\
& \hline 1.43 \\
& 5123 \\
& 83.0 \\
& \hline 102
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& \hline 320 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& \hline 1.476 \\
& 5165 \\
& 83.6
\end{aligned}
\] & \[
\begin{aligned}
& .700 \\
& .720 \\
& 432
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& 396 \\
& \hline 1,234 \\
& 4953 \\
& 74.3
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& .530 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& 415 \\
& \hline 1.31 \\
& 5066 \\
& 78.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 419 \\
& 1.345 \\
& 5094 \\
& 78.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 426 \\
& \hline 1.370 \\
& 5123 \\
& 79.5
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 433 \\
& 1.395 \\
& 5137 \\
& 80.4
\end{aligned}
\] & \[
\begin{aligned}
& \hline 627 \\
& \hline 307 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 439 \\
& \hline 1,423 \\
& 5159 \\
& 81.2
\end{aligned}
\] & \[
\begin{aligned}
& \hline 680 \\
& \hline 320 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 446 \\
& \hline 1.453 \\
& 5189 \\
& 82.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 692 \\
& \hline 320 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& 454 \\
& 1.488 \\
& 5237 \\
& 82.4
\end{aligned}
\] & \[
\begin{aligned}
& .706 \\
& \hline 220 \\
& 432
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 398 \\
& \hline 1.238 \\
& 5001 \\
& 73.6
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline
\end{aligned} \begin{aligned}
& 320 \\
& 368
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 41729 \\
51324 \\
77.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .631 \\
& \hline 30 \\
& 329
\end{aligned}
\] & \[
\begin{aligned}
& 422 \\
& 1.53 \\
& 5156 \\
& 77.8
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 1330 \\
& \hline 1379 \\
& 51899 \\
& 78.4
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline \\
& 407 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 436 \\
& 1.405 \\
& 5206 \\
& 79.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 627 \\
& \hline 300 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 443 \\
& \hline 1.34 \\
& 5231 \\
& 80.1
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& \hline 320 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& \hline 1.466 \\
& 5271 \\
& 80.7
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& \hline 300 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& 1.501 \\
& 5318 \\
& 81.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 432
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 400 \\
& 1.243 \\
& 5052 \\
& 72.8
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 419 \\
& 1.37 \\
& 5184 \\
& 76.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
\hline 320 \\
395
\end{array}
\] & \[
\begin{aligned}
& 126 \\
& 1.362 \\
& 5222 \\
& 76.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 133 \\
& 1.389 \\
& 5756 \\
& 77.4
\end{aligned}
\] & \[
\begin{aligned}
& \hline 355 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 440 \\
& 1.46 \\
& 7275 \\
& 78.3
\end{aligned}
\] & \[
\begin{array}{r}
.667 \\
\hline 320 \\
413
\end{array}
\] & \[
\begin{aligned}
& 446 \\
& \hline 1.45 \\
& 5302 \\
& 79.1
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& \hline 320 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 454 \\
& \hline 1.49 \\
& 5350 \\
& 79.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& \hline 320 \\
& 425
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 462 \\
1.515 \\
5403 \\
79.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 432
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& 401 \\
& 1.248 \\
& 5102 \\
& 72.2
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline 308 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 422 \\
& \hline 1235 \\
& 5243 \\
& 5754 \\
& \hline 754 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 129 \\
& \hline 1.371 \\
& 5289 \\
& 75.8
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 437 \\
& 1.398 \\
& 5332 \\
& 76.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline 300 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 443 \\
& \hline 1.27 \\
& 5345 \\
& 77.3
\end{aligned}
\] & \[
\begin{aligned}
& \hline 627 \\
& \hline 320 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& \hline 1.457 \\
& 5378 \\
& 777.9
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& \hline \\
& \hline 820 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& \hline 1.492 \\
& 5433 \\
& 78.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 692 \\
& \hline \\
& \hline 820 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& \hline 1.529 \\
& 5991 \\
& 78.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 706 \\
& 320 \\
& 432
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 403 \\
& \hline 1.53 \\
& 5760 \\
& 71.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& .520 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& 425 \\
& \hline 1.533 \\
& 5309 \\
& 74.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
\hline 320 \\
395
\end{array}
\] & \[
\begin{aligned}
& 433 \\
& 1.380 \\
& 5358 \\
& 74.9
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 440 \\
& 1.408 \\
& 5393 \\
& 75.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 446 \\
& 1.488 \\
& 5418 \\
& 76.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.667 \\
\hline 320 \\
413
\end{array}
\] & \[
\begin{aligned}
& 453 \\
& \hline 1.470 \\
& 5463 \\
& 76.7
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& \hline 320 \\
& 41
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 462 \\
1.506 \\
5522 \\
77.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .692 \\
& \hline 320 \\
& 425
\end{aligned}
\] & \[
\begin{array}{|l|l}
\hline 467 \\
1.534 \\
5498 \\
77.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .700 \\
& 317 \\
& 428
\end{aligned}
\] \\
\hline 125 & \[
\begin{aligned}
& 405 \\
& \hline 1.595 \\
& 5224 \\
& 70.4
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline 30 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& 428 \\
& \hline 1.62 \\
& 5383 \\
& 73.4 \\
& \hline 382
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
\hline 320 \\
395
\end{array}
\] & \[
\begin{aligned}
& 437 \\
& 1.390 \\
& 5433 \\
& 73.8
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 443 \\
& \hline 1.420 \\
& 5471 \\
& 74.4
\end{aligned}
\] & \[
\begin{aligned}
& \hline .655 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& \hline 150 \\
& \hline 1.450 \\
& 5498 \\
& 75.1
\end{aligned}
\] & \[
\begin{array}{r}
.667 \\
\hline 320 \\
413
\end{array}
\] & \[
\begin{aligned}
& 457 \\
& \hline 1.84 \\
& 5535 \\
& 75.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.680 \\
\hline 320 \\
419
\end{array}
\] & \[
\begin{aligned}
& 466 \\
& \hline 1.51 \\
& 5619 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& \hline 320 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& \hline 1.539 \\
& 5476 \\
& 77.3
\end{aligned}
\] & \[
\begin{aligned}
& .691 \\
& 3313 \\
& 423
\end{aligned}
\] \\
\hline 130 & \[
\begin{aligned}
& \hline 107 \\
& \hline 1.265 \\
& 5866 \\
& 69.6
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline \\
& 388 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& 432 \\
& \hline 1.322 \\
& 5462 \\
& 72.4
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 441 \\
& \hline 1.41 \\
& 5514 \\
& 72.8
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 1477 \\
& 1.432 \\
& 7533 \\
& 75.3
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 154 \\
& 1.464 \\
& 7539 \\
& 73.9
\end{aligned}
\] & \[
\begin{aligned}
& \hline 667 \\
& \hline 320 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 462 \\
& \hline 1.500 \\
& 5651 \\
& 74.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .680 \\
& \hline 320 \\
& 41
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& \hline 1.53 \\
& 5651 \\
& 74.8
\end{aligned}
\] & \[
\begin{aligned}
& \hline .688 \\
& \hline \\
& 428 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& 466 \\
& 1.544 \\
& 5430 \\
& 760
\end{aligned}
\] & \[
\begin{aligned}
& .681 \\
& 308 \\
& 416
\end{aligned}
\] \\
\hline 135 & \[
\begin{aligned}
& 410 \\
& \hline 1.272 \\
& 5357 \\
& 68.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 437 \\
& \hline 1.83 \\
& 5548 \\
& 71.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
\hline 320 \\
395
\end{array}
\] & \[
\begin{aligned}
& 444 \\
& 1.413 \\
& 5599 \\
& 71.6
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{l}
643 \\
301 \\
401
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 151 \\
& 1.445 \\
& 5640 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .655 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 1458 \\
& 1.479 \\
& 763.5 \\
& \hline 72.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 627 \\
\hline 320 \\
413
\end{array}
\] & \[
\begin{aligned}
& 467 \\
& \hline 1516 \\
& 5759 \\
& 72.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \begin{array}{l}
679 \\
320
\end{array} \\
& \hline 19
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& \hline 1.536 \\
& 561616 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline .678 \\
\hline 318 \\
418
\end{array}
\] & \[
\begin{aligned}
& 465 \\
& 1.550 \\
& 5357 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .638 \\
& .602 \\
& 409
\end{aligned}
\] \\
\hline 140 & \[
\begin{aligned}
& \hline 413 \\
& 1.279 \\
& 5434 \\
& 67.7
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline 300 \\
& 388
\end{aligned}
\] & \[
\begin{aligned}
& 441 \\
& \hline 1.39 \\
& 5637 \\
& 70.1 \\
& \hline 0.1
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 448 \\
& \hline 1.46 \\
& 5689 \\
& 70.5
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline \\
& 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 455 \\
& \hline 15460 \\
& 5739 \\
& 7099
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& \hline 300 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 463 \\
& \hline 1.495 \\
& 5799 \\
& 71.2
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& \hline \\
& 300 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& 466 \\
& \hline 1.521 \\
& 5724 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .670 \\
& \hline \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 466 \\
& \hline 1.52 \\
& 5574 \\
& 73.4 \\
& \hline 7.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline .666 \\
& \hline 307 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& 463 \\
& \hline 1.558 \\
& 5328 \\
& 74.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& \text { 294 } \\
& 398
\end{aligned}
\] \\
\hline 145 & \[
\begin{aligned}
& 41.15 \\
& \hline 1.28 \\
& 5512 \\
& 66.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline
\end{aligned} \begin{gathered}
320 \\
368
\end{gathered}
\] & \[
\begin{aligned}
& 445 \\
& \hline 1.45 \\
& 5731 \\
& 59.0 \\
& \hline 9.0
\end{aligned}
\] & \[
\begin{gathered}
.631 \\
320 \\
395
\end{gathered}
\] & \[
\begin{aligned}
& 452 \\
& 1.40 \\
& 5783 \\
& 59.4 \\
& 59.4
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 300 \\
& 400
\end{aligned}
\] & \begin{tabular}{l}
\begin{tabular}{l}
459 \\
1.476 \\
\hline
\end{tabular} \\
5847 \\
69.6
\end{tabular} & \[
\begin{aligned}
& .655 \\
& \hline 307 \\
& 407
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& \hline 1.506 \\
& 5831 \\
& 70.2
\end{aligned}
\] & \[
\begin{aligned}
& .662 \\
& \hline 317 \\
& 410
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& \hline 1.57 \\
& 5682 \\
& 71.4 \\
& \hline 108
\end{aligned}
\] & \[
\begin{aligned}
& .658 \\
& \hline 309 \\
& 409
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 465 \\
1.50 \\
5515 \\
72.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .649 \\
& \hline 299 \\
& 399
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 1.568 \\
& 5278 \\
& 73.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .632 \\
& \hline 885 \\
& 387
\end{aligned}
\] \\
\hline 150 & \[
\begin{aligned}
& 418 \\
& \hline 1.25 \\
& 5595 \\
& 65.8
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline
\end{aligned} \begin{aligned}
& 320 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 449 \\
& \hline 1.421 \\
& 5829 \\
& 67.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& \text { 456 } \\
& 1.455 \\
& 5886 \\
& 68.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 301 \\
& 401
\end{aligned}
\] & \[
\begin{aligned}
& 463 \\
& \hline 1.991 \\
& 59401 \\
& 68.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 653 \\
\hline 319 \\
40
\end{array}
\] & \[
\begin{aligned}
& 463 \\
& \hline 1.512 \\
& 5789 \\
& 69.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .650 \\
& \hline 301 \\
& 402
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& \hline 1.535 \\
& 5631 \\
& 70.3
\end{aligned}
\] & \[
\begin{aligned}
& .642 \\
& \hline \\
& 301 \\
& 301
\end{aligned}
\] & \[
\begin{aligned}
& 466 \\
& \hline 1.59 \\
& 5470 \\
& 71.0
\end{aligned}
\] & \[
\begin{aligned}
& .632 \\
& \hline 291 \\
& 388
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 464 \\
1.581 \\
5206 \\
71.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .606 \\
& .873 \\
& 371
\end{aligned}
\] \\
\hline 155 & \[
\begin{aligned}
& 421 \\
& \hline 42.304 \\
& 5684 \\
& 64.7
\end{aligned}
\] & \[
\begin{aligned}
& \begin{array}{c}
576 \\
386 \\
368
\end{array}
\end{aligned}
\] & \[
\begin{aligned}
& 453 \\
& \hline 1.43 \\
& 5932 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 461 \\
& \hline 1.172 \\
& 6002 \\
& 66.8 \\
& 668
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline 300 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& \hline 463 \\
& 1.497 \\
& 5996
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& \hline \\
& 394 \\
& 399
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& \hline 1.520 \\
& 5758 \\
& 684 \\
& \hline 68
\end{aligned}
\] & \[
\begin{aligned}
& 635 \\
& \begin{array}{l}
635 \\
393
\end{array} \\
& \hline 39
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& \hline 1.544 \\
& 5582 \\
& 69.1
\end{aligned}
\] & \[
\begin{aligned}
& .625 \\
& \hline 293 \\
& 385
\end{aligned}
\] & \[
\begin{aligned}
& 166 \\
& \hline 1.561 \\
& 5405 \\
& 5905 \\
& \hline 9.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .608 \\
& \hline 274 \\
& 374
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 1.599 \\
& 5099 \\
& 68.0
\end{aligned}
\] & \[
\begin{aligned}
& .567 \\
& \hline 245 \\
& 347
\end{aligned}
\] \\
\hline 160 & \[
\begin{aligned}
& 424 \\
& \hline 1.373 \\
& 5773 \\
& \hline 63.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& \hline
\end{aligned} \begin{aligned}
& 320 \\
& 368
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& \hline 1.40 \\
& 6040 \\
& 65.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& \hline 320 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& 462 \\
& 1.482 \\
& 6025 \\
& 65.8 \\
& \hline 658
\end{aligned}
\] & \[
\begin{aligned}
& .636 \\
& \hline 366 \\
& 397
\end{aligned}
\] & \[
\begin{aligned}
& 463 \\
& \hline 1.54 \\
& 5864 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .629 \\
& 307 \\
& 391
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& \hline 1.529 \\
& 5699 \\
& \hline 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .618 \\
& \hline 983 \\
& \hline 98
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& \hline 1.56 \\
& 5516 \\
& 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .601 \\
& \hline 281 \\
& 371
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& \hline 1.58 \\
& 5313 \\
& 66.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .574 \\
& \hline 263 \\
& 353
\end{aligned}
\] & & \\
\hline \multicolumn{5}{|c|}{Engine
Anti-ice ON} & \multicolumn{4}{|r|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { Total } \\
& \text { Anti-ice } \\
& \text { ON }
\end{aligned}
\]} & \multicolumn{4}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(3^{\text {a }}\) a \({ }^{\text {a310 }}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
ONE ENGINE INOPERATIVE \\
FIXED SPEED STRATEGY
\end{tabular}} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & & REV 24 & SEO 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{CRUISE - MCT/320KT - 1 ENGINE OUT} \\
\hline \multicolumn{9}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA+10 } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H & TAS \\
NM \(/ 1000\) KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& \text { (1000KG) }
\end{aligned}
\] & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL210} \\
\hline 85 & \[
\begin{aligned}
& \hline 419 \\
& 1.223 \\
& 4956 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& \hline 437 \\
& 1.304 \\
& 5050 \\
& 79.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 442 \\
& 1.326 \\
& 5075 \\
& 80.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& 447 \\
& 1.349 \\
& 5089 \\
& 81.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& \hline 453 \\
& 1.373 \\
& 5102 \\
& 82.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 461 \\
& 1.398 \\
& 5118 \\
& 83.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 1.427 \\
& 5143 \\
& 84.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 476 \\
1.457 \\
5174 \\
85.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 440
\end{aligned}
\] \\
\hline 90 & \[
\begin{aligned}
& \hline 420 \\
& 1.227 \\
& 4997 \\
& 75.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& 439 \\
& 1.310 \\
& 5097 \\
& 79.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& 320 \\
& 403
\end{aligned}
\] & \[
\begin{aligned}
& 444 \\
& 1.333 \\
& 5123 \\
& 79.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.643 \\
320 \\
409
\end{array}
\] & \[
\begin{aligned}
& 450 \\
& 1.356 \\
& 5144 \\
& 80.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.655 \\
320 \\
415 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 457 \\
& 1.381 \\
& 5158 \\
& 81.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 464 \\
& 1.407 \\
& 5178 \\
& 82.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 471 \\
& 1.436 \\
& 5207 \\
& 83.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 479 \\
1.469 \\
5245 \\
84.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 440 \\
& \hline 700
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& \hline 422 \\
& 1.231 \\
& 5039 \\
& 74.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 441 \\
& 1.317 \\
& 5148 \\
& 78.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& 320 \\
& 403
\end{aligned}
\] & \[
\begin{aligned}
& 446 \\
& 1.340 \\
& 5176 \\
& 79.0
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 453 \\
& 1.364 \\
& 5202 \\
& 79.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& \hline 460 \\
& 1.389 \\
& 5218 \\
& 80.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 467 \\
& 1.417 \\
& 5241 \\
& 81.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 474 \\
& 1.446 \\
& 5271 \\
& 82.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 483 \\
1.480 \\
5315 \\
82.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 440
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& \hline 423 \\
& 1.235 \\
& 5083 \\
& 73.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& \hline 443 \\
& 1.324 \\
& 5203 \\
& 77.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 449 \\
& 1.347 \\
& 5232 \\
& 78.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 456 \\
& 1.373 \\
& 5264 \\
& 78.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& \hline 464 \\
& 1.398 \\
& 5281 \\
& 79.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 470 \\
& 1.427 \\
& 5305 \\
& 80.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
680 \\
320 \\
427
\end{array}
\] & \[
\begin{aligned}
& \hline 478 \\
& 1.457 \\
& 5340 \\
& 81.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 486 \\
1.492 \\
5389 \\
81.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 440
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& \hline 425 \\
& 1.240 \\
& 5131 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& \hline 446 \\
& 1.331 \\
& 5262 \\
& 76.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 452 \\
& 1.356 \\
& 5297 \\
& 77.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 460 \\
& 1.382 \\
& 5332 \\
& 77.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& \hline 467 \\
& 1.409 \\
& 5351 \\
& 78.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 474 \\
& 1.438 \\
& 5378 \\
& 79.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
680 \\
320 \\
427
\end{array}
\] & \[
\begin{aligned}
& 482 \\
& 1.470 \\
& 5424 \\
& 80.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 491 \\
1.505 \\
5473 \\
80.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 440
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& \hline 427 \\
& 1.244 \\
& 5184 \\
& 72.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& 449 \\
& 1.339 \\
& 5323 \\
& 75.7
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 455 \\
& 1.365 \\
& 5365 \\
& 76.2
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 1.391 \\
& 5401 \\
& 76.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 470 \\
& 1.419 \\
& 5422 \\
& 77.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 477 \\
& 1.449 \\
& 5451 \\
& 78.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 486 \\
& 1.483 \\
& 5505 \\
& 78.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{aligned}
& \hline 495 \\
& 1.519 \\
& 5561 \\
& 79.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .706 \\
& 320 \\
& 440
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& \hline 428 \\
& 1.249 \\
& 5236 \\
& 71.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 451 \\
& 1.347 \\
& 5384 \\
& 74.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& 320 \\
& 403
\end{aligned}
\] & \[
\begin{aligned}
& 459 \\
& 1.373 \\
& 5433 \\
& 75.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.401 \\
& 5470 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 474 \\
& 1.430 \\
& 5494 \\
& 76.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 481 \\
& 1.461 \\
& 5532 \\
& 77.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& 1.496 \\
& 5590 \\
& 77.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 499 \\
1.532 \\
5639 \\
78.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .705 \\
& 320 \\
& 440
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 430 \\
& 1.255 \\
& 5296 \\
& 70.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& 454 \\
& 1.355 \\
& 5453 \\
& 73.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 463 \\
& 1.383 \\
& 5504 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.643 \\
320 \\
409
\end{array}
\] & \[
\begin{aligned}
& 471 \\
& 1.411 \\
& 5542 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 477 \\
& 1.441 \\
& 5569 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 485 \\
& 1.474 \\
& 5618 \\
& 76.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 494 \\
& 1.510 \\
& 5682 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{aligned}
& \hline 499 \\
& 1.535 \\
& 5624 \\
& 77.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
698 \\
316 \\
435
\end{array}
\] \\
\hline 125 & \[
\begin{aligned}
& \hline 433 \\
& 1.261 \\
& 5361 \\
& 69.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& 1.365 \\
& 5529 \\
& 72.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 467 \\
& 1.393 \\
& 5580 \\
& 73.3
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& 474 \\
& 1.423 \\
& 5621 \\
& 73.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 481 \\
& 1.454 \\
& 5654 \\
& 74.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 489 \\
& 1.488 \\
& 5711 \\
& 74.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 499 \\
& 1.525 \\
& 5781 \\
& 75.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 320 \\
& 434
\end{aligned}
\] & \[
\begin{aligned}
& \hline 498 \\
& 1.540 \\
& 5592 \\
& 76.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
689 \\
312 \\
430
\end{array}
\] \\
\hline 130 & \[
\begin{aligned}
& \hline 435 \\
& 1.267 \\
& 5425 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& 462 \\
& 1.375 \\
& 5610 \\
& 71.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 471 \\
& 1.404 \\
& 5663 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 478 \\
& 1.435 \\
& 5706 \\
& 72.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 485 \\
& 1.468 \\
& 5750 \\
& 73.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 494 \\
& 1.503 \\
& 5813 \\
& 73.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 320 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 1.532 \\
& 5780 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .686 \\
& 317 \\
& 430
\end{aligned}
\] & \[
\begin{aligned}
& \hline 497 \\
& 1.545 \\
& 5554 \\
& 76.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .678 \\
& 307 \\
& 423
\end{aligned}
\] \\
\hline 135 & \[
\begin{aligned}
& \hline 437 \\
& 1.274 \\
& 5497 \\
& 68.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& 467 \\
& 1.385 \\
& 5698 \\
& 70.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 475 \\
& 1.416 \\
& 5750 \\
& 71.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.643 \\
320 \\
409
\end{array}
\] & \[
\begin{aligned}
& 482 \\
& 1.448 \\
& 5795 \\
& 71.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& 490 \\
& 1.483 \\
& 5853 \\
& 72.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 498 \\
& 1.517 \\
& 5890 \\
& 72.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
677 \\
319 \\
426
\end{array}
\] & \[
\begin{aligned}
& 499 \\
& 1.537 \\
& 5744 \\
& 73.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.676 \\
312 \\
423
\end{array}
\] & \[
\begin{array}{|l}
\hline 496 \\
1.551 \\
5510 \\
75.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 666 \\
& 301 \\
& 416
\end{aligned}
\] \\
\hline 140 & \[
\begin{aligned}
& \hline 440 \\
& 1.281 \\
& 5576 \\
& 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& \hline 471 \\
& 1.397 \\
& 5789 \\
& 69.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 479 \\
& 1.429 \\
& 5842 \\
& 70.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 486 \\
& 1.463 \\
& 5899 \\
& 70.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 415
\end{aligned}
\] & \[
\begin{aligned}
& \hline 494 \\
& 1.499 \\
& 5962 \\
& 70.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .667 \\
& 320 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& \hline 497 \\
& 1.522 \\
& 5853 \\
& 71.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 667 \\
& 314 \\
& 420
\end{aligned}
\] & \[
\begin{aligned}
& 498 \\
& 1.543 \\
& 5701 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .664 \\
& 306 \\
& 416
\end{aligned}
\] & \[
\begin{array}{|l}
\hline 495 \\
1.560 \\
5451 \\
74.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 648 \\
& 293 \\
& 405
\end{aligned}
\] \\
\hline 145 & \[
\begin{aligned}
& \hline 443 \\
& 1.288 \\
& 5655 \\
& 66.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .576 \\
& 320 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& \hline 475 \\
& 1.409 \\
& 5885 \\
& 68.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 483 \\
& 1.443 \\
& 5939 \\
& 68.8
\end{aligned}
\] & \[
\begin{array}{r}
.643 \\
320 \\
409
\end{array}
\] & \[
\begin{aligned}
& \hline 491 \\
& 1.479 \\
& 6009 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.655 \\
320 \\
415
\end{array}
\] & \[
\begin{aligned}
& 495 \\
& 1.507 \\
& 5963 \\
& 69.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.659 \\
316 \\
416
\end{array}
\] & \[
\begin{aligned}
& 496 \\
& 1.528 \\
& 5810 \\
& 71.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 308 \\
& 412
\end{aligned}
\] & \[
\begin{aligned}
& 497 \\
& 1.551 \\
& 5643 \\
& 71.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .647 \\
& 298 \\
& 405
\end{aligned}
\] & \begin{tabular}{l}
495 \\
1.569 \\
5399 \\
72.8 \\
\hline
\end{tabular} & \[
\begin{array}{r}
630 \\
284 \\
393
\end{array}
\] \\
\hline 150 & \[
\begin{aligned}
& \hline 446 \\
& 1.296 \\
& 5741 \\
& 65.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& \hline 480 \\
& 1.423 \\
& 5986 \\
& 67.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .631 \\
& 320 \\
& 403
\end{aligned}
\] & \[
\begin{aligned}
& \hline 487 \\
& 1.458 \\
& 6047 \\
& 67.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& 493 \\
& 1.492 \\
& 6074 \\
& 68.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.651 \\
318 \\
413
\end{array}
\] & \[
\begin{aligned}
& \hline 494 \\
& 1.513 \\
& 5922 \\
& 69.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .647 \\
& 310 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 496 \\
& 1.536 \\
& 5760 \\
& 69.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 640 \\
& 300 \\
& 402
\end{aligned}
\] & \[
\begin{aligned}
& 497 \\
& 1.560 \\
& 5596 \\
& 70.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .630 \\
& 290 \\
& 395
\end{aligned}
\] & \[
\begin{aligned}
& \hline 496 \\
& 1.583 \\
& 5324 \\
& 70.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\hline 603 \\
271 \\
376
\end{array}
\] \\
\hline 155 & \[
\begin{aligned}
& \hline 449 \\
& 1.305 \\
& 5832 \\
& 64.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& \hline 484 \\
& 1.438 \\
& 6090 \\
& 66.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& 492 \\
& 1.475 \\
& 6165 \\
& 66.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .643 \\
& 320 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& 493 \\
& 1.498 \\
& 6040 \\
& 67.2
\end{aligned}
\] & \[
\begin{aligned}
& .641 \\
& 313 \\
& 406
\end{aligned}
\] & \[
\begin{aligned}
& \hline 495 \\
& 1.521 \\
& 5879 \\
& 68.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .633 \\
& 303 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 496 \\
& 1.545 \\
& 5709 \\
& 68.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .623 \\
& 292 \\
& 392
\end{aligned}
\] & \[
\begin{aligned}
& 498 \\
& 1.573 \\
& 5528 \\
& 68.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.605 \\
278 \\
379
\end{array}
\] & \[
\begin{array}{|l|}
\hline 496 \\
1.602 \\
5211 \\
67.4 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
563 \\
252 \\
351
\end{array}
\] \\
\hline \[
160
\] & \[
\begin{aligned}
& 453 \\
& 1.315 \\
& 5923 \\
& 63.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.576 \\
320 \\
375
\end{array}
\] & \[
\begin{aligned}
& \hline 488 \\
& 1.453 \\
& 6204 \\
& 64.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
403
\end{array}
\] & \[
\begin{aligned}
& \hline 493 \\
& 1.483 \\
& 6162 \\
& 65.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.634 \\
315 \\
403
\end{array}
\] & \[
\begin{aligned}
& 494 \\
& 1.505 \\
& 5998 \\
& 66.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.627 \\
306 \\
397
\end{array}
\] & \[
\begin{aligned}
& 495 \\
& 1.530 \\
& 5828 \\
& 66.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .616 \\
& 294 \\
& 389
\end{aligned}
\] & \[
\begin{aligned}
& 496 \\
& 1.558 \\
& 5642 \\
& 66.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .598 \\
& 280 \\
& 376
\end{aligned}
\] & \[
\begin{aligned}
& 498 \\
& 1.590 \\
& 5432 \\
& 65.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.571 \\
261 \\
358
\end{array}
\] & & \\
\hline \multicolumn{5}{|c|}{Engine Anti-ice ON} & \multicolumn{4}{|c|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{4}{|c|}{Total Anti-ice ON} & \multicolumn{4}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}


D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - MCT/320KT - 1 ENGINE OUT} \\
\hline \multicolumn{5}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { ISA }+20 \\
C G=27.0 \%
\end{gathered}
\]} & \[
\begin{aligned}
& \text { V/F/ } / 100 \\
& \hline
\end{aligned}
\] & AS \\
\hline WEIGHT & FL100 & FL150 & FL160 & FL170 & FL180 & FL190 & FL200 & FL210 \\
\hline 85 &  &  &  &  &  & \[
\begin{array}{ll}
49.20 \\
\hline
\end{array}
\] &  & \[
\begin{aligned}
& \text { 508 } \\
& \hline
\end{aligned}
\] \\
\hline 90 &  &  &  &  &  &  &  &  \\
\hline 95 &  &  &  &  &  &  &  &  \\
\hline 100 &  &  &  &  &  &  &  &  \\
\hline 105 &  &  &  &  &  &  &  &  \\
\hline 110 &  &  &  &  &  &  &  &  \\
\hline 115 &  &  &  &  &  &  &  &  \\
\hline 120 &  &  &  &  &  &  &  &  \\
\hline 125 &  &  &  &  &  &  &  &  \\
\hline 130 &  &  &  &  &  &  &  &  \\
\hline 135 &  &  &  &  &  &  &  &  \\
\hline 140 &  &  &  &  &  &  &  &  \\
\hline 145 &  &  &  &  &  &  &  &  \\
\hline 150 &  &  &  &  &  &  &  &  \\
\hline 155 &  &  &  &  &  &  &  & \\
\hline 160 &  &  & \[
\begin{array}{|l|l|}
\hline 1.450 \\
\hline
\end{array} .
\] &  &  &  & & \\
\hline \multicolumn{3}{|c|}{\[
\begin{aligned}
& \frac{\text { 22.8 }}{\text { Engine }} \\
& \text { Anti-ice } \\
& \text { ON }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Total. } \\
\text { Anti-ice } \\
\text { ON } \\
\hline
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\triangle \mathrm{FUEL}=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(3^{\text {a }}\) a 310} & \multirow[t]{3}{*}{\begin{tabular}{l}
ONE ENGINE INOPERATIVE \\
FIXED SPEED STRATEGY
\end{tabular}} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10} \\
\hline & & REV 24 & SEO 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{CRUISE - MCT/340KT - 1 ENGINE OUT} \\
\hline \multicolumn{9}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H & TAS \\
NM \(/ 1000\) KG & \\
\hline
\end{tabular}} \\
\hline WEIGHT
(1000KG) & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL210} \\
\hline 85 & \[
\begin{aligned}
& \hline 411 \\
& 1.257 \\
& 5486 \\
& 71.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 430 \\
& 1.354 \\
& 5562 \\
& 75.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 437 \\
& 1.378 \\
& 5574 \\
& 76.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& \hline 443 \\
& 1.403 \\
& 5591 \\
& 77.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& \hline 450 \\
& 1.431 \\
& 5618 \\
& 77.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .707 \\
& 340 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& 458 \\
& 1.464 \\
& 5650 \\
& 78.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
720 \\
340 \\
444
\end{array}
\] & \[
\begin{aligned}
& \hline 467 \\
& 1.505 \\
& 5722 \\
& 78.7 \\
& \hline
\end{aligned}
\] & .733
340
450 & \begin{tabular}{l}
165 \\
1.514 \\
5528 \\
81.2 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 734 \\
& 334 \\
& 449
\end{aligned}
\] \\
\hline 90 & \begin{tabular}{l}
412 \\
1.261 \\
5524 \\
70.7 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 432 \\
& 1.360 \\
& 5608 \\
& 74.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 439 \\
& 1.384 \\
& 5622 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
\hline 340 \\
425
\end{array}
\] & \[
\begin{aligned}
& 446 \\
& 1.410 \\
& 5642 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& \hline 452 \\
& 1.438 \\
& 5668 \\
& 77.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 707 \\
& 340 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& 460 \\
& 1.471 \\
& 5701 \\
& 77.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 720 \\
& 340 \\
& 444
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.506 \\
& 5722 \\
& 78.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.731 \\
339 \\
449
\end{array}
\] & 465
1.517
5527
80.9 & \[
\begin{aligned}
& 731 \\
& 332 \\
& 447
\end{aligned}
\] \\
\hline 95 & \[
\begin{aligned}
& 413 \\
& 1.265 \\
& 5566 \\
& 70.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& 435 \\
& 1.366 \\
& 5658 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
419
\end{array}
\] & \[
\begin{aligned}
& 442 \\
& 1.391 \\
& 5673 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& 448 \\
& 1.417 \\
& 5698 \\
& 75.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.694 \\
340 \\
431
\end{array}
\] & \[
\begin{aligned}
& 455 \\
& 1.446 \\
& 5724 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 707 \\
& 340 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& 463 \\
& 1.480 \\
& 5760 \\
& 77.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 720 \\
& 340 \\
& 444
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.509 \\
& 5721 \\
& 78.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .727 \\
& 337 \\
& 447
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 466 \\
1.519 \\
5526 \\
80.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 727 \\
& 330 \\
& 445
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& 415 \\
& 1.269 \\
& 5611 \\
& 69.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& 438 \\
& 1.373 \\
& 5713 \\
& 73.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 445 \\
& 1.398 \\
& 5731 \\
& 74.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .681 \\
& 340 \\
& 425
\end{aligned}
\] & \[
\begin{aligned}
& 451 \\
& 1.426 \\
& 5759 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 431
\end{aligned}
\] &  & \[
\begin{aligned}
& 707 \\
& 340 \\
& 438
\end{aligned}
\] &  & \[
\begin{aligned}
& 720 \\
& 340 \\
& 444
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 1.511 \\
& 5721 \\
& 77.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .724 \\
& 335 \\
& 445
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 466 \\
1.522 \\
5525 \\
80.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 723 \\
& .729 \\
& 443
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& 416 \\
& 1.274 \\
& 5658 \\
& 69.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& 440 \\
& 1.381 \\
& 5771 \\
& 72.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 447 \\
& 1.406 \\
& 5792 \\
& 73.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& 454 \\
& 1.435 \\
& 5824 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.694 \\
340 \\
431
\end{array}
\] & \begin{tabular}{l}
461 \\
1.466 \\
5862 \\
74.6 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 707 \\
& 340 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.496 \\
& 5855 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 717 \\
& 339 \\
& 442
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 1.514 \\
& 5720 \\
& 77.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .720 \\
& 334 \\
& 442
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 467 \\
1.524 \\
5523 \\
79.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 719 \\
& 326 \\
& 440
\end{aligned}
\] \\
\hline 110 & \[
\begin{aligned}
& 418 \\
& 1.278 \\
& 5708 \\
& 68.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.612 \\
340 \\
390
\end{array}
\] & \[
\begin{aligned}
& 443 \\
& 1.388 \\
& 5831 \\
& 71.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& 1.415 \\
& 5854 \\
& 72.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& 457 \\
& 1.443 \\
& 5885 \\
& 72 ?
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& \hline 464 \\
& 1.476 \\
& 5931 \\
& 73.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .707 \\
& 340 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.499 \\
& 5848 \\
& 75.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.713 \\
336 \\
440
\end{array}
\] & \[
\begin{aligned}
& 468 \\
& 1.517 \\
& 5714 \\
& 76.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .715 \\
& 331 \\
& 439
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 467 \\
1.528 \\
5515 \\
79.1 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 713 \\
& 324 \\
& 436
\end{aligned}
\] \\
\hline 115 & \[
\begin{aligned}
& 420 \\
& 1.283 \\
& 5761 \\
& 67.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 447 \\
& 1.396 \\
& 5895 \\
& 71.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 453 \\
& 1.424 \\
& 5920 \\
& 71.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& \hline 460 \\
& 1.453 \\
& 5956 \\
& 72.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& \hline 467 \\
& 1.484 \\
& 5977 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 705 \\
& 339 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 1.502 \\
& 5841 \\
& 74.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 707 \\
& 334 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& 469 \\
& 1.520 \\
& 5706 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 709 \\
& 328 \\
& 436
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 467 \\
1.531 \\
5507 \\
78.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 707 \\
& 320 \\
& 432
\end{aligned}
\] \\
\hline 120 & \[
\begin{aligned}
& 422 \\
& 1.289 \\
& 5819 \\
& 67.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& 450 \\
& 1.405 \\
& 5966 \\
& 70.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 456 \\
& 1.433 \\
& 5994 \\
& 70.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& \hline 463 \\
& 1.464 \\
& 6039 \\
& 71.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& \hline 467 \\
& 1.487 \\
& 5968 \\
& 72.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 700 \\
& 336 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 1.505 \\
& 5834 \\
& 74.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 702 \\
& 331 \\
& 433
\end{aligned}
\] & \[
\begin{aligned}
& 469 \\
& 1.523 \\
& 5699 \\
& 75.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .703 \\
& 325 \\
& 432
\end{aligned}
\] & \begin{tabular}{l}
167 \\
1.534 \\
5498 \\
77.9 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 700 \\
& 317 \\
& 428
\end{aligned}
\] \\
\hline 125 & \[
\begin{aligned}
& 424 \\
& 1.295 \\
& 5878 \\
& 66.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 453 \\
& 1.414 \\
& 6035 \\
& 69.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& \hline 459 \\
& 1.443 \\
& 6065 \\
& 70.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& \hline 465 \\
& 1.472 \\
& 6078 \\
& 70.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 339 \\
& 430
\end{aligned}
\] & \[
\begin{aligned}
& \hline 467 \\
& 1.490 \\
& 5947 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 694 \\
& 333 \\
& 430
\end{aligned}
\] &  & \[
\begin{aligned}
& 695 \\
& 328 \\
& 429
\end{aligned}
\] & \[
\begin{aligned}
& 469 \\
& 1.526 \\
& 5682 \\
& 753
\end{aligned}
\] & .696
322
428 & \[
\begin{array}{|l|}
\hline 467 \\
1.539 \\
5467 \\
77.3
\end{array}
\] & \[
\begin{aligned}
& 691 \\
& 313 \\
& 423
\end{aligned}
\] \\
\hline 130 & \[
\begin{aligned}
& 426 \\
& 1.300 \\
& 5937 \\
& 65.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 456 \\
& 1.424 \\
& 6106 \\
& 68.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
419
\end{array}
\] & \[
\begin{aligned}
& 462 \\
& 1.453 \\
& 6141 \\
& 69.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
681 \\
340 \\
425
\end{array}
\] & \[
\begin{aligned}
& \hline 465 \\
& 1.475 \\
& 6058 \\
& 70.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .686 \\
& 336 \\
& 426
\end{aligned}
\] & 466
1.493
5924
71.9 & \[
\begin{aligned}
& 687 \\
& 330 \\
& 426
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.512 \\
& 5790 \\
& 73.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 688 \\
& 324 \\
& 424
\end{aligned}
\] & \[
\begin{aligned}
& 468 \\
& 1.531 \\
& 5651 \\
& 74.8 \\
& \hline
\end{aligned}
\] & .688
318
422 & \[
\begin{array}{|l|}
\hline 466 \\
1.544 \\
5430 \\
76.7 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 681 \\
& 308 \\
& 416
\end{aligned}
\] \\
\hline 135 & \[
\begin{aligned}
& 428 \\
& 1.307 \\
& 5998 \\
& 65.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 459 \\
& 1.434 \\
& 6181 \\
& 67.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
419
\end{array}
\] & \[
\begin{aligned}
& \hline 464 \\
& 1.460 \\
& 6168 \\
& 68.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.678 \\
338 \\
423
\end{array}
\] & \[
\begin{aligned}
& 465 \\
& 1.478 \\
& 6034 \\
& 70.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .679 \\
& 333 \\
& 422
\end{aligned}
\] & \[
\begin{aligned}
& \hline 466 \\
& 1.497 \\
& 5898 \\
& 71.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .680 \\
& 327 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.516 \\
& 5759 \\
& 72.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .679 \\
& 320 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 467 \\
& 1.536 \\
& 5616 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .678 \\
& 313 \\
& 416
\end{aligned}
\] & \[
\begin{aligned}
& \hline 465 \\
& 1.550 \\
& 5387 \\
& 75.9 \\
& \hline
\end{aligned}
\] & 668
302
409 \\
\hline 140 & \[
\begin{aligned}
& \hline 430 \\
& 1.313 \\
& 6063 \\
& 64.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 462 \\
& 1.444 \\
& 6259
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
419
\end{array}
\] & \begin{tabular}{l}
463 \\
1.463 \\
6145 \\
68.2
\end{tabular} & \[
\begin{array}{r}
672 \\
335 \\
419
\end{array}
\] & \[
\begin{aligned}
& \hline 464 \\
& 1.482 \\
& 6007 \\
& 69.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.672 \\
329 \\
418
\end{array}
\] & \[
\begin{aligned}
& 465 \\
& 1.501 \\
& 5866
\end{aligned}
\] & .671
322
416 & \[
\begin{aligned}
& \hline 466 \\
& 1.521 \\
& 5724 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 670 \\
& 315 \\
& 413
\end{aligned}
\] & \[
\begin{aligned}
& \hline 466 \\
& 1.542 \\
& 5574 \\
& 73.4 \\
& \hline
\end{aligned}
\] & .666
307
409 & \begin{tabular}{l}
463 \\
1.558 5328 \\
74.7
\end{tabular} & \[
\begin{aligned}
& 651 \\
& 294 \\
& 398
\end{aligned}
\] \\
\hline 145 & \[
\begin{aligned}
& 432 \\
& 1.321 \\
& 6130 \\
& 63.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.612 \\
340 \\
390
\end{array}
\] & \[
\begin{aligned}
& 462 \\
& 1.448 \\
& 6242 \\
& 66.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.663 \\
337 \\
415
\end{array}
\] & \[
\begin{aligned}
& \hline 463 \\
& 1.467 \\
& 6118 \\
& 67.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.664 \\
331 \\
414
\end{array}
\] & \[
\begin{aligned}
& \hline 464 \\
& 1.486 \\
& 5976 \\
& 69.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.663 \\
324 \\
412
\end{array}
\] & \[
\begin{aligned}
& 464 \\
& 1.506 \\
& 5831 \\
& 70.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .662 \\
& 317 \\
& 410
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& 1.527 \\
& 5682 \\
& 71.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .658 \\
& 309 \\
& 406
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& 1.550 \\
& 5515 \\
& 72.3 \\
& \hline
\end{aligned}
\] & .649
299
399 & \[
\begin{array}{|l|}
\hline 464 \\
1.568 \\
5278 \\
73.3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 632 \\
& 285 \\
& 387
\end{aligned}
\] \\
\hline 150 & 435
1.328
6202
62.9 & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& \hline 462 \\
& 1.452 \\
& 6217 \\
& 66.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 333 \\
& 411
\end{aligned}
\] & \[
\begin{aligned}
& \hline 463 \\
& 1.471 \\
& 6087 \\
& 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 327 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 463 \\
& 1.491 \\
& 5940 \\
& 68.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.653 \\
319 \\
406
\end{array}
\] & \[
\begin{aligned}
& \hline 463 \\
& 1.512 \\
& 5789 \\
& 69.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
650 \\
311 \\
402
\end{array}
\] & \[
\begin{aligned}
& \hline 464 \\
& 1.535 \\
& 5631 \\
& 70.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 642 \\
& 301 \\
& 396
\end{aligned}
\] & \[
\begin{aligned}
& \hline 466 \\
& 1.559 \\
& 5470 \\
& 71.0 \\
& \hline
\end{aligned}
\] & .632
291
388 & \[
\begin{array}{|l|}
\hline 464 \\
1.581 \\
5206 \\
71.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 606 \\
& 273 \\
& 371
\end{aligned}
\] \\
\hline 155 & \[
\begin{aligned}
& \hline 437 \\
& 1.336 \\
& 6280 \\
& 62.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 340 \\
& 390
\end{aligned}
\] & \[
\begin{aligned}
& 461 \\
& 1.456 \\
& 6191 \\
& 65.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.647 \\
329 \\
405
\end{array}
\] & \[
\begin{aligned}
& 462 \\
& 1.476 \\
& 6056 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.646 \\
322 \\
403
\end{array}
\] & \[
\begin{aligned}
& 463 \\
& 1.497 \\
& 5906 \\
& 67.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.643 \\
314 \\
399
\end{array}
\] & \[
\begin{aligned}
& 464 \\
& 1.520 \\
& 5748 \\
& 68.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .635 \\
& 304 \\
& 393
\end{aligned}
\] & \[
\begin{aligned}
& 465 \\
& 1.544 \\
& 5582 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
625 \\
293 \\
385
\end{array}
\] & \[
\begin{aligned}
& 466 \\
& 1.571 \\
& 5405 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .608 \\
& 279 \\
& 374
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 464 \\
1.599 \\
5099 \\
68.0 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 567 \\
& 254 \\
& 347
\end{aligned}
\] \\
\hline 160 & \[
\begin{aligned}
& 440 \\
& 1.345 \\
& 6360
\end{aligned}
\] & \[
\begin{array}{r}
.612 \\
340 \\
390
\end{array}
\] & \[
\begin{aligned}
& 462 \\
& 1.460 \\
& 6168 \\
& 64.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .639 \\
& 324 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& 462 \\
& 1.482 \\
& 6025 \\
& 65.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.636 \\
316 \\
397
\end{array}
\] & \[
\begin{aligned}
& 463 \\
& 1.504 \\
& 5864 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .629 \\
& 307 \\
& 391
\end{aligned}
\] & \[
\begin{aligned}
& 464 \\
& 1.529 \\
& 5699 \\
& 67.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .618 \\
& 296 \\
& 383
\end{aligned}
\] &  & \[
\begin{array}{r}
601 \\
281 \\
371
\end{array}
\] & \[
\begin{aligned}
& 467 \\
& 1.588 \\
& 5313 \\
& 66.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .574 \\
& 263 \\
& 353
\end{aligned}
\] & & \\
\hline \multicolumn{5}{|c|}{Engine Anti-ice ON} & \multicolumn{4}{|r|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{4}{|l|}{Total Anti-ice ON} & \multicolumn{4}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}


D
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{CRUISE - MCT/340KT - 1 ENGINE OUT} \\
\hline \multicolumn{5}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { ISA+10 } \\
C G=27.0 \%
\end{gathered}
\]} & NM/1000 & AS \\
\hline & FL100 & FL150 & FL160 & FL170 & FL180 & FL190 & FL200 & FL210 \\
\hline 85 &  &  &  &  & \[
\begin{array}{lll}
\hline 4820 \\
\hline
\end{array}
\] &  &  &  \\
\hline 90 &  &  &  &  &  &  &  &  \\
\hline 95 &  &  &  &  &  &  &  &  \\
\hline 100 &  &  &  &  &  &  &  &  \\
\hline 105 &  &  &  &  &  &  &  &  \\
\hline 110 &  &  &  &  &  &  &  &  \\
\hline 115 &  &  &  &  &  &  &  &  \\
\hline 120 &  &  &  &  &  &  &  &  \\
\hline 125 &  &  &  &  &  &  &  &  \\
\hline 130 &  &  &  &  &  &  &  &  \\
\hline 135 &  &  &  &  &  &  &  &  \\
\hline 140 &  &  &  &  &  &  &  &  \\
\hline 145 &  &  &  &  &  &  &  &  \\
\hline 150 &  &  &  &  &  &  &  &  \\
\hline 155 &  &  &  &  &  &  &  &  \\
\hline 160 &  &  &  &  &  &  &  & \\
\hline \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { 60.9} \\
\begin{array}{c}
\text { Engine } \\
\text { Anti-ice } \\
\text { ON }
\end{array}
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{2}{|r|}{\[
\frac{\text { Total. }}{\substack{\text { Total } \\ \text { Antice } \\ \text { ON }}}
\]} & \multicolumn{2}{|l|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 12} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{CRUISE - MCT/340KT - 1 ENGINE OUT} \\
\hline \multicolumn{4}{|l|}{MAX. CONTINUOUS THRUST NORMAL AIR CONDITIONING ANTI-ICING OFF} & & & & & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA }+20 \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr} 
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H & TAS \\
NM \(/ 1000\) KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& \text { (1000KG) }
\end{aligned}
\] & FL100 & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL160} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL180} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL200} & \multicolumn{2}{|l|}{FL210} \\
\hline 85 & \begin{tabular}{lr}
466 & .612 \\
1.261 & 340 \\
5774 & 405 \\
70.1 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 490 \\
& 1.360 \\
& 5867 \\
& 74.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
435
\end{array}
\] & 498 1.383 5882
\(\qquad\) & \[
\begin{aligned}
& .681 \\
& 340 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& 505 \\
& 1.409 \\
& 5903 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 448
\end{aligned}
\] & \begin{tabular}{l}
513 \\
1.438 \\
5933 \\
76.6
\end{tabular} & \[
\begin{array}{r}
707 \\
340 \\
455
\end{array}
\] & \[
\begin{aligned}
& \hline 517 \\
& 1.460 \\
& 5864 \\
& 78.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.714 \\
337 \\
458
\end{array}
\] & \[
\begin{aligned}
& 519 \\
& 1.477 \\
& 5739 \\
& 80.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .719 \\
& 333 \\
& 459
\end{aligned}
\] & \[
\begin{aligned}
& \hline 518 \\
& 1.487 \\
& 5549 \\
& 82.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
719 \\
327 \\
458
\end{array}
\] \\
\hline 90 & \begin{tabular}{ll}
467 & .612 \\
1.264 & 340 \\
5814 & 405 \\
69.6 & \\
\hline
\end{tabular} & 492
1.366
5915
73.5 & \[
\begin{aligned}
& .669 \\
& 340 \\
& 435
\end{aligned}
\] & \[
\begin{aligned}
& 500 \\
& 1.390 \\
& 5932 \\
& 74.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .681 \\
& 340 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 508 \\
& 1.416 \\
& 5957 \\
& 75.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 448
\end{aligned}
\] & \[
\begin{aligned}
& 516 \\
& 1.445 \\
& 5982 \\
& 76.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .706 \\
& 340 \\
& 454
\end{aligned}
\] & \[
\begin{aligned}
& 518 \\
& 1.462 \\
& 5859 \\
& 77.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.711 \\
336 \\
456
\end{array}
\] & \[
\begin{aligned}
& \hline 519 \\
& 1.479 \\
& 5734 \\
& 79.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .715 \\
& 331 \\
& 457
\end{aligned}
\] & \begin{tabular}{l}
518 \\
1.489 \\
5543 \\
82.1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .715 \\
& 324 \\
& 455
\end{aligned}
\] \\
\hline 95 & \begin{tabular}{ll}
469 & .612 \\
1.268 & 340 \\
5859 & 405 \\
69.1 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 495 \\
& 1.372 \\
& 5968 \\
& 72.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .669 \\
& 340 \\
& 435
\end{aligned}
\] & \[
\begin{aligned}
& 503 \\
& 1.396 \\
& 5987 \\
& 73.7
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
441
\end{array}
\] & \[
\begin{aligned}
& \hline 511 \\
& 1.424 \\
& 6015 \\
& 74.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.694 \\
340 \\
448
\end{array}
\] & \[
\begin{aligned}
& 516 \\
& 1.447 \\
& 5977 \\
& 75.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .703 \\
& 338 \\
& 452
\end{aligned}
\] & 518
1.464
5853
77.4 & \[
\begin{aligned}
& 707 \\
& 333 \\
& 453
\end{aligned}
\] & \[
\begin{aligned}
& \hline 519 \\
& 1.481 \\
& 5727 \\
& 79.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.710 \\
329 \\
454
\end{array}
\] & \begin{tabular}{l} 
518 \\
1.492 \\
5536 \\
81.6 \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 710 \\
& 322 \\
& 452
\end{aligned}
\] \\
\hline 100 & \begin{tabular}{ll}
470 & .612 \\
1.272 & 340 \\
5906 & 405 \\
68.5 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 498 \\
& 1.379 \\
& 6025 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
435
\end{array}
\] & \[
\begin{aligned}
& 506 \\
& 1.404 \\
& 6047 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
441
\end{array}
\] & \[
\begin{aligned}
& \hline 514 \\
& 1.432 \\
& 6079 \\
& 73.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .694 \\
& 340 \\
& 448
\end{aligned}
\] & \[
\begin{aligned}
& \hline 516 \\
& 1.449 \\
& 5969 \\
& 75.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .699 \\
& 336 \\
& 449
\end{aligned}
\] & \[
\begin{aligned}
& \hline 518 \\
& 1.466 \\
& 5847 \\
& 77.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .702 \\
& 331 \\
& 450
\end{aligned}
\] & \[
\begin{aligned}
& \hline 520 \\
& 1.484 \\
& 5721 \\
& 78.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .706 \\
& 327 \\
& 451
\end{aligned}
\] & \begin{tabular}{l}
519 \\
1.495 \\
5529 \\
81.1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 705 \\
& 320 \\
& 449
\end{aligned}
\] \\
\hline 105 & \begin{tabular}{ll}
472 & .612 \\
1.277 & 340 \\
5955 & 405 \\
67.9 & \\
\hline
\end{tabular} & \begin{tabular}{l}
501 \\
1.386 \\
6086 \\
71.5 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.669 \\
340 \\
435
\end{array}
\] & \[
\begin{aligned}
& 509 \\
& 1.412 \\
& 6112 \\
& 72.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .681 \\
& 340 \\
& 441
\end{aligned}
\] & \[
\begin{aligned}
& \hline 514 \\
& 1.434 \\
& 6067 \\
& 73.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.690 \\
338 \\
445
\end{array}
\] & \begin{tabular}{l}
5 16 \\
1.451 \\
5953 \\
75.0 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .694 \\
& 334 \\
& 447
\end{aligned}
\] & \begin{tabular}{l}
518 \\
1.469 \\
5836 \\
76.6 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 698 \\
& 329 \\
& 447
\end{aligned}
\] & \[
\begin{aligned}
& 520 \\
& 1.487 \\
& 5714 \\
& 78.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .701 \\
& 324 \\
& 447
\end{aligned}
\] & \begin{tabular}{l}
519 \\
1.498 \\
5519 \\
80.6 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.699 \\
317 \\
445
\end{array}
\] \\
\hline 110 & \begin{tabular}{ll}
474 & .612 \\
1.282 & 340 \\
6007 & 405 \\
67.4 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 504 \\
& 1.393 \\
& 6149 \\
& 70.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
435
\end{array}
\] & \[
\begin{aligned}
& 512 \\
& 1.420 \\
& 6168 \\
& 71.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.681 \\
340 \\
441
\end{array}
\] & \[
\begin{aligned}
& \hline 514 \\
& 1.437 \\
& 6053 \\
& 73.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .685 \\
& 336 \\
& 442
\end{aligned}
\] & \[
\begin{aligned}
& \hline 516 \\
& 1.454 \\
& 5936 \\
& 74.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .689 \\
& 331 \\
& 443
\end{aligned}
\] & \[
\begin{aligned}
& \hline 518 \\
& 1.472 \\
& 5816 \\
& 76.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .692 \\
& 326 \\
& 443
\end{aligned}
\] & \[
\begin{aligned}
& 520 \\
& 1.490 \\
& 5695 \\
& 77.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .695 \\
& 321 \\
& 444
\end{aligned}
\] & \[
\begin{aligned}
& \hline 518 \\
& 1.501 \\
& 5497 \\
& 80.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
692 \\
314 \\
441
\end{array}
\] \\
\hline 115 & \begin{tabular}{ll}
476 & .612 \\
1.287 & 340 \\
6063 & 405 \\
66.7 & \\
& \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 508 \\
& 1.402 \\
& 6216 \\
& 70.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
340 \\
435
\end{array}
\] & \[
\begin{aligned}
& 512 \\
& 1.422 \\
& 6153 \\
& 71.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .676 \\
& 337 \\
& 438
\end{aligned}
\] & \[
\begin{aligned}
& \hline 514 \\
& 1.439 \\
& 6036 \\
& 72.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.680 \\
333 \\
439
\end{array}
\] & \[
\begin{aligned}
& \hline 516 \\
& 1.457 \\
& 5917 \\
& 74.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .683 \\
& 328 \\
& 440
\end{aligned}
\] & \[
\begin{aligned}
& 517 \\
& 1.475 \\
& 5796 \\
& 75.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .686 \\
& 323 \\
& 440
\end{aligned}
\] & \[
\begin{aligned}
& \hline 519 \\
& 1.493 \\
& 5673 \\
& 77.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .688 \\
& 318 \\
& 440
\end{aligned}
\] & \[
\begin{aligned}
& \hline 518 \\
& 1.505 \\
& 5472 \\
& 79.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .685 \\
& 310 \\
& 436
\end{aligned}
\] \\
\hline 120 & \begin{tabular}{lr}
478 & .612 \\
1.292 & 340 \\
6123 & 405 \\
66.1 & \\
\hline
\end{tabular} & \begin{tabular}{l}
509 \\
1.408 \\
6247 \\
69.4 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.667 \\
339 \\
433
\end{array}
\] & \[
\begin{aligned}
& 512 \\
& 1.425 \\
& 6136 \\
& 70.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.671 \\
335 \\
435
\end{array}
\] & \[
\begin{aligned}
& \hline 514 \\
& 1.442 \\
& 6019 \\
& 72.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.675 \\
330 \\
436
\end{array}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.460 \\
& 5898 \\
& 73.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .678 \\
& 325 \\
& 436
\end{aligned}
\] & \[
\begin{aligned}
& \hline 517 \\
& 1.478 \\
& 5775 \\
& 75.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
680 \\
320 \\
436
\end{array}
\] & \[
\begin{aligned}
& 519 \\
& 1.497 \\
& 5649 \\
& 77.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .681 \\
& 315 \\
& 435
\end{aligned}
\] & \[
\begin{aligned}
& \hline 517 \\
& 1.509 \\
& 5444 \\
& 79.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 677 \\
& 306 \\
& 430
\end{aligned}
\] \\
\hline 125 & \begin{tabular}{ll} 
& 480 \\
1.298 & .612 \\
6185 & 340 \\
65.4 & 405 \\
\hline
\end{tabular} & 510
1.410
6232
69.0 & \[
\begin{aligned}
& .662 \\
& 336 \\
& 430
\end{aligned}
\] & \[
\begin{aligned}
& 512 \\
& 1.427 \\
& 6120 \\
& 70.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .666 \\
& 332 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& \hline 513 \\
& 1.445 \\
& 6000 \\
& 72.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.669 \\
327 \\
432
\end{array}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.463 \\
& 5876 \\
& 73.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .671 \\
& 322 \\
& 432
\end{aligned}
\] & \begin{tabular}{l}
517 \\
1.481 \\
5750 \\
75.0 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .673 \\
& 316 \\
& 431
\end{aligned}
\] & \[
\begin{aligned}
& 518 \\
& 1.501 \\
& 5620 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.673 \\
310 \\
430
\end{array}
\] & \begin{tabular}{l}
516 \\
1.514 \\
5410 \\
78.4 \\
\hline 5
\end{tabular} & \[
\begin{aligned}
& .666 \\
& 301 \\
& 424
\end{aligned}
\] \\
\hline 130 & \begin{tabular}{ll}
482 & .612 \\
1.304 & 340 \\
6246 & 405 \\
64.8 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 510 \\
& 1.413 \\
& 6217 \\
& 68.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .657 \\
& 333 \\
& 427
\end{aligned}
\] & \[
\begin{aligned}
& \hline 512 \\
& 1.430 \\
& 6101 \\
& 70.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.660 \\
329 \\
428
\end{array}
\] & \begin{tabular}{l}
513 \\
1.448 \\
5978 \\
71.5 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .663 \\
& 324 \\
& 428
\end{aligned}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.467 \\
& 5851 \\
& 73.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
664 \\
318 \\
427
\end{array}
\] & \begin{tabular}{l}
5 16 \\
1.486 \\
5721 \\
74.4 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.664 \\
312 \\
425
\end{array}
\] & \[
\begin{aligned}
& 517 \\
& 1.506 \\
& 5587 \\
& 75.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .663 \\
& 306 \\
& 423
\end{aligned}
\] & \begin{tabular}{l}
1515 \\
1.520 \\
5370 \\
77.5 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .654 \\
& 295 \\
& 416
\end{aligned}
\] \\
\hline 135 & \begin{tabular}{lr}
484 & .612 \\
1.310 & 340 \\
6310 & 405 \\
64.1 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 510 \\
& 1.416 \\
& 6199 \\
& 68.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.651 \\
330 \\
423
\end{array}
\] & \[
\begin{aligned}
& 511 \\
& 1.433 \\
& 6079 \\
& 69.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .653 \\
& 325 \\
& 423
\end{aligned}
\] & \[
\begin{aligned}
& 513 \\
& 1.452 \\
& 5952 \\
& 71.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 320 \\
& 423
\end{aligned}
\] & \[
\begin{aligned}
& \hline 514 \\
& 1.471 \\
& 5821 \\
& 72.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .655 \\
& 314 \\
& 421
\end{aligned}
\] & \[
\begin{aligned}
& 515 \\
& 1.491 \\
& 5687 \\
& 73.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .654 \\
& 307 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 516 \\
& 1.512 \\
& 5548 \\
& 74.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .651 \\
& 300 \\
& 416
\end{aligned}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.528 \\
& 5327 \\
& 76.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .640 \\
& 289 \\
& 407
\end{aligned}
\] \\
\hline 140 & \begin{tabular}{ll}
487 & .612 \\
1.317 & 340 \\
6378 & 405 \\
63.4 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 510 \\
& 1.419 \\
& 6184 \\
& 67.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.645 \\
327 \\
419
\end{array}
\] & \[
\begin{aligned}
& \hline 511 \\
& 1.437 \\
& 6059 \\
& 69.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .646 \\
& 322 \\
& 419
\end{aligned}
\] & \[
\begin{aligned}
& 513 \\
& 1.456 \\
& 5927 \\
& 70.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.647 \\
316 \\
418
\end{array}
\] & \begin{tabular}{l}
514 \\
1.476 \\
5793 \\
71.7 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .646 \\
& 309 \\
& 415
\end{aligned}
\] & 515
1.496
5655
72.9 & \[
\begin{aligned}
& .643 \\
& 302 \\
& 412
\end{aligned}
\] & \[
\begin{aligned}
& 517 \\
& 1.519 \\
& 5511 \\
& 73.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .637 \\
& 293 \\
& 407
\end{aligned}
\] & \begin{tabular}{l}
515 \\
1.537 \\
5280 \\
75.0 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .622 \\
& 280 \\
& 396
\end{aligned}
\] \\
\hline 145 & \begin{tabular}{lr}
489 & .612 \\
1.324 & 340 \\
6449 & 405 \\
62.7 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 510 \\
& 1.422 \\
& 6167 \\
& 67.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.639 \\
324 \\
415
\end{array}
\] & \[
\begin{aligned}
& 512 \\
& 1.441 \\
& 6038 \\
& 68.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.639 \\
318 \\
414
\end{array}
\] & \[
\begin{aligned}
& 513 \\
& 1.461 \\
& 5904 \\
& 69.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.638 \\
312 \\
412
\end{array}
\] & \[
\begin{aligned}
& \hline 514 \\
& 1.481 \\
& 5765 \\
& 70.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .636 \\
& 304 \\
& 409
\end{aligned}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.504 \\
& 5616 \\
& 71.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .629 \\
& 295 \\
& 403
\end{aligned}
\] & \[
\begin{aligned}
& \hline 517 \\
& 1.528 \\
& 5465 \\
& 72.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .621 \\
& 285 \\
& 396
\end{aligned}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.549 \\
& 5214 \\
& 72.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 597 \\
& 269 \\
& 380
\end{aligned}
\] \\
\hline 150 & \begin{tabular}{ll}
492 & .612 \\
1.332 & 340 \\
6523 & 405 \\
62.0 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 510 \\
& 1.427 \\
& 6148 \\
& 66.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
320 \\
411
\end{array}
\] & \[
\begin{aligned}
& 512 \\
& 1.446 \\
& 6015 \\
& 68.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.631 \\
314 \\
409
\end{array}
\] & \[
\begin{aligned}
& \hline 513 \\
& 1.466 \\
& 5875 \\
& 69.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .628 \\
& 306 \\
& 405
\end{aligned}
\] & \begin{tabular}{l}
514 \\
1.489 \\
5725 \\
69.8 \\
\hline
\end{tabular} & \[
\begin{aligned}
& .622 \\
& 297 \\
& 400
\end{aligned}
\] & \[
\begin{aligned}
& \hline 516 \\
& 1.513 \\
& 5571 \\
& 70.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 287 \\
& 393
\end{aligned}
\] & \[
\begin{aligned}
& \hline 517 \\
& 1.540 \\
& 5404 \\
& 70.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .598 \\
& 274 \\
& 382
\end{aligned}
\] & \begin{tabular}{l}
\(\mathbf{5 1 6}\) \\
1.566 \\
5131 \\
69.9 \\
\hline
\end{tabular} & \[
\begin{array}{r}
564 \\
253 \\
359
\end{array}
\] \\
\hline 155 & \begin{tabular}{ll}
495 & .612 \\
1.340 & 340 \\
6605 & 405 \\
61.3 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& 511 \\
& 1.431 \\
& 6127 \\
& 66.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .623 \\
& 316 \\
& 405
\end{aligned}
\] & \[
\begin{aligned}
& 512 \\
& 1.452 \\
& 5986 \\
& 67.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .620 \\
& 308 \\
& 402
\end{aligned}
\] & \[
\begin{aligned}
& 513 \\
& 1.474 \\
& 5837 \\
& 67.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.614 \\
299 \\
396
\end{array}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.498 \\
& 5676 \\
& 68.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .604 \\
& 289 \\
& 389
\end{aligned}
\] & \[
\begin{aligned}
& \hline 16 \\
& 1.525 \\
& 5513 \\
& 68.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
590 \\
276 \\
378
\end{array}
\] & \[
\begin{aligned}
& \hline 517 \\
& 1.555 \\
& 5330 \\
& 68.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .568 \\
& 260 \\
& 363
\end{aligned}
\] & & \\
\hline 160 & \begin{tabular}{ll}
498 & .612 \\
1.349 & 340 \\
6689 & 405 \\
60.5 & \\
\hline
\end{tabular} & \[
\begin{aligned}
& \hline 511 \\
& 1.437 \\
& 6098 \\
& 65.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .612 \\
& 310 \\
& 398
\end{aligned}
\] & \[
\begin{aligned}
& \hline 512 \\
& 1.459 \\
& 5949 \\
& 66.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .607 \\
& 301 \\
& 393
\end{aligned}
\] & \[
\begin{aligned}
& 513 \\
& 1.483 \\
& 5789 \\
& 66.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.597 \\
291 \\
385
\end{array}
\] & \[
\begin{aligned}
& \hline 515 \\
& 1.509 \\
& 5623 \\
& 66.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .583 \\
& 278 \\
& 375
\end{aligned}
\] & \[
\begin{aligned}
& 516 \\
& 1.539 \\
& 5439 \\
& 66.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .560 \\
& 262 \\
& 359
\end{aligned}
\] & & & & \\
\hline \multicolumn{4}{|c|}{Engine Anti-ice ON} & \multicolumn{4}{|r|}{\(\triangle\) FUEL \(=+0.6 \%\)} & \multicolumn{4}{|c|}{Total Anti-ice ON} & \multicolumn{4}{|c|}{\(\triangle\) FUEL \(=+2 \%\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 13} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{IN CRUISE QUICK CHECK FROM CRITICAL POINT TO LANDING - ONE ENGINE FAILURE MCT/300KT - FINAL DESCENT M.80/300KT/250KT - IMC PROCEDURE 360KG/6MIN} \\
\hline \multicolumn{4}{|l|}{REF. INITIAL WEIGHT \(=130000 \mathrm{KG}\) REF. INITIAL FLIGHT LEVEL \(=330\)} & \multicolumn{4}{|l|}{NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline AIR & \multicolumn{3}{|r|}{\multirow[b]{2}{*}{FLIGHT LEVEL}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{EVEL}} & \multicolumn{6}{|c|}{CORRECTION ON FUEL CONSUMPTION DUE TO} \\
\hline DIST. & & & & & & & \multicolumn{3}{|r|}{INITIAL WEIGHT (KG/1000KG)} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { INITIAL FL } \\
(\mathrm{KG} / 1000 \mathrm{FT})
\end{gathered}
\]} \\
\hline (NM) & 100 & 170 & 180 & 190 & 200 & 210 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] \\
\hline 300 & & \[
\begin{aligned}
& 3035 \\
& 0.51 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3038 \\
& 0.51 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3039 \\
& 0.51 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3043 \\
& 0.51 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3048 \\
0.51 \\
\hline
\end{array}
\] & 7 & 8 & 8 & 40 & 40 & 40 \\
\hline 325 & & \[
\begin{aligned}
& 3356 \\
& 0.55 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3357 \\
0.55 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3357 \\
& 0.55
\end{aligned}
\] & \[
\begin{aligned}
& 3360 \\
& 0.55 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 3364 \\
& 0.54 \\
& \hline
\end{aligned}
\] & 9 & 9 & 9 & 40 & 40 & 40 \\
\hline 350 & & \[
\begin{aligned}
& 3677 \\
& 0.59 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3677 \\
& 0.59 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3675 \\
& 0.59 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3677 \\
& 0.58 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3680 \\
& 0.58 \\
& \hline
\end{aligned}
\] & 10 & 10 & 11 & 40 & 40 & 40 \\
\hline 375 & & \[
\begin{aligned}
& 3998 \\
& 1.03
\end{aligned}
\] & \[
\begin{aligned}
& 3996 \\
& 1.03
\end{aligned}
\] & \[
\begin{aligned}
& 3993 \\
& 1.02 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3994 \\
& 1.02
\end{aligned}
\] & \[
\begin{array}{r}
3995 \\
1.02 \\
\hline
\end{array}
\] & 11 & 12 & 12 & 40 & 40 & 40 \\
\hline 400 & \[
\begin{array}{r}
4381 \\
1.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4319 \\
1.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4316 \\
1.07 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4310 \\
& 1.06 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4311 \\
& 1.06 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4311 \\
& 1.05 \\
& \hline
\end{aligned}
\] & 12 & 13 & 13 & 45 & 40 & 40 \\
\hline 425 & 4720
1.13 & \[
\begin{aligned}
& 4638 \\
& 1.11 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
4634 \\
1.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4627 \\
1.10 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4626 \\
& 1.10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4625 \\
& 1.09 \\
& \hline
\end{aligned}
\] & 13 & 14 & 15 & 45 & 40 & 40 \\
\hline 450 & \[
\begin{array}{r}
5059 \\
1.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4958 \\
1.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4952 \\
1.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4943 \\
1.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4941 \\
1.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4939 \\
1.13 \\
\hline
\end{array}
\] & 14 & 15 & 16 & 45 & 40 & 40 \\
\hline 475 & \[
\begin{aligned}
& 5397 \\
& 1.22 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5277 \\
1.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5270 \\
1.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5259 \\
1.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5256 \\
1.17 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5253 \\
& 1.17 \\
& \hline
\end{aligned}
\] & 15 & 16 & 17 & 45 & 40 & 40 \\
\hline 500 & \[
\begin{array}{r}
5736 \\
1.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5597 \\
1.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5588 \\
1.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5575 \\
1.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5572 \\
1.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5567 \\
1.20 \\
\hline
\end{array}
\] & 16 & 18 & 19 & 45 & 40 & 40 \\
\hline 525 & 6074
1.31 & \[
\begin{array}{r}
1.20 \\
\hline 5914 \\
1.27 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.22 \\
& \hline 5904 \\
& 1.26 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5890 \\
& 1.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.21 \\
& \hline 5885 \\
& 1.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 5879 \\
& 1.24 \\
& \hline
\end{aligned}
\] & 17 & 19 & 20 & 45 & 40 & 40 \\
\hline 550 & 6412
1.35 & \[
\begin{array}{r}
6232 \\
1.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6221 \\
1.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6205 \\
1.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6199 \\
1.28 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 6192 \\
& 1.28 \\
& \hline
\end{aligned}
\] & 18 & 20 & 21 & 45 & 40 & 40 \\
\hline 575 & \[
\begin{aligned}
& 6749 \\
& 1.39
\end{aligned}
\] & \[
\begin{aligned}
& 6550 \\
& 1.34
\end{aligned}
\] & \[
\begin{aligned}
& 6537 \\
& 1.34
\end{aligned}
\] & \[
\begin{aligned}
& 6520 \\
& 1.33
\end{aligned}
\] & \[
\begin{aligned}
& 6512 \\
& 1.32
\end{aligned}
\] & \[
\begin{aligned}
& 6504 \\
& 1.31 \\
& \hline
\end{aligned}
\] & 19 & 21 & 22 & 45 & 40 & 40 \\
\hline 600 & \[
\begin{array}{r}
1.087 \\
7087
\end{array}
\] & \[
\begin{array}{r}
1.04 \\
\hline 6868 \\
1.38
\end{array}
\] & \[
\begin{aligned}
& 6853 \\
& 1.38
\end{aligned}
\] & \[
\begin{aligned}
& 1.0 .0 \\
& \hline 6835 \\
& 1.37
\end{aligned}
\] & \[
\begin{aligned}
& 6826 \\
& 1.36
\end{aligned}
\] & \[
\begin{aligned}
& 1.516 \\
& 6816 \\
& 1.35
\end{aligned}
\] & 20 & 22 & 24 & 45 & 40 & 40 \\
\hline 625 & \[
\begin{aligned}
& \hline 7423 \\
& 1.48 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7180 \\
& 1.42 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.50 \\
\hline 7168 \\
1.41 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7148 \\
& 1.41 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7137 \\
& 1.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 7126 \\
& 1.39 \\
& \hline
\end{aligned}
\] & 21 & 24 & 25 & 45 & 40 & 40 \\
\hline 650 & \[
\begin{array}{r}
7759 \\
1.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7500 \\
1.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7483 \\
1.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7461 \\
1.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7449 \\
1.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7437 \\
1.42 \\
\hline
\end{array}
\] & 22 & 25 & 26 & 45 & 40 & 40 \\
\hline 675 & \[
\begin{aligned}
& 8.026 \\
& \hline 1.57 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 7817 \\
& 1.50 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.498 \\
7798 \\
1.49 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.474 \\
& 7774 \\
& 1.48 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.4 \mathrm{~J} \\
\hline 7761 \\
1.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.42 \\
7747 \\
1.46 \\
\hline
\end{array}
\] & 23 & 26 & 28 & 45 & 40 & 40 \\
\hline 700 & \[
\begin{aligned}
& 8432 \\
& 2.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8133 \\
& 1.54 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8113 \\
& 1.53 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8088 \\
& 1.52 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
8073 \\
1.51 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8058 \\
& 1.50 \\
& \hline
\end{aligned}
\] & 24 & 27 & 29 & 45 & 40 & 40 \\
\hline 725 & 8767
2.05 & \[
\begin{aligned}
& 8448 \\
& 1.58 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8426 \\
& 1.57 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8400 \\
& 1.56 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8383 \\
& 1.55 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8366 \\
& 1.53 \\
& \hline
\end{aligned}
\] & 25 & 28 & 30 & 45 & 40 & 40 \\
\hline 750 & \[
\begin{array}{r}
9102 \\
2.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8763 \\
2.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8740 \\
2.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8711 \\
2.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8693 \\
1.58 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8675 \\
& 1.57 \\
& \hline
\end{aligned}
\] & 26 & 29 & 31 & 45 & 40 & 40 \\
\hline 775 & \[
\begin{aligned}
& 9437 \\
& 2.14
\end{aligned}
\] & \[
\begin{aligned}
& 9078 \\
& 2.06
\end{aligned}
\] & \[
\begin{aligned}
& 9053 \\
& 2.05 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9023 \\
& 2.03
\end{aligned}
\] & \[
\begin{aligned}
& 9004 \\
& 2.02 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8984 \\
& 2.01 \\
& \hline
\end{aligned}
\] & 27 & 30 & 32 & 45 & 40 & 40 \\
\hline 800 & \[
\begin{aligned}
& \hline 9772 \\
& 2.18 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9392 \\
& 2.10 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9367 \\
2.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9335 \\
2.07 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.02 \\
& \hline 9314 \\
& 2.06 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9293 \\
& 2.05 \\
& \hline
\end{aligned}
\] & 28 & 32 & 34 & 45 & 40 & 40 \\
\hline 825 & \[
\begin{array}{r}
10105 \\
2.23 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9706 \\
& 2.14 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9679 \\
2.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9646 \\
2.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9622 \\
2.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9600 \\
2.08 \\
\hline
\end{array}
\] & 29 & 33 & 35 & 45 & 40 & 40 \\
\hline 850 & \[
\begin{array}{r}
10439 \\
2.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10019 \\
2.18 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9991 \\
& 2.16 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9956 \\
2.15 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9931 \\
& 2.13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9907 \\
& 2.12 \\
& \hline
\end{aligned}
\] & 30 & 34 & 36 & 45 & 40 & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 14} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{IN CRUISE QUICK CHECK FROM CRITICAL POINT TO LANDING - ONE ENGINE FAILURE MCT/300KT - FINAL DESCENT M. \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\) - IMC PROCEDURE 360KG/6MIN} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
REF. INITIAL WEIGHT \(=130000 \mathrm{KG}\) \\
REF. INITIAL FLIGHT LEVEL \(=330\)
\end{tabular}} & \multicolumn{4}{|l|}{NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline AIR & \multicolumn{3}{|r|}{\multirow[b]{2}{*}{FLIGHT LEVEL}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{EVEL}} & \multicolumn{6}{|c|}{CORRECTION ON FUEL CONSUMPTION DUE TO} \\
\hline DIST. & & & & & & & \multicolumn{3}{|c|}{INITIAL WEIGHT (KG/1000KG)} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { INITIAL FL } \\
& (\mathrm{KG} / 1000 \mathrm{FT})
\end{aligned}
\]} \\
\hline (NM) & 100 & 170 & 180 & 190 & 200 & 210 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] \\
\hline 850 & \[
\begin{array}{r}
10439 \\
2.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10019 \\
2.18 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 9991 \\
& 2.16 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9956 \\
& 2.15
\end{aligned}
\] & \[
\begin{aligned}
& 9931 \\
& 2.13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9907 \\
& 2.12 \\
& \hline
\end{aligned}
\] & 30 & 34 & 36 & 45 & 40 & 40 \\
\hline 875 & \[
\begin{array}{r}
10773 \\
2.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10332 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10303 \\
2.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10266 \\
2.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10240 \\
2.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10214 \\
2.16 \\
\hline
\end{array}
\] & 31 & 35 & 37 & 45 & 40 & 40 \\
\hline 900 & \[
\begin{array}{r}
11107 \\
2.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10646 \\
2.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10615 \\
2.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10577 \\
2.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10548 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10521 \\
2.19 \\
\hline
\end{array}
\] & 32 & 36 & 38 & 45 & 40 & 40 \\
\hline 925 & \[
\begin{array}{r}
11439 \\
2.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10958 \\
2.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10926 \\
2.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10886 \\
2.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10855 \\
2.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10827 \\
2.23 \\
\hline
\end{array}
\] & 33 & 37 & 40 & 45 & 40 & 40 \\
\hline 950 & \[
\begin{array}{r}
11771 \\
2.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11270 \\
2.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11236 \\
2.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11195 \\
2.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11163 \\
2.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11132 \\
2.27 \\
\hline
\end{array}
\] & 34 & 38 & 41 & 45 & 40 & 40 \\
\hline 975 & \[
\begin{array}{r}
12103 \\
2.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11581 \\
\hline 2.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.1547 \\
\hline 2.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11504 \\
2.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.200 \\
\hline 1470 \\
2.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11438 \\
2.30 \\
\hline
\end{array}
\] & 35 & 39 & 42 & 45 & 40 & 40 \\
\hline 1000 & \[
\begin{array}{r}
12436 \\
2.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11893 \\
2.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11857 \\
2.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11813 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11777 \\
2.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11744 \\
2.34 \\
\hline
\end{array}
\] & 36 & 40 & 43 & 45 & 40 & 40 \\
\hline 1025 & \[
\begin{array}{r}
12766 \\
2.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12204 \\
2.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12167 \\
2.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12121 \\
2.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12082 \\
2.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12047 \\
2.38 \\
\hline
\end{array}
\] & 37 & 41 & 44 & 40 & 40 & 40 \\
\hline 1050 & \[
\begin{array}{r}
13097 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12514 \\
2.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12476 \\
2.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12428 \\
2.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12388 \\
2.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12351 \\
2.41 \\
\hline
\end{array}
\] & 38 & 42 & 45 & 40 & 40 & 40 \\
\hline 1075 & \[
\begin{array}{r}
13428 \\
3.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12825 \\
2.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2785 \\
\hline 2.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12736 \\
2.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12693 \\
2.47
\end{array}
\] & \[
\begin{array}{r}
12655 \\
2.45 \\
\hline
\end{array}
\] & 39 & 43 & 46 & 40 & 40 & 40 \\
\hline 1100 & \[
\begin{array}{r}
13759 \\
3.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13135 \\
2.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13094 \\
2.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13044 \\
2.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12999 \\
2.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12959 \\
2.49 \\
\hline
\end{array}
\] & 40 & 44 & 48 & 40 & 40 & 40 \\
\hline 1125 & \[
\begin{array}{r}
14089 \\
3.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13444 \\
3.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13402 \\
2.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13350 \\
2.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13303 \\
2.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13262 \\
2.53 \\
\hline
\end{array}
\] & 41 & 45 & 49 & 40 & 40 & 40 \\
\hline 1150 & \[
\begin{array}{r}
14418 \\
3.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13753 \\
3.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13710 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13656 \\
3.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13607 \\
2.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13565 \\
2.56 \\
\hline
\end{array}
\] & 42 & 46 & 50 & 40 & 40 & 40 \\
\hline 1175 & \[
\begin{array}{r}
14748 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14062 \\
3.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14018 \\
\hline 3.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13963 \\
3.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13911 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13867 \\
3.00 \\
\hline
\end{array}
\] & 43 & 47 & 51 & 40 & 40 & 40 \\
\hline 1200 & \[
\begin{array}{r}
15077 \\
3.28
\end{array}
\] & \[
\begin{array}{r}
14372 \\
3.12
\end{array}
\] & \[
\begin{array}{r}
14326 \\
3.10
\end{array}
\] & \[
\begin{array}{r}
14269 \\
3.08
\end{array}
\] & \[
\begin{array}{r}
14215 \\
3.06
\end{array}
\] & \[
\begin{array}{r}
14170 \\
3.04
\end{array}
\] & 44 & 48 & 52 & 40 & 40 & 40 \\
\hline 1225 & \[
\begin{array}{r}
15406 \\
3.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14679 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14632 \\
3.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14574 \\
3.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14518 \\
3.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14471 \\
3.07 \\
\hline
\end{array}
\] & 45 & 49 & 53 & 40 & 40 & 40 \\
\hline 1250 & \[
\begin{array}{r}
15734 \\
3.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14987 \\
3.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14939 \\
3.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14879 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14820 \\
3.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14772 \\
3.11 \\
\hline
\end{array}
\] & 45 & 50 & 54 & 40 & 40 & 40 \\
\hline 1275 & \[
\begin{array}{r}
16062 \\
3.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.20 \\
15295 \\
3.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5.10 \\
\hline 15245 \\
3.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.10 \\
\hline 15184 \\
3.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.15 \\
\hline 15123 \\
3.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15073 \\
3.15 \\
\hline
\end{array}
\] & 46 & 51 & 55 & 40 & 40 & 40 \\
\hline 1300 & \[
\begin{array}{r}
16391 \\
3.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15602 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15552 \\
3.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15489 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15425 \\
3.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15374 \\
3.18 \\
\hline
\end{array}
\] & 47 & 52 & 56 & 40 & 40 & 40 \\
\hline 1325 & \[
\begin{array}{r}
16718 \\
3.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15909 \\
3.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15857 \\
3.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15792 \\
3.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15726 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15674 \\
3.22 \\
\hline
\end{array}
\] & 48 & 53 & 58 & 40 & 40 & 40 \\
\hline 1350 & \[
\begin{array}{r}
17045 \\
3.54
\end{array}
\] & \[
\begin{array}{r}
16215 \\
3.36
\end{array}
\] & \[
\begin{array}{r}
16162 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16096 \\
3.31
\end{array}
\] & \[
\begin{array}{r}
16028 \\
3.28
\end{array}
\] & \[
\begin{array}{r}
15974 \\
3.26
\end{array}
\] & 49 & 54 & 59 & 40 & 40 & 40 \\
\hline 1375 & \[
\begin{array}{r}
17372 \\
3.58
\end{array}
\] & \[
\begin{array}{r}
16521 \\
3.40
\end{array}
\] & \[
\begin{array}{r}
16467 \\
3.37
\end{array}
\] & \[
\begin{array}{r}
16400 \\
3.35
\end{array}
\] & \[
\begin{array}{r}
16329 \\
3.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16273 \\
3.29 \\
\hline
\end{array}
\] & 50 & 55 & 60 & 40 & 40 & 35 \\
\hline 1400 & \[
\begin{array}{r}
17699 \\
4.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16828 \\
3.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16773 \\
3.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16704 \\
3.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16630 \\
3.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16573 \\
3.33 \\
\hline
\end{array}
\] & 51 & 56 & 61 & 40 & 40 & 35 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 15} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{IN CRUISE QUICK CHECK FROM CRITICAL POINT TO LANDING - ONE ENGINE FAILURE MCT / 320KT - FINAL DESCENT M. 80 / 300KT / 250KT - IMC PROCEDURE 360KG / 6MIN} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
REF. INITIAL WEIGHT \(=130000 \mathrm{KG}\) \\
REF. INITIAL FLIGHT LEVEL \(=330\)
\end{tabular}} & \multicolumn{4}{|l|}{NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline AIR & \multicolumn{6}{|c|}{\multirow[b]{2}{*}{FLIGHT LEVEL}} & \multicolumn{6}{|c|}{CORRECTION ON FUEL CONSUMPTION DUE TO} \\
\hline DIST. & & & & & & & & \[
\begin{aligned}
& \hline \mathrm{AL} \text { WEI } \\
& \mathrm{G} / 1000 \mathrm{~K}
\end{aligned}
\] & & & \[
\begin{aligned}
& \mathrm{JITIAL} \mathrm{~F} \\
& \mathrm{G} / 1000 \mathrm{~F}
\end{aligned}
\] & \\
\hline (NM) & 100 & 170 & 180 & 190 & 200 & 210 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] \\
\hline 300 & & \[
\begin{aligned}
& 3070 \\
& 0.51 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3076 \\
& 0.51 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3084 \\
& 0.50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3094 \\
& 0.50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3079 \\
& 0.50 \\
& \hline
\end{aligned}
\] & 7 & 7 & 7 & 45 & 45 & 45 \\
\hline 325 & & \[
\begin{aligned}
& 3408 \\
& 0.55 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3411 \\
& 0.54 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3418 \\
& 0.54 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3427 \\
& 0.54 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3404 \\
& 0.54 \\
& \hline
\end{aligned}
\] & 8 & 8 & 7 & 45 & 45 & 45 \\
\hline 350 & & \[
\begin{aligned}
& 3746 \\
& 0.58 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3746 \\
& 0.58 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3751 \\
0.58 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3760 \\
& 0.57 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3730 \\
& 0.57 \\
& \hline
\end{aligned}
\] & 9 & 9 & 8 & 45 & 45 & 45 \\
\hline 375 & & \[
\begin{aligned}
& 4084 \\
& 1.02
\end{aligned}
\] & \[
\begin{aligned}
& 4081 \\
& 1.02
\end{aligned}
\] & \[
\begin{aligned}
& 4085 \\
& 1.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4093 \\
& 1.01
\end{aligned}
\] & \[
\begin{aligned}
& 4055 \\
& 1.01
\end{aligned}
\] & 10 & 10 & 9 & 45 & 45 & 45 \\
\hline 400 & \[
\begin{array}{r}
4436 \\
1.08 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4422 \\
& 1.06 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
4416 \\
1.05 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4418 \\
& 1.05 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
4426 \\
1.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4380 \\
1.05 \\
\hline
\end{array}
\] & 11 & 11 & 10 & 50 & 45 & 45 \\
\hline 425 & 4791
1.12 & 4759
1.09 & \[
\begin{array}{r}
4749 \\
1.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4750 \\
1.08 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 4757 \\
& 1.08 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4705 \\
& 1.08 \\
& \hline
\end{aligned}
\] & 12 & 12 & 11 & 50 & 45 & 45 \\
\hline 450 & \[
\begin{array}{r}
5147 \\
1.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5096 \\
1.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5083 \\
1.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5082 \\
1.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5088 \\
1.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5029 \\
1.12 \\
\hline
\end{array}
\] & 13 & 13 & 12 & 50 & 45 & 45 \\
\hline 475 & \[
\begin{aligned}
& 5502 \\
& 1.20 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5432 \\
& 1.17 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
5416 \\
1.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5414 \\
1.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5419 \\
1.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.12 \\
\hline 5354 \\
1.15 \\
\hline
\end{array}
\] & 14 & 14 & 13 & 50 & 45 & 45 \\
\hline 500 & \[
\begin{array}{r}
5857 \\
1.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5769 \\
1.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5750 \\
1.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5746 \\
1.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5750 \\
1.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
5678 \\
1.19 \\
\hline
\end{array}
\] & 15 & 15 & 13 & 50 & 45 & 45 \\
\hline 525 & \begin{tabular}{l}
6211 \\
1.28 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 6104 \\
& 1.24 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6082 \\
& 1.23 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6077 \\
& 1.23 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6080 \\
& 1.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6002 \\
& 1.22 \\
& \hline
\end{aligned}
\] & 16 & 16 & 14 & 50 & 45 & 45 \\
\hline 550 & \[
\begin{array}{r}
6565 \\
1.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6440 \\
1.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6414 \\
1.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6407 \\
1.26 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 6409 \\
& 1.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 6326 \\
& 1.26 \\
& \hline
\end{aligned}
\] & 17 & 17 & 15 & 50 & 45 & 45 \\
\hline 575 & \[
\begin{aligned}
& 1.02 \\
& \hline 6919 \\
& 1.36 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.20 \\
\hline 6775 \\
1.31 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.27 \\
& \hline 6746 \\
& 1.31 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.20 \\
& 6738 \\
& 1.30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.273 \\
& \hline 6739 \\
& 1.29 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.20 \\
& 6650 \\
& 1.29 \\
& \hline
\end{aligned}
\] & 18 & 18 & 16 & 50 & 45 & 45 \\
\hline 600 & \[
\begin{array}{r}
7273 \\
1.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7110 \\
1.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7078 \\
1.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7068 \\
1.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7068 \\
1.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
6974 \\
1.33 \\
\hline
\end{array}
\] & 18 & 19 & 17 & 50 & 45 & 45 \\
\hline 625 & \[
\begin{aligned}
& 7626 \\
& 1.45 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
7.344 \\
\hline 1.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.04 \\
\hline 7409 \\
1.38 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.397 \\
& 7397 \\
& \hline 1.37 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.32 \\
& 7396 \\
& 1.36 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.3 J \\
& 7297 \\
& 1.36 \\
& \hline
\end{aligned}
\] & 19 & 20 & 18 & 50 & 45 & 45 \\
\hline 650 & \[
\begin{array}{r}
7978 \\
1.49 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7778 \\
& 1.42 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
7740 \\
1.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7727 \\
1.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7724 \\
1.39 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7620 \\
& 1.40 \\
& \hline
\end{aligned}
\] & 20 & 21 & 18 & 50 & 45 & 45 \\
\hline 675 & \[
\begin{array}{r}
\hline 8331 \\
1.53 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.42 \\
& \hline 8112 \\
& 1.46 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.41 \\
\hline 8070 \\
1.45 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8056 \\
& 1.44 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8052 \\
& 1.43 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 7943 \\
& 1.43 \\
& \hline
\end{aligned}
\] & 21 & 22 & 19 & 50 & 45 & 45 \\
\hline 700 & \[
\begin{array}{r}
8684 \\
1.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8446 \\
1.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8401 \\
1.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8385 \\
1.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8380 \\
1.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
8267 \\
1.47 \\
\hline
\end{array}
\] & 22 & 23 & 20 & 50 & 45 & 45 \\
\hline 725 & 9035
2.01 & \[
\begin{aligned}
& \hline 8779 \\
& 1.53 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 8730 \\
& 1.52 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8712 \\
& 1.51 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
8707 \\
1.50 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \hline 8589 \\
& 1.50 \\
& \hline
\end{aligned}
\] & 23 & 24 & 21 & 50 & 45 & 45 \\
\hline 750 & \[
\begin{array}{r}
9387 \\
2.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9112 \\
1.57 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9060 \\
& 1.56 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9040 \\
1.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9034 \\
1.54 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8912 \\
& 1.54 \\
& \hline
\end{aligned}
\] & 24 & 25 & 22 & 50 & 45 & 45 \\
\hline 775 & \[
\begin{aligned}
& 9738 \\
& 2.09 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9444 \\
& 2.01
\end{aligned}
\] & \[
\begin{aligned}
& 9390 \\
& 2.00 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9368 \\
1.58 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9360 \\
& 1.57 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9234 \\
& 1.58
\end{aligned}
\] & 25 & 26 & 23 & 50 & 45 & 40 \\
\hline 800 & \[
\begin{array}{r}
10090 \\
2.13 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9777 \\
& 2.04 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9719 \\
2.03 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 9695 \\
& 2.02
\end{aligned}
\] & \[
\begin{aligned}
& \hline 9687 \\
& 2.01
\end{aligned}
\] & \[
\begin{aligned}
& 9557 \\
& 2.01 \\
& \hline
\end{aligned}
\] & 25 & 27 & 23 & 50 & 45 & 40 \\
\hline 825 & \[
\begin{array}{r}
10440 \\
2.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10108 \\
2.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10047 \\
2.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10022 \\
2.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10012 \\
2.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
9879 \\
2.05 \\
\hline
\end{array}
\] & 26 & 28 & 24 & 50 & 45 & 40 \\
\hline 850 & \[
\begin{array}{r}
10790 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10440 \\
2.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10376 \\
2.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10348 \\
2.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10337 \\
2.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10201 \\
2.08 \\
\hline
\end{array}
\] & 27 & 29 & 25 & 50 & 45 & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 16} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{IN CRUISE QUICK CHECK FROM CRITICAL POINT TO LANDING - ONE ENGINE FAILURE MCT/320KT - FINAL DESCENT M. \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\) - IMC PROCEDURE 360KG/6MIN} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
REF. INITIAL WEIGHT \(=130000 \mathrm{KG}\) \\
REF. INITIAL FLIGHT LEVEL \(=330\)
\end{tabular}} & \multicolumn{4}{|l|}{NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
AIR \\
DIST. \\
(NM)
\end{tabular}} & \multicolumn{3}{|r|}{\multirow[b]{2}{*}{FLIGHT LEVEL}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{EVEL}} & \multicolumn{6}{|c|}{CORRECTION ON FUEL CONSUMPTION DUE TO} \\
\hline & & & & & & & \multicolumn{3}{|c|}{INITIAL WEIGHT (KG/1000KG)} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { INITIAL FL } \\
& (\mathrm{KG} / 1000 \mathrm{FT})
\end{aligned}
\]} \\
\hline & 100 & 170 & 180 & 190 & 200 & 210 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] \\
\hline 850 & \[
\begin{array}{r}
\hline 10790 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10440 \\
2.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10376 \\
2.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10348 \\
2.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10337 \\
2.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10201 \\
2.08 \\
\hline
\end{array}
\] & 27 & 29 & 25 & 50 & 45 & 40 \\
\hline 875 & \[
\begin{array}{r}
21141 \\
2.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10771 \\
2.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10704 \\
2.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10674 \\
2.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10662 \\
2.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10523 \\
2.12 \\
\hline
\end{array}
\] & 28 & 30 & 26 & 50 & 45 & 40 \\
\hline 900 & \[
\begin{array}{r}
11491 \\
2.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11103 \\
2.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11032 \\
2.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11000 \\
2.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10987 \\
2.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10845 \\
2.15 \\
\hline
\end{array}
\] & 29 & 31 & 27 & 50 & 45 & 40 \\
\hline 925 & \[
\begin{array}{r}
11840 \\
2.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11433 \\
2.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11359 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11325 \\
2.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11311 \\
2.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11166 \\
2.19 \\
\hline
\end{array}
\] & 30 & 32 & 27 & 50 & 45 & 40 \\
\hline 950 & \[
\begin{array}{r}
12189 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11763 \\
2.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11686 \\
2.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11650 \\
2.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11634 \\
2.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11488 \\
2.22 \\
\hline
\end{array}
\] & 30 & 33 & 28 & 50 & 45 & 40 \\
\hline 975 & \[
\begin{array}{r}
\hline 12538 \\
2.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12093 \\
2.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2013 \\
\hline 2.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11975 \\
2.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.26 \\
\hline 11958 \\
2.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.22 \\
\hline 1809 \\
2.25 \\
\hline
\end{array}
\] & 31 & 34 & 29 & 50 & 45 & 40 \\
\hline 1000 & \[
\begin{array}{r}
12887 \\
2.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12423 \\
2.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12340 \\
2.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12300 \\
2.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12281 \\
2.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12130 \\
2.29 \\
\hline
\end{array}
\] & 32 & 34 & 30 & 50 & 45 & 40 \\
\hline 1025 & \[
\begin{array}{r}
13235 \\
2.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12752 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12666 \\
2.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12623 \\
2.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12604 \\
2.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12451 \\
2.32 \\
\hline
\end{array}
\] & 33 & 35 & 30 & 50 & 45 & 40 \\
\hline 1050 & \[
\begin{array}{r}
13583 \\
2.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13081 \\
2.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12992 \\
2.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12947 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12926 \\
2.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12772 \\
2.36 \\
\hline
\end{array}
\] & 34 & 36 & 31 & 45 & 45 & 40 \\
\hline 1075 & \[
\begin{array}{r}
13931 \\
2.58
\end{array}
\] & \[
\begin{array}{r}
2.410 \\
2.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23318 \\
2.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13270 \\
2.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13248 \\
2.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13093 \\
2.39 \\
\hline
\end{array}
\] & 35 & 37 & 32 & 45 & 45 & 40 \\
\hline 1100 & \[
\begin{array}{r}
14279 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13739 \\
2.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13644 \\
2.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13593 \\
2.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13570 \\
2.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13414 \\
2.43 \\
\hline
\end{array}
\] & 35 & 38 & 33 & 45 & 45 & 40 \\
\hline 1125 & \[
\begin{array}{r}
14626 \\
3.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14067 \\
2.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13968 \\
2.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13916 \\
2.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13891 \\
2.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13734 \\
2.46 \\
\hline
\end{array}
\] & 36 & 39 & 34 & 45 & 45 & 40 \\
\hline 1150 & \[
\begin{array}{r}
14973 \\
3.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14395 \\
2.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14293 \\
2.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14238 \\
2.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14212 \\
2.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14055 \\
2.50 \\
\hline
\end{array}
\] & 37 & 40 & 34 & 45 & 45 & 40 \\
\hline 1175 & \[
\begin{array}{r}
15319 \\
3.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14723 \\
3.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.464 \\
\hline 2.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
2.02 \\
\hline 1460 \\
2.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14532 \\
2.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14375 \\
2.53 \\
\hline
\end{array}
\] & 38 & 41 & 35 & 45 & 45 & 40 \\
\hline 1200 & \[
\begin{array}{r}
15666 \\
3.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15051 \\
3.03
\end{array}
\] & \[
\begin{array}{r}
14942 \\
3.01
\end{array}
\] & \[
\begin{array}{r}
14882 \\
2.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14853 \\
2.57
\end{array}
\] & \[
\begin{array}{r}
14696 \\
2.57
\end{array}
\] & 39 & 42 & 36 & 45 & 45 & 40 \\
\hline 1225 & \[
\begin{array}{r}
16012 \\
3.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15378 \\
3.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15266 \\
3.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15203 \\
3.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15173 \\
3.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15016 \\
3.00 \\
\hline
\end{array}
\] & 39 & 43 & 37 & 45 & 45 & 40 \\
\hline 1250 & \[
\begin{array}{r}
16358 \\
3.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15705 \\
3.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15589 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15524 \\
3.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15492 \\
3.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15337 \\
3.04 \\
\hline
\end{array}
\] & 40 & 44 & 38 & 45 & 45 & 40 \\
\hline 1275 & \[
\begin{array}{r}
5.20 \\
16703 \\
3.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16031 \\
3.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15912 \\
3.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.00 \\
15844 \\
3.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15811 \\
3.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.04 \\
15657 \\
3.07 \\
\hline
\end{array}
\] & 41 & 45 & 38 & 45 & 45 & 40 \\
\hline 1300 & \[
\begin{array}{r}
17049 \\
3.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16358 \\
3.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16236 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16165 \\
3.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16131 \\
3.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15978 \\
3.11 \\
\hline
\end{array}
\] & 42 & 46 & 39 & 45 & 45 & 40 \\
\hline 1325 & \[
\begin{array}{r}
17394 \\
3.39
\end{array}
\] & \[
\begin{array}{r}
16684 \\
3.22
\end{array}
\] & \[
\begin{array}{r}
16558 \\
3.19
\end{array}
\] & \[
\begin{array}{r}
16485 \\
3.17
\end{array}
\] & \[
\begin{array}{r}
16449 \\
3.15
\end{array}
\] & \[
\begin{array}{r}
16297 \\
3.14
\end{array}
\] & 42 & 47 & 40 & 45 & 45 & 40 \\
\hline 1350 & \[
\begin{array}{r}
17738 \\
3.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17010 \\
3.26
\end{array}
\] & \[
\begin{array}{r}
16881 \\
3.23
\end{array}
\] & \[
\begin{array}{r}
16805 \\
3.21
\end{array}
\] & \[
\begin{array}{r}
16767 \\
3.18
\end{array}
\] & \[
\begin{array}{r}
16617 \\
3.18
\end{array}
\] & 43 & 47 & 41 & 45 & 45 & 40 \\
\hline 1375 & \[
\begin{array}{r}
18083 \\
3.47
\end{array}
\] & \[
\begin{array}{r}
17336 \\
3.29
\end{array}
\] & \[
\begin{array}{r}
17203 \\
\hline 3.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17124 \\
3.24
\end{array}
\] & \[
\begin{array}{r}
17085 \\
3.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16936 \\
3.21
\end{array}
\] & 44 & 48 & 42 & 45 & 45 & 40 \\
\hline 1400 & \[
\begin{array}{r}
18428 \\
3.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17661 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17526 \\
3.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline 17444 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17404 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17256 \\
3.24 \\
\hline
\end{array}
\] & 45 & 49 & 42 & 45 & 45 & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 17} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16.50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 18} \\
\hline & FIXED SPEED STRATEGY & REV 24 & SEQ 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{IN CRUISE QUICK CHECK FROM CRITICAL POINT TO LANDING - ONE ENGINE FAILURE MCT/340KT - FINAL DESCENT M.80/300KT/250KT - IMC PROCEDURE 360KG/6MIN} \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { REF. INITIAL WEIGHT }=130000 \mathrm{KG} \\
& \text { REF. INITIAL FLIGHT LEVEL }=330 \\
& \hline
\end{aligned}
\]} & \multicolumn{4}{|l|}{NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
AIR \\
DIST. \\
(NM)
\end{tabular}} & \multicolumn{6}{|c|}{\multirow[b]{2}{*}{FLIGHT LEVEL}} & \multicolumn{6}{|c|}{CORRECTION ON FUEL CONSUMPTION DUE TO} \\
\hline & & & & & & & \multicolumn{3}{|c|}{INITIAL WEIGHT (KG/1000KG)} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { INITIAL FL } \\
(\mathrm{KG} / 1000 \mathrm{FT})
\end{gathered}
\]} \\
\hline & 100 & 170 & 180 & 190 & 200 & 210 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL170 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL180 } \\
& \text { FL190 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL210 } \\
& \hline
\end{aligned}
\] \\
\hline 850 & \[
\begin{array}{r}
11251 \\
2.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10890 \\
2.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10731 \\
2.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10571 \\
2.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10414 \\
\quad 2.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10201 \\
2.08 \\
\hline
\end{array}
\] & 22 & 17 & 18 & 55 & 45 & 45 \\
\hline 875 & \[
\begin{array}{r}
11623 \\
2.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11243 \\
2.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11076 \\
2.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10910 \\
2.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10745 \\
\quad 2.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10523 \\
2.12 \\
\hline
\end{array}
\] & 23 & 17 & 19 & 55 & 45 & 45 \\
\hline 900 & \[
\begin{array}{r}
11995 \\
2.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11595 \\
2.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11421 \\
2.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11248 \\
2.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11076 \\
2.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
10845 \\
2.15 \\
\hline
\end{array}
\] & 23 & 17 & 19 & 55 & 45 & 45 \\
\hline 925 & \[
\begin{array}{r}
12366 \\
2.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11947 \\
2.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11766 \\
2.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11585 \\
2.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11407 \\
\quad 2.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11166 \\
2.19 \\
\hline
\end{array}
\] & 24 & 18 & 20 & 55 & 45 & 45 \\
\hline 950 & \[
\begin{array}{r}
12737 \\
2.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12298 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12111 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11923 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11738 \\
2.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11488 \\
2.22 \\
\hline
\end{array}
\] & 25 & 18 & 20 & 55 & 45 & 45 \\
\hline 975 & \[
\begin{array}{r}
13108 \\
2.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12650 \\
2.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12456 \\
2.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12261 \\
2.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12069 \\
2.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11809 \\
2.25 \\
\hline
\end{array}
\] & 25 & 19 & 21 & 55 & 45 & 45 \\
\hline 1000 & \[
\begin{array}{r}
13479 \\
2.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13001 \\
2.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12801 \\
2.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12599 \\
2.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12399 \\
2.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12130 \\
2.29 \\
\hline
\end{array}
\] & 26 & 19 & 21 & 55 & 45 & 45 \\
\hline 1025 & \[
\begin{array}{r}
13848 \\
2.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13347 \\
2.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13145 \\
2.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12936 \\
2.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12729 \\
2.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12451 \\
2.32 \\
\hline
\end{array}
\] & 27 & 20 & 21 & 55 & 45 & 45 \\
\hline 1050 & \[
\begin{array}{r}
14218 \\
2.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13692 \\
2.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13490 \\
2.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13272 \\
2.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13059 \\
2.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12772 \\
2.36 \\
\hline
\end{array}
\] & 27 & 20 & 22 & 55 & 45 & 45 \\
\hline 1075 & \[
\begin{array}{r}
14588 \\
2.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14038 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13834 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13609 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13389 \\
2.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13093 \\
2.39 \\
\hline
\end{array}
\] & 28 & 21 & 22 & 55 & 45 & 45 \\
\hline 1100 & \[
\begin{array}{r}
14958 \\
2.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14384 \\
2.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14179 \\
2.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13946 \\
2.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13718 \\
2.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13414 \\
2.43 \\
\hline
\end{array}
\] & 29 & 21 & 23 & 55 & 45 & 45 \\
\hline 1125 & \[
\begin{array}{r}
15326 \\
2.58
\end{array}
\] & \[
\begin{array}{r}
14728 \\
2.45
\end{array}
\] & \[
\begin{array}{r}
14523 \\
2.45
\end{array}
\] & \[
\begin{array}{r}
14283 \\
2.45
\end{array}
\] & \[
\begin{array}{r}
14047 \\
2.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13734 \\
2.46
\end{array}
\] & 29 & 22 & 23 & 55 & 45 & 45 \\
\hline 1150 & \[
\begin{array}{r}
15695 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15073 \\
2.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14867 \\
2.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14620 \\
2.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14377 \\
2.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14055 \\
2.50 \\
\hline
\end{array}
\] & 30 & 22 & 24 & 55 & 45 & 45 \\
\hline 1175 & \[
\begin{array}{r}
16064 \\
3.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15417 \\
2.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15211 \\
2.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14956 \\
2.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14706 \\
2.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14375 \\
2.53 \\
\hline
\end{array}
\] & 31 & 23 & 24 & 55 & 45 & 40 \\
\hline 1200 & \[
\begin{array}{r}
16432 \\
3.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15762 \\
2.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15555 \\
2.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15293 \\
2.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15035 \\
2.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14696 \\
2.57 \\
\hline
\end{array}
\] & 31 & 23 & 24 & 55 & 45 & 40 \\
\hline 1225 & \[
\begin{array}{r}
16800 \\
3.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16105 \\
2.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15899 \\
2.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15629 \\
2.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15363 \\
2.59
\end{array}
\] & \[
\begin{array}{r}
15016 \\
3.00 \\
\hline
\end{array}
\] & 32 & 24 & 25 & 55 & 45 & 40 \\
\hline 1250 & \[
\begin{array}{r}
17168 \\
3.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16449 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16243 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15965 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15691 \\
3.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15337 \\
3.04 \\
\hline
\end{array}
\] & 33 & 24 & 25 & 55 & 45 & 40 \\
\hline 1275 & \[
\begin{array}{r}
17535 \\
3.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16792 \\
3.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16587 \\
3.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16301 \\
3.05
\end{array}
\] & \[
\begin{array}{r}
16019 \\
3.06
\end{array}
\] & \[
\begin{array}{r}
15657 \\
3.07
\end{array}
\] & 33 & 25 & 26 & 55 & 45 & 40 \\
\hline 1300 & \[
\begin{array}{r}
17903 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17135 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16930 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16636 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16348 \\
3.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15978 \\
3.11 \\
\hline
\end{array}
\] & 34 & 25 & 26 & 55 & 45 & 40 \\
\hline 1325 & \[
\begin{array}{r}
18270 \\
3.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17479 \\
3.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17274 \\
3.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16972 \\
3.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16676 \\
3.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16297 \\
3.14 \\
\hline
\end{array}
\] & 35 & 26 & 26 & 55 & 45 & 40 \\
\hline 1350 & \[
\begin{array}{r}
18636 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17822 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17617 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17308 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17004 \\
3.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16617 \\
3.18 \\
\hline
\end{array}
\] & 35 & 26 & 27 & 55 & 45 & 40 \\
\hline 1375 & \[
\begin{array}{r}
19003 \\
3.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18165 \\
3.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17960 \\
3.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17643 \\
3.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17332 \\
3.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16936 \\
3.21 \\
\hline
\end{array}
\] & 36 & 27 & 27 & 55 & 45 & 40 \\
\hline 1400 & \[
\begin{array}{r}
19370 \\
3.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18509 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18303 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17979 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17661 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17256 \\
3.24 \\
\hline
\end{array}
\] & 36 & 28 & 28 & 55 & 45 & 40 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{2}{|r|}{2.16 .60} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & descent and holding & REV 21 & SEC 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{DESCENT M. 80 / 300 KT / 250 KT} \\
\hline \multicolumn{3}{|l|}{CLEAN CONFIGURATION NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|l|}{} \\
\hline \[
\begin{gathered}
\hline \text { WEIGHT } \\
(1000 \mathrm{KG}) \\
\hline
\end{gathered}
\] & \multicolumn{4}{|c|}{100} & \multicolumn{4}{|c|}{140} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { IAS } \\
& \text { (KT) }
\end{aligned}
\]} \\
\hline FL & TIME (MIN) & FUEL (KG) & \begin{tabular}{l}
DIST. \\
(NM)
\end{tabular} & EPR & \begin{tabular}{l}
TIME \\
(MIN)
\end{tabular} & FUEL (KG) & \begin{tabular}{l}
DIST \\
(NM)
\end{tabular} & EPR & \\
\hline 410 & 15.9 & 139 & 97 & IDLE & & & & & 237 \\
\hline 390 & 15.2 & 135 & 92 & IDLE & & & & & 248 \\
\hline 370 & 14.6 & 131 & 88 & IDLE & 17.2 & 153 & 104 & IDLE & 260 \\
\hline 350 & 14.0 & 127 & 83 & IDLE & 16.6 & 149 & 99 & IDLE & 272 \\
\hline 330 & 13.5 & 123 & 79 & IDLE & 16.1 & 145 & 95 & IDLE & 284 \\
\hline 310 & 13.0 & 120 & 75 & IDLE & 15.5 & 141 & 91 & IDLE & 297 \\
\hline 290 & 12.4 & 115 & 71 & IDLE & 14.7 & 136 & 85 & IDLE & 300 \\
\hline 270 & 11.7 & 111 & 66 & IDLE & 13.9 & 130 & 79 & IDLE & 300 \\
\hline 250 & 11.0 & 106 & 61 & IDLE & 13.1 & 124 & 73 & IDLE & 300 \\
\hline 240 & 10.7 & 103 & 58 & IDLE & 12.7 & 121 & 69 & IDLE & 300 \\
\hline 220 & 10.0 & 98 & 53 & IDLE & 11.8 & 115 & 63 & IDLE & 300 \\
\hline 200 & 9.2 & 93 & 48 & IDLE & 10.9 & 109 & 57 & IDLE & 300 \\
\hline 180 & 8.5 & 89 & 44 & IDLE & 10.0 & 103 & 52 & IDLE & 300 \\
\hline 160 & 7.8 & 85 & 39 & IDLE & 9.1 & 98 & 46 & IDLE & 300 \\
\hline 140 & 7.1 & 80 & 34 & IDLE & 8.2 & 92 & 40 & IDLE & 300 \\
\hline 120 & 6.3 & 75 & 30 & IDLE & 7.3 & 85 & 35 & IDLE & 300 \\
\hline 100 & 5.5 & 69 & 26 & IDLE & 6.3 & 78 & 29 & IDLE & 300 \\
\hline 50 & 2.1 & 30 & 9 & IDLE & 2.4 & 34 & 10 & IDLE & 250 \\
\hline 15 & . 0 & 0 & 0 & IDLE & . 0 & 0 & 0 & IDLE & 250 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\underbrace{\text { a }}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
ONE ENGINE INOPERATIVE \\
descent and holding
\end{tabular}} & \multicolumn{2}{|r|}{2.16 .60} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 21 & SEO 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{HOLDING AT GREEN DOT SPEED 1 ENGINE OUT} \\
\hline \multicolumn{7}{|l|}{MAX. CONTINUOUS THRUST LIMITS CLEAN CONFIGURATION NORMAL AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG=27.0\% }
\end{gathered}
\]} & \multicolumn{2}{|l|}{EPR
FF (KG/H)
IAS} \\
\hline \[
\begin{aligned}
& \hline \text { WEIGHT } \\
& \text { (1000KG) } \\
& \hline
\end{aligned}
\] & FL 15 & FL 50 & FL100 & FL120 & FL140 & FL160 & FL180 & FL200 & FL250 & FL290 \\
\hline \multirow[b]{3}{*}{85} & 1.087 & 1.102 & 1.127 & 1.139 & 1.153 & 1.170 & 1.188 & 1.211 & 1.283 & 1.380 \\
\hline & 2476 & 2438 & 2414 & 2410 & 2405 & 2393 & 2381 & 2377 & 2428 & 2569 \\
\hline & 185 & 185 & 185 & 185 & 185 & 185 & 185 & 185 & 195 & 203 \\
\hline \multirow[b]{3}{*}{90} & 1.093 & 1.109 & 1.136 & 1.149 & 1.164 & 1.182 & 1.203 & 1.229 & 1.307 & 1.418 \\
\hline & 2613 & 2583 & 2561 & 2558 & 2546 & 2534 & 2523 & 2529 & 2583 & 2752 \\
\hline & 190 & 190 & 190 & 190 & 190 & 190 & 190 & 190 & 200 & 207 \\
\hline \multirow[b]{3}{*}{95} & 1.100 & 1.116 & 1.144 & 1.159 & 1.175 & 1.195 & 1.219 & 1.246 & 1.333 & 1.465 \\
\hline & 2751 & 2729 & 2711 & 2702 & 2689 & 2675 & 2677 & 2682 & 2746 & 2952 \\
\hline & 195 & 195 & 195 & 195 & 195 & 195 & 195 & 195 & 204 & 212 \\
\hline \multirow[b]{3}{*}{100} & 1.106 & 1.122 & 1.153 & 1.169 & 1.187 & 1.209 & 1.235 & 1.264 & 1.362 & 1.518 \\
\hline & 2897 & 2876 & 2860 & 2846 & 2832 & 2825 & 2831 & 2835 & 2925 & 3178 \\
\hline & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 209 & 216 \\
\hline \multirow[b]{3}{*}{105} & 1.111 & 1.129 & 1.162 & 1.179 & 1.199 & 1.223 & 1.250 & 1.283 & 1.392 & 1.574 \\
\hline & 3045 & 3026 & 3005 & 2991 & 2975 & 2980 & 2984 & 2991 & 3120 & 3423 \\
\hline & 205 & 205 & 205 & 205 & 205 & 205 & 205 & 205 & 213 & 220 \\
\hline \multirow[b]{3}{*}{110} & 1.117 & 1.136 & 1.172 & 1.190 & 1.212 & 1.238 & 1.267 & 1.302 & 1.426 & 1.631 \\
\hline & 3195 & 3178 & 3151 & 3136 & 3130 & 3136 & 3141 & 3150 & 3314 & 3693 \\
\hline & 210 & 210 & 210 & 210 & 210 & 210 & 210 & 210 & 218 & 224 \\
\hline \multirow[b]{3}{*}{115} & 1.123 & 1.143 & 1.181 & 1.201 & 1.225 & 1.252 & 1.284 & 1.322 & 1.463 & \\
\hline & 3346 & 3332 & 3298 & 3280 & 3287 & 3291 & 3299 & 3318 & 3515 & \\
\hline & 215 & 215 & 215 & 215 & 215 & 215 & 215 & 215 & 223 & \\
\hline \multirow[b]{3}{*}{120} & 1.128 & 1.150 & 1.191 & 1.213 & 1.238 & 1.268 & 1.302 & 1.343 & 1.505 & \\
\hline & 3500 & 3489 & 3445 & 3438 & 3444 & 3449 & 3460 & 3489 & 3734 & \\
\hline & 220 & 220 & 220 & 220 & 220 & 220 & 220 & 220 & 227 & \\
\hline \multirow[b]{3}{*}{125} & 1.134 & 1.157 & 1.201 & 1.225 & 1.252 & 1.283 & 1.320 & 1.366 & 1.554 & \\
\hline & 3655 & 3639 & 3589 & 3596 & 3601 & 3609 & 3630 & 3674 & 3989 & \\
\hline & 225 & 225 & 225 & 225 & 225 & 225 & 225 & 225 & 232 & \\
\hline \multirow[b]{3}{*}{130} & 1.140 & 1.164 & 1.212 & 1.237 & 1.266 & 1.299 & 1.339 & 1.390 & 1.603 & \\
\hline & 3812 & 3789 & 3749 & 3755 & 3760 & 3771 & 3802 & 3871 & 4261 & \\
\hline & 230 & 230 & 230 & 230 & 230 & 230 & 230 & 230 & 236 & \\
\hline \multirow[b]{3}{*}{135} & 1.146 & 1.172 & 1.223 & 1.249 & 1.280 & 1.316 & 1.360 & 1.416 & & \\
\hline & 3972 & 3940 & 3909 & 3913 & 3922 & 3942 & 3985 & 4072 & & \\
\hline & 235 & 235 & 235 & 235 & 235 & 235 & 235 & 235 & & \\
\hline \multirow[b]{3}{*}{140} & 1.152 & 1.180 & 1.234 & 1.262 & 1.294 & 1.333 & 1.381 & 1.443 & & \\
\hline & 4131 & 4092 & 4069 & 4075 & 4086 & 4117 & 4185 & 4275 & & \\
\hline & 240 & 240 & 240 & 240 & 240 & 240 & 240 & 240 & & \\
\hline \multirow[b]{3}{*}{145} & 1.158 & 1.187 & 1.245 & 1.275 & 1.309 & 1.351 & 1.404 & 1.475 & & \\
\hline & 4285 & 4241 & 4230 & 4238 & 4257 & 4295 & 4391 & 4493 & & \\
\hline & 245 & 245 & 245 & 245 & 245 & 245 & 245 & 245 & & \\
\hline \multirow[b]{3}{*}{150} & 1.165 & 1.195 & 1.256 & 1.288 & 1.325 & 1.371 & 1.429 & 1.508 & & \\
\hline & 4440 & 4387 & 4392 & 4404 & 4433 & 4498 & 4596 & 4721 & & \\
\hline & 250 & 250 & 250 & 250 & 250 & 250 & 250 & 250 & & \\
\hline \multirow[b]{3}{*}{155} & 1.171 & 1.204 & 1.268 & 1.301 & 1.341 & 1.391 & 1.456 & 1.546 & & \\
\hline & 4596 & 4543 & 4557 & 4573 & 4612 & 4706 & 4807 & 4980 & & \\
\hline & 255 & 255 & 255 & 255 & 255 & 255 & 255 & 255 & & \\
\hline \multirow[b]{3}{*}{160} & 1.178 & 1.213 & 1.280 & 1.316 & 1.358 & 1.413 & 1.485 & 1.586 & & \\
\hline & 4748 & 4708 & 4725 & 4750 & 4808 & 4916 & 5035 & 5265 & & \\
\hline & 260 & 260 & 260 & 260 & 260 & 260 & 260 & 260 & & \\
\hline \multicolumn{4}{|c|}{ENG. ANTI-ICE ON} & \multicolumn{3}{|l|}{TOTAL ANTI-ICE ON} & \multicolumn{4}{|c|}{per \(1^{\circ} \mathrm{C}\) above ISA} \\
\hline \multicolumn{4}{|c|}{\(\triangle \mathrm{FF}=+0.6 \%\)} & \multicolumn{3}{|c|}{\(\triangle \mathrm{FF}=+2 \%\)} & \multicolumn{4}{|c|}{\(\triangle \mathrm{FF}=+0.25 \%\)} \\
\hline \multicolumn{7}{|l|}{A310-324-01 PW4152 14300010C6KG270 0018590003 1.3.0.00011.000 .000 .000 0} & & & OM-BC & 00-002-1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{ONE ENGINE INOPERATIVE} & \multicolumn{3}{|c|}{2.16 .70} \\
\hline & & PAGE 1 & & \\
\hline & GROUND DISTANCE / AIR DISTANCE CONVERSION & REV 20 & & 001 \\
\hline
\end{tabular}


Example : average TAS \(=370 \mathrm{KT}\), head wind \(=75 \mathrm{kt}\), ground distance 400 NM , resulting air distance \(=500 \mathrm{NM}\)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17 .00} \\
\hline & & PAGE & \\
\hline & CONTENTS & REV 23 & SEQ 001 \\
\hline
\end{tabular}

Pages
2.17.10 FUEL POLICY

Minimum Recommended
Fuel Requirements . . . . . . . . . 1
Flight Plan . . . . . . . . . . . . . . . 1
Standard Fuel Plan Profile
- Fuel and Weight Definitions . 2
2.17.20 GRAPHICAL

CALCULATION
General . . . . . . . . . . . . . . . . 1
Use of Graphs For Flight
Preparation . . . . . . . . . . . . 1
Definitions . . . . . . . . . . . . . 1
Maximum Altitude - Optimum
Altitude . . . . . . . . . . . . . . . 1
Flight Level After Take Off .. 1
Presentation of Graph . . . . 2
Graph . . . . . . . . . . . . . . . 3
Fuel and Time to Alternate . 4
Steps for Preparation of
Fuel/Time Plan
5 to 10
Example . . . . . . . . . . . . . . . . 11
In Flight Use of Graphs . . . . . 11
Reserve Fuel Check . . . . . . 11
In Flight Follow Up . . . . . . 11
Flight Level Change . . . . . . 12
Maximum Permissible Wind . 12
2.17.30 TABULATED

CALCULATION
General . . . . . . . . . . . . . . . . 1
Flight Preparation . . . . . . . . . 1
Nautical Ground Miles to
Air Miles Conversion . . . . . 2 to 3
Fuel and Time to
Destination . . . . . . . . . . . . . . 4 to 10
Fuel and Time to Alternate . . 11 to 12 In Cruise Quick Check Tables . 13 to 19
Cruise Level Chart . . . . . . . . 20
Management of Buffet Margin . 20A
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & FUEL POLICY & REV 29 & SEO 040 \\
\hline
\end{tabular}

\section*{1. MINIMUM RECOMMENDED FUEL}

\section*{REQUIREMENTS}

The total fuel quantity required to fly a given sector is the sum of the following quantities :

\section*{A. Taxi Fuel}

Quantity required for start up and TAXI. Fuel calculation will be based on a consumption of \(20 \mathrm{~kg} / \mathrm{min}\).

Note : Average quantity (12 min) \(\rightarrow 240 \mathrm{~kg}\)

\section*{B. Trip Fuel}

Fuel required from departure to destination includes the following quantities:
- Takeoff and climb at selected speed.
- Cruise at selected speed.
- Descent from cruising level to 1,500 ft above destination airport.
- Approach and landing. Fuel calculation will be based on a \(60 \mathrm{~kg} / \mathrm{min}\) consumption.

Note: Average quantity \((6 \mathrm{~min}(M C) \rightarrow 360 \mathrm{~kg}\)

\section*{C. Reserve Fuel}

This quantity includes:
(1) «En Route » Reserve Fuel

According to national regulations and company policy (generally based on a percentage of TRIP FUEL).
(2) Alternate Fuel

Fuel required to fly from destination to alternate airport. It includes go-around ( 300 kg ), climb to cruising level, cruise at long range speed, descent and approach procedure ( 240 kg for 4 minutes VMC).
(3) Holding Fuel

Holding fuel should be calculated taking into account actual alternate altitude and landing weight at alternate, using holding charts of chapter 2.13.
Note: A conservative quantity corresponding to 30 min holding at \(1,500 \mathrm{ft}\) above alternate airport elevation and optimum holding speed (see 2.13.10 page 2) can be taken in a general manner.
Average quantity
CLEAN CONFIGURATION \(\rightarrow 2,000 \mathrm{~kg}\) (1,500 ft above SL)

\section*{D. APU fuel consumption}
- During ground operation, the fuel consumption \(R\) is about:
\(185 \mathrm{~kg} / \mathrm{h}(408 \mathrm{lb} / \mathrm{h})\) Packs ON and APU GEN ON \(125 \mathrm{~kg} / \mathrm{h}(276 \mathrm{lb} / \mathrm{h})\) APU GEN only
- In flight APU fuel consumption is about : \(133 \mathrm{~kg} / \mathrm{h}(296 \mathrm{lb} / \mathrm{h})\) at FL 150 Packs ON and APU GEN ON \(61 \mathrm{~kg} / \mathrm{h}(135 \mathrm{lb} / \mathrm{h})\) at FL 350 APU GEN only.

\section*{2. FLIGHT PLAN}

When no precalculated flight plan is available, flight planning can be determined by using the graph or tables given in this chapter.
Fuel policy will be the same as for precalculated flight plan.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & FUEL POLICY & REV 29 & SEQ 001 \\
\hline
\end{tabular}

STANDARD FUEL PLAN PROFILE FUEL AND WEIGHT DEFINITIONS


\section*{1. GENERAL}

The graph can be used either for preflight planning or for in-flight follow up, and is printed on both sides.

The front side has the following graphs and table (see page 3/4).
(A) - an air-distance/actual weight graph,
(B) - a ground-distance/air distance graph,
(C) - a flight time/air distance graph,
(D) - a correction table including :
. climb correction to time and fuel consumption,
. temperature correction to cruise consumption as a function of weight,
. T/O altitude correction to consumption,
(E) - graph of maximum and optimum altitude as a function of temperature and weight.
The reverse side presents a graph : FUEL AND TIME TO ALTERNATE and a CALCULATION TABLE.

\section*{2. USE OF GRAPHS FOR FLIGHT PREPARATION}

\section*{A. DEFINITIONS}
- Actual weight: Gross weight of the aircraft at a given time.
- Actual WEIGHT OVERHEAD DEPARTURE : weight which the aircraft would have if it were at cruising level overhead the departure field.
- T/O ALTITUDE CORRECTION : given in table (D) for each 1.000 ft above sea level.
- CLIMB CORRECTION : since the air distance / actual weight graph gives cruising consumption it is necessary to introduce a climb correction. The climb correction given in table (D) represents the difference (to be applied to "actual weight over departure») between climb to cruising level and corresponding cruise at this level. This correction is given as a function of weight. A climb correction is also given to be applied to the flight time.
- Cruise correction : given in table correction (D). Since the planning graphs are drawn for ISA, this correction takes into account the temperature deviations above ISA.
Descent correction : the reference : «weight at end of descent \(»\), has been positioned on the air distance scale to take into account the gain in fuel between cruise and descent.

\section*{B. MAXIMUM ALTITUDE - OPTIMUM ALTITUDE :} GRAPH (E)
- OPTIMUM ALTITUDE : at this altitude, the airplane will cover the maximum distance per kilogram of fuel (best specific range).
- MAXIMUM RECOMMENDED ALTITUDE : ensures maneuver factor of \(1,3 \mathrm{~g}\) before buffet onset.
- MAXIMUM ALTITUDE : is determined by the thrust available at the max cruise rating.
The lower of these two latter altitudes is drawn on graph (A).
For temperature higher than ISA + 10, MAXIMUM ALTITUDE decreases linearly between ISA + 10 and ISA + 20.

\section*{C. FLIGHT LEVEL AFTER TAKE-OFF}

Select the highest possible flight level above the optimum altitude with estimated weight overhead departure, but not exceeding 2,000 ft above the optimum altitude.
Check that the forecasted FLIGHT LEVEL is lower than MAXIMUM ALTITUDE at corresponding temperature.
If turbulence is expected it is recommended to remain at or below optimum altitude.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & GRAPHICAL CALCULATION & REV 24 & SEO 030 \\
\hline
\end{tabular}

> ote : Time is based on TAS \(450 \mathrm{kt}\left(S A T-60^{\circ} \mathrm{C}\right)\) Per kt above 450 kt or per \({ }^{\circ} \mathrm{C}\) above \(-60^{\circ} \mathrm{C}\) subtract 1.3 mn per hour flight time.

R Code: 0078
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
GRAPHICAL CALCULATION
\[
M=0.80
\]
\end{tabular}} & \multicolumn{2}{|r|}{2.17 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & & REV 24 & SEQ 082 \\
\hline
\end{tabular}

Climb : 250/300 KT/M 0.80 - Descent : M 0.80/300/250 KT-C.G. : \(37.5 \%\)


\footnotetext{
Mod. : \(4801+4863\)
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{FLGHT CREW OPERATING MANUAL} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
GRAPHICAL CALCULATION fUEL AND TIME TO ALTERNATE
\end{tabular}} & \multicolumn{2}{|r|}{2.17 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 24 & SEQ 102 \\
\hline
\end{tabular}

\section*{CALCULATION TABLE}


FLIGHT PLANNING FROM GO AROUND TO LANDING
INCLUDING : GO AROUND \(=300 \mathrm{KG}(660 \mathrm{lb})\), CLIMB \(250 / 270 \mathrm{Kt} / \mathrm{M} 0.65\)
CRUISE AT LONG RANGE, DESCENT M O.65/270/250 KT, VMC PROCEDURE \(=240 \mathrm{KG}(530 \mathrm{lb})\) and 4 MN

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & GRAPHICAL CALCULATION & REV 25 & SEQ 030 \\
\hline
\end{tabular}

\section*{D. STEPS FOR PREPARATION OF FUEL/TIME PLAN}


\section*{(1) STEP 1 : AIR DISTANCE}
(a) Explanations
- Prepare navigation log (distance between points and wind components) from which remaining ground distance will be extracted.
- Plot these distances on ground distance scale, starting from destination and working back to departure point.
- Draw parallel oblique lines at each of these points.
- From destination (point 0 ) follow the wind line of the last leg until intersection with oblique line of next point. This intersection represents air position of last point.
- From air position of last, draw the parallel to effective wind line of preceeding leg until intersection with next oblique line.
- Proceed in a similar way until air position of departure point is determined.
- Draw vertical lines through air positions of check points to upper air distance scale and to lower time scale Flight time will be determined by correcting the time read on the scale with the actual value of TAS.
(b) Example data : Airport A \(\rightarrow\) Airport B (See page 6) EFFECT WIND
\begin{tabular}{lrr} 
AIRPORT A \(\rightarrow\) POINT 1 & 1330 NM & -50 kt \\
POINT \(1 \rightarrow\) POINT 2 & 350 NM & 0 kt \\
POINT \(2 \rightarrow\) POINT 3 & 200 NM & +30 kt \\
POINT \(3 \rightarrow\) AIRPORT B & 600 NM & +80 kt
\end{tabular}
- Prepare navigation log.
- Plot remaining ground distances.
- Draw oblique lines corresponding to remaining distances 600, 800, 1150, 2480.
- From point 0 follow the line +80 , until intersection with oblique line 600 NM .
- From air position of last point, draw the parallel to wind +30 until intersection with oblique line 800 NM.
- Proceed in the same way for all points.
- Draw vertical lines through air positions.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & GRAPHICAL CALCULATION & REV 24 & SEQ 030 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ EXTRACT FROM NAVIGATION LOG } \\
\hline CHECK POINTS & \begin{tabular}{c} 
DISTANCE \\
BETWEEN POINTS
\end{tabular} & \begin{tabular}{c} 
WIND \\
COMPONENT
\end{tabular} & REMAINING DISTANCES \\
\hline AIRPORT A DEPARTURE & 1330 & -50 & 2480 \\
\hline POINT 1 & 350 & 0 & 1150 \\
\hline POINT 2 & 200 & +30 & 800 \\
\hline POINT 3 & 600 & +80 & 600 \\
\hline AIRPORT B DESTINATION & Total 2480 & & 0 \\
\hline
\end{tabular}


Note : Time is based on TAS \(450 \mathrm{kt}\left(S A T-60^{\circ} \mathrm{C}\right)\)
Per kt above 450 kt or per \({ }^{\circ} \mathrm{C}\) above \(-60^{\circ} \mathrm{C}\) subtract 1.3 mn per hour flight time.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & GRAPHICAL CALCULATION & REV 24 & SEO 001 \\
\hline
\end{tabular}
(2) Step 2 : Determination of max take off weight

Use RTOLW charts, quick reference tables (refer to 2.09) or Flight Manual.
(3) Step 3 : Determination of payload, trip fuel, ramp fuel and flight time

\begin{tabular}{|l|l|l|}
\hline & \multicolumn{3}{|c|}{2.17 .20} \\
\hline \multicolumn{3}{|c|}{ PAGE 8 } \\
\hline \multicolumn{2}{|c|}{ REV 24 } & SEO 030 \\
\hline
\end{tabular}

CALCULATION TABLE


\section*{(4) Comments on calculation table :}

Line 6: determination of WEIGHT AT END OF DESCENT AT ISA.

Use flight planning graph (A).
Take a strip of paper and plot the distance between «WEIGHT AT END OF DESCENT INDEX» on upper air distance scale and departure air position vertical line (observe that this index is not at 0 point of the scale).
Transfer this strip of paper into the weight/distance diagram on the horizontal line corresponding to the first selected cruise level (refer § 2.C) with departure point on the 0/DEPT. WEIGHT calculated above.
If end of descent point plotted on strip of paper is more than 2.000 ft under optimum altitude, a level change en route to the next flight level is desirable.
In the former case, plot on the strip of paper the distance where the intermediate step will be made. (Ideally at the point indicated by an arrow).
Transfer the strip of paper vertically, keeping the step point on the same weight curve to final possible cruise level. Read gross weight at end of descent point and subtract 100 kg ( 200 lb ) to take into account the additional fuel for climbing to a higher level.
This gives WEIGHT AT END OF DESCENT AT ISA.
Line 10 : CHECK THAT LANDING WEIGHT AT DESTINATION IS LOWER THAN MAXIMUM LANDING WEIGHT.
Line 11 : ALTERNATE FUEL is determined by considering the weight at destination equal to the weight at departure to alternate.
Line 17: CHECK THAT THE ZERO FUEL WEIGHT IS LOWER THAN MAX ZERO FUEL WEIGHT. STEP 3B/RAMP FUEL and FLIGHT TIME calculation.
. RAMP FUEL CALCULATION (line 22 to 26) : obtained by adding REOUIRED FUEL (= MAX T/0 WEIGHT - ZERO FUEL WEIGHT), TAXI FUEL ( 20 kg or 45 lb per min) and EXTRA FUEL (if any).
CHECK THAT IT IS LOWER THAN TANKS MAXIMUM CAPACITY.
FLIGHT TIME CALCULATION (line 27 to 30 ).
Flight time \(=\) time found in graph (C) corrected for TAS
+ climb correction (in table (D))
Time is found in graph (C) on the lower time scale corrected by the TAS or temperature value at cruising level.
In case of level change en route, take TAS or temperature at intermediate level between initial and final levels.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
A310 \\
FLIGHT CREW OPERATING MANUAL
\end{tabular}} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 9} \\
\hline & GRAPHICAL CALCULATION & REV 24 & SEQ 001 \\
\hline
\end{tabular}



R Code: 0075

A310
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{2.17 .20} \\
\hline \multicolumn{2}{|c|}{ PAGE 10 } & \\
\hline \multicolumn{2}{|c|}{ REV 24 } & SEO 001 \\
\hline
\end{tabular}

\section*{3. EXAMPLE}

Continuation of example 2 page 5 and 6 Air distance 2550 NM.

DATA : Airport elevation : \(1,500 \mathrm{ft}\)
Max T/O weight (RTOLW charts) : 131.7 tons Temperature: ISA +10 along the whole flight profile
Odd flight level
A. Fill in MAX T/O WEIGHT \(\rightarrow 131.7\) tons
B. Choose first flight level : FL 350 and subtract CLIMB CORRECTION : \(1.8 \mathrm{~T} \rightarrow 129.9 \mathrm{~T}\)
C. Add T/O ALTITUDE CORRECTION :
\(0.5 \times 131.7 \times 1.5=99 \mathrm{~kg}=0.1 \mathrm{t}\)
To obtain O/DEPT WEIGHT =
\(129.9+0.1=130.0\) tons
D. Determination of WEIGHT AT END OF DESCENT AT ISA.
Plot on a strip of paper the air distance from graph. First flight level : 350 departure weight 130.0 t
Level change at \(111 \mathrm{t} \rightarrow\) FL 390
WEIGHT AT END OF DESCENT
106.1 - 0.1 t (level change) \(=106\) t
E. Subtract CRUISE CORRECTION :
\(0.006 \times 10 \times 2550=153 \mathrm{~kg}\)
to obtain END OF DESCENT WEIGHT \(106-0.2=105.8 \mathrm{t}\)
F. Subtract IFR procedure ( 6 min for example)
\(6 \times 60=360 \mathrm{~kg}=0.4 \mathrm{t}\)
to obtain LANDING WEIGHT AT DESTINATION \(105.8-0.4=105.4 \mathrm{t}\) lower than MLW
G. Subtract ALTERNATE FUEL : \(\rightarrow\) corresponding graph with WEIGHT AT DEPARTURE TO ALTERNATE = 105.4 t and 340 NM at FL \(200 \rightarrow 4.6 \mathrm{t}\) WEIGHT AT LANDING TO ALTERNATE \(105.4-4.6=100.8 \mathrm{t}\)
H. Subtract HOLDING FUEL : standard account for clean configuration \(\rightarrow 2.1\) t
WEIGHT AT END OF HOLDING : \(100.8-2.1=98.7\) t
I. TRIP FUEL \(=131.7-105.4=26.3 \mathrm{t}\)
J. Subtract «EN ROUTE» RESERVE : for example \(5 \%\) of trip fuel \(\rightarrow 1.3 \mathrm{t}\)
ZERO FUEL WEIGHT \(=98.7-1.3=97.4 \mathrm{t}\)
97.4 t lower than MZFW
K. Subtract DOW \(=80 \mathrm{t}\) to obtain MAX ALLOWABLE PAYLOAD \(97.4-80=17.4\)
L. Subtract ACTUAL PAYLOAD \(=13 \mathrm{t}\) to obtain POSSIBLE EXTRA FUEL \(\rightarrow 4.4\) t
RAMP FUEL CALCULATION :
\(34.3+0.2+4.4=38.9\) t
FLIGHT TIME CALCULATION :
ISA +10 at \(\mathrm{FL} 350=44.3^{\circ}\)
ISA +10 at \(\mathrm{FL} 390=46.5^{\circ}\) read at \(-45.4^{\circ} \rightarrow\) 5 h 30 mn
+ CLIMB CORRECTION \(4 \mathrm{mn} \rightarrow\) TOTAL 5 h 34 mn

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 11} \\
\hline & GRAPHICAL CALCULATION & REV 24 & SEQ 001 \\
\hline
\end{tabular}

\section*{4. IN FLIGHT USE OF GRAPHS}

\section*{A. RESERVE FUEL CHECK}
- Plot on the weight/distance diagram the curve corresponding to zero fuel weight.
The zone located on the right side from this curve is the no-fuel zone.
- Determine diversion gross weight

Diversion GROSS WEIGHT \(=\) ZFW + MINIMUM
FUEL FOR DIVERTING
ZFW
DIVERSION + ALTERNATE FUEL
GROSS WEIGHT +30 mn HOLDING CLEAN
Plot this diversion GROSS WEIGHT CURVE on the diagram
This curve is the " minimum reserve» curve.
EXAMPLE: DOW \(=80\) tons
Last minute load is 17 tons
Alternate fuel : 4.6 tons
Actual ZFW \(=80+17=97\) tons
Diversion weight \(=97+2.1+4.6\)
\(=103.7\) tons


\section*{B. IN FLIGHT FOLLOW-UP}

At beginning of cruise, plot the actual weight overhead departure (which can be different from the one taken into account for preparation) on actual flight level line. Actual O/DEP W = Actual TOW - CLIMB CORRECTION (GRAPH D).
With the strip of paper, plot expected weights corresponding to check points and destination (above flight level line).
When overflying a check point, calculate actual weight and plot it opposite to expected actual weight under the flight level line. With the strip of paper, determine END DESC W corresponding to that actual weight and compare it with expected END DESC W.

\section*{EXAMPLE : Actual T.O.W. = 131.7 tons}
- Plot point A at 131.7 t - CLIMB CORRECTION ( 1.8 tons) \(=129.9\) tons
- Plot actual weights of check points with the strip of paper.
- When overflying a check point plot actual weight
- With the strip of paper: determine expected END DESC W.
- Compare it with DIVERSION WEIGHT.


\section*{C. FLIGHT LEVEL CHANGE}
(1) Climb at a higher level

Proceed as indicated in flight preparation.
Do not forget to subtract 100 kg at step climb.
(2) Descent at a lower level

It may be mandatory to descend at a lower level on ATC request or advisable to descend in case of turbulence.

In this case, note the actual weight at beginning of descent, plot that weight (without correction) on lower flight level line and with the strip of paper plot (above flight level line) expected weights corresponding to last check points and destination.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 12} \\
\hline & GRAPHICAL CALCULATION & REV 24 & SEO 001 \\
\hline
\end{tabular}

\section*{D. MAXIMUM PERMISSIBLE WIND}

\begin{abstract}
Let us suppose we meet the situation shown on example, i.e., actual weights (points 1 and 2 lower marks) are lower than expected weights, because stronger winds than expected have been encountered, and the step climb is not allowed by ATC.

At point 3, we want to know which wind will allow destination to be reached. We measure (with a strip of paper) the distance between actual weight at point 3 and diversion weight curve. We transfer this distance on upper air distance scale and draw a vertical line from the extremity of the vector. The intersection with ground distance line of point 3 ( 500 NM) gives maximum permissible wind.
\end{abstract}

We can read : approximately : -60 kt .


\section*{1. GENERAL}

This chapter can be used either when no precalculated flight plan is available, or for flight planning follow up. The following tables and graphs are given for the flight planning preparation.
- Nautical ground miles to air miles conversion
- Fuel and time to destination : 200 NM to 5000 NM
- Fuel and time to alternate LRC (Long range IAS or Mach Numbers are given in 2.12)
Cruise level chart
The «fuel and time to destination» tables enable to determine cruise fuel consumption and cruise time to cover a given air distance. They include :
\[
\begin{aligned}
& \text {. Climb : } 250 \mathrm{kt} / 300 \mathrm{kt} / \mathrm{M} .80 \text {. Econ. Air } \\
& \text { - Cruise: M. } 80 \text { conditioning } \\
& \text {. Descent : M. } 80 / 300 \mathrm{kt} / 250 \mathrm{kt} \text {. C.G. : } 37.5 \% \\
& \text {. IMC procedure : } 360 \mathrm{~kg}(800 \mathrm{lb}) \text {. ISA } \\
& 6 \mathrm{~min}
\end{aligned}
\]

The «Alternate» table include :
. Go-around : \(300 \mathrm{~kg}(660 \mathrm{lb})\)
Climb : 250 kt/270 kt/M. 65
Cruise at Long Range speed
Descent : M.65/270 kt/250 kt
VMC procedure : 240 kg ( 530 lb )
4 min

\section*{Econ. Air}
conditioning
C.G. : \(27 \%\)

ISA

Note: 1 In case of a flight below FL 290 for which no flight planning table is provided, the alternate table may be used by adding \(120 \mathrm{~kg}(265 \mathrm{lb})\) to the fuel consumption and 2 minutes to the flight time given in the table (difference between IMC and VMC approaches). (The \(300 \mathrm{~kg}(660 \mathrm{lb})\) fuel for go around will be kept since very close to the fuel consumption for take-off).
Note: 2 In case of emergency descent refer to the graphs FUEL AND TIME AT FL 100 and 140 included in chapter 2.18.20
FLIGHT WITHOUT CABIN PRESSURIZATION.
«In cruise quick check» tables are given for flight planning follow-up. They allow to determine the fuel consumption and the time from any moment during cruise to landing. They include :
\begin{tabular}{|c|c|}
\hline Cruise : M. 80 & Econ. Air \\
\hline Descent : M.80/300 kt/250 kt & nditioning \\
\hline IMC procedure : 360 kg (800 lb) & C.G. : \(37.5 \%\) \\
\hline 6 min & ISA \\
\hline
\end{tabular}

\section*{CORRECTIONS}
- A correction on fuel consumption has to be made when the actual landing weight is different from the reference landing weight.
Add (resp. sub) the corresponding \(\triangle\) Fuel per 1000 kg (lb) above (resp. below) the reference landing weight.
- Add (resp. sub) \(0.20 \%\) on fuel consumption per degree (C) above (resp. below) ISA.
- When using normal air conditioning, fuel consumption is increased by \(0.8 \%\).

\section*{2. FLIGHT PREPARATION}
A. SHORT DISTANCE CALCULATION TABLE

- Use the short distance calculation table.
- Determine Zero Fuel Weight.
- Add Holding Fuel : \(2100 \mathrm{~kg}(4400 \mathrm{lb})\) standard amount for clean configuration ( 1500 ft above SL) to obtain landing weight at alternate.
- According to the distance between destination and alternate airport and the wind component, enter the "Nautical ground miles to air miles conversion" table at long range speed and read air distance.
- According to air distance and FL, enter the alternate table and read time and fuel required for the reference weight of 100000 kg ( 220000 lb .) Correct the fuel quantity according to the difference between the actual weight and the reference weight of 100000 kg ( 220000 \(\mathrm{lb})\) and for temperature deviation. This gives the alternate fuel, which, added to the landing weight at alternate, gives the landing weight at destination.
- According to the distance to go and the wind component, enter the «Nautical Ground Miles to Air Miles Conversion » table and read air distance.
- Enter the corresponding «Fuel and Time to Destination» table and read time and fuel required for the reference landing weight of 100000 kg ( 220000 lb .) Make the corrections for deviation from reference, which gives the trip fuel.
- Determine «en route» reserve : for example 5 \% of trip fuel.
- Determine Take-off weight by adding landing weight at destination, trip fuel and "en route " reserve. (check it is lower than MTOW determined from RTOLW or quick reference tables).
- Determine possible extra fuel.

\section*{C. RAMP FUEL CALCULATION}

This is obtained by the addition of : REQUIRED FUEL (refer to calculation table), TAXI FUEL and EXTRA FUEL.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & TABULATED CALCULATION & REV 25 & SEQ 020 \\
\hline
\end{tabular}

NAUTICAL GROUND MILES TO AIR MILES CONVERSION
M 0.80
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline R & \multirow[t]{3}{*}{\[
\begin{array}{|c|}
\hline \text { GROUND } \\
\text { DIST. } \\
\text { (NM) }
\end{array}
\]} & \multicolumn{7}{|c|}{AIR DISTANCE (NM)} \\
\hline R & & \multicolumn{3}{|r|}{TAIL WIND WI} & \multicolumn{2}{|l|}{WIND COMPONENTS (KTS)} & \multicolumn{2}{|l|}{HEAD WIND} \\
\hline & & +120 & +80 & + 40 & 0 & -40 & -80 & -120 \\
\hline R & 200 & 159 & 170 & 184 & 200 & 219 & 242 & 270 \\
\hline R & 250 & 198 & 213 & 230 & 250 & 274 & 302 & 338 \\
\hline R & 300 & 238 & 256 & 276 & 300 & 328 & 363 & 406 \\
\hline R & 350 & 278 & 298 & 322 & 350 & 383 & 423 & 473 \\
\hline R & 400 & 317 & 341 & 368 & 400 & 438 & 484 & 541 \\
\hline R & 450 & 357 & 383 & 414 & 450 & 493 & 544 & 608 \\
\hline R & 500 & 397 & 426 & 460 & 500 & 547 & 605 & 676 \\
\hline R & 550 & 436 & 469 & 506 & 550 & 602 & 665 & 743 \\
\hline R & 600 & 476 & 511 & 552 & 600 & 657 & 726 & 811 \\
\hline R & 650 & 516 & 554 & 598 & 650 & 712 & 786 & 879 \\
\hline R & 700 & 555 & 597 & 644 & 700 & 766 & 847 & 946 \\
\hline R & 750 & 595 & 639 & 690 & 750 & 821 & 907 & 1014 \\
\hline R & 800 & 635 & 682 & 736 & 800 & 876 & 968 & 1081 \\
\hline R & 850 & 674 & 724 & 782 & 850 & 931 & 1028 & 1149 \\
\hline R & 900 & 714 & 767 & 828 & 900 & 985 & 1089 & 1217 \\
\hline R & 950 & 754 & 810 & 874 & 950 & 1040 & 1149 & 1284 \\
\hline R & 1000 & 794 & 852 & 920 & 1000 & 1095 & 1210 & 1352 \\
\hline R & 1050 & 833 & 895 & 966 & 1050 & 1150 & 1270 & 1419 \\
\hline R
R & 1100 & 873 & 937 & 1012 & 1100 & 1204 & 1331 & 1487 \\
\hline R & 1150 & 913 & 980 & 1058 & 1150 & 1259 & 1391 & 1555 \\
\hline R & 1200 & 952 & 1023 & 1104 & 1200 & 1314 & 1452 & 1622 \\
\hline R & 1250 & 992 & 1065 & 1150 & 1250 & 1369 & 1512 & 1690 \\
\hline R & 1300 & 1032 & 1108 & 1196 & 1300 & 1423 & 1573 & 1757 \\
\hline R & 1350 & 1071 & 1150 & 1242 & 1350 & 1478 & 1633 & 1825 \\
\hline R & 1400 & 1111 & 1193 & 1288 & 1400 & 1533 & 1694 & 1892 \\
\hline R & 1450 & 1151 & 1236 & 1334 & 1450 & 1588 & 1754 & 1960 \\
\hline R & 1500 & 1190 & 1278 & 1380 & 1500 & 1642 & 1815 & 2028 \\
\hline R & 1550 & 1230 & 1321 & 1426 & 1550 & 1697 & 1875 & 2095 \\
\hline R & 1600 & 1270 & 1363 & 1472 & 1600 & 1752 & 1936 & 2163 \\
\hline R & 1650 & 1309 & 1406 & 1518 & 1650 & 1807 & 1996 & 2230 \\
\hline R & 1700 & 1349 & 1449 & 1564 & 1700 & 1861 & 2057 & 2298 \\
\hline R & 1750 & 1389 & 1491 & 1610 & 1750 & 1916 & 2117 & 2366 \\
\hline R & 1800 & 1428 & 1534 & 1656 & 1800 & 1971 & 2178 & 2433 \\
\hline R & 1850 & 1468 & 1577 & 1702 & 1850 & 2026 & 2238 & 2501 \\
\hline R & 1900 & 1508 & 1619 & 1748 & 1900 & 2080 & 2299 & 2568 \\
\hline R & 1950 & 1547 & 1662 & 1794 & 1950 & 2135 & 2359 & 2636 \\
\hline R & 2000 & 1587 & 1704 & 1840 & 2000 & 2190 & 2420 & 2704 \\
\hline R & 2050 & 1627 & 1747 & 1886 & 2050 & 2245 & 2480 & 2771 \\
\hline R & 2100 & 1666 & 1790 & 1932 & 2100 & 2299 & 2541 & 2839 \\
\hline \(\stackrel{R}{R}\) & 2150 & 1706 & 1832 & 1978 & 2150 & 2354 & 2601 & 2906 \\
\hline
\end{tabular}

FLIP22A A310-304 CF6-80C2A2 342003751.3000210250300 . 8000.00010000350350001571248011418590 BBBB
FCOM-BO-02-17-30-002-910
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & TABULATED DESTINATION & REV 29 & SEC 020 \\
\hline
\end{tabular}

NAUTICAL GROUND MILES TO AIR MILES CONVERSION M 0.80
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{GROUND DIST. (NM)} & \multicolumn{7}{|c|}{AIR DISTANCE (NM)} \\
\hline & \multicolumn{3}{|r|}{TAIL WIND WI} & \multicolumn{2}{|l|}{WIND COMPONENTS (KTS)} & \multicolumn{2}{|l|}{HEAD WIND} \\
\hline & +120 & \(+80\) & \(+40\) & 0 & -40 & -80 & -120 \\
\hline 2200 & 1746 & 1875 & 2024 & 2200 & 2409 & 2662 & 2974 \\
\hline 2250 & 1785 & 1917 & 2070 & 2250 & 2464 & 2722 & 3041 \\
\hline 2300 & 1825 & 1960 & 2116 & 2300 & 2518 & 2783 & 3109 \\
\hline 2350 & 1865 & 2003 & 2162 & 2350 & 2573 & 2843 & 3177 \\
\hline 2400 & 1904 & 2045 & 2208 & 2400 & 2628 & 2904 & 3244 \\
\hline 2450 & 1944 & 2088 & 2254 & 2450 & 2683 & 2964 & 3312 \\
\hline 2500 & 1984 & 2130 & 2300 & 2500 & 2737 & 3025 & 3379 \\
\hline 2550 & 2023 & 2173 & 2346 & 2550 & 2792 & 3085 & 3447 \\
\hline 2600 & 2063 & 2216 & 2392 & 2600 & 2847 & 3146 & 3515 \\
\hline 2650 & 2103 & 2258 & 2438 & 2650 & 2902 & 3206 & 3582 \\
\hline 2700 & 2142 & 2301 & 2484 & 2700 & 2956 & 3267 & 3650 \\
\hline 2750 & 2182 & 2343 & 2530 & 2750 & 3011 & 3327 & 3717 \\
\hline 2800 & 2222 & 2386 & 2577 & 2800 & 3066 & 3388 & 3785 \\
\hline 2850 & 2261 & 2429 & 2623 & 2850 & 3121 & 3448 & 3853 \\
\hline 2900 & 2301 & 2471 & 2669 & 2900 & 3175 & 3509 & 3920 \\
\hline 2950 & 2341 & 2514 & 2715 & 2950 & 3230 & 3569 & 3988 \\
\hline 3000 & 2381 & 2556 & 2761 & 3000 & 3285 & 3630 & 4055 \\
\hline 3050 & 2420 & 2599 & 2807 & 3050 & 3340 & 3690 & 4123 \\
\hline 3100 & 2460 & 2642 & 2853 & 3100 & 3394 & 3751 & 4190 \\
\hline 3150 & 2500 & 2684 & 2899 & 3150 & 3449 & 3811 & 4258 \\
\hline 3200 & 2539 & 2727 & 2945 & 3200 & 3504 & 3872 & 4326 \\
\hline 3300 & 2619 & 2812 & 3037 & 3300 & 3613 & 3993 & 4461 \\
\hline 3400 & 2698 & 2897 & 3129 & 3400 & 3723 & 4114 & 4596 \\
\hline 3500 & 2777 & 2983 & 3221 & 3500 & 3832 & 4235 & 4731 \\
\hline 3600 & 2857 & 3068 & 3313 & 3600 & 3942 & 4356 & 4866 \\
\hline 3700 & 2936 & 3153 & 3405 & 3700 & 4051 & 4477 & 5002 \\
\hline 3800 & 3015 & 3238 & 3497 & 3800 & 4161 & 4598 & 5137 \\
\hline 3900 & 3095 & 3323 & 3589 & 3900 & 4270 & 4719 & 5272 \\
\hline 4000 & 3174 & 3409 & 3681 & 4000 & 4380 & 4840 & 5407 \\
\hline 4100 & 3253 & 3494 & 3773 & 4100 & 4489 & 4961 & 5542 \\
\hline 4200 & 3333 & 3579 & 3865 & 4200 & 4599 & 5082 & 5677 \\
\hline 4300 & 3412 & 3664 & 3957 & 4300 & 4708 & 5203 & 5813 \\
\hline 4400 & 3491 & 3750 & 4049 & 4400 & 4818 & 5324 & 5948 \\
\hline 4500 & 3571 & 3835 & 4141 & 4500 & 4927 & 5445 & 6083 \\
\hline 4600 & 3650 & 3920 & 4233 & 4600 & 5037 & 5566 & 6218 \\
\hline 4700 & 3729 & 4005 & 4325 & 4700 & 5146 & 5687 & 6353 \\
\hline 4800 & 3809 & 4090 & 4417 & 4800 & 5256 & 5808 & 6488 \\
\hline 4900 & 3888 & 4176 & 4509 & 4900 & 5365 & 5929 & 6624 \\
\hline 5000 & 3968 & 4261 & 4601 & 5000 & 5475 & 6049 & 6759 \\
\hline 5100 & 4047 & 4346 & 4693 & 5100 & 5584 & 6170 & 6894 \\
\hline
\end{tabular}

FLIP22A A310-304 CF6-80C2A2 342003751.3000210250300 .8000 .00010000350350001571248011418590 BBBB
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M． 80
\end{tabular}} & \multicolumn{2}{|r|}{2．17．30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline CLIMB & 50K & KT／ & \[
\begin{aligned}
& \text { GH } \\
& \hline
\end{aligned}
\] & NNING & \[
\begin{aligned}
& \text { =ROM } \\
& \text { ESCEN }
\end{aligned}
\] & AKE R M．80／30 & \[
\begin{aligned}
& \text { EASE } \\
& \mathbf{K T} / 250
\end{aligned}
\] & \[
\begin{aligned}
& \text { LANDII } \\
& \hline
\end{aligned}
\] & IG & 360 & ／6MIN \\
\hline REF．LA & ding & IGHT & 00000 K & & & & & FUEL & ONSUM & （KG） & \\
\hline ECONO & IIC AIR & OND & ING & & & \％\(\%\) & & & & & \\
\hline AR & & & & & & & & & CORRE & NoN & \\
\hline DIST． & & & & ht lev & & & & & LEL Co & MPTION & \\
\hline （NM） & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \(\mathrm{F}^{\mathrm{F} 290}\) & \({ }^{\text {FL230 }}\) & FL370 & FL410 \\
\hline 200 & －2935 & \({ }^{2963}\) & 2942 & \({ }^{2933}\) & \({ }^{2933}\) & \({ }^{2940}\) & & & & & \\
\hline 220 & 3192 & \({ }_{3147}\) & \({ }^{3116}\) & 3098 & 3091 & \({ }^{3094}\) & & \({ }^{13}\) & 15 & 17 & \\
\hline & & & & & & & 3256 & \({ }^{13}\) & 16 & 18 & 19 \\
\hline 240 & \(\substack{\begin{subarray}{c}{0.43 \\ \text { Sib8 }} }} \end{subarray}\) &  &  & － \(\begin{aligned} & 0.43 \\ & 3427\end{aligned}\) & － \(\begin{array}{r}0.43 \\ 3407 \\ \hline\end{array}\) & － \begin{tabular}{l}
0.43 \\
3801 \\
\hline 801
\end{tabular} & 0.43
3411 & 14 & 16 & 19 & 22 \\
\hline 260 & \({ }_{\substack{38.45 \\ 0.45}}^{\substack{386}}\) & \begin{tabular}{|c}
3.316 \\
0.45 \\
\hline
\end{tabular} &  & （ \begin{tabular}{l}
3427 \\
0.46 \\
\hline
\end{tabular} &  & \begin{tabular}{l} 
0．46 \\
\hline 0.48 \\
\hline
\end{tabular} & & & & & \\
\hline 280 & － \begin{tabular}{c}
3783 \\
0.48 \\
\hline
\end{tabular} &  & \begin{tabular}{l} 
3637 \\
0.48 \\
\hline 0
\end{tabular} & （ \begin{tabular}{c} 
30．482 \\
0.48 \\
\hline
\end{tabular} &  &  & \begin{tabular}{|c}
3567 \\
\(\substack{\text { 0．48 }}\) \\
\hline
\end{tabular} & 14 & \({ }^{17}\) & \({ }^{20}\) & \({ }^{25}\) \\
\hline 300 & \begin{tabular}{l}
3980 \\
0.50 \\
\hline
\end{tabular} & \begin{tabular}{|c}
3836 \\
0.50 \\
0.0 \\
\hline
\end{tabular} & \begin{tabular}{|c}
3811 \\
0.51 \\
\hline
\end{tabular} & \begin{tabular}{l} 
3757 \\
0.51 \\
\hline
\end{tabular} &  & \(\begin{array}{r}3710 \\ \begin{array}{l}37.51 \\ 0.51\end{array} \\ \hline\end{array}\) &  & 15 & 18 & \({ }^{22}\) & 27 \\
\hline 320 & － \begin{tabular}{l}
4177 \\
0.53 \\
\hline
\end{tabular} & \begin{tabular}{|c}
4071 \\
0.53
\end{tabular} & 0．53 & \({ }^{3922}\) & \begin{tabular}{l} 
3833 \\
0.54 \\
\hline
\end{tabular} & \(\begin{array}{r}3864 \\ \begin{array}{l}3854 \\ 0.54\end{array} \\ \hline\end{array}\) & － & 15 & 18 & \({ }^{23}\) & \({ }^{28}\) \\
\hline 340 & \begin{tabular}{l}
4335 \\
\hline 05 \\
\hline
\end{tabular} & － 4256 & － 4159 & \({ }_{4088}^{4088}\) & \({ }_{4042}^{4045}\) & 4019 & \({ }_{4}^{4034}\) & 16 & 19 & \({ }^{24}\) & 29 \\
\hline 360 & 4552 & 4441 & \({ }_{4}^{4335}\) & \({ }_{4253}\) & \({ }^{0.506}\) & \({ }_{0}^{0.173}\) & \({ }^{0.196}\) & 16 & \({ }^{20}\) & 25 & \({ }^{31}\) \\
\hline & 4770 & \({ }^{4.568}\) & \({ }^{\text {a }}\) 4087 & O． 449 & \({ }^{0.559} 4\) & \({ }^{0.599} 4\) & \({ }^{0.59} 4\) & 16 & \({ }^{21}\) & 26 & 32 \\
\hline & 1.007 & 11 & （1．01 &  & \({ }_{1}^{1.01}\) & 1.01 & & 17 & \({ }^{21}\) & \({ }^{27}\) & \({ }^{34}\) \\
\hline 400 & \({ }_{1}^{4.03}\) & 1.03 & \({ }^{1.04}\) & 1 & \({ }^{4.04}\) & \({ }_{1}^{4.04}\) & 1.04 & & & & \\
\hline 420 & 5165
1.06
1 & \({ }_{1}^{4997}\) & \begin{tabular}{|c} 
a \\
1.066 \\
1.06 \\
\hline
\end{tabular} & 年 \begin{tabular}{c} 
4750 \\
1.06 \\
\hline
\end{tabular} & \begin{tabular}{l} 
4678 \\
1.07 \\
\hline
\end{tabular} & \begin{tabular}{|c}
4638 \\
1.07 \\
1
\end{tabular} & \begin{tabular}{l} 
4661 \\
1.07 \\
1.07 \\
\hline
\end{tabular} & 17 & 22 & \({ }^{28}\) & 35 \\
\hline 440 & \({ }_{5}^{5363}\) & （1088 & \({ }^{\text {5030 }}\) & \({ }_{4}^{4916}\) & \({ }_{489}^{4838}\) & \(\xrightarrow{4794}\) & & 18 & \({ }^{23}\) & 29 & 37 \\
\hline 460 & \({ }_{5561}^{551}\) & 188 & \(\underset{\substack{5205 \\ 1 \\ 1 \\ 1}}{19}\) & & \({ }_{\text {4，}}^{1.997}\) & 949 & 4977 & 18 & \({ }^{23}\) & 31 & \({ }^{38}\) \\
\hline 480 & \({ }^{5759}\) & \({ }^{5554}\) & & \({ }_{5}{ }^{51414}\) & 5157 & 5105 & 5135 & 19 & \({ }^{24}\) & 32 & 39 \\
\hline 500 & \({ }^{5957}\) & 5739 & \％ 14.5 & \({ }^{5144}\) & ¢， &  & ＋1．19 & 19 & 25 & \({ }^{33}\) & \({ }^{41}\) \\
\hline & \(\stackrel{6156}{6155}\) & 25 & \({ }^{5730}\) & \({ }_{5}^{1.178}\) & \(\stackrel{1}{1977}\) & \({ }^{1.17}\) & \({ }^{1.17} 5\) & \({ }^{20}\) & \({ }^{25}\) & 34 & \({ }^{42}\) \\
\hline 520 & 1.18 & 析 & 1.19 & 1.19 & & & & & & & \\
\hline 540 & \({ }_{1}^{635}\) & \(\underset{\substack{6111 \\ 1.21}}{ }\) & \begin{tabular}{|c} 
5905 \\
1 \\
1.22 \\
\hline
\end{tabular} & ＋1．22 & 年 & \({ }_{5}^{5572}\) & \({ }_{5}^{5611}\) & \({ }^{20}\) & 26 & \({ }^{35}\) & 44 \\
\hline 560 & \({ }_{6}^{6551}\) & \({ }_{6}^{6227}\) & & （129 &  & \begin{tabular}{|c}
5731 \\
\hline 125 \\
\hline
\end{tabular} & & \({ }^{21}\) & \({ }^{27}\) & \({ }^{36}\) & 45 \\
\hline 580 & \({ }^{6750}\) & 年 6883 & \(\stackrel{1}{625}\) & ¢ 61087 & \({ }_{\text {coser }}^{5988}\) & \(\begin{array}{r}\text { 58888} \\ \hline 188 \\ \hline 18\end{array}\) & & \({ }^{21}\) & \({ }^{28}\) & 38 & 47 \\
\hline 600 & \begin{tabular}{|c}
1.2988 \\
\hline 1.28 \\
1.85 \\
\hline
\end{tabular} &  &  & （1248 &  & \％ 6 ¢045 & 6099 & \({ }^{22}\) & \({ }^{28}\) & 39 & 48 \\
\hline 620 & 71.47
1.31
1. & \begin{tabular}{|c} 
cise \\
\(\substack{685 \\
1.31}\) \\
\hline
\end{tabular} & 132 & ＋ \begin{tabular}{l} 
64315 \\
1.32 \\
\hline
\end{tabular} &  & \({ }^{6202}\) & \({ }^{1925}\) & 22 & 29 & 40 & 50 \\
\hline 640 & \begin{tabular}{l}
73.6 \\
\hline 1.33 \\
\hline 1.3
\end{tabular} & （ 7042 &  &  & \begin{tabular}{|c}
\(\frac{1290}{640}\) \\
1.35 \\
\hline
\end{tabular} & （ & \(\begin{array}{r}\text { 4，} \\ \hline 642 \\ \hline 1.35 \\ \hline\end{array}\) & \({ }^{23}\) & 30 & 41 & 51 \\
\hline 660 &  & （129 &  & （ & （ 6600 & \({ }_{\text {c }}^{653}\) &  & \({ }^{23}\) & 31 & \({ }^{43}\) & \({ }_{5} 5\) \\
\hline 680 & 7734 & \({ }^{1.436}\) & ＋ & － 6997 & \({ }^{\frac{1}{6} 762}\) & \({ }^{66145}\) & \({ }^{6} \mathbf{6} 735\) & \({ }^{24}\) & \({ }^{31}\) & 44 & 54 \\
\hline 700 & \({ }^{7943}\) & \({ }^{602}\) & （1310 & \({ }^{1.085}\) & 6．924 & 6834 & \({ }_{6} 6898\) & 25 & 32 & 45 & 56 \\
\hline 720 & \begin{tabular}{l} 
8142 \\
1.44 \\
\hline
\end{tabular} & \begin{tabular}{l}
17.89 \\
7 \\
17.44 \\
\hline
\end{tabular} &  & （1．4．43 & （1．853 & ＋1．932 & （1．060 & \({ }^{25}\) & \({ }^{33}\) & 46 & 57 \\
\hline 740 & \({ }^{8341}\) & \({ }^{7976}\) & \({ }^{763}\) & \({ }^{1420}\) & \({ }_{124}\) & \({ }^{7151}\) & \({ }_{1223}\) & \({ }^{26}\) & \({ }^{34}\) & 48 & 59 \\
\hline 760 & \({ }^{8540}\) & \({ }^{8163}\) & \({ }^{7839}\) & ， 759 & \({ }_{7}\) & \({ }^{1 / 310}\) & \({ }_{1386}^{1 / 8}\) & \({ }^{26}\) & \({ }^{34}\) & 49 & \({ }^{60}\) \\
\hline 780 & \(\begin{array}{r}\text { 8740 } \\ \hline 1.51 \\ \hline 1\end{array}\) & & \(\begin{array}{r}1890 \\ 80 \\ \hline 153 \\ \hline 1\end{array}\) & \begin{tabular}{l}
1,95 \\
\hline 753 \\
\hline 153 \\
\hline
\end{tabular} & \begin{tabular}{l}
7,97 \\
\hline 754 \\
\hline 154
\end{tabular} & \({ }_{7}^{7459}\) & \begin{tabular}{|c}
1.155 \\
\hline 150 \\
\hline
\end{tabular} & \({ }^{27}\) & 35 & 50 & 62 \\
\hline 800 & \({ }^{895}\) &  & （ & \({ }^{1565}\) &  &  & \begin{tabular}{l}
1.54 \\
\hline 175 \\
\hline 154 \\
\hline
\end{tabular} & 27 & \({ }^{36}\) & 5 & 63 \\
\hline 820 & 9139
1.56 & \({ }^{\text {8725 }}\) & （1589 & （ & \begin{tabular}{l}
789 \\
\hline 89 \\
\hline 8.59 \\
\hline 1
\end{tabular} & （1788 &  & \({ }^{28}\) & \({ }^{37}\) & 53 & \({ }^{65}\) \\
\hline 840 & 9338
1.59 & \(\xrightarrow{8912}\) & \({ }_{\substack{\text { 20．00 }}}^{\text {8，}}\) & \({ }_{\substack{8262 \\ 2.01}}^{\substack{\text { a }}}\) &  &  & （ & \({ }^{28}\) & 37 & 54 & 66 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 5} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{CLIMB \(250 \mathrm{KT} / 300 \mathrm{KT} / \mathrm{M} .80\) - CRUISE M. 80 -DESCENT M. \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\) - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)} \\
\hline \multicolumn{5}{|l|}{REF. LANDING WEIGHT \(=100000\) KG ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (HMIN)
\end{tabular}} \\
\hline \begin{tabular}{l} 
AlR \\
\hline DIST.
\end{tabular} & \multicolumn{7}{|c|}{flight level} & \multicolumn{4}{|c|}{\begin{tabular}{l}
CORRECTIONON
FUEL CONSUMPTION \\
(KG/1000KG)
\end{tabular}} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \({ }_{\text {FL290 }} \mathrm{FL310}\) &  &  & FL410 \\
\hline 840 & \({ }_{\substack{9338 \\ \hline 159}}\) & \begin{tabular}{c}
8912 \\
800 \\
\hline 100
\end{tabular} & \({ }_{8}^{8545}\) & \({ }_{826}^{826}\) & \({ }^{8058}\) & \({ }^{7948}\) & \({ }_{8}^{8043}\) & & & & 66 \\
\hline 860 &  & (ention & - & 2031
8234
2.04 & & ( & 2.202
8204
2.04 & \({ }^{29}\) & \({ }^{38}\) & \({ }^{55}\) & \({ }^{67}\) \\
\hline 880 & ( & \begin{tabular}{l} 
2088 \\
\hline 2.05 \\
\hline
\end{tabular} & \(\begin{array}{r}\text { 2.039 } \\ \hline 8806 \\ 28.09 \\ \hline\end{array}\) & 2.04
\(\substack{860 \\ 206}\) & ( &  &  & \({ }^{29}\) & 39 & 57 & 69 \\
\hline 900 &  & \begin{tabular}{l} 
9495 \\
\(\substack{\text { 207 }}\) \\
\hline
\end{tabular} &  &  &  & ( & ( & \({ }^{30}\) & 40 & \({ }^{58}\) & 70 \\
\hline 920 & (109 & 2.10 &  & - &  & &  & 30 & \({ }^{41}\) & 59 & 72 \\
\hline 940 & &  &  & \begin{tabular}{l} 
2.12 \\
\(\substack{\text { 9107 } \\
2.14}\) \\
\hline
\end{tabular} &  &  & \begin{tabular}{|} 
2.92 \\
\begin{tabular}{l}
887 \\
2815 \\
\hline
\end{tabular}\(|\)
\end{tabular} & \({ }^{31}\) & \({ }^{41}\) & \({ }^{61}\) & 73 \\
\hline 960 &  & (incis & - \begin{tabular}{l} 
9609 \\
2.16 \\
\hline 16
\end{tabular} & \begin{tabular}{l} 
2.176 \\
\(\substack{\text { 2217 }}\) \\
\hline 17
\end{tabular} & ¢ \begin{tabular}{l} 
2035 \\
2.17 \\
\hline 17
\end{tabular} &  &  & \({ }^{31}\) & \({ }^{42}\) & \({ }^{62}\) & \({ }^{75}\) \\
\hline 980 &  & ( & \begin{tabular}{l} 
2.196 \\
\(\substack{9786 \\
2.18}\) \\
\hline
\end{tabular} & \begin{tabular}{l} 
2.146 \\
\(\substack{94.9 \\
2.19}\) \\
\hline
\end{tabular} & ( & - & \begin{tabular}{|} 
2.1, \\
\(\substack{205 \\
200}\) \\
\hline
\end{tabular} & 32 & \({ }^{43}\) & \({ }^{63}\) & 76 \\
\hline 1000 & (12399 & ( &  & - &  & 2, &  & \({ }^{32}\) & 44 & 65 & 78 \\
\hline 1020 &  & - & (ti.2. &  &  &  & - & \({ }^{33}\) & 44 & 66 & 79 \\
\hline 1040 &  &  & - & \({ }^{\text {2.255 }}\) & \({ }_{\substack{\text { 2.260 } \\ 9.620}}^{2}\) & - &  & 33 & \({ }^{45}\) & 68 & \({ }^{81}\) \\
\hline 1060 & \({ }^{11524}\) & \({ }^{1.2025}\) & \({ }^{10429}\) & \({ }^{102125}\) & \({ }_{\text {2, }}^{288}\) & \begin{tabular}{l}
2.288 \\
\hline 278 \\
\hline 18
\end{tabular} & \(\xrightarrow{2.881}\) & \({ }^{34}\) & \({ }^{46}\) & 69 & \({ }^{82}\) \\
\hline 1080 & \({ }^{17271}\) & 2.28 & 2.29
1067 & \(\begin{array}{r}2.30 \\ 10295 \\ \hline\end{array}\) & 2.30
10018 & \(\begin{array}{r}2.30 \\ 9881 \\ \hline\end{array}\) & 2.30
10040 & 34 & \({ }^{47}\) & 70 & \({ }^{84}\) \\
\hline & \({ }_{\text {- }}^{12.29}\) & \({ }^{2.350}\) & \({ }_{1}^{10.31}\) & \(\underset{\substack{2.32 \\ 10465}}{ }\) & \(\begin{array}{r}2.33 \\ \hline 10182 \\ \hline\end{array}\) & \(\begin{array}{r}2.33 \\ \hline 0043 \\ \hline\end{array}\) & 2.33
10209 & \({ }^{35}\) & 48 & 72 & \({ }^{85}\) \\
\hline 1120 & \(\stackrel{2.32}{12143}\) & \({ }^{2.1535}\) &  & \(\xrightarrow{10,35}\) & 2.36
10346 & \(\begin{array}{r}2.36 \\ \hline 10206\end{array}\) & \(\begin{array}{r}2.36 \\ 10378 \\ \hline\end{array}\) & 36 & \({ }^{48}\) & 73 & \({ }^{87}\) \\
\hline & & 2, \({ }^{2,35}\) & \(\frac{2.37}{11217}\) & \begin{tabular}{|c}
2.38 \\
10806 \\
\hline
\end{tabular} & \begin{tabular}{|} 
2.38 \\
\hline 10511
\end{tabular} & \begin{tabular}{|c}
2.36 \\
\hline 1069 \\
\hline 10
\end{tabular} & \(\begin{array}{r}\text { 2.38 } \\ 10548 \\ \hline 1\end{array}\) & \({ }^{36}\) & 49 & 75 & \\
\hline & & \(\begin{array}{r}2.38 \\ 11923 \\ \hline 12\end{array}\) & 2.39
11389 & \(\xrightarrow{2.40} 1097\) & \({ }_{\text {\% }}^{\text {2.476 }}\) & 2.41
10.532 & 2.418 & 37 & 50 & 76 & \({ }_{90}\) \\
\hline 1160 &  & & (12.42 & \({ }_{\text {2. } 2.43}^{11147}\) & \begin{tabular}{c} 
2.44 \\
\(\substack{10841}\) \\
\hline
\end{tabular} & 2. \({ }_{\text {L }}^{10.44}\) & 2.448 & 37 & 51 & 78 & \({ }_{91}\) \\
\hline 1180 & - & (12.123 & & & & & & & & & \\
\hline 1200 &  & (12301 & (12.47 & (1218 & \begin{tabular}{|c}
11006 \\
2.49 \\
20 \\
\hline
\end{tabular} &  & (1059 & \({ }^{38}\) & \({ }^{52}\) & 79 & \({ }^{93}\) \\
\hline 1220 &  &  & \begin{tabular}{|c}
1298 \\
\(\begin{array}{l}1926 \\
2.49\end{array}\) \\
\hline 1
\end{tabular} & (12900 & \begin{tabular}{|c}
11771 \\
2.51 \\
\hline 1
\end{tabular} & \begin{tabular}{|l|}
11023 \\
\hline 1.51 \\
2.51
\end{tabular} & \(\begin{array}{r}1230 \\ \begin{array}{l}1230 \\ 2.51\end{array} \\ \hline\end{array}\) & \({ }^{38}\) & \({ }^{53}\) & \({ }^{81}\) & \({ }^{94}\) \\
\hline 1240 &  & - \begin{tabular}{c}
12880 \\
2.51 \\
\hline 1
\end{tabular} & (1205 & & & & & 39 & \({ }^{53}\) & 82 & \({ }^{96}\) \\
\hline 1260 &  & (12859 &  & - & \(\begin{array}{r}12.54 \\ \hline 1502 \\ \hline 155 \\ \hline\end{array}\) & - &  & 39 & 54 & \({ }^{84}\) & 98 \\
\hline 1280 &  &  & ( & (12069 & \(\xrightarrow{1.658}\) & ( & \({ }^{17247}\) & 40 & 55 & \({ }^{85}\) & 99 \\
\hline 1300 &  &  &  &  & (18.944 & (1681 & & \({ }^{41}\) & \({ }^{56}\) & 87 & 101 \\
\hline 1320 &  & (13438 &  & - 12347 &  & \({ }^{31846}\) & \({ }_{1}^{12093}\) & 41 & 57 & \({ }^{88}\) & 102 \\
\hline 1340 & \({ }_{3} .02\) & 边 & ( & (13049 & ( & - &  & \({ }^{42}\) & 58 & \({ }_{90}\) & 104 \\
\hline 1360 & ( \begin{tabular}{c}
14652 \\
3.05 \\
\hline
\end{tabular} & (13818 &  & (1309 &  & - & \({ }_{1}^{12441}\) & \({ }^{42}\) & 58 & 91 & 106 \\
\hline 1380 & \({ }^{47764}\) & \({ }^{14008}\) & \({ }^{13361}\) & \({ }^{128864}\) & \({ }^{124999}\) & \({ }^{12342}\) & \({ }^{12615}\) & \({ }^{43}\) & 59 & 93 & 107 \\
\hline 1400 & \({ }_{\substack{14967 \\ 3.10}}^{\substack{\text { a }}}\) &  & - &  & - & - & - & 44 & \({ }^{60}\) & 94 & 109 \\
\hline 1420 & - \begin{tabular}{c}
15169 \\
3.13 \\
3, \\
\hline
\end{tabular} &  & ( & (1328 &  & (1285 & - & \({ }^{44}\) & 61 & 96 & 110 \\
\hline 1440 & (15372 & \(\underset{\substack{14579 \\ 3.16}}{13}\) & (13020 & (1381 & &  & (13141 & \({ }^{45}\) & 62 & 98 & 112 \\
\hline 1460 & \({ }_{\substack{15574 \\ 3.18}}^{\substack{197}}\) & (17699 & (19022 & (13.54. & (inile & 第 & (1207) & \({ }^{45}\) & \({ }^{63}\) & 99 & 114 \\
\hline 1480 & \({ }_{\substack{1.7577 \\ 3.20}}^{\substack{\text { che }}}\) & (194600 & (19262 & \(\underset{\substack{132727 \\ \hline .25}}{\substack{\text { che }}}\) & \(\underset{\substack{1334 \\ 3.25}}{\substack{\text { 3, }}}\) & (13174 &  & 46 & 64 & 101 & 115 \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 342003751.0000210250300 .8000 .000000360035035010001751246011418590
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB 250KT/300KT/M. 80 - CRUISE M.80-DESCENT M. \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\) - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)
\begin{tabular}{|c|c|c|}
\hline REF. LANDING WEIGHT \(=100000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING ANTI-ICING OFF & \[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=37.5 \%
\end{gathered}
\] & \begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
AIR \\
DIST.
\end{tabular} & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FL350 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL370 } \\
& \text { FL390 }
\end{aligned}
\] & FL410 \\
\hline 1480 & \[
\begin{array}{r}
15777 \\
3.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14960 \\
3.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14262 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13727 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13334 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13174 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13493 \\
3.25 \\
\hline
\end{array}
\] & 46 & 64 & 101 & 115 \\
\hline 1500 & \[
\begin{array}{r}
15980 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15151 \\
3.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14443 \\
3.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13900 \\
3.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13501 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13342 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13670 \\
3.28 \\
\hline
\end{array}
\] & 46 & 64 & 103 & 117 \\
\hline 1520 & \[
\begin{array}{r}
16183 \\
3.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15341 \\
3.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14624 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14073 \\
3.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13669 \\
3.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13509 \\
3.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13847 \\
3.31 \\
\hline
\end{array}
\] & 47 & 65 & 104 & 118 \\
\hline 1540 & \[
\begin{array}{r}
16386 \\
3.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15532 \\
3.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14805 \\
3.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14246 \\
3.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13836 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13677 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3.015 \\
3.33 \\
\hline
\end{array}
\] & 48 & 66 & 106 & 120 \\
\hline 1560 & \[
\begin{array}{r}
16589 \\
3.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15723 \\
3.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14987 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14420 \\
3.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14004 \\
3.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
13844 \\
3.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14203 \\
3.36 \\
\hline
\end{array}
\] & 48 & 67 & 108 & 122 \\
\hline 1580 & \[
\begin{array}{r}
16792 \\
3.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15915 \\
3.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15168 \\
3.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14593 \\
3.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14172 \\
3.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14012 \\
3.39 \\
\hline
\end{array}
\] & \[
\begin{gathered}
14407 \\
3.39^{*} \\
\hline
\end{gathered}
\] & 49 & 68 & 109 & 123 \\
\hline 1600 & \[
\begin{array}{r}
16996 \\
3.35
\end{array}
\] & \[
\begin{array}{r}
16106 \\
3.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15350 \\
3.39
\end{array}
\] & \[
\begin{array}{r}
14767 \\
3.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14340 \\
3.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14181 \\
3.41
\end{array}
\] & \[
\begin{gathered}
14576 \\
3.41^{*}
\end{gathered}
\] & 49 & 69 & 111 & 125 \\
\hline 1620 & \[
\begin{array}{r}
17199 \\
3.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16297 \\
3.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15532 \\
3.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14941 \\
3.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14509 \\
3.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14349 \\
3.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14746 \\
3.44^{*}
\end{array}
\] & 50 & 70 & 113 & 127 \\
\hline 1640 & \[
\begin{array}{r}
17403 \\
3.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16489 \\
3.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15713 \\
3.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15116 \\
3.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14677 \\
3.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14518 \\
3.46 \\
\hline
\end{array}
\] & \[
\begin{gathered}
14915 \\
3.46^{*} \\
\hline
\end{gathered}
\] & 51 & 71 & 115 & 128 \\
\hline 1660 & \[
\begin{array}{r}
17607 \\
3.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16681 \\
3.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15895 \\
3.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15290 \\
3.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14847 \\
3.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14687 \\
3.49 \\
\hline
\end{array}
\] & \[
\begin{gathered}
15085 \\
3.49 * \\
\hline
\end{gathered}
\] & 51 & 72 & 117 & 130 \\
\hline 1680 & \[
\begin{array}{r}
17810 \\
3.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16872 \\
3.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16078 \\
3.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15465 \\
3.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15016 \\
3.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14856 \\
3.52 \\
\hline
\end{array}
\] & \[
\begin{gathered}
15255 \\
3.52^{*} \\
\hline
\end{gathered}
\] & 52 & 73 & 119 & 132 \\
\hline 1700 & \[
\begin{array}{r}
18014 \\
3.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17064 \\
3.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16260 \\
3.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15639 \\
3.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15185 \\
3.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15026 \\
3.54 \\
\hline
\end{array}
\] & \[
\begin{gathered}
15425 \\
3.54^{*} \\
\hline
\end{gathered}
\] & 52 & 74 & 120 & 133 \\
\hline 1720 & \[
\begin{array}{r}
18218 \\
3.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17256 \\
3.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16442 \\
3.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15814 \\
3.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15355 \\
3.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15197 \\
3.57
\end{array}
\] & \[
\begin{gathered}
15596 \\
3.57^{*}
\end{gathered}
\] & 53 & 74 & 122 & 135 \\
\hline 1740 & \[
\begin{array}{r}
18422 \\
3.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17448 \\
3.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16625 \\
3.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15989 \\
3.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15525 \\
3.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15368 \\
3.59 \\
\hline
\end{array}
\] & \[
\begin{gathered}
15767 \\
4.00^{*} \\
\hline
\end{gathered}
\] & 54 & 75 & 123 & 137 \\
\hline 1760 & \[
\begin{array}{r}
18626 \\
3.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17640 \\
3.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16808 \\
3.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16164 \\
4.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15694 \\
4.02
\end{array}
\] & \[
\begin{array}{r}
15539 \\
4.02 \\
\hline
\end{array}
\] & \[
\begin{gathered}
15938 \\
4.02^{*} \\
\hline
\end{gathered}
\] & 54 & 76 & 125 & 138 \\
\hline 1780 & \[
\begin{array}{r}
18830 \\
3.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17833 \\
4.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16991 \\
4.02
\end{array}
\] & \[
\begin{array}{r}
16340 \\
4.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15865 \\
4.05
\end{array}
\] & \[
\begin{array}{r}
15711 \\
4.05 \\
\hline
\end{array}
\] & \[
\begin{gathered}
16109 \\
4.05^{*}
\end{gathered}
\] & 55 & 77 & 126 & 140 \\
\hline 1800 & \[
\begin{array}{r}
19035 \\
4.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18025 \\
4.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17174 \\
4.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16515 \\
4.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16035 \\
4.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15883 \\
4.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16280 \\
4.07^{*} \\
\hline
\end{array}
\] & 56 & 78 & 128 & 142 \\
\hline 1820 & \[
\begin{array}{r}
19239 \\
4.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18217 \\
4.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17357 \\
4.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16691 \\
4.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16206 \\
4.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16055 \\
4.10 \\
\hline
\end{array}
\] & \[
\begin{gathered}
16452 \\
4.10^{*} \\
\hline
\end{gathered}
\] & 56 & 79 & 129 & 143 \\
\hline 1840 & \[
\begin{array}{r}
19444 \\
4.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18410 \\
4.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17540 \\
4.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
4.05 \\
4.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16376 \\
4.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
46228 \\
4.13 \\
\hline
\end{array}
\] & \[
\begin{gathered}
16624 \\
4.13^{*} \\
\hline
\end{gathered}
\] & 57 & 80 & 131 & 145 \\
\hline 1860 & \[
\begin{array}{r}
19648 \\
4.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18603 \\
4.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17723 \\
4.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17043 \\
4.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16547 \\
4.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16401 \\
4.15 \\
\hline
\end{array}
\] & \[
\begin{gathered}
16796 \\
4.15^{*}
\end{gathered}
\] & 57 & 81 & 132 & 147 \\
\hline 1880 & \[
\begin{array}{r}
19853 \\
4.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18796 \\
4.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17907 \\
4.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17219 \\
4.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16718 \\
4.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16574 \\
4.18 \\
\hline
\end{array}
\] & \[
\begin{gathered}
16968 \\
4.18^{*} \\
\hline
\end{gathered}
\] & 58 & 82 & 134 & 149 \\
\hline 1900 & \[
\begin{array}{r}
20058 \\
4.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18988 \\
4.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18090 \\
4.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17395 \\
4.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16890 \\
4.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16748 \\
4.20 \\
\hline
\end{array}
\] & \[
\begin{gathered}
17140 \\
4.20^{*} \\
\hline
\end{gathered}
\] & 59 & 83 & 135 & 150 \\
\hline 1920 & \[
\begin{array}{r}
40263 \\
4.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19181 \\
4.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18274 \\
4.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17571 \\
4.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17061 \\
4.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16922 \\
4.23 \\
\hline
\end{array}
\] & \[
\begin{gathered}
17313 \\
4.23^{*} \\
\hline
\end{gathered}
\] & 59 & 84 & 137 & 152 \\
\hline 1940 & \[
\begin{array}{r}
20468 \\
4.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19374 \\
4.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18458 \\
4.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17748 \\
4.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17233 \\
4.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17096 \\
4.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17485 \\
4.26^{*} \\
\hline
\end{array}
\] & 60 & 85 & 139 & 154 \\
\hline 1960 & \[
\begin{array}{r}
20673 \\
4.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19568 \\
4.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18642 \\
4.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17925 \\
4.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17405 \\
4.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17270 \\
4.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17658 \\
4.28^{*} \\
\hline
\end{array}
\] & 61 & 86 & 140 & 155 \\
\hline 1980 & \[
\begin{array}{r}
20878 \\
4.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19761 \\
4.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18826 \\
4.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18102 \\
4.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17577 \\
4.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17445 \\
4.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17832 \\
4.31^{*} \\
\hline
\end{array}
\] & 61 & 87 & 142 & 157 \\
\hline 2000 & \[
\begin{array}{r}
21084 \\
4.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19954 \\
4.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19010 \\
4.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18279 \\
4.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17749 \\
4.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17620 \\
4.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18005 \\
4.34^{*} \\
\hline
\end{array}
\] & 62 & 88 & 143 & 159 \\
\hline 2020 & \[
\begin{array}{r}
21289 \\
4.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20148 \\
4.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19195 \\
4.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18456 \\
4.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17921 \\
4.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17795 \\
4.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18179 \\
4.36^{*} \\
\hline
\end{array}
\] & 62 & 88 & 145 & 161 \\
\hline 2040 & \[
\begin{array}{r}
21495 \\
4.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20341 \\
4.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19379 \\
4.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18633 \\
4.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18094 \\
4.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17970 \\
4.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18352 \\
4.39^{*} \\
\hline
\end{array}
\] & 63 & 89 & 146 & 162 \\
\hline 2060 & \[
\begin{array}{r}
21700 \\
4.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20535 \\
4.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19564 \\
4.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18810 \\
4.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18266 \\
4.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18146 \\
4.41 \\
\hline
\end{array}
\] & \[
\begin{gathered}
18526 \\
4.41^{*}
\end{gathered}
\] & 64 & 90 & 148 & 164 \\
\hline 2080 & \[
\begin{array}{r}
21906 \\
4.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20729 \\
4.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19749 \\
4.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18988 \\
4.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18439 \\
4.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18322 \\
4.44 \\
\hline
\end{array}
\] & \[
\begin{gathered}
18701 \\
4.44^{*} \\
\hline
\end{gathered}
\] & 64 & 91 & 150 & 166 \\
\hline 2100 & \[
\begin{array}{r}
22112 \\
\hline 4.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20923 \\
4.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19934 \\
4.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19166 \\
4.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18612 \\
\hline 4.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18498 \\
\hline 4.47 \\
\hline
\end{array}
\] & \[
\begin{gathered}
18875 \\
4.47^{*} \\
\hline
\end{gathered}
\] & 65 & 92 & 151 & 168 \\
\hline 2120 & \[
\begin{array}{r}
22318 \\
4.41
\end{array}
\] & \[
\begin{array}{r}
21117 \\
4.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20119 \\
4.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19344 \\
4.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18785 \\
4.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18675 \\
4.49 \\
\hline
\end{array}
\] & \[
\begin{gathered}
19050 \\
4.49^{*}
\end{gathered}
\] & 66 & 93 & 153 & 169 \\
\hline
\end{tabular}

R FLIP23 A310-324 PW4152 342003751.0000210250300 .8000 .000000360035035010001751246011418590
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & & REV 25 & SEO 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{\begin{tabular}{l}
FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING \\
CLIMB 250KT/300KT/M. 80 - CRUISE M.80-DESCENT M.80/300KT/250KT - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)
\end{tabular}} \\
\hline \multicolumn{5}{|l|}{REF. LANDING WEIGHT \(=100000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
AIR DIST. \\
(NM)
\end{tabular}} & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL330 } \\
& \text { FL350 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL370 } \\
& \text { FL390 } \\
& \hline
\end{aligned}
\] & FL410 \\
\hline 2120 & \[
\begin{array}{r}
22318 \\
4.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21117 \\
4.44 \\
\hline
\end{array}
\] & 20119
4.46 & \(\begin{array}{r}19344 \\ 4.48 \\ \hline\end{array}\) & \[
\begin{array}{r}
18785 \\
4.49
\end{array}
\] & \[
\begin{array}{r}
18675 \\
4.49
\end{array}
\] & \[
\begin{gathered}
19050 \\
4.49^{*}
\end{gathered}
\] & 66 & 93 & 153 & 169 \\
\hline 2140 & 22524
4.44 & 21311
4.46 & 20304
4.48 & 19522
4.51 & 18959
4.52 & \[
18852
\] & \[
19224
\] & 66 & 94 & 155 & 171 \\
\hline 2160 & \[
\begin{array}{r}
22730 \\
4.47 \\
\hline
\end{array}
\] & 21506
4.49 & \(\begin{array}{r}20489 \\ 4.51 \\ \hline 2.5\end{array}\) & 19700
4.53 & \(\begin{array}{r}19132 \\ 4.55 \\ \hline\end{array}\) & \[
\begin{array}{r}
19029 \\
4.55
\end{array}
\] & \[
\begin{gathered}
19399 \\
4.55^{*}
\end{gathered}
\] & 67 & 95 & 156 & 173 \\
\hline 2180 & \[
\begin{array}{r}
22937 \\
440
\end{array}
\] & \[
\begin{array}{r}
21700 \\
4.51
\end{array}
\] & \(\begin{array}{r}20675 \\ 4.54 \\ \hline\end{array}\) & 19878
4.56 & \(\begin{array}{r}19306 \\ 4.57 \\ \hline\end{array}\) & \[
\begin{array}{r}
19206 \\
4.57
\end{array}
\] & \[
19575
\] & 68 & 96 & 158 & 174 \\
\hline 2200 & \(\begin{array}{r}23143 \\ 4.52 \\ \hline\end{array}\) & 21895
4.54 & 20861
4.56 & \(\begin{array}{r}20057 \\ 4.58 \\ \hline\end{array}\) & \(\begin{array}{r}19480 \\ 5.00 \\ \hline\end{array}\) & \[
\begin{array}{r}
19384 \\
5.00 \\
\hline
\end{array}
\] & \[
\begin{gathered}
19750 \\
5.00^{*} \\
\hline
\end{gathered}
\] & 68 & 97 & 159 & 176 \\
\hline 2220 & 23349
4.54 & 22089
4.56 & 21046
4.59 & 20235
5.01 & \(\begin{array}{r}19654 \\ 5.02 \\ \hline\end{array}\) & \[
\begin{array}{r}
19562 \\
5.02
\end{array}
\] & \[
\begin{aligned}
& 19926 \\
& 5.02^{*}
\end{aligned}
\] & 69 & 98 & 161 & 178 \\
\hline 2240 & \(\begin{array}{r}23556 \\ 4.57 \\ \hline\end{array}\) & \(\begin{array}{r}22284 \\ 4.59 \\ \hline\end{array}\) & \(\begin{array}{r}21232 \\ 5.01 \\ \hline\end{array}\) & 20414
5.04 & 19828
5.05 & \[
19740
\] & \[
\frac{0.02}{20102}
\] & 70 & 99 & 163 & 180 \\
\hline 2260 & 23763
4.59 & 22479
5.02 & 21418
5.04 & 20593
5.06 & \(\begin{array}{r}20002 \\ 5.08 \\ \hline\end{array}\) & \[
19919
\] & \[
20278
\] & 70 & 100 & 164 & 182 \\
\hline 2280 & 23969
5.02 & 22674
5.04 & 21605
5.06 & 20772
5.09 & 20177
5.10 & \[
20098
\] & \[
20454
\] & 71 & 101 & 166 & 183 \\
\hline 2300 & \(\begin{array}{r}24176 \\ 5.04 \\ \hline\end{array}\) & \(\begin{array}{r}22869 \\ 5.07 \\ \hline\end{array}\) & 21791
5.09 & 20952
5.12 & 20352
5.13 & 20277
5.13 & \[
\begin{gathered}
20631 \\
5.13^{*}
\end{gathered}
\] & 72 & 102 & 168 & 185 \\
\hline 2320 & \(\begin{array}{r}24383 \\ 5.07 \\ \hline\end{array}\) & \(\begin{array}{r}23064 \\ 5.09 \\ \hline\end{array}\) & 21978
5.12 & 21131
5.14 & 20527
5.15 & \[
20457
\] & \[
20808
\] & 72 & 103 & 169 & 187 \\
\hline 2340 & 24591
509 & 23260
5 & 22164 & 21311 & 20702 & 20637 & 20985 & 73 & 104 & 171 & 189 \\
\hline 2360 & 24798 & 23455 & 22351 & 21491 & 20878 & 20817 & 21162 & 74 & 105 & 175 & 191 \\
\hline & 25005 & 23650 & 22538 & 21671 & 21054 & 20998 & 21340 & 75 & 106 & 177 & 193 \\
\hline 2380 & 5.15 & 5.17 & 5.19 & 5.22 & 5.23 & 5.23 & 5.23* & & & & \\
\hline 2400 & \[
\begin{array}{r}
25213 \\
5.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23846 \\
5.20 \\
\hline
\end{array}
\] & \(\begin{array}{r}22725 \\ 5.22 \\ \hline\end{array}\) & \[
\begin{array}{r}
21851 \\
5.25 \\
\hline
\end{array}
\] & 21229
5.26 & \[
\begin{array}{r}
21179 \\
5.26
\end{array}
\] & \[
\begin{gathered}
21518 \\
5.26^{*}
\end{gathered}
\] & 75 & 107 & 178 & 194 \\
\hline 2420 & 25420
5.20 & \[
\begin{array}{r}
24042 \\
5.22
\end{array}
\] & 22912
5.25 & 22031
5.27 & 21406
5.29 & 21433
5.29 & 21696
5.29 & 76 & 108 & 180 & 196 \\
\hline 2440 & 55628
5.22 & \(\begin{array}{r}24238 \\ 5.25 \\ \hline\end{array}\) & 23099
5
5 & 22212
5.30 & 15882
5.31 & 21617
5.31 & 21874* & 77 & 109 & 182 & 198 \\
\hline 2460 & 25836
5.25 & \(\begin{array}{r}24435 \\ 5.27 \\ \hline\end{array}\) & 23287
5.30 & 22393
5.32 & 21758
5
5 & 21801
5 & \({ }^{22052}\) & 77 & 111 & 184 & 200 \\
\hline 2480 & 26044 & 24631 & 23474 & 22573 & 21935 & 21986 & 22231 & 78 & 112 & 186 & 202 \\
\hline & 26252 & 24827 & 23662 & 22754 & 22112 & 22171 & 22410 & 79 & 113 & 188 & 204 \\
\hline 2500 & 5.30
26460 & \(\begin{array}{r}5.32 \\ 25024 \\ \hline\end{array}\) & 5.35
23850 & \(\begin{array}{r}5.38 \\ \hline 22935 \\ \hline\end{array}\) & 5.39
22289 & 5.39
22356 & 5.39** & 79 & 114 & 190 & 205 \\
\hline 2520 & 5.32 & 5.35 & 5.38 & 5.40 & 5.42
5.48 & 5.42
5 & 5.42* & & & & \\
\hline 2540 & 26669
5.35 & \(\begin{array}{r}25221 \\ 5.37 \\ \hline\end{array}\) & 24038
5.40 & 23117
5.43 & 22466
5.44 & 22542
5.44 & 22770
\(5.44^{*}\) & 80 & 115 & 191 & 207 \\
\hline 2560 & \[
26877
\] & 25418
5.40 & \(\begin{array}{r}24226 \\ 5.43 \\ \hline\end{array}\) & 23298
5.45 & 22643
5.47 & \[
22728
\] & \({ }^{22951}\) & 81 & 116 & 193 & 209 \\
\hline 2580 & 27085 & 25615 & 24414 & 23480 & 22821 & 22915 & 23132 & 82 & 117 & 195 & 212 \\
\hline & 27294 & 25812 & 24603 & 23661 & 22998 & 23102 & 23313 & 82 & 118 & 197 & 214 \\
\hline & 5.43 & 5.45 & 5.48 & 5.51 & 5.52 & & 5.52* & 83 & 119 & 199 & 215 \\
\hline 2620 & \(\begin{array}{r}2 \\ 5 \\ \hline\end{array}\) & \(\begin{array}{r}2609 \\ 5.48 \\ \hline\end{array}\) & \(\begin{array}{r}24.50 \\ 5.50 \\ \hline\end{array}\) & \(\begin{array}{r}2843 \\ 5.53 \\ \hline\end{array}\) & \(\begin{array}{r}5.5 \\ 5 \\ 5 \\ \hline\end{array}\) & \(\begin{array}{r}23289 \\ 5.55 \\ \hline\end{array}\) & 23494* & 83 & 119 & 199 & 215 \\
\hline 2640 & \[
\begin{array}{r}
27711 \\
5.48
\end{array}
\] & \[
\begin{array}{r}
26207 \\
5.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24980 \\
5.53
\end{array}
\] & \[
\begin{array}{r}
24025 \\
5.56
\end{array}
\] & \[
23354
\] & \[
\begin{array}{r}
23476 \\
557
\end{array}
\] & \[
\begin{gathered}
23675 \\
5.57^{*}
\end{gathered}
\] & 84 & 120 & 201 & 217 \\
\hline 2660 & 27920
5 & 26404 & 25169 & 24207 & 23533 & 23664 & 23857 & 84 & 121 & 203 & 215 \\
\hline & 28129 & 26602 & 25359 & 24390 & 23711 & 23853 & 24039 & 85 & 122 & 205 & 217 \\
\hline & \(\begin{array}{r}5.53 \\ 28338 \\ \hline\end{array}\) & 5.55
26800 & 5.58
25548 & 6.01
24572 & 6.03
23890 & 6.03
24041 & 6.03** & 86 & 124 & 207 & 219 \\
\hline 2700 & 5.55 & 5.58 & 6.01 & 6.04 & 6.05 & 6.05 & 6.05* & & & & \\
\hline 2720 & \(\begin{array}{r}28547 \\ 5.58 \\ \hline\end{array}\) & 26997
6.01 & 25737
6.03 & \[
\begin{array}{r}
24755 \\
6.06
\end{array}
\] & 24069
6.08 & \[
\begin{aligned}
& 24230 \\
& 6.08
\end{aligned}
\] & \[
\begin{gathered}
24404 \\
6.08^{*}
\end{gathered}
\] & 87 & 125 & 209 & 220 \\
\hline 2740 & 28757 & 27195 & 25927 & 24938 & 24248 & 24422 & 24587 & 87 & 126 & 211 & 222 \\
\hline 2760 & 28966 & 27393 & 26117 & 25121 & 24427 & 24614 & 24801 & 88 & 127 & 213 & 224 \\
\hline 2760 & 6.03 & 6.06 & 6.09 & 6.12 & 6.13 & 6.13 & 6.13* & & & & \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 342003751.0000210250300 .8000 .000000360035035010001751246011418590
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB 250KT/300KT/M. 80 - CRUISE M.80-DESCENT M. \(80 / 300 \mathrm{KT}\) /250KT - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)
\begin{tabular}{|c|c|c|}
\hline REF. LANDING WEIGHT \(=100000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING ANTI-ICING OFF & \[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=37.5 \%
\end{gathered}
\] & \begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { AIR } \\
\text { DIST. }
\end{gathered}
\] & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FL350 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL370 } \\
& \text { FL390 } \\
& \hline
\end{aligned}
\] & FL410 \\
\hline 2760 & \[
\begin{array}{r}
28966 \\
6.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27393 \\
6.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26117 \\
6.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25121 \\
6.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24427 \\
6.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24614 \\
6.13 \\
\hline
\end{array}
\] & \[
\begin{gathered}
24801 \\
6.13^{*} \\
\hline
\end{gathered}
\] & 88 & 127 & 213 & 224 \\
\hline 2780 & \[
\begin{array}{r}
29176 \\
6.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27592 \\
6.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26307 \\
6.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25304 \\
6.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24606 \\
6.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24807 \\
6.16 \\
\hline
\end{array}
\] & \[
\begin{gathered}
24985 \\
6.16^{*} \\
\hline
\end{gathered}
\] & 89 & 128 & 215 & 226 \\
\hline 2800 & \[
\begin{array}{r}
29385 \\
6.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27790 \\
6.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26497 \\
6.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25487 \\
6.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24787 \\
6.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25000 \\
6.18 \\
\hline
\end{array}
\] & \[
\begin{gathered}
25170 \\
6.18^{*} \\
\hline
\end{gathered}
\] & 89 & 129 & 217 & 228 \\
\hline 2820 & \[
\begin{array}{r}
29595 \\
6.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27988 \\
6.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26687 \\
6.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25671 \\
6.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24968 \\
6.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25195 \\
6.21 \\
\hline
\end{array}
\] & \[
\begin{gathered}
25356 \\
6.21^{*} \\
\hline
\end{gathered}
\] & 90 & 130 & 219 & 230 \\
\hline 2840 & \[
\begin{array}{r}
29805 \\
6.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28187 \\
6.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26877 \\
6.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25855 \\
6.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25150 \\
6.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25389 \\
6.24 \\
\hline
\end{array}
\] & \[
\begin{gathered}
25542 \\
6.24^{*} \\
\hline
\end{gathered}
\] & 91 & 131 & 221 & 232 \\
\hline 2860 & \[
\begin{array}{r}
30015 \\
6.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28385 \\
6.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27068 \\
6.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26039 \\
6.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25332 \\
6.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25584 \\
6.26 \\
\hline
\end{array}
\] & \[
\begin{gathered}
25728 \\
6.26^{*} \\
\hline
\end{gathered}
\] & 92 & 133 & 223 & 233 \\
\hline 2880 & \[
\begin{array}{r}
30225 \\
6.18
\end{array}
\] & \[
\begin{array}{r}
28584 \\
6.21
\end{array}
\] & \[
\begin{array}{r}
27258 \\
6.24
\end{array}
\] & \[
\begin{array}{r}
26223 \\
6.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25514 \\
6.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25780 \\
6.29 \\
\hline
\end{array}
\] & \[
\begin{gathered}
25914 \\
6.29^{*} \\
\hline
\end{gathered}
\] & 92 & 134 & 225 & 235 \\
\hline 2900 & \[
\begin{array}{r}
30435 \\
6.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28783 \\
6.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27449 \\
6.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26407 \\
6.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25696 \\
6.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25976 \\
6.32 \\
\hline
\end{array}
\] & \[
\begin{gathered}
26101 \\
6.32^{*} \\
\hline
\end{gathered}
\] & 93 & 135 & 227 & 237 \\
\hline 2920 & \[
\begin{array}{r}
30645 \\
6.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28982 \\
6.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27640 \\
6.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26591 \\
6.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25879 \\
6.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26172 \\
6.34 \\
\hline
\end{array}
\] & \[
\begin{gathered}
26288 \\
6.34^{*} \\
\hline
\end{gathered}
\] & 94 & 136 & 230 & 239 \\
\hline 2940 & \[
\begin{array}{r}
30856 \\
6.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29181 \\
6.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27831 \\
6.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26776 \\
6.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26062 \\
6.37 \\
\hline
\end{array}
\] & \[
\begin{gathered}
26383 \\
6.37^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
26475 \\
6.37^{*} \\
\hline
\end{gathered}
\] & 95 & 137 & 232 & 241 \\
\hline 2960 & \[
\begin{array}{r}
31066 \\
6.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29380 \\
6.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28022 \\
6.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26961 \\
6.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26245 \\
6.39 \\
\hline
\end{array}
\] & \[
\begin{gathered}
26569 \\
6.39^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
26663 \\
6.39^{*} \\
\hline
\end{gathered}
\] & 95 & 140 & 234 & 243 \\
\hline 2980 & \[
\begin{array}{r}
31277 \\
6.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29580 \\
6.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28213 \\
6.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27146 \\
6.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26428 \\
6.42 \\
\hline
\end{array}
\] & \[
\begin{gathered}
26756 \\
6.42^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
26851 \\
6.42^{*} \\
\hline
\end{gathered}
\] & 96 & 141 & 236 & 244 \\
\hline 3000 & \[
\begin{array}{r}
31487 \\
6.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29779 \\
6.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28405 \\
6.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27331 \\
6.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26612 \\
6.45 \\
\hline
\end{array}
\] & \[
\begin{gathered}
26942 \\
6.45^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
27039 \\
6.45^{*} \\
\hline
\end{gathered}
\] & 97 & 143 & 238 & 246 \\
\hline 3020 & \[
\begin{array}{r}
31698 \\
6.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29979 \\
6.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28596 \\
6.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27516 \\
6.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26795 \\
6.47 \\
\hline
\end{array}
\] & \[
\begin{gathered}
27129 \\
6.47^{*} \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
27227 \\
6.47^{*} \\
\hline
\end{array}
\] & 98 & 144 & 241 & 248 \\
\hline 3040 & \[
\begin{array}{r}
31909 \\
6.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30179 \\
6.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28788 \\
6.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27701 \\
6.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26979 \\
6.50 \\
\hline
\end{array}
\] & \[
\begin{gathered}
27316 \\
6.50^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
27416 \\
6.50^{*} \\
\hline
\end{gathered}
\] & 99 & 145 & 243 & 250 \\
\hline 3060 & \[
\begin{array}{r}
32120 \\
6.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30379 \\
6.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28980 \\
6.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27887 \\
6.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27164 \\
6.52 \\
\hline
\end{array}
\] & \[
\begin{gathered}
27503 \\
6.52^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
27605 \\
6.52^{*} \\
\hline
\end{gathered}
\] & 99 & 146 & 245 & 251 \\
\hline 3080 & \[
\begin{array}{r}
32331 \\
6.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30579 \\
6.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29172 \\
6.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28072 \\
6.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27433 \\
6.55 \\
\hline
\end{array}
\] & \[
\begin{gathered}
27691 \\
6.55^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
27795 \\
6.55^{*} \\
\hline
\end{gathered}
\] & 100 & 148 & 247 & 253 \\
\hline 3100 & \[
\begin{array}{r}
32542 \\
6.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30779 \\
6.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29364 \\
6.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28258 \\
6.56
\end{array}
\] & \[
\begin{array}{r}
27620 \\
6.58 \\
\hline
\end{array}
\] & \[
\begin{gathered}
27878 \\
6.58^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
27985 \\
6.58^{*} \\
\hline
\end{gathered}
\] & 101 & 149 & 249 & 255 \\
\hline 3120 & \[
\begin{array}{r}
32754 \\
6.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30979 \\
6.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29556 \\
6.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28444 \\
6.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27807 \\
7.00 \\
\hline
\end{array}
\] & \[
\begin{gathered}
28066 \\
7.00^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
28175 \\
7.00^{*} \\
\hline
\end{gathered}
\] & 102 & 150 & 251 & 257 \\
\hline 3140 & \[
\begin{array}{r}
32965 \\
6.51
\end{array}
\] & \[
\begin{array}{r}
31179 \\
6.54
\end{array}
\] & \[
\begin{array}{r}
29749 \\
6.58
\end{array}
\] & \[
\begin{array}{r}
28630 \\
7.01
\end{array}
\] & \[
\begin{array}{r}
27994 \\
7.03
\end{array}
\] & \[
\begin{gathered}
28254 \\
7.03^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
28365 \\
7.03^{*} \\
\hline
\end{gathered}
\] & 102 & 151 & 253 & 259 \\
\hline 3160 & \[
\begin{array}{r}
33177 \\
6.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31380 \\
6.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29941 \\
7.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28817 \\
7.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28182 \\
7.06 \\
\hline
\end{array}
\] & \[
\begin{gathered}
28442 \\
7.05^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
28556 \\
7.06^{*} \\
\hline
\end{gathered}
\] & 103 & 152 & 255 & 260 \\
\hline 3180 & \[
\begin{array}{r}
33388 \\
6.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31580 \\
6.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30134 \\
7.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29003 \\
7.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28369 \\
7.08 \\
\hline
\end{array}
\] & \[
\begin{gathered}
28631 \\
7.08^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
28747 \\
7.08^{*} \\
\hline
\end{gathered}
\] & 104 & 154 & 257 & 262 \\
\hline 3200 & \[
\begin{array}{r}
33600 \\
6.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31781 \\
7.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30327 \\
7.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29190 \\
7.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28557 \\
7.11 \\
\hline
\end{array}
\] & \[
\begin{gathered}
28820 \\
7.11^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
28938 \\
7.11^{*} \\
\hline
\end{gathered}
\] & 105 & 155 & 259 & 264 \\
\hline 3220 & \[
\begin{array}{r}
33813 \\
7.01
\end{array}
\] & \[
\begin{array}{r}
31982 \\
7.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30520 \\
7.08
\end{array}
\] & \[
\begin{array}{r}
29377 \\
7.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28746 \\
7.13 \\
\hline
\end{array}
\] & \[
\begin{gathered}
29009 \\
7.13^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
29130 \\
7.13^{*} \\
\hline
\end{gathered}
\] & 106 & 156 & 261 & 266 \\
\hline 3240 & \[
\begin{array}{r}
34025 \\
7.04 \\
\hline
\end{array}
\] & \(\begin{array}{r}32183 \\ 7.07 \\ \hline\end{array}\) & 30713
7.11 & 29564
7.14 & 28934
7.16 & \[
\begin{gathered}
29199 \\
7.16^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
29322 \\
7.16^{*} \\
\hline
\end{gathered}
\] & 107 & 157 & 263 & 268 \\
\hline 3260 & \[
\begin{array}{r}
34237 \\
7.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32384 \\
7.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30907 \\
7.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29751 \\
7.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29123 \\
7.19 \\
\hline
\end{array}
\] & \[
\begin{gathered}
29388 \\
7.18^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
29515 \\
7.19^{*} \\
\hline
\end{gathered}
\] & 107 & 159 & 265 & 269 \\
\hline 3280 & \[
\begin{array}{r}
34450 \\
7.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.10 \\
\hline 32585 \\
7.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.10 \\
\hline 31100 \\
7.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.1 \\
29938 \\
7.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29312 \\
7.21 \\
\hline
\end{array}
\] & \[
\begin{gathered}
29578 \\
7.21^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
29708 \\
7.21^{*} \\
\hline
\end{gathered}
\] & 108 & 162 & 267 & 271 \\
\hline 3300 & \[
\begin{array}{r}
34663 \\
7.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.2 \\
32786 \\
7.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31294 \\
7.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.12 \\
\hline 7.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29502 \\
7.24 \\
\hline
\end{array}
\] & \[
\begin{gathered}
29769 \\
7.24^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
29901 \\
7.24^{*} \\
\hline
\end{gathered}
\] & 109 & 163 & 266 & 273 \\
\hline 3320 & \[
\begin{array}{r}
34875 \\
7.14
\end{array}
\] & \[
\begin{array}{r}
32988 \\
7.17
\end{array}
\] & \[
\begin{array}{r}
31488 \\
7.21
\end{array}
\] & \[
\begin{array}{r}
30314 \\
7.25
\end{array}
\] & \[
\begin{array}{r}
29691 \\
7.27 \\
\hline
\end{array}
\] & \[
\begin{gathered}
29959 \\
7.26^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
30099 \\
7.27^{*}
\end{gathered}
\] & 110 & 165 & 268 & 275 \\
\hline 3340 & \[
\begin{array}{r}
35088 \\
7.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33189 \\
7.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31682 \\
7.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30502 \\
7.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29882 \\
7.29 \\
\hline
\end{array}
\] & \[
\begin{gathered}
30150 \\
7.29^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
30293 \\
7.29^{*} \\
\hline
\end{gathered}
\] & 111 & 166 & 270 & 276 \\
\hline 3360 & \[
\begin{array}{r}
35302 \\
7.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33391 \\
7.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31876 \\
7.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30690 \\
7.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30072 \\
7.32 \\
\hline
\end{array}
\] & \[
\begin{gathered}
30341 \\
7.32^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
30487 \\
7.32^{*} \\
\hline
\end{gathered}
\] & 112 & 168 & 272 & 278 \\
\hline 3380 & \[
\begin{array}{r}
35515 \\
7.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33593 \\
7.25
\end{array}
\] & \[
\begin{array}{r}
32070 \\
7.29
\end{array}
\] & \[
\begin{array}{r}
30878 \\
7.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30263 \\
7.34
\end{array}
\] & \[
\begin{gathered}
30533 \\
7.34^{*}
\end{gathered}
\] & \[
\begin{gathered}
30682 \\
7.34^{*}
\end{gathered}
\] & 112 & 169 & 274 & 280 \\
\hline 3400 & \[
\begin{array}{r}
35728 \\
7.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33795 \\
7.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32265 \\
7.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31067 \\
7.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30454 \\
\quad 7.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30724 \\
7.37^{*} \\
\hline
\end{array}
\] & \[
\begin{gathered}
30877 \\
7.37 * \\
\hline
\end{gathered}
\] & 113 & 170 & 276 & 282 \\
\hline
\end{tabular}

R FLIP23 A310-324 PW4152 342003751.0000210250300 .8000 .000000360035035010001751246011418590
FCOM-B0-02-17-30-008-085
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 9} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB 250KT/300KT/M. 80 - CRUISE M.80-DESCENT M. \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\) - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{REF. LANDING WEIGHT = 100000 KG ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \begin{tabular}{l}
AIR \\
DIST.
\end{tabular} & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \text { FL310 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FL350 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL370 } \\
& \text { FL390 }
\end{aligned}
\] & FL410 \\
\hline \[
3400
\] & \[
\begin{array}{r}
35728 \\
7.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33795 \\
7.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32265 \\
7.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31067 \\
7.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30454 \\
7.37 \\
\hline
\end{array}
\] & \[
\begin{gathered}
30724 \\
7.37^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
30877 \\
7.37^{*} \\
\hline
\end{gathered}
\] & 113 & 170 & 276 & 282 \\
\hline 3420 & \[
\begin{array}{r}
35941 \\
7.27
\end{array}
\] & \[
\begin{array}{r}
33998 \\
7.30
\end{array}
\] & \[
\begin{array}{r}
32459 \\
7.34
\end{array}
\] & \[
\begin{array}{r}
31255 \\
7.38
\end{array}
\] & \[
\begin{array}{r}
30645 \\
7.40
\end{array}
\] & \[
30916
\] & \[
31073
\] & 114 & 172 & 278 & 284 \\
\hline 3440 & \[
\begin{array}{r}
36155 \\
7.29
\end{array}
\] & \[
\begin{array}{r}
34202 \\
7.33
\end{array}
\] & \[
\begin{array}{r}
32654 \\
7.36
\end{array}
\] & \[
\begin{array}{r}
31444 \\
7.40
\end{array}
\] & \[
\begin{array}{r}
30837 \\
7.42
\end{array}
\] & \[
\begin{array}{r}
31109 \\
7.42^{*}
\end{array}
\] & \[
\begin{gathered}
31269 \\
7.42^{*}
\end{gathered}
\] & 115 & 173 & 280 & 286 \\
\hline 3460 & \[
\begin{array}{r}
36369 \\
7.32
\end{array}
\] & \[
\begin{array}{r}
34406 \\
7.35
\end{array}
\] & \[
\begin{array}{r}
32849 \\
7.39
\end{array}
\] & \[
\begin{array}{r}
31633 \\
7.43
\end{array}
\] & \[
\begin{array}{r}
31029 \\
7.45
\end{array}
\] & \[
\begin{gathered}
31301 \\
7.45^{*}
\end{gathered}
\] & \[
\begin{gathered}
31466 \\
7.45^{*}
\end{gathered}
\] & 116 & 175 & 282 & 287 \\
\hline 3480 & \[
\begin{array}{r}
36582 \\
7.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34610 \\
7.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33044 \\
7.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31822 \\
7.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31221 \\
7.48 \\
\hline
\end{array}
\] & \[
\begin{gathered}
31494 \\
7.47^{*}
\end{gathered}
\] & \[
\begin{gathered}
31664 \\
7.48^{*}
\end{gathered}
\] & 117 & 176 & 284 & 289 \\
\hline 3500 & \[
\begin{array}{r}
36796 \\
7.37
\end{array}
\] & \[
\begin{array}{r}
34814 \\
7.40
\end{array}
\] & \[
\begin{array}{r}
33239 \\
7.44
\end{array}
\] & \[
\begin{array}{r}
32097 \\
7.48
\end{array}
\] & \[
\begin{array}{r}
31413 \\
7.50
\end{array}
\] & \[
\begin{gathered}
31687 \\
7.50^{*}
\end{gathered}
\] & \[
\begin{gathered}
31863 \\
7.50^{*}
\end{gathered}
\] & 117 & 178 & 286 & 291 \\
\hline \[
3520
\] & \[
\begin{array}{r}
37010 \\
7.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35018 \\
7.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33434 \\
7.47
\end{array}
\] & \[
\begin{array}{r}
32288 \\
7.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31606 \\
7.53 \\
\hline
\end{array}
\] & \[
\begin{gathered}
31880 \\
7.52^{*}
\end{gathered}
\] & \[
\begin{gathered}
32061 \\
7.53^{*} \\
\hline
\end{gathered}
\] & 118 & 179 & 288 & 293 \\
\hline 3540 & \[
\begin{array}{r}
37224 \\
7.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35222 \\
7.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33630 \\
7.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32479 \\
7.53
\end{array}
\] & \[
\begin{array}{r}
31799 \\
7.55
\end{array}
\] & \[
\begin{gathered}
32073 \\
7.55^{*}
\end{gathered}
\] & \[
\begin{gathered}
32261 \\
7.55^{*}
\end{gathered}
\] & 119 & 181 & 290 & 295 \\
\hline \[
3560
\] & \[
\begin{array}{r}
37438 \\
7.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35427 \\
7.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33825 \\
7.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32671 \\
7.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31992 \\
7.58 \\
\hline
\end{array}
\] & \[
\begin{gathered}
32267 \\
7.58^{*}
\end{gathered}
\] & \[
\begin{gathered}
32460 \\
7.58^{*}
\end{gathered}
\] & 122 & 182 & 292 & 297 \\
\hline 3580 & \[
\begin{array}{r}
37653 \\
7.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35631 \\
7.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34021 \\
7.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32863 \\
7.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32186 \\
8.01 \\
\hline
\end{array}
\] & \[
\begin{gathered}
32461 \\
8.00^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
32661 \\
8.01^{*} \\
\hline
\end{gathered}
\] & 123 & 184 & 294 & 299 \\
\hline \[
3600
\] & \[
\begin{array}{r}
37867 \\
7.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35836 \\
7.53
\end{array}
\] & \[
\begin{array}{r}
34217 \\
7.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33055 \\
8.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32380 \\
8.03 \\
\hline
\end{array}
\] & \[
\begin{gathered}
32656 \\
8.03^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
32861 \\
8.03^{*}
\end{gathered}
\] & 124 & 185 & 296 & 300 \\
\hline \[
3620
\] & \[
\begin{array}{r}
38081 \\
7.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36041 \\
7.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34415 \\
8.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33247 \\
8.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32574 \\
8.06 \\
\hline
\end{array}
\] & \[
\begin{gathered}
32850 \\
8.05^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
33062 \\
8.06^{*} \\
\hline
\end{gathered}
\] & 125 & 187 & 298 & 302 \\
\hline \[
3640
\] & \[
\begin{array}{r}
38296 \\
7.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36246 \\
7.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34612 \\
8.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33440 \\
8.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32768 \\
8.08 \\
\hline
\end{array}
\] & \[
\begin{gathered}
33045 \\
8.08^{*}
\end{gathered}
\] & \[
\begin{gathered}
33263 \\
8.08^{*}
\end{gathered}
\] & 126 & 188 & 300 & 304 \\
\hline  & \[
\begin{array}{r}
38511 \\
7.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36451 \\
8.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34809 \\
8.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33633 \\
8.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32963 \\
8.11 \\
\hline
\end{array}
\] & \[
\begin{gathered}
33240 \\
8.11^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
33465 \\
8.11^{*} \\
\hline
\end{gathered}
\] & 127 & 190 & 302 & 306 \\
\hline  & \[
\begin{array}{r}
38726 \\
8.00
\end{array}
\] & \[
\begin{array}{r}
36656 \\
8.04
\end{array}
\] & \[
\begin{array}{r}
35007 \\
8.07
\end{array}
\] & \[
\begin{array}{r}
33826 \\
8.11
\end{array}
\] & \[
\begin{array}{r}
33158 \\
8.14
\end{array}
\] & \[
33435
\] & \[
\begin{gathered}
33667 \\
8.14^{*}
\end{gathered}
\] & 128 & 191 & 304 & 308 \\
\hline  & \[
\begin{array}{r}
38941 \\
8.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36862 \\
8.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35205 \\
8.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34019 \\
8.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33353 \\
8.16 \\
\hline
\end{array}
\] & \[
\begin{gathered}
33631 \\
8.16^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
33870 \\
8.16^{*} \\
\hline
\end{gathered}
\] & 129 & 193 & 306 & 310 \\
\hline 3720 & \[
\begin{array}{r}
39156 \\
8.05
\end{array}
\] & \[
\begin{array}{r}
37067 \\
8.09
\end{array}
\] & \[
\begin{array}{r}
35403 \\
8.13
\end{array}
\] & \[
\begin{array}{r}
34213 \\
8.17
\end{array}
\] & \[
\begin{array}{r}
33549 \\
8.19
\end{array}
\] & \[
\begin{gathered}
33827 \\
8.18^{*}
\end{gathered}
\] & \[
\begin{gathered}
34073 \\
8.19^{*}
\end{gathered}
\] & 129 & 194 & 308 & 312 \\
\hline 3740 & \[
\begin{array}{r}
39371 \\
8.07
\end{array}
\] & \[
\begin{array}{r}
37273 \\
8.11
\end{array}
\] & \[
\begin{array}{r}
35601 \\
8.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34407 \\
8.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33747 \\
8.22 \\
\hline
\end{array}
\] & \[
\begin{gathered}
34023 \\
8.21^{*}
\end{gathered}
\] & \[
\begin{gathered}
34276 \\
8.22^{*}
\end{gathered}
\] & 130 & 196 & 310 & 314 \\
\hline \[
3760
\] & \[
\begin{array}{r}
39587 \\
8.10
\end{array}
\] & \[
\begin{array}{r}
37479 \\
8.14
\end{array}
\] & \[
\begin{array}{r}
35799 \\
8.18
\end{array}
\] & \[
\begin{array}{r}
34601 \\
8.22
\end{array}
\] & \[
\begin{array}{r}
33947 \\
8.24
\end{array}
\] & \[
\begin{gathered}
34220 \\
8.24^{*}
\end{gathered}
\] & \[
\begin{gathered}
34480 \\
8.24^{*}
\end{gathered}
\] & 131 & 198 & 310 & 315 \\
\hline  & \[
\begin{array}{r}
39802 \\
8.12
\end{array}
\] & \[
\begin{array}{r}
37685 \\
8.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35998 \\
8.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34796 \\
8.25
\end{array}
\] & \[
\begin{array}{r}
34147 \\
8.27
\end{array}
\] & \[
\begin{gathered}
34417 \\
8.26^{*}
\end{gathered}
\] & \[
\begin{gathered}
34685 \\
8.27^{*} \\
\hline
\end{gathered}
\] & 132 & 199 & 312 & 317 \\
\hline \[
3800
\] & \[
\begin{array}{r}
40018 \\
8.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37891 \\
8.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36292 \\
8.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34990 \\
8.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34348 \\
8.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline 34614 \\
8.29^{*} \\
\hline
\end{array}
\] & \[
\begin{gathered}
34890 \\
8.29^{*} \\
\hline
\end{gathered}
\] & 133 & 201 & 314 & 319 \\
\hline  & \[
\begin{array}{r}
40234 \\
8.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38097 \\
8.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36492 \\
8.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35185 \\
8.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34550 \\
8.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34812 \\
8.32^{*} \\
\hline
\end{array}
\] & \[
\begin{gathered}
35096 \\
8.32^{*} \\
\hline
\end{gathered}
\] & 134 & 202 & 316 & 321 \\
\hline \[
3840
\] & \[
\begin{array}{r}
40450 \\
8.20
\end{array}
\] & \[
\begin{array}{r}
38304 \\
8.24
\end{array}
\] & \[
\begin{array}{r}
36693 \\
8.28
\end{array}
\] & \[
\begin{array}{r}
35381 \\
8.32
\end{array}
\] & \[
\begin{array}{r}
34752 \\
8.35
\end{array}
\] & \[
\begin{gathered}
35009 \\
8.34^{*}
\end{gathered}
\] & \[
\begin{gathered}
35302 \\
8.35^{*}
\end{gathered}
\] & 135 & 204 & 318 & 323 \\
\hline \[
3860
\] & \[
\begin{array}{r}
40666 \\
8.23
\end{array}
\] & \[
38510
\] & \[
\begin{array}{r}
36894 \\
8.31
\end{array}
\] & \[
\begin{array}{r}
35576 \\
8.35
\end{array}
\] & \[
\begin{array}{r}
34954 \\
8.37
\end{array}
\] & \[
\begin{aligned}
& 35208 \\
& 8 \quad 37 *
\end{aligned}
\] & \[
\begin{gathered}
35508 \\
8 \quad 37 *
\end{gathered}
\] & 136 & 206 & 321 & 325 \\
\hline \[
3880
\] & \[
\begin{array}{r}
40882 \\
8.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38717 \\
8.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37095 \\
8.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35772 \\
8.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35156 \\
8.40 \\
\hline
\end{array}
\] & \[
\begin{gathered}
35406 \\
8.39^{*} \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
35715 \\
8.40^{*} \\
\hline
\end{array}
\] & 137 & 207 & 323 & 327 \\
\hline \[
3900
\] & \[
\begin{array}{r}
41098 \\
8.28
\end{array}
\] & \[
\begin{array}{r}
38924 \\
8.32
\end{array}
\] & \[
\begin{array}{r}
37297 \\
8.36
\end{array}
\] & \[
\begin{array}{r}
35967 \\
8.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35359 \\
8.43 \\
\hline
\end{array}
\] & \[
\begin{gathered}
35605 \\
8.42^{*}
\end{gathered}
\] & \[
\begin{gathered}
35922 \\
8.43^{*}
\end{gathered}
\] & 138 & 209 & 325 & 329 \\
\hline  & \[
\begin{array}{r}
41314 \\
8.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39131 \\
8.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37498 \\
8.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36163 \\
8.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35562 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{gathered}
35804 \\
8.45^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
36130 \\
8.45^{*} \\
\hline
\end{gathered}
\] & 141 & 211 & 327 & 330 \\
\hline \[
3940
\] & \[
\begin{array}{r}
41531 \\
8.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39338 \\
8.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37700 \\
8.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36359 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35766 \\
8.48 \\
\hline
\end{array}
\] & \[
\begin{gathered}
36003 \\
8.47^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
36338 \\
8.48^{*} \\
\hline
\end{gathered}
\] & 142 & 212 & 329 & 332 \\
\hline \[
3960
\] & \[
\begin{array}{r}
41747 \\
8.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39546 \\
8.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37902 \\
8.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36556 \\
8.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35971 \\
8.50 \\
\hline
\end{array}
\] & \[
\begin{gathered}
36202 \\
8.50^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
36547 \\
8.50^{*}
\end{gathered}
\] & 143 & 214 & 331 & 334 \\
\hline \[
3980
\] & \[
\begin{array}{r}
41964 \\
8.38
\end{array}
\] & \[
\begin{array}{r}
39753 \\
8.42
\end{array}
\] & \[
\begin{array}{r}
38104 \\
8.46
\end{array}
\] & \[
\begin{array}{r}
36753 \\
8.51
\end{array}
\] & \[
\begin{array}{r}
36176 \\
8.53
\end{array}
\] & \[
\begin{gathered}
36402 \\
8.52^{*}
\end{gathered}
\] & \[
\begin{gathered}
36756 \\
8.53^{*}
\end{gathered}
\] & 144 & 215 & 333 & 336 \\
\hline \[
4000
\] & \[
\begin{array}{r}
42181 \\
8.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39961 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38306 \\
8.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36949 \\
8.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36381 \\
8.56 \\
\hline
\end{array}
\] & \[
\begin{gathered}
36602 \\
8.55^{*}
\end{gathered}
\] & \[
\begin{gathered}
36965 \\
8.56^{*}
\end{gathered}
\] & 145 & 217 & 336 & 338 \\
\hline \[
4020
\] & \[
\begin{array}{r}
42398 \\
8.43
\end{array}
\] & \[
\begin{array}{r}
40169 \\
8.47
\end{array}
\] & \[
\begin{array}{r}
38509 \\
8.51
\end{array}
\] & \[
\begin{array}{r}
37146 \\
8.56
\end{array}
\] & \[
\begin{array}{r}
36586 \\
8.58 \\
\hline
\end{array}
\] & \[
\begin{gathered}
36803 \\
8.58^{*}
\end{gathered}
\] & \[
\begin{gathered}
37175 \\
8.58^{*}
\end{gathered}
\] & 146 & 219 & 338 & 340 \\
\hline \[
404
\] & \[
\begin{array}{r}
42615 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40377 \\
8.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38711 \\
8.54
\end{array}
\] & \[
\begin{array}{r}
37344 \\
8.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36792 \\
9.01 \\
\hline
\end{array}
\] & \[
\begin{gathered}
37004 \\
9.00^{*}
\end{gathered}
\] & \[
\begin{gathered}
37386 \\
9.01 *
\end{gathered}
\] & 147 & 220 & 340 & 342 \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 342003751.0000210250300 .8000 .000000360035035010001751246011418590
FCOM-B0-02-17-30-009-085
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB 250KT/300KT/M. 80 - CRUISE M.80-DESCENT M. \(80 / 300 \mathrm{KT}\) /250KT - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)
\begin{tabular}{l|c|c|}
\hline REF. LANDING WEIGHT = 100000 KG & ISA \\
ECONOMIC AIR CONDITIONING & CG \(=37.5 \%\) & \multicolumn{2}{c|}{ FUEL CONSUMED (KG) } \\
ANTI-ICING OFF & & TIME (H.MIN) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
AIR \\
DIST.
\end{tabular} & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{```
    CORRECTION ON
FUEL CONSUMPTION
    (KG/1000KG)
```} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \text { FL310 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FL350 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL370 } \\
& \text { FL390 }
\end{aligned}
\] & FL410 \\
\hline 4040 & \[
\begin{array}{r}
42615 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40377 \\
8.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38711 \\
8.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37344 \\
8.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36792 \\
9.01 \\
\hline
\end{array}
\] & \[
\begin{gathered}
37004 \\
9.00^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
37386 \\
9.01^{*} \\
\hline
\end{gathered}
\] & 147 & 220 & 340 & 342 \\
\hline 4060 & \[
\begin{array}{r}
42832 \\
8.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40585 \\
8.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38914 \\
8.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37541 \\
9.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36998 \\
9.04
\end{array}
\] & \[
\begin{gathered}
37205 \\
9.03^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
37596 \\
9.04^{*} \\
\hline
\end{gathered}
\] & 149 & 222 & 342 & 344 \\
\hline 4080 & \[
\begin{array}{r}
43049 \\
8.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40793 \\
8.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39117 \\
8.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37739 \\
9.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37205 \\
9.06 \\
\hline
\end{array}
\] & \[
\begin{gathered}
37406 \\
9.05^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
37808 \\
9.06^{*} \\
\hline
\end{gathered}
\] & 150 & 224 & 344 & 346 \\
\hline 4100 & \[
\begin{array}{r}
43266 \\
8.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41002 \\
8.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39321 \\
9.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37937 \\
9.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37412 \\
9.09 \\
\hline
\end{array}
\] & \[
\begin{gathered}
37607 \\
9.08^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
38019 \\
9.09^{*} \\
\hline
\end{gathered}
\] & 151 & 223 & 347 & 347 \\
\hline 4120 & \[
\begin{array}{r}
43484 \\
8.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41210 \\
9.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39525 \\
9.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38135 \\
9.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37619 \\
9.11 \\
\hline
\end{array}
\] & \[
\begin{gathered}
37809 \\
9.11^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
38232 \\
9.11^{*} \\
\hline
\end{gathered}
\] & 152 & 225 & 349 & 349 \\
\hline 4140 & \[
\begin{array}{r}
43702 \\
8.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41419 \\
9.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39728 \\
9.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38333 \\
9.11
\end{array}
\] & \[
\begin{array}{r}
37827 \\
9.14
\end{array}
\] & \[
\begin{gathered}
38011 \\
9.13^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
38444 \\
9.14^{*} \\
\hline
\end{gathered}
\] & 153 & 226 & 351 & 351 \\
\hline 4160 & \[
\begin{array}{r}
43921 \\
9.01
\end{array}
\] & \[
\begin{array}{r}
41723 \\
9.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39932 \\
9.10
\end{array}
\] & \[
\begin{array}{r}
38532 \\
9.14
\end{array}
\] & \[
\begin{array}{r}
38035 \\
9.17
\end{array}
\] & \[
\begin{gathered}
38215 \\
9.16^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
38657 \\
9.17^{*} \\
\hline
\end{gathered}
\] & 154 & 228 & 353 & 353 \\
\hline \[
4180
\] & \[
\begin{array}{r}
44139 \\
9.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41934 \\
9.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40137 \\
9.12
\end{array}
\] & \[
\begin{array}{r}
38731 \\
9.17
\end{array}
\] & \[
\begin{array}{r}
38244 \\
9.19 \\
\hline
\end{array}
\] & \[
\begin{gathered}
38419 \\
9.18^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
38871 \\
9.19^{*} \\
\hline
\end{gathered}
\] & 155 & 231 & 356 & 355 \\
\hline 4200 & \[
\begin{array}{r}
44358 \\
9.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42144 \\
9.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40341 \\
9.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38930 \\
9.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38453 \\
9.22
\end{array}
\] & \[
\begin{gathered}
38623 \\
9.21^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
39085 \\
9.22^{*}
\end{gathered}
\] & 156 & 233 & 358 & 357 \\
\hline \[
4220
\] & \[
\begin{array}{r}
44577 \\
9.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42355 \\
9.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40546 \\
9.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39129 \\
9.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38662 \\
9.24 \\
\hline
\end{array}
\] & \[
\begin{gathered}
38828 \\
9.24^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
39300 \\
9.25^{*} \\
\hline
\end{gathered}
\] & 157 & 234 & 360 & 359 \\
\hline 4240 & \[
\begin{array}{r}
44795 \\
9.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42567 \\
9.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40750 \\
9.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39329 \\
9.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38925 \\
9.27 \\
\hline
\end{array}
\] & \[
\begin{gathered}
39033 \\
9.26^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
39535 \\
9.27^{*} \\
\hline
\end{gathered}
\] & 158 & 236 & 362 & 361 \\
\hline \[
4260
\] & \[
\begin{array}{r}
45014 \\
9.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42779 \\
9.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40955 \\
9.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39529 \\
9.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39137 \\
9.30 \\
\hline
\end{array}
\] & \[
\begin{gathered}
39238 \\
9.29^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
39740 \\
9.30^{*} \\
\hline
\end{gathered}
\] & 160 & 238 & 364 & 363 \\
\hline 4280 & \[
\begin{array}{r}
45234 \\
9.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42990 \\
9.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41161 \\
9.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39729 \\
9.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39349 \\
9.32
\end{array}
\] & \[
\begin{gathered}
39444 \\
9.31^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
39945 \\
9.32^{*} \\
\hline
\end{gathered}
\] & 161 & 240 & 367 & 365 \\
\hline 4300 & \[
\begin{array}{r}
45453 \\
9.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43202 \\
9.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41366 \\
9.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39930 \\
9.32 \\
\hline
\end{array}
\] & \[
\begin{gathered}
39564 \\
9.35^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
39651 \\
9.34^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40151 \\
9.35^{*} \\
\hline
\end{gathered}
\] & 162 & 242 & 368 & 367 \\
\hline \[
4320
\] & \[
\begin{array}{r}
45672 \\
9.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43415 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41572 \\
9.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40131 \\
9.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39769 \\
9.38^{*} \\
\hline
\end{array}
\] & \[
\begin{gathered}
39857 \\
9.37^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40356 \\
9.37^{*} \\
\hline
\end{gathered}
\] & 163 & 244 & 370 & 369 \\
\hline \[
4340
\] & \[
\begin{array}{r}
45891 \\
9.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43627 \\
9.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41778 \\
9.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40331 \\
9.38 \\
\hline
\end{array}
\] & \[
\begin{gathered}
39974 \\
9.40^{*}
\end{gathered}
\] & \[
\begin{gathered}
40064 \\
9.39^{*}
\end{gathered}
\] & \[
\begin{gathered}
40562 \\
9.40^{*}
\end{gathered}
\] & 164 & 246 & 372 & 371 \\
\hline \[
4360
\] & \[
\begin{array}{r}
46111 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43840 \\
9.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41984 \\
9.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40533 \\
9.40 \\
\hline
\end{array}
\] & \[
\begin{gathered}
40180 \\
9.43^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40271 \\
9.42^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40768 \\
9.43^{*} \\
\hline
\end{gathered}
\] & 165 & 248 & 375 & 373 \\
\hline 4380 & \[
\begin{array}{r}
46330 \\
9.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
44053 \\
9.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42190 \\
9.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40734 \\
9.43 \\
\hline
\end{array}
\] & \[
\begin{gathered}
40385 \\
9.45 * \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
40479 \\
9.45^{*}
\end{array}
\] & \[
\begin{gathered}
40975 \\
9.45^{*}
\end{gathered}
\] & 166 & 250 & 377 & 375 \\
\hline 4400 & \[
\begin{array}{r}
46550 \\
9.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
44266 \\
9.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42396 \\
9.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40935 \\
9.45 \\
\hline
\end{array}
\] & \[
\begin{gathered}
40591 \\
9.48^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40687 \\
9.47^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
41181 \\
9.48^{*} \\
\hline
\end{gathered}
\] & 168 & 252 & 379 & 377 \\
\hline 4420 & \[
\begin{array}{r}
46770 \\
9.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
44479 \\
9.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42603 \\
9.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41137 \\
9.48 \\
\hline
\end{array}
\] & \[
\begin{gathered}
40797 \\
9.50^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
40896 \\
9.50^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
41388 \\
9.50^{*} \\
\hline
\end{gathered}
\] & 169 & 254 & 381 & 379 \\
\hline 4440 & \[
\begin{array}{r}
46989 \\
9.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
44693 \\
9.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
42810 \\
9.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41339 \\
9.51 \\
\hline
\end{array}
\] & \[
\begin{gathered}
41004 \\
9.53^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
41104 \\
9.52^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
41596 \\
9.53^{*} \\
\hline
\end{gathered}
\] & 170 & 256 & 384 & 381 \\
\hline \[
4460
\] & \[
\begin{array}{r}
47298 \\
9.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
44906 \\
9.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43016 \\
9.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41541 \\
9.53 \\
\hline
\end{array}
\] & \[
\begin{gathered}
41210 \\
9.56^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
41313 \\
9.55^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
41804 \\
9.56^{*} \\
\hline
\end{gathered}
\] & 171 & 255 & 386 & 383 \\
\hline \[
4480
\] & \[
\begin{array}{r}
47520 \\
9.41
\end{array}
\] & \[
\begin{array}{r}
45120 \\
9.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43224 \\
9.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41744 \\
9.56 \\
\hline
\end{array}
\] & \[
\begin{gathered}
41417 \\
9.58^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
41523 \\
9.58^{*} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
42011 \\
9.58^{*} \\
\hline
\end{gathered}
\] & 172 & 256 & 388 & 385 \\
\hline 4500 & \[
\begin{array}{r}
47741 \\
9.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
45334 \\
9.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43431 \\
9.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
41947 \\
9.58 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 41624 \\
& 10.01 * \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 41733 \\
& 10.00^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42219 \\
& 10.01^{*}
\end{aligned}
\] & 173 & 258 & 390 & 387 \\
\hline 4520 & \[
\begin{array}{r}
47963 \\
9.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
45548 \\
9.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43639 \\
9.56 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 42150 \\
& 10.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 41831 \\
& 10.03^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 41943 \\
& 10.03^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42428 \\
& 10.03^{*} \\
& \hline
\end{aligned}
\] & 175 & 260 & 392 & 389 \\
\hline 4540 & \[
\begin{array}{r}
48185 \\
9.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
45762 \\
9.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
43847 \\
9.59 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 42353 \\
& 10.04
\end{aligned}
\] & \[
\begin{aligned}
& 42038 \\
& 10.06^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42154 \\
& 10.05^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42636 \\
& 10.06^{*} \\
& \hline
\end{aligned}
\] & 176 & 261 & 394 & 391 \\
\hline 4560 & \[
\begin{array}{r}
48407 \\
9.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
45976 \\
9.56 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 44055 \\
& 10.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42556 \\
& 10.06 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42246 \\
& 10.09^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 42365 \\
& 10.08^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42845 \\
& 10.08^{*} \\
& \hline
\end{aligned}
\] & 177 & 263 & 396 & 393 \\
\hline \[
4580
\] & \[
\begin{array}{r}
48630 \\
9.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
46191 \\
9.59 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 44264 \\
& 10.04 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42760 \\
& 10.09 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42454 \\
& 10.11 * \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 42576 \\
& 10.11^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43054 \\
& 10.11^{*} \\
& \hline
\end{aligned}
\] & 178 & 265 & 398 & 395 \\
\hline \[
4600
\] & \[
\begin{array}{r}
48852 \\
9.57 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 46406 \\
& 10.01
\end{aligned}
\] & \[
\begin{aligned}
& 44472 \\
& 10.06
\end{aligned}
\] & \[
\begin{aligned}
& 42964 \\
& 10.11
\end{aligned}
\] & \[
\begin{aligned}
& 42666 \\
& 10.14^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 42788 \\
& 10.13^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 43263 \\
& 10.14^{*}
\end{aligned}
\] & 179 & 267 & 401 & 397 \\
\hline \[
4620
\] & \[
\begin{array}{r}
49075 \\
9.59 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 46620 \\
& 10.04 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44681 \\
& 10.09 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43170 \\
& 10.14 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 42874 \\
& 10.16^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43000 \\
& 10.16^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43473 \\
& 10.16^{*} \\
& \hline
\end{aligned}
\] & 181 & 268 & 403 & 399 \\
\hline \[
4640
\] & \[
\begin{aligned}
& \hline 49298 \\
& 10.02 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46835 \\
& 10.07 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44890 \\
& 10.12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43377 \\
& 10.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43083 \\
& 10.19^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43212 \\
& 10.18^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 43683 \\
& 10.19^{*} \\
& \hline
\end{aligned}
\] & 182 & 270 & 405 & 401 \\
\hline \[
4660
\] & \[
\begin{aligned}
& 49521 \\
& 10.04 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47051 \\
& 10.09 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45099 \\
& 10.14 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43584 \\
& 10.19 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43293 \\
& 10.21^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 43425 \\
& 10.21^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 43894 \\
& 10.21^{*}
\end{aligned}
\] & 183 & 272 & 407 & 403 \\
\hline \[
4680
\] & \[
\begin{aligned}
& 49744 \\
& 10.07 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47266 \\
& 10.12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45309 \\
& 10.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43792 \\
& 10.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43503 \\
& 10.24^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 43639 \\
& 10.24^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 44105 \\
& 10.24^{*} \\
& \hline
\end{aligned}
\] & 184 & 273 & 409 & 405 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10A} \\
\hline & & REV 25 & SEQ 270 \\
\hline
\end{tabular}

\section*{FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING}

CLIMB 250KT/300KT/M. 80 - CRUISE M.80-DESCENT M.80/300KT /250KT - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{REF. LANDING WEIGHT \(=100000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \begin{tabular}{l}
AIR \\
DIST.
\end{tabular} & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FL350 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL370 } \\
& \text { FL390 } \\
& \hline
\end{aligned}
\] & FL410 \\
\hline 4680 & \[
\begin{aligned}
& 49744 \\
& 10.07 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47266 \\
& 10.12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45309 \\
& 10.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43792 \\
& 10.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43503 \\
& 10.24^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43639 \\
& 10.24^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44105 \\
& 10.24^{*}
\end{aligned}
\] & 184 & 273 & 409 & 405 \\
\hline 4700 & \[
\begin{aligned}
& 49967 \\
& 10.09 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47481 \\
& 10.14 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45518 \\
& 10.19 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44000 \\
& 10.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43713 \\
& 10.27^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 43853 \\
& 10.26^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 44316 \\
& 10.27^{*} \\
& \hline
\end{aligned}
\] & 185 & 275 & 411 & 407 \\
\hline 4720 & \[
\begin{aligned}
& 50190 \\
& 10.12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47697 \\
& 10.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45728 \\
& 10.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44208 \\
& 10.27
\end{aligned}
\] & \[
\begin{aligned}
& 43924 \\
& 10.29^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 44067 \\
& 10.29^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44527 \\
& 10.29^{*} \\
& \hline
\end{aligned}
\] & 187 & 277 & 414 & 409 \\
\hline 4740 & \[
\begin{aligned}
& 50414 \\
& 10.14
\end{aligned}
\] & \[
\begin{aligned}
& 47913 \\
& 10.19
\end{aligned}
\] & \[
\begin{aligned}
& 45938 \\
& 10.25
\end{aligned}
\] & \[
\begin{aligned}
& 44416 \\
& 10.30
\end{aligned}
\] & \[
\begin{aligned}
& 44135 \\
& 10.32^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 44282 \\
& 10.31^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 44739 \\
& 10.32^{*}
\end{aligned}
\] & 188 & 279 & 416 & 411 \\
\hline 4760 & \[
\begin{aligned}
& 50637 \\
& 10.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48129 \\
& 10.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46148 \\
& 10.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44625 \\
& 10.32 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44346 \\
& 10.34^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 44497 \\
& 10.34^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 44951 \\
& 10.34^{*}
\end{aligned}
\] & 189 & 281 & 418 & 413 \\
\hline 4780 & \[
\begin{aligned}
& 50861 \\
& 10.20
\end{aligned}
\] & \[
\begin{aligned}
& 48346 \\
& 10.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46358 \\
& 10.30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44834 \\
& 10.35
\end{aligned}
\] & \[
\begin{aligned}
& 44557 \\
& 10.37^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44713 \\
& 10.37^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 45164 \\
& 10.37^{*} \\
& \hline
\end{aligned}
\] & 188 & 282 & 420 & 416 \\
\hline 4800 & \[
\begin{aligned}
& 51085 \\
& 10.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48562 \\
& 10.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46569 \\
& 10.32 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45043 \\
& 10.38 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44769 \\
& 10.40^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 44929 \\
& 10.39^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 45376 \\
& 10.39^{*} \\
& \hline
\end{aligned}
\] & 189 & 284 & 422 & 418 \\
\hline 4820 & \[
\begin{aligned}
& 51309 \\
& 10.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48779 \\
& 10.30
\end{aligned}
\] & \[
\begin{aligned}
& 46779 \\
& 10.35 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45253 \\
& 10.40
\end{aligned}
\] & \[
\begin{aligned}
& 44981 \\
& 10.42^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 45145 \\
& 10.42^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45589 \\
& 10.42^{*} \\
& \hline
\end{aligned}
\] & 190 & 286 & 425 & 420 \\
\hline 4840 & \[
\begin{aligned}
& 51533 \\
& 10.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48996 \\
& 10.32 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46990 \\
& 10.37 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45462 \\
& 10.43 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 45194 \\
& 10.45^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 45362 \\
& 10.45^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45802 \\
& 10.45^{*}
\end{aligned}
\] & 192 & 288 & 427 & 422 \\
\hline 4860 & \[
\begin{aligned}
& 51758 \\
& 10.30 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49213 \\
& 10.35 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47201 \\
& 10.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45672 \\
& 10.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45406 \\
& 10.47^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 45579 \\
& 10.47^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 46016 \\
& 10.47^{*} \\
& \hline
\end{aligned}
\] & 193 & 289 & 429 & 424 \\
\hline \[
4880
\] & \[
\begin{aligned}
& \hline 51983 \\
& 10.32 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49431 \\
& 10.37 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 47413 \\
& 10.43 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45883 \\
& 10.48 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 45619 \\
& 10.50^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45796 \\
& 10.50^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46230 \\
& 10.50^{*}
\end{aligned}
\] & 194 & 291 & 431 & 426 \\
\hline 4900 & \[
\begin{aligned}
& 52209 \\
& 10.35 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49648 \\
& 10.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47624 \\
& 10.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46093 \\
& 10.51 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 45832 \\
& 10.53^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 46014 \\
& 10.52^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46444 \\
& 10.52^{*}
\end{aligned}
\] & 195 & 293 & 434 & 428 \\
\hline 4920 & \[
\begin{aligned}
& 52435 \\
& 10.37
\end{aligned}
\] & \[
\begin{aligned}
& 49866 \\
& 10.43 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47836 \\
& 10.48 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46304 \\
& 10.53
\end{aligned}
\] & \[
\begin{aligned}
& 46046 \\
& 10.55^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 46232 \\
& 10.55^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 46658 \\
& 10.55^{*}
\end{aligned}
\] & 197 & 295 & 436 & 430 \\
\hline 4940 & \[
\begin{aligned}
& 52661 \\
& 10.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50084 \\
& 10.45
\end{aligned}
\] & \[
\begin{aligned}
& 48048 \\
& 10.50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46516 \\
& 10.56 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 46259 \\
& 10.58^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 46451 \\
& 10.58^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 46873 \\
& 10.58^{*} \\
& \hline
\end{aligned}
\] & 195 & 297 & 438 & 432 \\
\hline \[
4960
\] & \[
\begin{aligned}
& 52888 \\
& 10.42 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50302 \\
& 10.48 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48261 \\
& 10.53
\end{aligned}
\] & \[
\begin{aligned}
& 46727 \\
& 10.58 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46473 \\
& 11.00^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 46670 \\
& 11.00^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47088 \\
& 11.00^{*}
\end{aligned}
\] & 197 & 298 & 440 & 434 \\
\hline \[
4980
\] & \[
\begin{aligned}
& 53114 \\
& 10.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50520 \\
& 10.50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48474 \\
& 10.56
\end{aligned}
\] & \[
\begin{aligned}
& 46939 \\
& 11.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46688 \\
& 11.03^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 46889 \\
& 11.03^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 47303 \\
& 11.03^{*}
\end{aligned}
\] & 198 & 300 & 443 & 436 \\
\hline 5000 & \[
\begin{aligned}
& 53341 \\
& 10.48
\end{aligned}
\] & \[
\begin{aligned}
& 50739 \\
& 10.53 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48687 \\
& 10.58 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47151 \\
& 11.04 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 46902 \\
& 11.05^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 47109 \\
& 11.05^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 47518 \\
& 11.05^{*}
\end{aligned}
\] & 199 & 302 & 445 & 438 \\
\hline 5020 & \[
\begin{aligned}
& 53568 \\
& 10.50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50957 \\
& 10.55 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48900 \\
& 11.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47363 \\
& 11.06 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47117 \\
& 11.08^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47329 \\
& 11.08^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47734 \\
& 11.08^{*} \\
& \hline
\end{aligned}
\] & 200 & 305 & 447 & 440 \\
\hline \[
5040
\] & \[
\begin{aligned}
& 53795 \\
& 10.53
\end{aligned}
\] & \[
\begin{aligned}
& 51176 \\
& 10.58 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49113 \\
& 11.03
\end{aligned}
\] & \[
\begin{aligned}
& 47576 \\
& 11.09
\end{aligned}
\] & \[
\begin{aligned}
& 47332 \\
& 11.11^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 47550 \\
& 11.11^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 47950 \\
& 11.11^{*}
\end{aligned}
\] & 202 & 307 & 450 & 443 \\
\hline \[
5060
\] & \[
\begin{aligned}
& 54023 \\
& 10.55 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51395 \\
& 11.00 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49327 \\
& 11.06 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47789 \\
& 11.11 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47548 \\
& 11.13^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 47770 \\
& 11.13^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48167 \\
& 11.13^{*}
\end{aligned}
\] & 203 & 309 & 453 & 445 \\
\hline \[
5080
\] & \[
\begin{aligned}
& 54250 \\
& 10.58
\end{aligned}
\] & \[
\begin{aligned}
& 51614 \\
& 11.03 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 49541 \\
& 11.08
\end{aligned}
\] & \[
\begin{aligned}
& 48002 \\
& 11.14
\end{aligned}
\] & \[
\begin{aligned}
& 47764 \\
& 11.16^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 47993 \\
& 11.16^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48384 \\
& 11.16^{*}
\end{aligned}
\] & 204 & 311 & 455 & 447 \\
\hline \[
5100
\] & \[
\begin{aligned}
& 54478 \\
& 11.00 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51834 \\
& 11.06 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49755 \\
& 11.11
\end{aligned}
\] & \[
\begin{aligned}
& 48216 \\
& 11.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 47980 \\
& 11.18^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48217 \\
& 11.18^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48602 \\
& 11.18^{*}
\end{aligned}
\] & 205 & 313 & 457 & 449 \\
\hline 5120 & \[
\begin{aligned}
& 54706 \\
& 11.03
\end{aligned}
\] & \[
\begin{aligned}
& 52053 \\
& 11.08
\end{aligned}
\] & \[
\begin{aligned}
& 49969 \\
& 11.14
\end{aligned}
\] & \[
\begin{aligned}
& 48481 \\
& 11.19
\end{aligned}
\] & \[
\begin{aligned}
& 48197 \\
& 11.21^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48475 \\
& 11.21^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48820 \\
& 11.21^{*}
\end{aligned}
\] & 207 & 315 & 460 & 451 \\
\hline \[
5140
\] & \[
\begin{aligned}
& 54934 \\
& 11.05
\end{aligned}
\] & \[
\begin{aligned}
& 52274 \\
& 11.11
\end{aligned}
\] & \[
\begin{aligned}
& 50183 \\
& 11.16
\end{aligned}
\] & \[
\begin{aligned}
& 48697 \\
& 11.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48414 \\
& 11.24^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48701 \\
& 11.24^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 49038 \\
& 11.23^{*}
\end{aligned}
\] & 208 & 317 & 462 & 453 \\
\hline 5160 & \[
\begin{aligned}
& 55162 \\
& 11.08
\end{aligned}
\] & \[
\begin{aligned}
& 52496 \\
& 11.13
\end{aligned}
\] & \[
\begin{aligned}
& 50398 \\
& 11.19 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48913 \\
& 11.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48631 \\
& 11.26^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 48928 \\
& 11.26^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 49256 \\
& 11.26^{*}
\end{aligned}
\] & 209 & 319 & 465 & 455 \\
\hline \[
5180
\] & \[
\begin{aligned}
& 55390 \\
& 11.10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52717 \\
& 11.16 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50613 \\
& 11.21 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49129 \\
& 11.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 48849 \\
& 11.29^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49155 \\
& 11.29^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49475 \\
& 11.29^{*} \\
& \hline
\end{aligned}
\] & 210 & 321 & 467 & 458 \\
\hline \[
5200
\] & \[
\begin{aligned}
& 55618 \\
& 11.13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52939 \\
& 11.18 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50828 \\
& 11.24
\end{aligned}
\] & \[
\begin{aligned}
& 49346 \\
& 11.30
\end{aligned}
\] & \[
\begin{aligned}
& 49067 \\
& 11.31^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49383 \\
& 11.32^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49694 \\
& 11.31^{*} \\
& \hline
\end{aligned}
\] & 212 & 323 & 469 & 460 \\
\hline \[
5220
\] & \[
\begin{aligned}
& 55847 \\
& 11.16
\end{aligned}
\] & \[
\begin{aligned}
& \hline 53161 \\
& 11.21 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 51043 \\
& 11.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49563 \\
& 11.32
\end{aligned}
\] & \[
\begin{aligned}
& 49285 \\
& 11.34^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 49611 \\
& 11.34^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 49913 \\
& 11.34^{*} \\
& \hline
\end{aligned}
\] & 213 & 325 & 472 & 462 \\
\hline \[
5240
\] & \[
\begin{aligned}
& 56076 \\
& 11.18 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53383 \\
& 11.24 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51259 \\
& 11.29 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
49780 \\
11.35 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 49504 \\
& 11.36^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49840 \\
& 11.37^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 50133 \\
& 11.36^{*} \\
& \hline
\end{aligned}
\] & 214 & 327 & 474 & 463 \\
\hline \[
5260
\] & \[
\begin{aligned}
& 56305 \\
& 11.21
\end{aligned}
\] & \[
\begin{aligned}
& 53606 \\
& 11.26 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51475 \\
& 11.32
\end{aligned}
\] & \[
\begin{aligned}
& 49997 \\
& 11.38
\end{aligned}
\] & \[
\begin{aligned}
& 49723 \\
& 11.39 *
\end{aligned}
\] & \[
\begin{aligned}
& 50069 \\
& 11.39^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 50353 \\
& 11.39^{*}
\end{aligned}
\] & 216 & 330 & 475 & 465 \\
\hline \[
5280
\] & \[
\begin{aligned}
& 56534 \\
& 11.23
\end{aligned}
\] & \[
\begin{aligned}
& 53829 \\
& 11.29 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 51691 \\
& 11.34 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50215 \\
& 11.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 49942 \\
& 11.42^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 50299 \\
& 11.42^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 50573 \\
& 11.42^{*}
\end{aligned}
\] & 217 & 332 & 478 & 467 \\
\hline \[
5300
\] & \[
\begin{aligned}
& 56763 \\
& 11.26
\end{aligned}
\] & \[
\begin{aligned}
& 54051 \\
& 11.31
\end{aligned}
\] & \[
\begin{aligned}
& 51907 \\
& 11.37
\end{aligned}
\] & \[
\begin{aligned}
& 50433 \\
& 11.43
\end{aligned}
\] & \[
\begin{aligned}
& 50162 \\
& 11.44^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 50529 \\
& 11.45^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 50794 \\
& 11.44^{*}
\end{aligned}
\] & 218 & 334 & 480 & 469 \\
\hline \[
5320
\] & \[
\begin{aligned}
& 56992 \\
& 11.28
\end{aligned}
\] & \[
\begin{aligned}
& 54274 \\
& 11.34 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52123 \\
& 11.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50652 \\
& 11.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50382 \\
& 11.47^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50760 \\
& 11.47^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51015 \\
& 11.47^{*} \\
& \hline
\end{aligned}
\] & 219 & 336 & 482 & 471 \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 342003751.0000210250300 .8000 .000000360035035010001751246011418590
FCOM-B0-02-17-30-10a-270
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION \\
FUEL AND TIME TO DESTINATION M. 80
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10B} \\
\hline & & REV 25 & SEQ 270 \\
\hline
\end{tabular}

\section*{FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING}

CLIMB 250KT/300KT/M. 80 - CRUISE M.80-DESCENT M.80/300KT /250KT - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{REF. LANDING WEIGHT \(=100000\) KG ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \begin{tabular}{l}
AIR \\
DIST.
\end{tabular} & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FL350 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL370 } \\
& \text { FL390 } \\
& \hline
\end{aligned}
\] & FL410 \\
\hline 5320 & \[
\begin{aligned}
& 56992 \\
& 11.28
\end{aligned}
\] & \[
\begin{aligned}
& 54274 \\
& 11.34
\end{aligned}
\] & \[
\begin{aligned}
& 52123 \\
& 11.40 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50652 \\
& 11.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50382 \\
& 11.47^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50760 \\
& 11.47^{*}
\end{aligned}
\] & \[
\begin{aligned}
& \hline 51015 \\
& 11.47^{*}
\end{aligned}
\] & 219 & 336 & 482 & 471 \\
\hline 5340 & \[
\begin{aligned}
& 57222 \\
& 11.31 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54498 \\
& 11.36
\end{aligned}
\] & \[
\begin{aligned}
& 52340 \\
& 11.42 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50871 \\
& 11.48 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50602 \\
& 11.49^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 50991 \\
& 11.50^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 51236 \\
& 11.49^{*} \\
& \hline
\end{aligned}
\] & 221 & 338 & 485 & 473 \\
\hline 5360 & \[
\begin{aligned}
& 57452 \\
& 11.33
\end{aligned}
\] & \[
\begin{aligned}
& 54721 \\
& 11.39 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52557 \\
& 11.45
\end{aligned}
\] & \[
\begin{aligned}
& 51090 \\
& 11.51
\end{aligned}
\] & \[
\begin{aligned}
& 50822 \\
& 11.52^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51223 \\
& 11.52^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 51458 \\
& 11.52^{*}
\end{aligned}
\] & 222 & 340 & 487 & 476 \\
\hline \[
5380
\] & \[
\begin{aligned}
& 57682 \\
& 11.36 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54945 \\
& 11.42
\end{aligned}
\] & \[
\begin{aligned}
& 52775 \\
& 11.47 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51309 \\
& 11.53 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 51043 \\
& 11.55^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51456 \\
& 11.55^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 51680 \\
& 11.55^{*} \\
& \hline
\end{aligned}
\] & 223 & 342 & 490 & 478 \\
\hline 5400 & \[
\begin{aligned}
& 57912 \\
& 11.38 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55169 \\
& 11.44 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52993 \\
& 11.50
\end{aligned}
\] & \[
\begin{aligned}
& 51529 \\
& 11.56
\end{aligned}
\] & \[
\begin{aligned}
& 51265 \\
& 11.57^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51689 \\
& 11.58^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 51902 \\
& 11.57^{*} \\
& \hline
\end{aligned}
\] & 225 & 344 & 492 & 480 \\
\hline 5420 & \[
\begin{aligned}
& 58143 \\
& 11.41
\end{aligned}
\] & \[
\begin{aligned}
& 55393 \\
& 11.47
\end{aligned}
\] & \[
\begin{aligned}
& 53211 \\
& 11.52
\end{aligned}
\] & \[
\begin{aligned}
& 51749 \\
& 11.58
\end{aligned}
\] & \[
\begin{aligned}
& 51486 \\
& 12.00^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 51922 \\
& 12.00^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 52125 \\
& 12.00^{*}
\end{aligned}
\] & 226 & 346 & 494 & 482 \\
\hline 5440 & \[
\begin{aligned}
& 58373 \\
& 11.44
\end{aligned}
\] & \[
\begin{aligned}
& 55618 \\
& 11.49
\end{aligned}
\] & \[
\begin{aligned}
& 53430 \\
& 11.55
\end{aligned}
\] & \[
\begin{aligned}
& 51969 \\
& 12.01
\end{aligned}
\] & \[
\begin{aligned}
& 51708 \\
& 12.02^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 52156 \\
& 12.03^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 52348 \\
& 12.02^{*}
\end{aligned}
\] & 227 & 348 & 497 & 485 \\
\hline 5460 & \[
\begin{aligned}
& 58604 \\
& 11.46 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55842 \\
& 11.52
\end{aligned}
\] & \[
\begin{aligned}
& 53648 \\
& 11.58
\end{aligned}
\] & \[
\begin{aligned}
& \hline 52190 \\
& 12.04
\end{aligned}
\] & \[
\begin{aligned}
& 51930 \\
& 12.05^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 52390 \\
& 12.05^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 52571 \\
& 12.05^{*}
\end{aligned}
\] & 229 & 351 & 499 & 487 \\
\hline \[
5480
\] & \[
\begin{aligned}
& 58835 \\
& 11.49 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56067 \\
& 11.54
\end{aligned}
\] & \[
\begin{aligned}
& 53867 \\
& 12.00 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52411 \\
& 12.06
\end{aligned}
\] & \[
\begin{aligned}
& 52153 \\
& 12.08^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 52626 \\
& 12.08^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52795 \\
& 12.07^{*} \\
& \hline
\end{aligned}
\] & 230 & 353 & 502 & 489 \\
\hline 5500 & \[
\begin{aligned}
& 59066 \\
& 11.51 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56292 \\
& 11.57
\end{aligned}
\] & \[
\begin{aligned}
& 54087 \\
& 12.03 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52636 \\
& 12.09 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 52375 \\
& 12.10^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 52862 \\
& 12.11^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 53020 \\
& 12.10^{*} \\
& \hline
\end{aligned}
\] & 233 & 355 & 504 & 491 \\
\hline 5520 & \[
\begin{aligned}
& 59297 \\
& 11.54 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56517 \\
& 12.00 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54306 \\
& 12.05
\end{aligned}
\] & \[
\begin{aligned}
& 52863 \\
& 12.12
\end{aligned}
\] & \[
\begin{aligned}
& 52599 \\
& 12.13^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53099 \\
& 12.13^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 53246 \\
& 12.13^{*} \\
& \hline
\end{aligned}
\] & 234 & 357 & 507 & 494 \\
\hline 5540 & \[
\begin{aligned}
& 59529 \\
& 11.56
\end{aligned}
\] & \[
\begin{aligned}
& 56743 \\
& 12.02 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54526 \\
& 12.08
\end{aligned}
\] & \[
\begin{aligned}
& 53091 \\
& 12.14
\end{aligned}
\] & \[
\begin{aligned}
& 52822 \\
& 12.15^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 53336 \\
& 12.16^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53472 \\
& 12.15^{*}
\end{aligned}
\] & 235 & 359 & 510 & 505 \\
\hline 5560 & \[
\begin{aligned}
& 59760 \\
& 11.59
\end{aligned}
\] & \[
\begin{aligned}
& 56968 \\
& 12.05 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54746 \\
& 12.11
\end{aligned}
\] & \[
\begin{aligned}
& 53320 \\
& 12.17 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53047 \\
& 12.18^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 53574 \\
& 12.19^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53698 \\
& 12.18^{*}
\end{aligned}
\] & 237 & 362 & 512 & 506 \\
\hline \[
5580
\] & \[
\begin{aligned}
& 59992 \\
& 12.01 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57194 \\
& 12.07 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54966 \\
& 12.13 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53550 \\
& 12.19 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53272 \\
& 12.20^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53812 \\
& 12.21^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 53925 \\
& 12.20^{*} \\
& \hline
\end{aligned}
\] & 238 & 364 & 514 & 507 \\
\hline 5600 & \[
\begin{aligned}
& 60224 \\
& 12.04 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57421 \\
& 12.10 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55186 \\
& 12.16 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53779 \\
& 12.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 53498 \\
& 12.23^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54051 \\
& 12.24^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54153 \\
& 12.23^{*} \\
& \hline
\end{aligned}
\] & 240 & 367 & 516 & 508 \\
\hline \[
5620
\] & \[
\begin{aligned}
& 60456 \\
& 12.07 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57647 \\
& 12.12 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55407 \\
& 12.18 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54009 \\
& 12.25
\end{aligned}
\] & \[
\begin{aligned}
& 53725 \\
& 12.26^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54291 \\
& 12.26^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54381 \\
& 12.26^{*} \\
& \hline
\end{aligned}
\] & 241 & 369 & 518 & 509 \\
\hline 5640 & \[
\begin{aligned}
& 60688 \\
& 12.09 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57874 \\
& 12.15 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55627 \\
& 12.21 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54240 \\
& 12.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 53952 \\
& 12.28^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54534 \\
& 12.29^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54609 \\
& 12.28^{*} \\
& \hline
\end{aligned}
\] & 242 & 371 & 520 & 511 \\
\hline \[
5660
\] & \[
\begin{aligned}
& 60920 \\
& 12.12
\end{aligned}
\] & \[
\begin{aligned}
& 58101 \\
& 12.17
\end{aligned}
\] & \[
\begin{aligned}
& 55849 \\
& 12.24
\end{aligned}
\] & \[
\begin{aligned}
& 54491 \\
& 12.30^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54179 \\
& 12.31^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54760 \\
& 12.32^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54837 \\
& 12.31^{*} \\
& \hline
\end{aligned}
\] & 244 & 373 & 522 & 513 \\
\hline \[
5680
\] & \[
\begin{aligned}
& 61153 \\
& 12.14
\end{aligned}
\] & \[
\begin{aligned}
& 58328 \\
& 12.20
\end{aligned}
\] & \[
56070
\] & \[
\begin{aligned}
& 54716 \\
& 12.32^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54406 \\
& 12.33^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 54986 \\
& 12.34^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 55066 \\
& 12.33^{*} \\
& \hline
\end{aligned}
\] & 245 & 376 & 524 & 515 \\
\hline 5700 & \[
\begin{aligned}
& 61386 \\
& 12.17
\end{aligned}
\] & \[
\begin{aligned}
& 58556 \\
& 12.23 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56291 \\
& 12.29
\end{aligned}
\] & \[
\begin{aligned}
& 54943 \\
& 12.35^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54634 \\
& 12.36^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55213 \\
& 12.37^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55296 \\
& 12.36^{*} \\
& \hline
\end{aligned}
\] & 247 & 378 & 527 & 518 \\
\hline 5720 & \[
\begin{aligned}
& 61621 \\
& 12.19 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 58783 \\
& 12.25 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56513 \\
& 12.31 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 55169 \\
& 12.37 * \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 54862 \\
& 12.39^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55440 \\
& 12.39^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55525 \\
& 12.39^{*} \\
& \hline
\end{aligned}
\] & 248 & 380 & 529 & 520 \\
\hline 5740 & \[
\begin{aligned}
& 61856 \\
& 12.22 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 59011 \\
& 12.28
\end{aligned}
\] & \[
\begin{aligned}
& 56735 \\
& 12.34
\end{aligned}
\] & \[
\begin{aligned}
& 55396 \\
& 12.40^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55091 \\
& 12.41^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 55667 \\
& 12.42^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 55756 \\
& 12.41^{*} \\
& \hline
\end{aligned}
\] & 250 & 382 & 531 & 523 \\
\hline \[
5760
\] & \[
\begin{aligned}
& 62092 \\
& 12.24
\end{aligned}
\] & \[
\begin{aligned}
& 59239 \\
& 12.30
\end{aligned}
\] & \[
\begin{aligned}
& 56958 \\
& 12.37
\end{aligned}
\] & \[
\begin{aligned}
& 55623 \\
& 12.43^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55320 \\
& 12.44^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 55894 \\
& 12.44^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 55986 \\
& 12.44^{*}
\end{aligned}
\] & 251 & 385 & 533 & 525 \\
\hline & \[
\begin{aligned}
& 62328 \\
& 12.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 59468 \\
& 12.33 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 57180 \\
& 12.39
\end{aligned}
\] & \[
\begin{aligned}
& 55850 \\
& 12.45^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 55549 \\
& 12.46^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56122 \\
& 12.47^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56217 \\
& 12.46^{*} \\
& \hline
\end{aligned}
\] & 253 & 387 & 535 & 528 \\
\hline \[
5800
\] & \[
\begin{aligned}
& 62564 \\
& 12.29 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 59696 \\
& 12.35 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57458 \\
& 12.42 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56078 \\
& 12.48^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 55779 \\
& 12.49^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56349 \\
& 12.49^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56448 \\
& 12.49^{*} \\
& \hline
\end{aligned}
\] & 240 & 389 & 538 & 530 \\
\hline \[
5820
\] & \[
\begin{aligned}
& 62801 \\
& 12.32 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 59925 \\
& 12.38 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57683 \\
& 12.44 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56306 \\
& 12.50^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56010 \\
& 12.52^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56578 \\
& 12.52^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56680 \\
& 12.52^{*} \\
& \hline
\end{aligned}
\] & 241 & 392 & 540 & 533 \\
\hline \[
5840
\] & \[
\begin{aligned}
& 63037 \\
& 12.35 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 60154 \\
& 12.41
\end{aligned}
\] & \[
\begin{aligned}
& 57907 \\
& 12.47
\end{aligned}
\] & \[
\begin{aligned}
& 56534 \\
& 12.53^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56240 \\
& 12.54^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56806 \\
& 12.55^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56912 \\
& 12.54^{*}
\end{aligned}
\] & 243 & 394 & 542 & 535 \\
\hline \[
5860
\] & \[
\begin{aligned}
& 63274 \\
& 12.37 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 60383 \\
& 12.43 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 58132 \\
& 12.49 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 56762 \\
& 12.55^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56471 \\
& 12.57^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57035 \\
& 12.57^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57145 \\
& 12.57^{*} \\
& \hline
\end{aligned}
\] & 244 & 396 & 544 & 538 \\
\hline \[
5880
\] & \[
\begin{aligned}
& 63511 \\
& 12.40
\end{aligned}
\] & \[
\begin{aligned}
& 60612 \\
& 12.46 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 58358 \\
& 12.52
\end{aligned}
\] & \[
56991
\] & \[
\begin{aligned}
& 56702 \\
& 12.59^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 57264 \\
& 13.00^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 57378 \\
& 12.59^{*} \\
& \hline
\end{aligned}
\] & 245 & 398 & 547 & 540 \\
\hline \[
5900
\] & \[
\begin{aligned}
& 63748 \\
& 12.42 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 60842 \\
& 12.48 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 58583 \\
& 12.55 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57220 \\
& 13.01^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 56934 \\
& 13.02^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57494 \\
& 13.02^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57612 \\
& 13.02^{*} \\
& \hline
\end{aligned}
\] & 247 & 401 & 549 & 543 \\
\hline \[
5920
\] & \[
\begin{aligned}
& 63986 \\
& 12.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 61072 \\
& 12.51
\end{aligned}
\] & \[
\begin{aligned}
& 58809 \\
& 12.57
\end{aligned}
\] & \[
\begin{aligned}
& 57450 \\
& 13.03^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 57166 \\
& 13.05^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57724 \\
& 13.05^{*} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57847 \\
& 13.04^{*} \\
& \hline
\end{aligned}
\] & 248 & 403 & 551 & 545 \\
\hline \[
5940
\] & \[
\begin{aligned}
& 64223 \\
& 12.47
\end{aligned}
\] & \[
\begin{aligned}
& 61302 \\
& 12.53
\end{aligned}
\] & \[
\begin{aligned}
& \hline 59035 \\
& 13.00
\end{aligned}
\] & \[
\begin{aligned}
& 57680 \\
& 13.06^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 57400 \\
& 13.07^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 57955 \\
& 13.07^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 58081 \\
& 13.07^{*}
\end{aligned}
\] & 250 & 405 & 553 & 548 \\
\hline \[
5960
\] & \[
\begin{aligned}
& 64461 \\
& 12.50 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 61532 \\
& 12.56 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 59261 \\
& 13.02 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 57910 \\
& 13.08^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 57633 \\
& 13.10^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 58186 \\
& 13.10^{*}
\end{aligned}
\] & \[
\begin{aligned}
& 58316 \\
& 13.10^{*}
\end{aligned}
\] & 251 & 408 & 556 & 551 \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 342003751.0000210250300 .8000 .000000360035035010001751246011418590

NAUTICAL GROUND MILES TO AIR MILES CONVERSION LONG RANGE

TAIL
WIND COMPONEND - KTS
HEAD
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { DIST } \\
& \text { TO } 60
\end{aligned}
\] & \(+120\) & +80 & +40 & 0 & -40 & -80 & -120 \\
\hline 200 & 148 & 162 & 179 & 200 & 226 & 259 & 305 \\
\hline 225 & 167 & 182 & 201 & 225 & 254 & 292 & 343 \\
\hline 250 & 185 & 203 & 224 & 250 & 282 & 324 & 382 \\
\hline 275 & 204 & 223 & 246 & 275 & 310 & 357 & 420 \\
\hline 300 & 222 & 243 & 268 & 300 & 339 & 389 & 458 \\
\hline 325 & 241 & 264 & 291 & 325 & 367 & 422 & 496 \\
\hline 350 & 260 & 284 & 313 & 350 & 395 & 454 & 534 \\
\hline 375 & 278 & 304 & 336 & 375 & 423 & 487 & 573 \\
\hline 400 & 297 & 325 & 358 & 400 & 452 & 519 & 611 \\
\hline 425 & 315 & 345 & 381 & 425 & 480 & 552 & 649 \\
\hline 450 & 334 & 365 & 403 & 450 & 508 & 584 & 687 \\
\hline 475 & 352 & 386 & 425 & 475 & 536 & 617 & 726 \\
\hline 500 & 371 & 406 & 448 & 500 & 565 & 649 & 764 \\
\hline 525 & 390 & 426 & 470 & 525 & 593 & 682 & 802 \\
\hline 550 & 408 & 446 & 493 & 550 & 621 & 714 & 840 \\
\hline 575 & 427 & 467 & 515 & 575 & 649 & 747 & 878 \\
\hline 600 & 445 & 487 & 537 & 600 & 678 & 779 & 917 \\
\hline 625 & 464 & 507 & 560 & 625 & 706 & 812 & 955 \\
\hline 650 & 483 & 528 & 582 & 650 & 734 & 844 & 993 \\
\hline 675 & 501 & 548 & 605 & 675 & 762 & 877 & 1031 \\
\hline 700 & 520 & 568 & 627 & 700 & 791 & 909 & 1069 \\
\hline 725 & 538 & 589 & 650 & 725 & 819 & 942 & 1108 \\
\hline 750 & 557 & 609 & 672 & 750 & 847 & 974 & 1146 \\
\hline 775 & 575 & 629 & 694 & 775 & 875 & 1007 & 1184 \\
\hline 800 & 594 & 650 & 717 & 800 & 904 & 1039 & 1222 \\
\hline 825 & 613 & 670 & 739 & 825 & 932 & 1072 & 1260 \\
\hline 850 & 631 & 690 & 762 & 850 & 960 & 1104 & 1299 \\
\hline 875 & 650 & 711 & 784 & 875 & 988 & 1137 & 1337 \\
\hline 900 & 668 & 731 & 806 & 900 & 1017 & 1169 & 1375 \\
\hline 925 & 687 & 751 & 829 & 925 & 1045 & 1202 & 1413 \\
\hline 950 & 705 & 772 & 851 & 950 & 1073 & 1234 & 1452 \\
\hline 975 & 724 & 792 & 874 & 975 & 1102 & 1267 & 1490 \\
\hline 1000 & 743 & 812 & 896 & 1000 & 1130 & 1299 & 1528 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION FUEL AND TIME TO ALTERNATE
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 12} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{ALTERNATE PLANNING FROM DESTINATION TO ALTERNATE AIRPORT INCLUDING GO-AROUND 300KG - CLIMB 250KT/270KT/M. 65 - LONG RANGE CRUISE DESCENT M.65/270KT/250KT - VMC PROCEDURE 240KG/4MIN} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
REF.LANDINGWEIGHTATALTERNATE \(=100000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING \\
ANTI-ICING OFF
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
AIR \\
DIST. \\
(NM)
\end{tabular}} & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline & 100 & 150 & 200 & 250 & 270 & 290 & 310 & \[
\begin{aligned}
& \text { FL100 } \\
& \text { FL150 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL200 } \\
& \text { FL250 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL270 } \\
& \text { FL290 } \\
& \hline
\end{aligned}
\] & FL310 \\
\hline 100 & 1907
0.24 & \[
\begin{aligned}
& 1848 \\
& 0.24 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1836 \\
& 0.23 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1855 \\
& 0.23 \\
& \hline
\end{aligned}
\] & & & & - 6 & FL250 & & \\
\hline 125 & 2219
0.29 & \[
\begin{aligned}
& 2128 \\
& 0.28 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.20 \\
& 2090 \\
& 0.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 0.20 \\
& 2087 \\
& 0.27
\end{aligned}
\] & \[
\begin{aligned}
& 2091 \\
& 0.27 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2097 \\
& 0.27 \\
& \hline
\end{aligned}
\] & & 7 & 8 & 9 & \\
\hline 150 & 2531
0.34 & 2409
0.33 & 0.27
0.32
0.32 & 2318
0.31 & 2315
0.30 & 2313
0.30 & \[
\begin{aligned}
& 2316 \\
& 0.30
\end{aligned}
\] & 9 & 9 & 10 & 11 \\
\hline 150 & 0.34 & 0.33 & 0.32 & 0.31 & 0.30 & 0.30 & \[
\begin{aligned}
& 0.30 \\
& 2525
\end{aligned}
\] & 10 & 11 & 11 & 12 \\
\hline 175 & 0.39
3153 & 0.38 & 0.36
2849 & 0.35
2780 & 0.34
2762 & 0.34
2746 & 0.34
2733 & 11 & 12 & 13 & 13 \\
\hline 200 & 0.44 & 0.42 & 0.41 & 0.38 & 0.38 & 0.37 & 0.37 & 1 & 12 & 13 & 13 \\
\hline 225 & \[
\begin{aligned}
& 3464 \\
& 0.49
\end{aligned}
\] & \[
\begin{aligned}
& 3248 \\
& 0.47
\end{aligned}
\] & \[
\begin{aligned}
& 3101 \\
& 0.45 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 3011 \\
& 0.42
\end{aligned}
\] & 2985
0.42 & 2961
0.41 & \[
\begin{aligned}
& 2942 \\
& 0.41
\end{aligned}
\] & 12 & 13 & 14 & 14 \\
\hline 250 & 3774 & 3527 & 3354 & 3241 & 3207 & 3177 & 3150 & 14 & 15 & 15 & 15 \\
\hline 250 & 0.54 & 0.52 & 0.49 & 0.46 & 0.45 & 0.45 & 0.44 & & & & \\
\hline 275 & 4083
0.59 & 3805
0.56 & 3605
0.54 & 3471
0.50 & 3430
0.49 & 3392
0.48 & \[
\begin{aligned}
& 3359 \\
& 0.48
\end{aligned}
\] & 15 & 16 & 16 & 17 \\
\hline 300 & 4393 & 4083 & 3857 & 3701 & 3652 & 3607 & 3566 & 16 & 17 & 18 & 18 \\
\hline 300 & 1.04 & 1.01 & 0.58 & 0.54 & 0.53 & 0,52 & 0.51 & & & & \\
\hline 325 & 4702
1.09 & 4361
1.06 & 4108
1.03 & 3930
0.58 & 3874
0.57 & 3822
0.56 & 3774
0.55 & 17 & 18 & 19 & 19 \\
\hline 350 & 5010 & 4639 & 4359 & 4159 & 4096 & 4036 & 3982 & 19 & 20 & 20 & 20 \\
\hline 350 & 1.14 & 1.10 & 1.07 & 1.02 & 1.01 & 0.59 & 0.58 & & & & \\
\hline 375 & 5318
1.19 & 4916
1.15 & 4609
1.12 & 4388
1.06 & 4317
1.04 & 4250
1.03 & 4189
1.02 & 20 & 21 & 22 & 21 \\
\hline 400 & 5626 & 5193 & 4860 & 4616 & 4538 & 4464 & 4395 & 21 & 22 & 23 & 23 \\
\hline 400 & 1.24 & 1.20 & 1.16 & 1.10 & 1.08 & 1.07 & 1.06 & & & & \\
\hline 425 & 5933
1.29 & 5470
1.24 & 5109
1.20 & 4844
1.14 & 4759
1.12 & 4678
1.10 & 4602
1.09 & 23 & 24 & 24 & 24 \\
\hline & 6240 & 5746 & 5359 & 5072 & 4979 & 4891 & 4808 & 24 & 25 & 26 & 25 \\
\hline 450 & 1.34 & 1.29 & 1.25 & 1.18 & 1.16 & 1.14 & 1.13 & & & & \\
\hline 475 & 6547
1.39 & 6021
1.34 & 5608
1.29 & 5299 & 5199 & 5104
1 & 5015 & 25 & 26 & 27 & 26 \\
\hline & 6853 & 6297 & 5857 & 5526 & 5419 & 5317 & 5220 & 26 & 28 & 28 & 27 \\
\hline 500 & 1.44 & 1.38 & 1.34 & 1.26 & 1.23 & 1.21 & 1.20 & & & & \\
\hline 525 & 7158
1.49 & 6572
1.43 & 6105
1.38 & 5753
1.31 & 5638
1.27 & 5529
1.25 & 5426
1.23 & 28 & 29 & 30 & 29 \\
\hline & 7464 & 6846 & 6353 & 5979 & 5857 & 5741 & 5631 & 29 & 30 & 31 & 30 \\
\hline 550 & 1.54 & 1.48 & 1.43 & 1.35 & 1.31 & 1.29 & 1.27 & & & & \\
\hline 575 & 1769
1.59 & 7121 & 6601 & 6205
1.39 & 6076
1.35 & 5953 & 5836 & 30 & 31 & 32 & 31 \\
\hline & 8073 & 7395 & 6849 & 6431 & 6294 & 6165 & 6041 & 31 & 33 & 33 & 32 \\
\hline 600 & 2.04 & 1.57 & 1.52 & 1.43 & 1.39 & 1.36 & 1.34 & & & & \\
\hline 625 & 8377
209 & 7668 & 7096 & 6656 & 6513 & 6376 & 6246 & 33 & 34 & 35 & 33 \\
\hline & 8681 & 7942 & 7343 & 6881 & 6730 & 6587 & 6450 & 34 & 35 & 36 & 34 \\
\hline 650 & 2.14 & 2.07 & 2.01 & 1.51 & 1.47 & 1.44 & 1.41 & & & & \\
\hline & 8984 & 8215 & 7589 & 7106 & 6948 & 6798 & 6654 & 35 & 37 & 37 & 36 \\
\hline 675 & 2.19 & 2.11 & 2.05 & 1.55 & 1.50 & 1.47 & 1.45 & & & & 37 \\
\hline 700 & \begin{tabular}{l}
9287 \\
2.24 \\
\hline 9.500
\end{tabular} & 8487
2.16
8760 & \begin{tabular}{l}
7836 \\
2.10 \\
\hline 8082
\end{tabular} & \begin{tabular}{l}
7331 \\
2.00 \\
\hline 755
\end{tabular} & 7165
1.54
7 & \begin{tabular}{l}
7009 \\
1.51 \\
\hline 721
\end{tabular} & \begin{tabular}{l}
6858 \\
1.48 \\
\hline 1062
\end{tabular} & 36 & 38 & 39 & 37 \\
\hline 725 & 9590
2.29 & 8760
2.21 & 8082
2.14 & 7555
2.04 & 7382 & 7219
155 & 7062
152 & 38 & 39 & 40 & 38 \\
\hline & 9892 & 9032 & 8327 & 7779 & 7599 & 7429 & 7265 & 39 & 40 & 41 & 39 \\
\hline 750 & 2.34 & 2.26 & 2.19 & 2.08 & 2.02 & 1.59 & 1.55 & & & & \\
\hline 775 & 10194
2 & 9303 & 8572 & 8002 & 7815 & 7639 & 7468 & 40 & 42 & 43 & 41 \\
\hline & 10495 & 9574 & 8817 & \(\frac{2.12}{8225}\) & 2.06 & 7848 & 7671 & 41 & 43 & 44 & 42 \\
\hline 800 & 2.44 & 2.35 & 2.28 & 2.16 & 2.10 & 2.06 & 2.02 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION IN CRUISE QUICK CHECK TABLE
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 13} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{IN CRUISE OUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING CRUISE : M. 80 - DESCENT : M. \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\) - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)} \\
\hline \multicolumn{4}{|l|}{REF. INITIAL WEIGHT \(=115000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline AIR
DIST. & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{\begin{tabular}{l}
CORRECTION ON \\
FUEL CONSUMPTION (KG/1000KG
\end{tabular}} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \text { FL290 } \\
& \hline \text { FL120 }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { FL370 } \\
& \text { IL } 1200
\end{aligned}
\] & FL410 \\
\hline 200 & 1809
0.35
0 & 1709
0.35
0. & 1626
0.35
0. & 1555
0.36
0. & 1500
0.36 & 1479
0.36 & 1501
0.36
0.3 & & 2 & 6 & 10 \\
\hline 220 & 20,
0.30
0.38 & \begin{tabular}{l}
1.95 \\
1898 \\
0.38 \\
\hline
\end{tabular} & 1825
1806
0.38 & 1.958
1788
0.38 & \[
\begin{aligned}
& 1.36 \\
& \hline 1.38 \\
& 0.38
\end{aligned}
\] & 0.362
1658
0.38 & 1.367
1688
0 & 1 & 3 & 8 & 13 \\
\hline 240 & 2.35
0.40
0.40 & 2.38
0.087
0.40 & 1.355
0.41 & 1.391
0.41
0.9 & 1.93
1837
0.41 & 1.1824
1824
0.41 & 1.38
1872
0.41 & 1 & 3 & 9 & 15 \\
\hline 260 & 2410
0.43
0 & 2276
0.43
0.4 & 2145
0.43
0 & & 20.4
0.4
0 & & 20.17
0.43
0 & 2 & 4 & 11 & 18 \\
\hline 280 & 2610
260 & \({ }^{2.464}\) & 2345 & 2246 & 2.474 & \({ }^{0.467}\) & \({ }^{2} 2414\) & 3 & 5 & 13 & 21 \\
\hline 300 & 2810 & 2653 & \({ }_{2} 2.42\) & 2419 & \({ }^{2342}\) & \({ }_{2} 2338\) & 2425 & 3 & 6 & 14 & 23 \\
\hline 320 & 3.410 & 2841 & \({ }_{2} 2703\) & 2591 & 2510 & 2508 & 2.408 & 4 & 7 & 16 & 26 \\
\hline 340 & 3210 & 3029 & 2882 & \({ }^{2} 763\) & 2678 & 2.679 & 2790 & 4 & 8 & 18 & 28 \\
\hline 360 & 3410 & 3217 & 3061 & 2935 & \({ }^{2846}\) & 2849 & \({ }^{2954}\) & 5 & 8 & 19 & \({ }^{31}\) \\
\hline 380 & 3610 & 3405 & 3240 & 3107 & 3013 & 3018 & 3153 & 5 & 9 & 21 & 33 \\
\hline 400 & 3809 & 3593 & 3419 & 3278 & 3180 & 3187 & 3334 & 6 & 10 & 22 & 36 \\
\hline 420 & 4009 & 3781 & 3597 & 3450 & 1.02
334 & 3356 & 3514 & 6 & 11 & 24 & 38 \\
\hline 440 & 4208 & 3969 & 3776 & 3621 & 3513 & 3525 & 3693 & 7 & 12 & 26 & 41 \\
\hline 460 & 4407 & 4157 & 3954 & 3792 & 3680 & 3693 & 3872 & 7 & 12 & 27 & 43 \\
\hline 480 & 4606 & 4344 & 4132 & 3963 & 3846 & 3861 & 4050 & 8 & 13 & 29 & 45 \\
\hline 500 & 4805 & 4531 & 4310 & 4134 & 4012 & 4028 & 4228 & 8 & 14 & 30 & 48 \\
\hline 520 & 5004 & 4719 & 4488 & 4305 & 4177 & 4195 & 4405 & 9 & 15 & 32 & 50 \\
\hline 540 & 5203 & 4906 & 4666 & 4475 & 4343 & 4362 & 4582 & 9 & 16 & 33 & 52 \\
\hline 560 & 5402 & 5093 & 4843 & 4646 & 4508 & 4529 & 4758 & 10 & 16 & 35 & 55 \\
\hline 580 & \(\begin{array}{r}5601 \\ 503 \\ \hline\end{array}\) & 5280 & 5021 & 4816 & 4673 & 4695 & 4934 & 10 & 17 & 36 & 57 \\
\hline 600 & 5799 & 5467 & 5198 & 4986 & 4838 & 4860 & 5109 & 11 & 18 & 38 & 59 \\
\hline 620 & 5998 & 5653 & 5375 & 5156 & 5003 & 5026 & 5283 & 11 & 19 & 39 & 61 \\
\hline 640 & \({ }^{1.28}\) & 1.29
5840 & 1.35 & \({ }^{1.3326}\) & \({ }^{1.368}\) & 1.301 & \({ }_{5} 51.35\) & 12 & 19 & 41 & 64 \\
\hline 660 & \({ }_{6} 1.395\) & 1.31
6027 & 1,32
5729 & 1.33
5496 & 1.33
5332 & 1.33
5356 & 1.33
5631 & 12 & \({ }^{20}\) & 42 & \({ }^{66}\) \\
\hline & 1.33
6593 & 1.34
6213 & 1.35
5906 & 1.35
5665 & \begin{tabular}{l}
1.36 \\
5496 \\
\hline
\end{tabular} & 1.36
5520 & 1.36
5804 & 13 & \({ }^{21}\) & 43 & 68 \\
\hline & 1.36 & 1.37
6400 & 1.37
6083 & 1.38
5835 & 1.38
5660 & \begin{tabular}{l}
1.38 \\
\hline 685 \\
\hline
\end{tabular} & 1.38
5976 & 13 & 22 & 45 & 70 \\
\hline 700 & 1.38 & \begin{tabular}{l}
1.39 \\
\hline
\end{tabular} & \begin{tabular}{l}
1.40 \\
\hline 1.45
\end{tabular} & 1.41 & 1.41
58 & 1.41 & & & & & \\
\hline 720 & 6989
1.41 & 6586
1.42
1.4 & 6259
1.42
1.4 & 6004
1.43 & 5624
1.44
1 & 5849
1.44
1 & 6148
1.44
1 & 14 & 22 & 46 & 72 \\
\hline 740 & \begin{tabular}{l}
7187 \\
1.43 \\
\hline 1
\end{tabular} & 6772
1.44
1 & 6436
1.45
1.4 & 6173
1.46
1.4 & \begin{tabular}{l}
5988 \\
1.46 \\
\hline
\end{tabular} & 6013
1.46
1.46 & 1.820
1.46
1 & 14 & 23 & 48 & 74 \\
\hline 760 & 7.435
1.46
1.4 & \begin{tabular}{l}
1.488 \\
\hline 1.47 \\
1.4
\end{tabular} & \begin{tabular}{l}
1.48 \\
\hline 1.48 \\
1.48
\end{tabular} & 6342
1.48
1.48 & 1.4151
1.49
1.4 & \begin{tabular}{r}
1.76 \\
\hline 1.49 \\
1.4
\end{tabular} & 1.2491
1.49
1.4 & 15 & 24 & 49 & 76 \\
\hline 780 & 7.483
1.49
1 & \begin{tabular}{l}
7.44 \\
\hline 1.49 \\
1.4
\end{tabular} & 1.89
6789
1.50 & 1.851
1.51
1.51 & \begin{tabular}{l}
1.49 \\
\(\begin{array}{l}6315 \\
1.51\end{array}\) \\
\hline
\end{tabular} & \begin{tabular}{l}
6340 \\
\hline 1.45 \\
\hline
\end{tabular} & \begin{tabular}{l}
1.461 \\
\hline 661
\end{tabular} & 15 & 25 & 50 & 78 \\
\hline 800 & \begin{tabular}{l}
7780 \\
1.51 \\
\hline 1
\end{tabular} & 71.40
1.52
1.5 & \begin{tabular}{l}
1.95 \\
1.595 \\
1.53 \\
\hline
\end{tabular} & 1.57
1.54
1.57 & 1.57
1.548
1.54 & 6501
654 & \begin{tabular}{l}
1.51 \\
\hline 882 \\
154
\end{tabular} & 16 & 25 & 52 & 80 \\
\hline 820 & \begin{tabular}{l}
7978 \\
7 \\
154 \\
\hline 154
\end{tabular} & \begin{tabular}{l}
7516 \\
\hline 154 \\
154
\end{tabular} & \begin{tabular}{l}
1.65 \\
7141 \\
155 \\
\hline
\end{tabular} & 6848
156 & \begin{tabular}{l}
6641 \\
\hline 1.57
\end{tabular} & 6665 & 7 & 16 & 26 & 53 & 82 \\
\hline 840 & 8175
1.56 & 7761
1.57 & 7.15
7317
1.58 & 706
70159 & \begin{tabular}{l}
1.54 \\
\hline 1.59
\end{tabular} & 6828
1.59 & \begin{tabular}{l}
7170 \\
\hline 159
\end{tabular} & 17 & 27 & 54 & 84 \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 361003751.0000210250300 .8000 .00000036003503501150164906011418590
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION IN CRUISE QUICK CHECK TABLE
\end{tabular}} & \multicolumn{2}{|r|}{2．17．30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 14} \\
\hline & & REV 25 & SEO 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{IN CRUISE OUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING CRUISE ：M． 80 －DESCENT ：M． \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\)－IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)} \\
\hline \multicolumn{5}{|l|}{REF．INITIAL WEIGHT \(=115000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING ANTI－ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{FUEL CONSUMED（KG）
TIME（H．MIN）} \\
\hline \％AR & \multicolumn{7}{|c|}{Fllght level} & \multicolumn{4}{|c|}{\begin{tabular}{l}
CORRECTION ON FUEL CONSUMPTION \\
（KG／1000KG）
\end{tabular}} \\
\hline （NM） & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \({ }_{\text {FL290 }}\) & \({ }_{\substack{\text { Fl330 } \\ \text { Fl35 }}}\) & \(\mathrm{FLL370}^{\text {a }}\) & FL410 \\
\hline 840 & \begin{tabular}{|c}
8175 \\
156 \\
15
\end{tabular} & \({ }^{7701}\) & \begin{tabular}{c}
7317 \\
1.58 \\
\hline 1
\end{tabular} & \({ }^{7016}\) & \({ }_{689}^{680}\) & \({ }^{6828}\) & 7170 & \({ }_{17}\) & \({ }_{2}\) & \({ }_{54}\) & \({ }^{84}\) \\
\hline 860 & 8373
1.59 & \begin{tabular}{|c}
7887 \\
\\
\hline 80 \\
\hline 08
\end{tabular} & & \begin{tabular}{l}
1785 \\
\(\substack{1.01 \\
2.01}\) \\
\hline
\end{tabular} & & \({ }_{6}^{6990}\) & & 17 & \({ }^{28}\) & 56 & \({ }^{86}\) \\
\hline 880 & & 年 & & － & & 2，\({ }^{2} 152\) & \({ }^{2.507}\) & \({ }^{18}\) & \({ }^{28}\) & 57 & \({ }^{88}\) \\
\hline 900 & \({ }_{8787}\) & 5 & \({ }^{2.8033}\) & \({ }_{\text {2 }}\) & \(\underset{\substack{2.092 \\ 7292}}{ }\) & \({ }_{\text {2，}}^{213}\) & \({ }^{2.8045}\) & \({ }^{18}\) & 29 & 58 & \({ }^{90}\) \\
\hline & & & \({ }^{2.06} 8\) & \({ }^{2.088} 7\) & \({ }^{2.054} 7\) & \(\frac{2.07}{7475}\) & \({ }_{2}^{2.07} 7\) & 19 & 30 & 59 & \({ }^{92}\) \\
\hline 920 & & \({ }^{3}\) & & （ & 年 & & （1842 & 19 & \({ }^{30}\) & 59 & \({ }^{92}\) \\
\hline 940 & & \({ }_{0}^{8}\) & － \begin{tabular}{l}
8194 \\
2.11 \\
\hline
\end{tabular} & \begin{tabular}{l}
7856 \\
2.12 \\
\hline
\end{tabular} & \begin{tabular}{l}
7616 \\
2.12 \\
\hline
\end{tabular} & 7636
2.12
2.12 & & 19 & \({ }^{30}\) & \({ }^{61}\) & 94 \\
\hline 960 & & & \({ }^{69}\) & & \begin{tabular}{l}
T778 \\
\(\substack{715 \\
\hline}\)
\end{tabular} & \begin{tabular}{l}
2179 \\
\hline 7 \\
\hline 15 \\
\hline 15
\end{tabular} & & \({ }^{20}\) & \({ }^{31}\) & 62 & \({ }_{96}\) \\
\hline 980 & \begin{tabular}{l}
2556 \\
2.14 \\
\hline 1.4
\end{tabular} & 15 & \({ }^{46}\) & ¢ & \begin{tabular}{l}
79.18 \\
\hline 2.18 \\
\hline
\end{tabular} & & & \({ }^{20}\) & \({ }^{32}\) & \({ }^{63}\) & \({ }^{98}\) \\
\hline 1000 & & cois & & \begin{tabular}{l}
2．38 \\
\(\substack{8.20 \\
\hline \\
\hline}\) \\
\hline
\end{tabular} & & & & \({ }^{21}\) & \({ }^{33}\) & 64 & 100 \\
\hline 1020 & & \begin{tabular}{l}
2．488 \\
\(\substack{\text { O．288 } \\
2.20}\) \\
\hline
\end{tabular} & （ & \(\underset{\substack { \text { 2．22 } \\ \begin{subarray}{c}{8.22{ \text { 2．22 } \\ \begin{subarray} { c } { 8 . 2 2 } } \\{2.22}\end{subarray}}{ }\) & \begin{tabular}{|}
2．20 \\
\(\substack{823 \\
2.23 \\
\hline}\) \\
\hline
\end{tabular} & & 退 & \({ }^{21}\) & \({ }^{33}\) & \({ }^{66}\) & 102 \\
\hline 1040 & & & & & \begin{tabular}{l}
21234 \\
\(\substack{822 \\
2.25}\) \\
\hline
\end{tabular} & \begin{tabular}{|}
2437 \\
\(\substack{835 \\
23 \\
\hline}\) \\
\hline
\end{tabular} & \(\begin{array}{r}2823 \\ \hline 885 \\ \hline 885 \\ \hline 825 \\ \hline\end{array}\) & \({ }^{21}\) & 34 & 67 & 103 \\
\hline 1060 & （12343 & & & \(\begin{array}{r}8859 \\ 8829 \\ \hline 8\end{array}\) & & & & \({ }^{22}\) & \({ }^{35}\) & 68 & 105 \\
\hline 1080 & （12．529 & － & （ & － & & & － & \({ }^{22}\) & \({ }^{35}\) & 69 & 107 \\
\hline 1100 & & \(\begin{array}{r}\text { 2，28 } \\ 1020 \\ 1020 \\ \hline 120\end{array}\) & & & & \({ }^{2314}\) & \(\xrightarrow{2,327}\) & \({ }^{23}\) & \({ }^{36}\) & 70 & 108 \\
\hline 1120 & \({ }^{10232}\) & \({ }_{10291}^{2.290}\) & \({ }_{\text {2，766 }}\) & \({ }^{2.353}\) & \({ }_{\substack{2.33 \\ 9087}}\) & \({ }_{2,373}\) & \begin{tabular}{l}
2,33 \\
\hline 989 \\
\hline
\end{tabular} & \({ }^{23}\) & \({ }^{37}\) & 72 & 110 \\
\hline 1140 & \({ }^{111238}\) & 2045 & \({ }^{2.940}\) & \({ }_{9526}\) & \({ }_{9228}^{9.9}\) & & & \({ }^{24}\) & \({ }^{37}\) & 73 & 112 \\
\hline 1160 & \begin{tabular}{|c}
21324 \\
11327 \\
1
\end{tabular} & \({ }^{10660}\) & \({ }^{10114}\) & 9692 & & \({ }_{\text {a }}\) & 9814 & \({ }^{24}\) & \({ }^{38}\) & 74 & \({ }^{73}\) \\
\hline 1180 & \({ }_{1}^{12529}\) & （344 & \({ }_{10288}^{128}\) & \({ }^{2.958}\) & \({ }^{9.548}\) & 54， & & 25 & 39 & 75 & 5 \\
\hline 1200 & \({ }_{1717}^{1716}\) & \({ }^{110288}\) & \({ }_{10.462}\) & \({ }^{10024}\) & \({ }_{9} 9788\) & \(\begin{array}{r}2.47 \\ 9705 \\ \hline\end{array}\) & \({ }_{10}^{1036}\) & 25 & 39 & 76 & 77 \\
\hline & \({ }^{12.42}\) & \({ }_{1}^{11212}\) & \(\stackrel{\text { 2．fin }}{10636}\) & \({ }^{10.190}\) & \({ }_{\text {2．968 }}^{9.8}\) & \({ }_{2}^{2.46}\) & \({ }_{\text {2，}}^{\text {2096 }}\) & \({ }^{26}\) & \({ }^{40}\) & 77 & 80 \\
\hline 1220 & & \({ }^{2.4355}\) & \({ }_{10.47}^{1089}\) & \({ }_{\text {2．} 2 \text { 288 }}^{1035}\) & 2．49

10028 & \(\begin{array}{r}2.49 \\ \hline 1009\end{array}\) & \begin{tabular}{l}
2.49 \\
10458 \\
\hline
\end{tabular} & \({ }^{26}\) & 41 & 78 & 82 \\
\hline 1240 & （12．47 & & & － 2.51 & \begin{tabular}{l}
2.51 \\
\hline 1027 \\
\hline
\end{tabular} & & & & & & \\
\hline 1260 & \begin{tabular}{|l|}
2303 \\
2．49 \\
\hline
\end{tabular} & & & & & & & \({ }^{26}\) & \({ }^{41}\) & 79 & \({ }^{84}\) \\
\hline 1280 & \begin{tabular}{|}
12499 \\
\\
\hline 2.52 \\
\hline
\end{tabular} & \begin{tabular}{l}
11263 \\
12.53 \\
\hline 1
\end{tabular} & \begin{tabular}{l}
11156 \\
\hline 2.55 \\
\hline 1
\end{tabular} & （1086 & \(\begin{array}{r}10364 \\ \hline 105 \\ \hline 2.57\end{array}\) & & & \({ }^{27}\) & \({ }^{42}\) & 80 & \({ }^{86}\) \\
\hline 1300 & \(\underset{\substack{12694 \\ 254}}{\substack{289}}\) & ＋1296 & （1359 & （10852 & （10555 & （10488 & & \({ }^{27}\) & \({ }^{43}\) & 82 & \({ }^{88}\) \\
\hline 1320 & \(\underset{\substack{18.570}}{\substack{1898}}\) & & & － & & （10644 & & \({ }^{28}\) & \({ }^{43}\) & \({ }^{83}\) & 91 \\
\hline 1340 & & \begin{tabular}{|c}
123313 \\
12.01 \\
1
\end{tabular} & （13075 & ¢ & （10823 & & \({ }^{121253}\) & \({ }^{28}\) & \({ }^{44}\) & \({ }^{84}\) & 93 \\
\hline 1360 & & & （11848 \begin{tabular}{l}
3．05 \\
3， \\
\hline
\end{tabular} & ¢ & （130922 & （19096 & － & \({ }^{29}\) & 45 & 85 & \({ }_{9} 9\) \\
\hline 1380 & & \begin{tabular}{|c}
12699 \\
\begin{tabular}{l}
1206 \\
\hline
\end{tabular} 0 \\
\hline
\end{tabular} & （12020 & & & － 11711 & － 11569 & 29 & 45 & \({ }^{86}\) & 97 \\
\hline 1400 & （13671 & & （12， & （1616 & & － 112186 & \({ }_{1}^{172726}\) & 29 & \({ }^{46}\) & \({ }^{87}\) & 99 \\
\hline 1420 & & \({ }_{1}^{30045}\) & \({ }^{\text {12365 }}\) & \({ }^{1.1840}\) & \({ }^{1.1456}\) & \({ }^{11421}\) & \({ }^{1.1883}\) & \({ }^{30}\) & 47 & 88 & 101 \\
\hline 1440 & & & & \({ }_{12005}^{1205}\) & \({ }_{1}^{16164}\) & \({ }^{15575}\) & \({ }_{10}^{12039}\) & \({ }^{30}\) & \({ }^{47}\) & 89 & 103 \\
\hline 1460 & － & （ \begin{tabular}{c}
13411 \\
3．16 \\
\hline
\end{tabular} & （12710 & （12169 & （1732 & \begin{tabular}{|c}
1729 \\
\hline 1720 \\
\hline 1 \\
\hline 1
\end{tabular} & & \({ }^{31}\) & \({ }^{48}\) & 90 & 105 \\
\hline 1480 & － 14.1450 & \({ }_{3}^{13,19}\) & － \(\begin{gathered}12882 \\ 3.20\end{gathered}\) & \({ }_{\text {12232 }}^{123}\) & \({ }_{\substack{11930 \\ 3.23}}^{17}\) & － & （1235 & \({ }^{31}\) & 49 & 91 & 107 \\
\hline
\end{tabular}

\footnotetext{
FLIP23 A310－324 PW4152 361003751.0000210250300 .8000 .00000036003503501150164906011418590
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION IN CRUISE QUICK CHECK TABLE
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 15} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{IN CRUISE QUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING CRUISE : M. 80 - DESCENT : M. \(80 / 300 \mathrm{KT} / 250 \mathrm{KT}\) - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)} \\
\hline \multicolumn{5}{|l|}{REF. INITIAL WEIGHT \(=115000\) KG ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline \[
\begin{gathered}
\hline \text { AIR } \\
\text { DIST. }
\end{gathered}
\] & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \hline \text { FL290 } \\
& \text { FL310 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL330 } \\
& \text { FL350 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL370 } \\
& \text { FL390 }
\end{aligned}
\] & FL410 \\
\hline 1480 & \(\begin{array}{r}14450 \\ 3.17 \\ \hline 165\end{array}\) & \(\begin{array}{r}13594 \\ 3.19 \\ \hline 1376\end{array}\) & \(\begin{array}{r}12882 \\ 3.20 \\ \hline 1\end{array}\) & \(\begin{array}{r}12333 \\ 3.22 \\ \hline\end{array}\) & \(\begin{array}{r}11930 \\ 3.23 \\ \hline 1\end{array}\) & \[
\begin{array}{r}
11883 \\
3.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
12351 \\
3.23 \\
\hline
\end{array}
\] & 31 & 49 & 91 & 107 \\
\hline 1500 & 14645
3.20 & \(\begin{array}{r}13776 \\ 3.21 \\ \hline 1\end{array}\) & \(\begin{array}{r}13054 \\ 3.23 \\ \hline\end{array}\) & \(\begin{array}{r}12497 \\ 3.25 \\ \hline\end{array}\) & \(\begin{array}{r}12087 \\ 3.25 \\ \hline\end{array}\) & \(\begin{array}{r}12037 \\ 3.25 \\ \hline\end{array}\) & \(\begin{array}{r}12506 \\ 3.25 \\ \hline\end{array}\) & 32 & 49 & 92 & 109 \\
\hline 1520 & \(\begin{array}{r}14839 \\ 3.22 \\ \hline\end{array}\) & \(\begin{array}{r}13959 \\ 3.24 \\ \hline 1\end{array}\) & 13226
3.25 & \(\begin{array}{r}12661 \\ 3.27 \\ \hline\end{array}\) & \(\begin{array}{r}12245 \\ 3.28 \\ \hline\end{array}\) & \(\begin{array}{r}12191 \\ 3.28 \\ \hline\end{array}\) & \(\begin{array}{r}12661 \\ 3.28 \\ \hline\end{array}\) & 32 & 50 & 93 & 111 \\
\hline 1540 & \(\begin{array}{r}15034 \\ 3.25 \\ \hline\end{array}\) & \(\begin{array}{r}14141 \\ 3.26 \\ \hline\end{array}\) & \(\begin{array}{r}13397 \\ 3.28 \\ \hline\end{array}\) & \(\begin{array}{r}12824 \\ 3.30 \\ \hline 12 .\end{array}\) & \(\begin{array}{r}12402 \\ 3.31 \\ \hline\end{array}\) & \(\begin{array}{r}12344 \\ 3.31 \\ \hline\end{array}\) & 12816
3.31 & 32 & 51 & 94 & 113 \\
\hline 1560 & \(\begin{array}{r}15228 \\ 3.27 \\ \hline\end{array}\) & \(\begin{array}{r}14324 \\ 3.29 \\ \hline\end{array}\) & 13569
3.31 & \(\begin{array}{r}12988 \\ 3.32 \\ \hline\end{array}\) & 12559
3.33 & \(\begin{array}{r}12497 \\ 3.33 \\ \hline\end{array}\) & \(\begin{array}{r}12970 \\ 3.33 \\ \hline\end{array}\) & 33 & 51 & 95 & 115 \\
\hline 1580 & 15423
3.30 & 14506
3.31 & \(\begin{array}{r}13741 \\ 3.33 \\ \hline 1\end{array}\) & 13151
3.35 & 12716
3.36 & 12650
3.36 & \[
13124
\] & 33 & 52 & 96 & 116 \\
\hline 1600 & 15617
3.32 & \(\begin{array}{r}14688 \\ 3.34 \\ \hline\end{array}\) & 13912
3.36 & \(\begin{array}{r}13314 \\ 3.38 \\ \hline\end{array}\) & \(\begin{array}{r}12872 \\ 3.38 \\ \hline\end{array}\) & \(\begin{array}{r}12802 \\ 3.38 \\ \hline\end{array}\) & \[
\begin{array}{r}
13279 \\
3.38
\end{array}
\] & 34 & 53 & 97 & 118 \\
\hline 1620 & 15811
3.35 & \(\begin{array}{r}14871 \\ 3.37 \\ \hline\end{array}\) & \(\begin{array}{r}14083 \\ 3.38 \\ \hline\end{array}\) & 13477
3.40 & 13029
3.41 & \(\begin{array}{r}12955 \\ 3.41 \\ \hline\end{array}\) & \[
13434
\] & 34 & 53 & 98 & 120 \\
\hline 1640 & 16005 & 15053 & 14254 & 13640 & 13186 & 13107 & 13588 & 35 & 54 & 99 & 122 \\
\hline 1660 & 16199 & 15235 & 14425 & 13803 & 13343 & 13260 & 13743 & 35 & 54 & 100 & 124 \\
\hline & 16393 & 15417 & 14596 & 13966 & 13500 & 13412 & 13896 & 35 & 55 & 101 & 126 \\
\hline 1680 & \(\begin{array}{r}3.42 \\ 16587 \\ \hline\end{array}\) & \(\begin{array}{r}3.44 \\ 15598 \\ \hline\end{array}\) & \(\begin{array}{r}3.46 \\ 14767 \\ \hline\end{array}\) & 3.48
14129 & \(\begin{array}{r}3.49 \\ 13656 \\ \hline\end{array}\) & \(\begin{array}{r}3.49 \\ 13565 \\ \hline\end{array}\) & 3.49
14050 & & & & \\
\hline 1700 & \(\begin{array}{r}16587 \\ 3.45 \\ \hline 1\end{array}\) & \(\begin{array}{r}15598 \\ 3.47 \\ \hline 15\end{array}\) & \(\begin{array}{r}14767 \\ 3.49 \\ \hline\end{array}\) & \[
\begin{array}{r}
14129 \\
3.51 \\
\hline
\end{array}
\] & \(\begin{array}{r}13656 \\ 3.52 \\ \hline 18\end{array}\) & \[
\begin{array}{r}
13565 \\
3.52
\end{array}
\] & \[
\begin{array}{r}
14050 \\
3.52
\end{array}
\] & 36 & 56 & 102 & 127 \\
\hline 1720 & \(\begin{array}{r}16780 \\ 3.47 \\ \hline\end{array}\) & \(\begin{array}{r}15780 \\ 3.49 \\ \hline\end{array}\) & \(\begin{array}{r}14938 \\ 3.51 \\ \hline 1\end{array}\) & \(\begin{array}{r}14291 \\ 3.53 \\ \hline\end{array}\) & \(\begin{array}{r}13813 \\ 3.54 \\ \hline\end{array}\) & \(\begin{array}{r}13717 \\ 3.54 \\ \hline\end{array}\) & \(\begin{array}{r}14203 \\ 3.54 \\ \hline\end{array}\) & 36 & 56 & 103 & 129 \\
\hline 1740 & 16974
3.50 & 15962
3
3 & \(\begin{array}{r}15108 \\ 3 \\ \hline\end{array}\) & 14453
3 & 13969 & 13868 & 14355 & 37 & 57 & 104 & 131 \\
\hline & 17168 & 16143 & 15279 & 14616 & 14125 & 14020 & 14508 & 37 & 57 & 105 & 133 \\
\hline 1760 & 3.53
17361 & 3.54
16325 & 3.56
15449 & 3.58
14778 & 3.59
14281 & 3.59
14171 & 3.59
14660 & 37 & 58 & 106 & 134 \\
\hline 1780 & 3.55 & 3.57 & 3.59 & 4.01 & 4.02 & 4.02 & 4.02 & & & & \\
\hline 1800 & \[
\begin{array}{r}
17554 \\
3.58
\end{array}
\] & 16506
4.00 & 15619
4.01 & 14940
4.04 & \(\begin{array}{r}14437 \\ 4.05 \\ \hline\end{array}\) & \(\begin{array}{r}14322 \\ 4.05 \\ \hline\end{array}\) & 14812
4.05 & 38 & 59 & 106 & 136 \\
\hline 1820 & 17748
4.00 & \(\begin{array}{r}16687 \\ 4.02 \\ \hline\end{array}\) & 15790
4.04 & 15102
4.06 & 14593
407 & 14473
407 & 14963 & 38 & 59 & 107 & 138 \\
\hline 1840 & 17941 & 16869 & 15960 & 15263 & 14748 & 14624 & 15115 & 39 & 60 & 108 & 140 \\
\hline & 18134 & 17050 & 16129 & 15425 & 14904 & 14775 & 15266 & 39 & 60 & 109 & 141 \\
\hline 1860 & 4.05 & 4.07 & 4.09 & 4.11 & 4.12 & 4.12 & 4.12 & & & & \\
\hline 1880 & \(\begin{array}{r}18327 \\ 4.08 \\ \hline 1\end{array}\) & 17231
4.10 & 16299
4.12 & 15586
4.14 & 15059
4.15 & 14925
4.15 & \(\begin{array}{r}15416 \\ 4.15 \\ \hline\end{array}\) & 39 & 61 & 110 & 143 \\
\hline 900 & 18520 & 17412 & 16469 & 15748 & 15214 & 15075 & 15567 & 40 & 62 & 111 & 145 \\
\hline & 18713 & 17592 & 16639 & 15909 & 15369 & 15225 & 15717 & 40 & 62 & 112 & 146 \\
\hline 1920 & 4.13 & 4.15 & 4.17 & 4.19 & 4.20 & 4.20 & 4.20 & & & & \\
\hline 1940 & 18906 & 17773 & 16808 & 16070 & 15524 & 15374 & 15866 & 40 & 63 & 113 & 148 \\
\hline 1960 & 19099 & 17954 & 16977 & 16231 & 15679 & 15524 & 16016 & 41 & 63 & 113 & 149 \\
\hline 1980 & 19291 & 18134 & 17147 & 16392 & 15834 & 15673 & 16165 & 41 & 64 & 114 & 151 \\
\hline & 4.20 & 4.23 & 4.25 & 4.27 & 4.28 & 4.28 & 4.28 & & & & \\
\hline 2000 & 19484
4.23 & 4.25 & 4.27 & 4.29 & 4.31 & 15822
4.31 & 16314
4.31 & 42 & 65 & 115 & 153 \\
\hline 2020 & 19676
4.25 & \(\begin{array}{r}18495 \\ 4.88 \\ \hline\end{array}\) & 17485
4.30 & 16713
4.32 & 16143
4 & \(\begin{array}{r}15971 \\ 4 \\ \hline\end{array}\) & 16462 & 42 & 65 & 116 & 154 \\
\hline 2040 & 19869 & 18676 & 17654 & 16873 & 16297 & 16120 & 16611 & 42 & 66 & 117 & 156 \\
\hline & 20061 & 4.385 & \(\begin{array}{r}17822 \\ \hline\end{array}\) & 4.35
17034 & 4.36 & 4.36
16268 & 4.36
16759 & 43 & 66 & 117 & 157 \\
\hline 2060 & 4.31 & 4.33 & 4.35 & 4.37 & 4.39 & 4.39 & 4.39 & & & & \\
\hline 2080 & 20253
4.33 & 19036
4.35 & 17991
4.38 & 17194
4.40 & 16605
4.41 & 16417
4.41 & 16906
4.41 & 43 & 67 & 118 & 159 \\
\hline 2100 & 20446 & 19216 & 18160 & 17354 & 16759 & 16565 & 17054 & 44 & 67 & 119 & 160 \\
\hline & \(\begin{array}{r}4.36 \\ 20638 \\ \hline\end{array}\) & \(\begin{array}{r}4.38 \\ 19396 \\ \hline\end{array}\) & 4.40
18328 & 4.42
17514 & 4.44
16912 & 4.44
16712 & 4.44 & 44 & 68 & 120 & 161 \\
\hline 2120 & 4.38 & 4.40 & 4.43 & 4.45 & 4.46 & 4.46 & 4.46 & & & & \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 361003751.0000210250300 .8000 .00000036003503501150164906011418590
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION IN CRUISE QUICK CHECK TABLE
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 16} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{IN CRUISE QUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING
CRUISE : M. 80 - DESCENT : M.80/300KT/250KT - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)} \\
\hline \multicolumn{5}{|l|}{REF. INITIAL WEIGHT \(=115000\) KG ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \[
\begin{gathered}
\text { AIR } \\
\text { DIST. }
\end{gathered}
\] & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { CORRECTION ON } \\
& \text { FUEL CONSUMPTION } \\
& \text { (KG/1000KG) }
\end{aligned}
\]} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \hline \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL330 } \\
& \text { FL350 }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL370 } \\
& \text { FL390 } \\
& \hline
\end{aligned}
\] & FL410 \\
\hline 2120 & \[
\begin{array}{r}
20638 \\
4.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19396 \\
4.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18328 \\
4.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17514 \\
4.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16912 \\
4.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16712 \\
4.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17201 \\
4.46 \\
\hline
\end{array}
\] & 44 & 68 & 120 & 161 \\
\hline 2140 & \[
\begin{array}{r}
20830 \\
4.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19576 \\
4.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18497 \\
4.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17674 \\
4.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17066 \\
4.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
16860 \\
4.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17348 \\
4.49 \\
\hline
\end{array}
\] & 44 & 69 & 121 & 163 \\
\hline 2160 & \[
\begin{array}{r}
21022 \\
4.43
\end{array}
\] & \[
\begin{array}{r}
19756 \\
4.45
\end{array}
\] & \[
\begin{array}{r}
18665 \\
4.48
\end{array}
\] & \[
\begin{array}{r}
17833 \\
4.50
\end{array}
\] & \[
\begin{array}{r}
17219 \\
4.52
\end{array}
\] & \[
\begin{array}{r}
17008 \\
4.52
\end{array}
\] & \[
\begin{array}{r}
17494 \\
4.52
\end{array}
\] & 45 & 69 & 121 & 164 \\
\hline 2180 & \[
\begin{array}{r}
21214 \\
4.46
\end{array}
\] & \[
\begin{array}{r}
19936 \\
4.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18833 \\
4.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17993 \\
4.53
\end{array}
\] & \[
\begin{array}{r}
17373 \\
4.54
\end{array}
\] & \[
\begin{array}{r}
17155 \\
4.54
\end{array}
\] & \[
\begin{array}{r}
17641 \\
454
\end{array}
\] & 45 & 70 & 122 & 166 \\
\hline 2200 & \[
\begin{array}{r}
21406 \\
4.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20115 \\
4.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19001 \\
4.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18153 \\
4.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17526 \\
4.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17302 \\
4.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17787 \\
4.57 \\
\hline
\end{array}
\] & 46 & 70 & 123 & 167 \\
\hline 2220 & \[
\begin{array}{r}
21598 \\
4.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20295 \\
4.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19169 \\
4.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18312 \\
4.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17679 \\
4.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17449 \\
4.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17932 \\
4.59 \\
\hline
\end{array}
\] & 46 & 71 & 124 & 169 \\
\hline 2240 & \[
\begin{array}{r}
21789 \\
4.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20475 \\
4.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19337 \\
4.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18471 \\
5.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17832 \\
5.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17596 \\
5.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18078 \\
5.02
\end{array}
\] & 46 & 71 & 124 & 170 \\
\hline 2260 & \[
\begin{array}{r}
21981 \\
4.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20654 \\
4.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19505 \\
5.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18630 \\
5.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17985 \\
5.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17742 \\
5.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18223 \\
5.05 \\
\hline
\end{array}
\] & 47 & 72 & 125 & 171 \\
\hline 2280 & \[
\begin{array}{r}
22173 \\
4.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20834 \\
5.01
\end{array}
\] & \[
\begin{array}{r}
19672 \\
5.03
\end{array}
\] & \[
\begin{array}{r}
18789 \\
5.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18137 \\
5.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17888 \\
5.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18368 \\
5.07
\end{array}
\] & 47 & 72 & 126 & 173 \\
\hline 2300 & \[
\begin{array}{r}
22364 \\
5.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21013 \\
5.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19840 \\
5.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18948 \\
5.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18290 \\
5.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18034 \\
5.10
\end{array}
\] & \[
\begin{array}{r}
18512 \\
5.10
\end{array}
\] & 48 & 73 & 127 & 174 \\
\hline 2320 & \[
\begin{array}{r}
22556 \\
5.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21192 \\
5.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20007 \\
5.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19107 \\
5.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18442 \\
5.13
\end{array}
\] & \[
\begin{array}{r}
18180 \\
5.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18657 \\
5.13
\end{array}
\] & 48 & 74 & 127 & 175 \\
\hline 2340 & \[
\begin{array}{r}
22747 \\
5.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21372 \\
5.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20175 \\
5.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19266 \\
5.14
\end{array}
\] & \[
\begin{array}{r}
18595 \\
5.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18326 \\
5.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18801 \\
5.15 \\
\hline
\end{array}
\] & 48 & 74 & 128 & 177 \\
\hline 2360 & \[
\begin{array}{r}
22938 \\
5.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21551 \\
5.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20343 \\
5.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19424 \\
5.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18747 \\
\quad 5.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18472 \\
5.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18945 \\
5.18 \\
\hline
\end{array}
\] & 49 & 75 & 129 & 178 \\
\hline 2380 & \[
\begin{array}{r}
23129 \\
5.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21730 \\
5.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20511 \\
5.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19583 \\
5.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18899 \\
5.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18617 \\
5.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19089 \\
5.20 \\
\hline
\end{array}
\] & 49 & 75 & 130 & 179 \\
\hline 2400 & \[
\begin{array}{r}
23320 \\
5.14
\end{array}
\] & \[
\begin{array}{r}
21909 \\
5.16
\end{array}
\] & \[
\begin{array}{r}
20679 \\
5.19
\end{array}
\] & \[
\begin{array}{r}
19741 \\
5.21
\end{array}
\] & \[
\begin{array}{r}
19051 \\
5.23
\end{array}
\] & \[
\begin{array}{r}
18762 \\
5.23
\end{array}
\] & \[
\begin{array}{r}
19232 \\
5.23
\end{array}
\] & 49 & 76 & 130 & 180 \\
\hline 2420 & \[
\begin{array}{r}
23511 \\
5.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22088 \\
5.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20846 \\
5.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19899 \\
5.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19202 \\
5.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
18907 \\
5.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19375 \\
5.26 \\
\hline
\end{array}
\] & 50 & 76 & 131 & 182 \\
\hline 2440 & \[
\begin{array}{r}
23702 \\
5.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22267 \\
5.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21014 \\
5.24
\end{array}
\] & \[
\begin{array}{r}
20057 \\
5.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19354 \\
5.28
\end{array}
\] & \[
\begin{array}{r}
19052 \\
5.28
\end{array}
\] & \[
\begin{array}{r}
19518 \\
5.28
\end{array}
\] & 50 & 77 & 132 & 183 \\
\hline 2460 & \[
\begin{array}{r}
23893 \\
5.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22445 \\
5.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21182 \\
5.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20215 \\
5.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19506 \\
5.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19197 \\
5.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19661 \\
5.31 \\
\hline
\end{array}
\] & 51 & 77 & 133 & 184 \\
\hline 2480 & \[
\begin{array}{r}
24084 \\
5.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22624 \\
5.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21349 \\
5.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20374 \\
5.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19657 \\
5.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19341 \\
5.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19803 \\
5.33 \\
\hline
\end{array}
\] & 51 & 78 & 133 & 185 \\
\hline 2500 & \[
\begin{array}{r}
24275 \\
5.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22803 \\
5.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21517 \\
5.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20532 \\
5.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19808 \\
5.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19485 \\
5.36
\end{array}
\] & \[
\begin{array}{r}
19946 \\
5.36
\end{array}
\] & 51 & 78 & 134 & 187 \\
\hline 2520 & \[
\begin{array}{r}
24465 \\
5.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22981 \\
5.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21684 \\
5.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20690 \\
5.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19959 \\
5.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19629 \\
5.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20088 \\
5.39 \\
\hline
\end{array}
\] & 52 & 79 & 135 & 188 \\
\hline 2540 & \[
\begin{array}{r}
24656 \\
5.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23159 \\
5.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21852 \\
5.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20848 \\
5.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20110 \\
5.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19773 \\
5.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20229 \\
5.41 \\
\hline
\end{array}
\] & 52 & 79 & 135 & 189 \\
\hline 2560 & \[
\begin{array}{r}
24846 \\
5.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23338 \\
5.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22019 \\
5.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21006 \\
5.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20261 \\
5.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
19917 \\
5.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20371 \\
5.44 \\
\hline
\end{array}
\] & 52 & 80 & 136 & 190 \\
\hline 2580 & \[
\begin{array}{r}
25036 \\
5.36
\end{array}
\] & \[
\begin{array}{r}
23516 \\
5.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22186 \\
5.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21164 \\
5.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20412 \\
5.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20060 \\
5.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20512 \\
5.46
\end{array}
\] & 53 & 81 & 137 & 191 \\
\hline 2600 & \[
\begin{array}{r}
25227 \\
5.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23694 \\
5.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22353 \\
5.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21321 \\
5.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20563 \\
5.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20204 \\
5.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20654 \\
5.49 \\
\hline
\end{array}
\] & 53 & 81 & 137 & 193 \\
\hline 2620 & \[
\begin{array}{r}
25417 \\
5.41
\end{array}
\] & \[
\begin{array}{r}
23872 \\
5.44
\end{array}
\] & \[
\begin{array}{r}
22520 \\
5.47
\end{array}
\] & \[
\begin{array}{r}
21479 \\
5.50
\end{array}
\] & \[
\begin{array}{r}
20714 \\
5.52
\end{array}
\] & \[
\begin{array}{r}
20348 \\
5.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20795 \\
5.52
\end{array}
\] & 53 & 82 & 138 & 194 \\
\hline 2640 & \[
\begin{array}{r}
25607 \\
5.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24050 \\
5.47
\end{array}
\] & \[
\begin{array}{r}
22687 \\
5.50
\end{array}
\] & \[
\begin{array}{r}
21636 \\
5.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20864 \\
5.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20492 \\
5.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20936 \\
5.54 \\
\hline
\end{array}
\] & 54 & 82 & 139 & 195 \\
\hline 2660 & \[
\begin{array}{r}
25797 \\
5.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24228 \\
5.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22854 \\
5.52
\end{array}
\] & \[
\begin{array}{r}
21794 \\
5.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21015 \\
5.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20636 \\
5.57
\end{array}
\] & \[
\begin{array}{r}
21077 \\
5.57
\end{array}
\] & 54 & 83 & 139 & 196 \\
\hline 2680 & \[
\begin{array}{r}
25987 \\
5.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24406 \\
5.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23020 \\
5.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21951 \\
5.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21165 \\
6.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20780 \\
6.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21217 \\
6.00 \\
\hline
\end{array}
\] & 55 & 83 & 140 & 197 \\
\hline 2700 & \[
\begin{array}{r}
26177 \\
5.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24584 \\
5.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23187 \\
5.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22108 \\
6.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21316 \\
6.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20924 \\
6.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21358 \\
6.02 \\
\hline
\end{array}
\] & 55 & 84 & 141 & 198 \\
\hline 2720 & \[
\begin{array}{r}
26367 \\
5.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24761 \\
5.57
\end{array}
\] & \[
\begin{array}{r}
23353 \\
6.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22265 \\
6.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21466 \\
6.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21068 \\
6.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21498 \\
6.05 \\
\hline
\end{array}
\] & 55 & 84 & 141 & 199 \\
\hline 2740 & \[
\begin{array}{r}
26557 \\
5.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
24939 \\
6.00
\end{array}
\] & \[
\begin{array}{r}
23520 \\
6.03
\end{array}
\] & \[
\begin{array}{r}
22422 \\
6.06
\end{array}
\] & \[
\begin{array}{r}
21616 \\
6.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21212 \\
6.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21638 \\
6.07
\end{array}
\] & 56 & 85 & 142 & 200 \\
\hline 2760 & \[
\begin{array}{r}
26746 \\
5.59
\end{array}
\] & \[
\begin{array}{r}
25117 \\
6.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
23686 \\
6.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
22579 \\
6.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21766 \\
6.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21355 \\
6.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
21777 \\
6.10 \\
\hline
\end{array}
\] & 56 & 85 & 143 & 202 \\
\hline
\end{tabular}

\footnotetext{
FLIP23 A310-324 PW4152 361003751.0000210250300 .8000 .00000036003503501150164906011418590
}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION IN CRUISE QUICK CHECK TABLE
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 17} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{IN CRUISE QUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING CRUISE : M. 80 - DESCENT : M.80/300KT/250KT - IMC PROCEDURE \(360 \mathrm{KG} / 6 \mathrm{MIN}\)} \\
\hline \multicolumn{5}{|l|}{REF. INITIAL WEIGHT \(=115000 \mathrm{KG}\) ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|l|}{FUEL CONSUMED (KG) TIME (H.MIN)} \\
\hline AIR
DIST. & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON
FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \hline \text { FL290 } \\
& \text { FL310 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FI } 1530
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL370 } \\
& \text { FI } 390
\end{aligned}
\] & FL410 \\
\hline 2760 & 26746
5.59 & \(\begin{array}{r}25117 \\ 6.02 \\ \hline 6\end{array}\) & \(\begin{array}{r}23686 \\ 6.05 \\ \hline 6\end{array}\) & 22579
6.08 & 21766
6.10 & 21355
6.10 & 21777
6.10 & 56 & 85 & 143 & 202 \\
\hline 2780 & & \(\begin{array}{r}2617 \\ \hline 25294 \\ 6.05 \\ \hline 6.07\end{array}\) & \begin{tabular}{r}
6.05 \\
\hline 2352 \\
608
\end{tabular} & \({ }_{6}^{22735}\) & \(\begin{array}{r}\text { 21915 } \\ \hline 6.13\end{array}\) & & \({ }_{6} 21.10\) & 56 & \({ }^{86}\) & 143 & 203 \\
\hline 2800 & \(\begin{array}{r}67125 \\ 67.04 \\ \hline\end{array}\) & & \({ }^{24018}\) & \({ }^{22892}\) & \({ }^{22065}\) & \({ }^{261642}\) & \({ }^{22056}\) & 57 & 86 & 144 & 204 \\
\hline 2820 & 27315 & 25649 & 24184 & \({ }^{23048}\) & 22215 & 21785 & 22195 & 57 & 87 & 144 & 205 \\
\hline 2840 & 27504 & \({ }^{25826}\) & 24350 & \({ }^{23205}\) & \(\stackrel{22364}{ }\) & \({ }^{21927}\) & \({ }^{22333}\) & 57 & 87 & 145 & 206 \\
\hline 2860 & 27694 & 26003 & 24516 & 23361 & \({ }^{252513}\) & 22070 & 22472 & 58 & 87 & 146 & 207 \\
\hline & \({ }^{67883}\) & \(\begin{array}{r}6.15 \\ \hline 26180\end{array}\) & \(\begin{array}{r}\text { 6.188 } \\ \hline 2682\end{array}\) & 6.21
23517 & \(\begin{array}{r}\text { 6.23 } \\ \hline 2862\end{array}\) & \({ }^{622212}\) & 6.23
22610 & 58 & 88 & 146 & 208 \\
\hline 2880 & \(\begin{array}{r}6.14 \\ \\ \hline 8.172\end{array}\) & 6.17 & \(\begin{array}{r}6.21 \\ \hline 2.828 \\ \hline\end{array}\) & \(\begin{array}{r}6.24 \\ \hline 263\end{array}\) & 6.26 & & & & & & \\
\hline 2900 & \(\begin{array}{r}28.17 \\ 6.271 \\ \hline\end{array}\) & \begin{tabular}{l}
26351 \\
6.20 \\
\hline 2.6
\end{tabular} & 24848
6.23
2.23 & \begin{tabular}{l}
236.3 \\
6.26 \\
\hline 6
\end{tabular} & \(\begin{array}{r}2281 \\ \hline 6.28 \\ \hline\end{array}\) & \(\begin{array}{r}22355 \\ 6.28 \\ \hline\end{array}\) & \(\begin{array}{r}22748 \\ \hline 6.28 \\ \hline\end{array}\) & 58 & 88 & 147 & 210 \\
\hline 2920 & 28261
6.19 & 26534
6.22
6 & 25013
6.26 & 23829
6.29 & \({ }_{\text {ck }}^{22360}\) & 22497
6.31 & 22885
6.31
6.31 & 59 & 89 & 147 & 211 \\
\hline 2940 & 28451
6.22 & 26711
6.25 & \(\begin{array}{r}25179 \\ 6.28 \\ \hline 6\end{array}\) & 23985
6.32 & \(\begin{array}{r}23109 \\ 6.34 \\ \hline 6.3\end{array}\) & \begin{tabular}{r}
2639 \\
\hline 634 \\
6
\end{tabular} & \(\begin{array}{r}23023 \\ 6.34 \\ \hline\end{array}\) & 59 & 89 & 148 & 212 \\
\hline 2960 & \begin{tabular}{c}
28640 \\
6.24 \\
\hline 6.2
\end{tabular} & \begin{tabular}{c}
26887 \\
6.28 \\
\hline
\end{tabular} & \begin{tabular}{|c}
25344 \\
631 \\
\hline
\end{tabular} & \(\begin{array}{r}24141 \\ \hline 634\end{array}\) & \({ }^{23258}\) & \({ }^{22781}\) & \({ }^{23160}\) & 59 & 90 & 149 & 213 \\
\hline 2980 & 28829
6.27 & \(\begin{array}{r}27764 \\ \hline 630\end{array}\) & 25510 & \({ }^{24296}\) & 23407 & 22923 & 23297 & 60 & 90 & 149 & 214 \\
\hline 3000 & 29018
68
6 & 27240 & \({ }^{25675}\) & 24452 & 23555 & 23064 & 23434 & 60 & 91 & 150 & 215 \\
\hline 3020 & \begin{tabular}{|c}
29207 \\
6.32
\end{tabular} & \({ }^{27417}\) & \({ }^{25840}\) & 24607 & \({ }^{23703}\) & \({ }^{23206}\) & \({ }^{23570}\) & 61 & 91 & 150 & 216 \\
\hline 3040 & \(\begin{array}{r}29395 \\ 6634 \\ \hline 6.34\end{array}\) & \(\begin{array}{r}27593 \\ \hline 688\end{array}\) & \({ }^{26005}\) & 24763 & \({ }^{23852}\) & 23347 & 23707 & 61 & 92 & 151 & 217 \\
\hline 3060 & 29584

2937 & \({ }^{27770}\) & \({ }^{26170}\) & 24918 & 24000 & \({ }^{23488}\) & \({ }^{23843}\) & 61 & 92 & 151 & 218 \\
\hline 3080 & \({ }^{29773}\) & \({ }^{27946}\) & 26335 & 25073 & 24148 & 23629 & 23979 & 62 & 93 & 152 & 219 \\
\hline 3100 & 29961 & \({ }^{28122}\) & \({ }^{26500}\) & - 25.228 & \({ }^{24296}\) & \({ }^{237770}\) & 24175 & 62 & 93 & 153 & 220 \\
\hline & \({ }_{30.42}^{60}\) & 28299 & \({ }^{6.4694}\) & \({ }^{25583}\) & \(\begin{array}{r}64443 \\ \hline\end{array}\) & \({ }^{6} 23950\) & \({ }^{6.54250}\) & 62 & \({ }^{93}\) & 153 & 221 \\
\hline 3120 & 6.45 & 6.48 & 6.51 & \({ }^{6.55}\) & 6.57 & 6.57 & 6.57 & & & & \\
\hline 3140 & \(\begin{array}{r}30338 \\ 6.47 \\ \hline 6\end{array}\) & \(\begin{array}{r}28475 \\ 6.51 \\ \hline 6 .\end{array}\) & \begin{tabular}{c}
26829 \\
6.54 \\
\hline 6
\end{tabular} & \(\begin{array}{r}25537 \\ 6.58 \\ \hline\end{array}\) & \(\begin{array}{r}24591 \\ 7.00 \\ \hline\end{array}\) & \(\begin{array}{r}24051 \\ 7.00 \\ \hline\end{array}\) & \(\begin{array}{r}24386 \\ 7.00 \\ \\ \hline\end{array}\) & 63 & 94 & 154 & 222 \\
\hline 3160 & \(\begin{array}{r}30527 \\ \hline 50\end{array}\) & \({ }^{28651}\) & \({ }^{26994}\) & \({ }^{25692}\) & 24739 & 24191 & \({ }_{2} 24521\) & 63 & 94 & 154 & \({ }^{223}\) \\
\hline 3180 & 6.50
30715
6.52 & \({ }^{28827}\) & \({ }^{27158}\) & \({ }^{25847}\) & \(\stackrel{78886}{ }\) & 24331 & 24656 & 63 & 95 & 155 & 224 \\
\hline 3200 & \({ }^{60903}\) & \({ }^{29003}\) & 27322 & 26001 & \({ }^{25033}\) & 24472 & 24791 & 64 & 95 & 155 & 225 \\
\hline 3220 & \({ }^{61095}\) & \({ }^{69179}\) & 27487 & \(\stackrel{7}{26156}\) & 25181 & 24611 & 24925 & 64 & 96 & 156 & 226 \\
\hline 3240 & 31279 & \({ }^{293555}\) & \({ }^{27651}\) & \(\stackrel{7.38}{ }\) & \({ }^{25328}\) & 24751 & 25059 & 64 & 96 & 157 & 227 \\
\hline 3260 & 31467 & \({ }^{29530}\) & 27816 & 26464 & 25475 & 24891 & 25193 & 65 & 96 & 157 & 228 \\
\hline 3280 & 31655 & 29706 & 27980 & \(\stackrel{7618}{ }\) & \({ }^{25622}\) & 25030 & 25327 & 65 & 97 & 158 & 229 \\
\hline 3300 & \({ }^{31843}\) & 29881 & 28144 & 26772 & 25768 & 25170 & \({ }^{25461}\) & 66 & 97 & 158 & 230 \\
\hline 3320 & 32031 & 30057 & 28309 & \({ }^{26926}\) & 25915 & 25309 & 25594 & 66 & 98 & 159 & 230 \\
\hline 3340 & 32219 & 30232 & \({ }^{28473}\) & 27080 & 26061 & \({ }^{25448}\) & 25728 & 66 & 98 & 159 & 231 \\
\hline 3360 & 32406 & 30408 & \({ }^{28637}\) & 27233 & \({ }^{26208}\) & \({ }^{25587}\) & \({ }^{25861}\) & 67 & 99 & 160 & 232 \\
\hline 3380 & 32594 & 30583 & 28801 & 27387 & 26354 & \({ }^{25725}\) & 25994 & 67 & 99 & 161 & 233 \\
\hline 3400 & 32781
720 & 30758 & 28965 & \({ }^{27540}\) & 26550 & 25864 & \({ }_{7}^{26126}\) & 67 & 99 & 161 & 234 \\
\hline
\end{tabular}

FLIP23 A310-324 PW4152 361003751.0000210250300 .8000 .00000036003503501150164906011418590
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION IN CRUISE QUICK CHECK TABLE
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 18} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{IN CRUISE QUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING CRUISE : M. 80 - DESCENT : M.80/300KT/250KT - IMC PROCEDURE 360 KG/6MIN} \\
\hline \multicolumn{5}{|l|}{REF. INITIAL WEIGHT \(=115000\) KG ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \[
\begin{gathered}
\text { AIR } \\
\text { DIST. }
\end{gathered}
\] & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{\[
\begin{aligned}
& \text { CORRECTION ON } \\
& \text { FUEL CONSUMPTION } \\
& (K G / 1000 \mathrm{KG}) \\
& \hline
\end{aligned}
\]} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \hline \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL330 } \\
& \text { FL350 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { FL370 } \\
& \text { FL390 } \\
& \hline
\end{aligned}
\] & FL410 \\
\hline 3400 & \[
\begin{array}{r}
32781 \\
7.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30758 \\
7.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28965 \\
7.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27540 \\
7.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26500 \\
7.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
25864 \\
7.34
\end{array}
\] & \[
\begin{array}{r}
26126 \\
7.34
\end{array}
\] & 67 & 99 & 161 & 234 \\
\hline 3420 & \[
\begin{array}{r}
1.20 \\
32969 \\
7.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30933 \\
7.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29129 \\
7.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27694 \\
7.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26646 \\
7.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26002 \\
7.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26259 \\
7.36 \\
\hline
\end{array}
\] & 68 & 100 & 162 & 235 \\
\hline 3440 & \[
\begin{array}{r}
33156 \\
7.25 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31108 \\
7.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29292 \\
7.33
\end{array}
\] & \[
\begin{array}{r}
27847 \\
7.37
\end{array}
\] & \[
\begin{array}{r}
26792 \\
7.39
\end{array}
\] & \[
\begin{array}{r}
26141 \\
7.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26391 \\
7.39
\end{array}
\] & 68 & 100 & 162 & 236 \\
\hline 3460 & \[
\begin{array}{r}
33343 \\
7.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31283 \\
7.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29456 \\
7.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28001 \\
7.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26938 \\
7.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26279 \\
7.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26523 \\
7.41 \\
\hline
\end{array}
\] & 68 & 101 & 163 & 236 \\
\hline 3480 & \[
\begin{array}{r}
33530 \\
7.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31458 \\
\quad 7.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29620 \\
7.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28154 \\
7.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27084 \\
7.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26417 \\
7.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26655 \\
7.44 \\
\hline
\end{array}
\] & 69 & 101 & 163 & 237 \\
\hline 3500 & \[
\begin{array}{r}
33718 \\
7.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31633 \\
7.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29783 \\
7.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28307 \\
7.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27230 \\
7.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26555 \\
7.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26787 \\
7.47 \\
\hline
\end{array}
\] & 69 & 101 & 164 & 238 \\
\hline 3520 & \[
\begin{array}{r}
33905 \\
7.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31807 \\
\quad 7.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29947 \\
7.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28460 \\
7.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27375 \\
7.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26693 \\
7.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26918 \\
7.49 \\
\hline
\end{array}
\] & 69 & 102 & 164 & 239 \\
\hline 3540 & \[
\begin{array}{r}
34092 \\
7.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31982 \\
7.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30110 \\
7.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28613 \\
\quad 7.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27521 \\
7.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
26830 \\
7.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27050 \\
7.52 \\
\hline
\end{array}
\] & 70 & 102 & 165 & 240 \\
\hline 3560 & \[
\begin{array}{r}
34278 \\
7.40
\end{array}
\] & \[
\begin{array}{r}
32157 \\
7.44
\end{array}
\] & \[
\begin{array}{r}
30273 \\
7.48
\end{array}
\] & \[
\begin{array}{r}
28766 \\
7.52
\end{array}
\] & \[
\begin{array}{r}
27666 \\
7.54
\end{array}
\] & \[
\begin{array}{r}
26968 \\
7.55
\end{array}
\] & \[
\begin{array}{r}
27181 \\
7.55
\end{array}
\] & 70 & 103 & 165 & 240 \\
\hline 3580 & \[
\begin{array}{r}
34465 \\
7.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32331 \\
7.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30436 \\
7.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28919 \\
7.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27811 \\
7.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27105 \\
7.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27312 \\
7.57 \\
\hline
\end{array}
\] & 70 & 103 & 166 & 241 \\
\hline 3600 & \[
\begin{array}{r}
34652 \\
7.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32506 \\
7.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30599 \\
7.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29071 \\
\quad 7.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27956 \\
8.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27242 \\
8.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27442 \\
8.00 \\
\hline
\end{array}
\] & 71 & 103 & 166 & 242 \\
\hline 3620 & \[
\begin{array}{r}
34839 \\
7.48
\end{array}
\] & \[
\begin{array}{r}
32680 \\
7.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30762 \\
7.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29224 \\
8.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28101 \\
8.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27379 \\
8.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27573 \\
8.02 \\
\hline
\end{array}
\] & 71 & 104 & 167 & 243 \\
\hline 3640 & \[
\begin{array}{r}
35026 \\
7.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32854 \\
7.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30925 \\
7.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29376 \\
8.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28246 \\
8.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27516 \\
8.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27704 \\
8.05 \\
\hline
\end{array}
\] & 71 & 104 & 167 & 243 \\
\hline 3660 & \[
\begin{array}{r}
35213 \\
7.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33028 \\
7.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31088 \\
8.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29529 \\
8.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28391 \\
8.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27654 \\
8.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27836 \\
8.08 \\
\hline
\end{array}
\] & 72 & 105 & 168 & 244 \\
\hline 3680 & \[
\begin{array}{r}
35400 \\
7.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33202 \\
\hline 7.59 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31251 \\
8.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29681 \\
8.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28535 \\
8.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27792 \\
8.10
\end{array}
\] & \[
\begin{array}{r}
27967 \\
8.10
\end{array}
\] & 72 & 105 & 168 & 245 \\
\hline 3700 & \[
\begin{array}{r}
35586 \\
7.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33377 \\
8.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31414 \\
8.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29833 \\
8.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28680 \\
8.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
27930 \\
8.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28099 \\
8.13 \\
\hline
\end{array}
\] & 72 & 105 & 169 & 246 \\
\hline 3720 & \[
\begin{array}{r}
35773 \\
8.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33550 \\
8.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31576 \\
8.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29985 \\
8.13
\end{array}
\] & \[
\begin{array}{r}
28824 \\
8.15
\end{array}
\] & \[
\begin{array}{r}
28068 \\
8.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28230 \\
8.15
\end{array}
\] & 73 & 106 & 169 & 246 \\
\hline 3740 & \[
\begin{array}{r}
35960 \\
8.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33724 \\
8.07 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31739 \\
8.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30137 \\
8.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28969 \\
8.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28206 \\
8.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28361 \\
8.18
\end{array}
\] & 73 & 106 & 170 & 247 \\
\hline 3760 & \[
\begin{array}{r}
0.146 \\
3.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33898 \\
8.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31901 \\
8.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30289 \\
8.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.10 \\
29113 \\
8.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28344 \\
8.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28492 \\
8.21 \\
\hline
\end{array}
\] & 73 & 106 & 170 & 248 \\
\hline 3780 & \[
\begin{array}{r}
36333 \\
8.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34072 \\
8.12 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32064 \\
8.16
\end{array}
\] & \[
\begin{array}{r}
30441 \\
8.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29257 \\
8.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28481 \\
8.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28623 \\
8.23 \\
\hline
\end{array}
\] & 74 & 107 & 171 & 249 \\
\hline 3800 & \[
\begin{array}{r}
36519 \\
8.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34246 \\
8.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32226 \\
8.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30593 \\
8.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29401 \\
8.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28619 \\
8.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28753 \\
8.26 \\
\hline
\end{array}
\] & 74 & 107 & 171 & 249 \\
\hline 3820 & \[
\begin{array}{r}
36705 \\
8.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34419 \\
8.17 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32388 \\
8.22 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30744 \\
8.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29545 \\
8.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28756 \\
8.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
28884 \\
8.28 \\
\hline
\end{array}
\] & 75 & 108 & 172 & 250 \\
\hline 3840 & \[
\begin{array}{r}
36892 \\
8.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34593 \\
8.20 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32550 \\
8.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.20 \\
30896 \\
8.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.20 \\
\hline 8.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
08894 \\
8.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.20 \\
\hline 8.31 \\
\hline
\end{array}
\] & 75 & 108 & 172 & 251 \\
\hline 3860 & \[
\begin{array}{r}
37078 \\
8.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34766 \\
8.22
\end{array}
\] & \[
\begin{array}{r}
32712 \\
8.27 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31047 \\
8.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29832 \\
8.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29031 \\
8.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29144 \\
8.34 \\
\hline
\end{array}
\] & 75 & 108 & 172 & 252 \\
\hline 3880 & \[
\begin{array}{r}
37264 \\
8.21
\end{array}
\] & \[
\begin{array}{r}
34940 \\
8.25
\end{array}
\] & \[
\begin{array}{r}
32874 \\
8.29
\end{array}
\] & \[
\begin{array}{r}
31199 \\
8.34
\end{array}
\] & \[
\begin{array}{r}
29976 \\
8.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29168 \\
8.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29274 \\
8.36
\end{array}
\] & 76 & 109 & 173 & 252 \\
\hline 3900 & \[
\begin{array}{r}
37450 \\
8.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35113 \\
8.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33036 \\
8.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31350 \\
8.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30119 \\
8.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29305 \\
8.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29403 \\
8.39 \\
\hline
\end{array}
\] & 76 & 109 & 173 & 253 \\
\hline 3920 & \[
\begin{array}{r}
37636 \\
8.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35287 \\
8.30 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33198 \\
8.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31501 \\
8.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30263 \\
8.42
\end{array}
\] & \[
\begin{array}{r}
29442 \\
8.42
\end{array}
\] & \[
\begin{array}{r}
29533 \\
8.42 \\
\hline
\end{array}
\] & 76 & 109 & 174 & 254 \\
\hline 3940 & \[
\begin{array}{r}
37822 \\
8.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35460 \\
8.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33360 \\
8.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31652 \\
8.42
\end{array}
\] & \[
\begin{array}{r}
30406 \\
8.44
\end{array}
\] & \[
\begin{array}{r}
29579 \\
8.44
\end{array}
\] & \[
\begin{array}{r}
29662 \\
8.44
\end{array}
\] & 77 & 110 & 174 & 254 \\
\hline 3960 & \[
\begin{array}{r}
38008 \\
8.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35633 \\
8.35 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.07 \\
33521 \\
8.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31803 \\
8.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30549 \\
8.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29715 \\
8.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29791 \\
8.47 \\
\hline
\end{array}
\] & 77 & 110 & 175 & 255 \\
\hline 3980 & \[
\begin{array}{r}
38194 \\
8.33 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35806 \\
8.38 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33683 \\
8.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31954 \\
8.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30692 \\
8.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29852 \\
8.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29920 \\
8.49 \\
\hline
\end{array}
\] & 77 & 110 & 175 & 256 \\
\hline 4000 & \[
\begin{array}{r}
38380 \\
8.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35979 \\
8.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33845 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32105 \\
8.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30835 \\
8.52
\end{array}
\] & \[
\begin{array}{r}
29988 \\
8.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30,79 \\
8.52
\end{array}
\] & 78 & 111 & 176 & 257 \\
\hline 4020 & \[
\begin{array}{r}
38565 \\
8.38
\end{array}
\] & \[
\begin{array}{r}
36153 \\
8.43
\end{array}
\] & \[
\begin{array}{r}
34006 \\
8.47
\end{array}
\] & \[
\begin{array}{r}
32255 \\
8.52
\end{array}
\] & \[
\begin{array}{r}
30978 \\
8.55
\end{array}
\] & \[
\begin{array}{r}
30124 \\
8.55
\end{array}
\] & \[
\begin{array}{r}
30178 \\
8.55
\end{array}
\] & 78 & 111 & 176 & 257 \\
\hline 4040 & \[
\begin{array}{r}
38751 \\
8.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36325 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34167 \\
8.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32406 \\
8.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31121 \\
8.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30260 \\
8.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30306 \\
8.57 \\
\hline
\end{array}
\] & 78 & 111 & 176 & 258 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
FLIGHT PLANNING \\
TABULATED CALCULATION IN CRUISE QUICK CHECK TABLE
\end{tabular}} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 19} \\
\hline & & REV 25 & SEQ 085 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|c|}{IN CRUISE QUICK CHECK FROM ANY MOMENT IN CRUISE TO LANDING CRUISE : M. 80 - DESCENT : M.80/300KT/250KT - IMC PROCEDURE 360 KG/6MIN} \\
\hline \multicolumn{5}{|l|}{REF. INITIAL WEIGHT \(=115000\) KG ECONOMIC AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\mathrm{CG}=37.5 \%
\end{gathered}
\]} & \multicolumn{5}{|c|}{\begin{tabular}{l}
FUEL CONSUMED (KG) \\
TIME (H.MIN)
\end{tabular}} \\
\hline \[
\begin{gathered}
\hline \text { AIR } \\
\text { DIST. }
\end{gathered}
\] & \multicolumn{7}{|c|}{FLIGHT LEVEL} & \multicolumn{4}{|c|}{CORRECTION ON FUEL CONSUMPTION (KG/1000KG)} \\
\hline (NM) & 290 & 310 & 330 & 350 & 370 & 390 & 410 & \[
\begin{aligned}
& \hline \text { FL290 } \\
& \text { FL310 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL330 } \\
& \text { FL350 } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { FL370 } \\
& \text { FL390 } \\
& \hline
\end{aligned}
\] & FL410 \\
\hline 4040 & \[
\begin{array}{r}
38751 \\
8.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36325 \\
8.45 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34167 \\
8.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32406 \\
8.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31121 \\
8.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30260 \\
8.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30306 \\
8.57 \\
\hline
\end{array}
\] & 78 & 111 & 176 & 258 \\
\hline 4060 & \[
\begin{array}{r}
38937 \\
8.43 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36498 \\
8.48 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34329 \\
8.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32556 \\
8.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31263 \\
9.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30396 \\
9.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30435 \\
9.00 \\
\hline
\end{array}
\] & 79 & 112 & 177 & 259 \\
\hline 4080 & \[
\begin{array}{r}
39122 \\
8.46 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36671 \\
8.50 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34490 \\
8.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32707 \\
9.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31406 \\
9.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30532 \\
9.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30563 \\
9.02 \\
\hline
\end{array}
\] & 79 & 112 & 177 & 259 \\
\hline 4100 & \[
\begin{array}{r}
39308 \\
8.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36844 \\
8.53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34651 \\
8.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32857 \\
9.02 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31548 \\
9.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30668 \\
9.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30691 \\
9.05 \\
\hline
\end{array}
\] & 79 & 112 & 178 & 260 \\
\hline 4120 & \[
\begin{array}{r}
39493 \\
8.51 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37017 \\
8.56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34812 \\
9.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33007 \\
9.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31691 \\
9.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30803 \\
9.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30819 \\
9.08 \\
\hline
\end{array}
\] & 80 & 113 & 178 & 261 \\
\hline 4140 & \[
\begin{array}{r}
39678 \\
8.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37189 \\
8.58 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\hline 34974 \\
9.03 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33157 \\
9.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31833 \\
9.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30939 \\
9.10 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
30946 \\
9.10 \\
\hline
\end{array}
\] & 80 & 113 & 179 & 261 \\
\hline 4160 & \[
\begin{array}{r}
39864 \\
8.56
\end{array}
\] & \[
\begin{array}{r}
37362 \\
9.01
\end{array}
\] & \[
\begin{array}{r}
35135 \\
9.05 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33307 \\
9.10
\end{array}
\] & \[
\begin{array}{r}
31975 \\
9.13
\end{array}
\] & \[
\begin{array}{r}
31074 \\
9.13
\end{array}
\] & \[
\begin{array}{r}
31074 \\
9.13
\end{array}
\] & 80 & 113 & 179 & 262 \\
\hline 4180 & \[
\begin{array}{r}
40049 \\
8.59
\end{array}
\] & \[
\begin{array}{r}
37534 \\
9.03
\end{array}
\] & \[
\begin{array}{r}
35297 \\
9.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33457 \\
9.13
\end{array}
\] & \[
\begin{array}{r}
32117 \\
9.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31210 \\
9.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31201 \\
9.15 \\
\hline
\end{array}
\] & 81 & 114 & 180 & 262 \\
\hline 4200 & \[
\begin{array}{r}
40234 \\
9.01 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37707 \\
9.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35458 \\
9.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33607 \\
9.15 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32259 \\
9.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31345 \\
9.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31328 \\
9.18 \\
\hline
\end{array}
\] & 81 & 114 & 180 & 263 \\
\hline 4220 & \[
\begin{array}{r}
40419 \\
9.04 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37879 \\
9.08 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35619 \\
9.13 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33757 \\
9.18 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32401 \\
9.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31480 \\
9.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31455 \\
9.21 \\
\hline
\end{array}
\] & 81 & 114 & 181 & 264 \\
\hline 4240 & \[
\begin{array}{r}
40604 \\
9.06 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38051 \\
9.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35780 \\
9.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33907 \\
9.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32543 \\
9.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31615 \\
9.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31582 \\
9.23 \\
\hline
\end{array}
\] & 82 & 115 & 181 & 264 \\
\hline 4260 & \[
\begin{array}{r}
40789 \\
9.09 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38224 \\
9.13
\end{array}
\] & \[
\begin{array}{r}
35941 \\
9.18
\end{array}
\] & \[
\begin{array}{r}
34056 \\
9.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32684 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31750 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31709 \\
9.26 \\
\hline
\end{array}
\] & 82 & 115 & 182 & 265 \\
\hline 4280 & \[
\begin{array}{r}
40974 \\
9.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38396 \\
9.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36102 \\
9.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34206 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32826 \\
9.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31884 \\
9.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31835 \\
9.29 \\
\hline
\end{array}
\] & 82 & 115 & 182 & 266 \\
\hline 4300 & \[
\begin{array}{r}
41158 \\
9.14 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38568 \\
9.19
\end{array}
\] & \[
\begin{array}{r}
36263 \\
9.23 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34355 \\
9.28 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32967 \\
9.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32019 \\
9.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31962 \\
9.31 \\
\hline
\end{array}
\] & 82 & 116 & 183 & 266 \\
\hline 4320 & \[
\begin{array}{r}
41343 \\
9.16 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38740 \\
9.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36424 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34504 \\
9.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33108 \\
9.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32153 \\
9.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32088 \\
9.34 \\
\hline
\end{array}
\] & 83 & 116 & 183 & 267 \\
\hline 4340 & \[
\begin{array}{r}
41528 \\
9.19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
38912 \\
9.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36585 \\
9.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34653 \\
9.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33250 \\
9.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32288 \\
9.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32214 \\
9.36 \\
\hline
\end{array}
\] & 83 & 116 & 184 & 267 \\
\hline 4360 & \[
\begin{array}{r}
41712 \\
9.21 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39084 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36746 \\
9.31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34803 \\
9.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33391 \\
9.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32422 \\
9.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32340 \\
9.39 \\
\hline
\end{array}
\] & 83 & 116 & 184 & 268 \\
\hline 4380 & \[
\begin{array}{r}
41897 \\
9.24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39255 \\
9.29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
36906 \\
9.34
\end{array}
\] & \[
\begin{array}{r}
34952 \\
9.39
\end{array}
\] & \[
\begin{array}{r}
33532 \\
9.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32556 \\
9.42
\end{array}
\] & \[
\begin{array}{r}
32466 \\
9.42
\end{array}
\] & 84 & 117 & 184 & 268 \\
\hline 4400 & \[
\begin{array}{r}
42081 \\
9.26 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39427 \\
9.31
\end{array}
\] & \[
\begin{array}{r}
37067 \\
9.36
\end{array}
\] & \[
\begin{array}{r}
35101 \\
9.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33673 \\
9.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32690 \\
9.44
\end{array}
\] & \[
\begin{array}{r}
32591 \\
9.44
\end{array}
\] & 84 & 117 & 185 & 269 \\
\hline 4420 & \[
\begin{array}{r}
42266 \\
9.29
\end{array}
\] & \[
\begin{array}{r}
39599 \\
9.34
\end{array}
\] & \[
\begin{array}{r}
37227 \\
9.39
\end{array}
\] & \[
\begin{array}{r}
35250 \\
9.44
\end{array}
\] & \[
\begin{array}{r}
33814 \\
9.47
\end{array}
\] & \[
\begin{array}{r}
32824 \\
9.47
\end{array}
\] & \[
\begin{array}{r}
32717 \\
9.47
\end{array}
\] & 84 & 117 & 185 & 269 \\
\hline 4440 & \[
\begin{array}{r}
42450 \\
9.32 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39771 \\
9.36 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37388 \\
9.41 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35399 \\
9.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33954 \\
9.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32958 \\
9.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32842 \\
9.49 \\
\hline
\end{array}
\] & 85 & 118 & 186 & 270 \\
\hline 4460 & \[
\begin{array}{r}
42635 \\
9.34 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
39942 \\
9.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37548 \\
9.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35548 \\
9.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34095 \\
9.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33091 \\
9.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
32967 \\
9.52 \\
\hline
\end{array}
\] & 85 & 118 & 186 & 270 \\
\hline 4480 & \[
\begin{array}{r}
42819 \\
9.37 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40114 \\
9.42 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37708 \\
9.47 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35696 \\
9.52 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34235 \\
9.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33225 \\
9.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33092 \\
9.55 \\
\hline
\end{array}
\] & 85 & 118 & 187 & 271 \\
\hline 4500 & \[
\begin{array}{r}
43004 \\
9.39 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
40285 \\
9.44 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
37869 \\
9.49 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
35845 \\
9.54 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
34375 \\
9.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33358 \\
9.57 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
33217 \\
9.57 \\
\hline
\end{array}
\] & 86 & 119 & 187 & 271 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 20} \\
\hline & CRUISE LEVEL CHART & REV 24 & SEO 105 \\
\hline
\end{tabular}
\(M=0.80\)
C.G. POSITION = \(37.5 \%\)

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{FLIGHT PLANNING} & \multicolumn{2}{|r|}{2.17.30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 20A} \\
\hline & MANAGEMENT OF BUFFET MARGIN & REV 22 & SEQ 200 \\
\hline
\end{tabular}

CRUISE AT 0.3 G BUFFET MARGIN (\(\mathrm{n}=\mathbf{1 . 3} \mathbf{~ g}\))
ALTITUDE
\(R\)

CG POSITION 37.5 \% CLEAN CONFIGURATION
- THE ABOVE GRAPH PROVIDES DIRECT READING INFORMATION REGARDING THE SET OF CONDITIONS (GROSS WEIGHT, ALTITUDE, MACH NUMBER) ASSURING A 0.3 g BUFFET MARGIN (\(\mathrm{n}=1.3 \mathrm{~g}\)).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18 .00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & CONTENTS & REV 35 & SEQ 105 \\
\hline
\end{tabular}
Pages
2.18.10 FOREWORD 1/2
2.18.20 FLIGHT WITHOUT CABIN PRESSURIZATION
General 1
Oxygen Requirements 1
Flight Planning And Execution 2
Fuel And Time To Destination At FL 100 3
Fuel And Time To Destination At FL 140 4
2.18.30 FERRY FLIGHT WITH SLATS FAILED IN THE RETRACTED POSITION
General 1
Max T.O. Weight Determination 1
Take Off Speeds 1
Landing 1
Runway Limitation 2
Second Segment and Brake Energy Limitation 2
2.18.40 FLIGHT WITH GEAR DOWN AND LANDING GEAR DOORS CLOSED
General - Limitations - Procedures -
Performance 1
Determination of Max Take Off Weight 2
Approach Climb Performance 2
Flight Planning 2
Holding 2
Climb 2 engines - Max Climb Thrust 3
Cruise 2 engines 4
" En Route " Gross Flight Path 5
En Route Net Flight Path 6
Holding 2 engines 7
Descent 2 engines 8
2.18.50 OPERATIONS FROM FLUID CONTAMINATED RUNWAY
General 1
Wet Runway - Use of RTOLW chart 2
Take-off performance on contaminated runway 3 to 7
Spray pattern 8
Crosswind 8
Taxiing 8
Landing 8
After landing and parking 8
Example 9/10
2.18.60 INSTALLATION OF DIFFERENT TYPES OFENGINES (NOT APPLICABLE)
2.18.70 EXTENDED RANGE OPERATIONS
General 1
Operator propulsion reliability, modifications status and maintenance 1
Dispatch ConsiderationMMEL1
Communication and navigation facilities 1
Fuel and oil supply 1
Critical scenarios for ETOPS 2
Weather minima 3
Operational Limitations General 3
Area of operation 3
Flight dispatch limitations 4
Diversion during extended range operations 4 to 5
Maximum distance to diversionairport6
ETOPS fuel requirement from Critical
Point to Landing 7 to 11/12
2.18.80 RESERVED
2.18.90 REDUCED VERTICAL SEPARATIONMINIMA (RVSM) (if applicable)
General 1
Operational approval 1
Required equipment 1
Procedures 1-2
2.18.95 REQUIRED NAVIGATION PERFORMANCE (RNP)
General 1
BRNAV in european airspace 1
RNP-10 in oceanic or remote area 1-2
P-RNAV in european terminal procedures 2-3
Take-off 8
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18.00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & CONTENTS & REV 35 & SEO 001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{3}{|c|}{2.18.10} \\
\hline & & PAGE & & \\
\hline & FOREWORD & REV 04 & & 001 \\
\hline
\end{tabular}

This chapter contains information or/and recommendations applicable whenever there is a deviation from the usual flight configuration or when significant environmental conditions have to be taken into account.

The circumstances envisaged in this chapter may have an effect on performance or/and lead to consider an appropriate flight profile for planning purpose.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & FLIGHT WITHOUT CABIN PRESSURIZATION & REV 29 & SEO 110 \\
\hline
\end{tabular}

\section*{1. GENERAL}

A flight without cabin pressurization can be necessary due to aircraft system deficiency (see MEL) or after a decompression in flight. Depending on the cause of the pressure loss or absence, the distance to fly, the topographic conditions and the meteorological conditions the flight level and airspeed will be chosen.

\section*{2. OXYGEN REQUIREMENTS}

\section*{A. CREW MEMBERS}

See FAR 121.329 or JAR-OPS 1-770 as applicable
B. PASSENGER (FAR 121.329 or JAR OPS 1.770)

For flights at cabin pressure altitudes above 10.000 ft , up to and including 14.000 ft , enough oxygen for that part of the flight at those altitudes, that is of more than 30 minutes duration, for \(10 \%\) of the passengers.
For flights at cabin pressure altitudes above 14.000 ft , up to and including 15.000 ft , enough oxygen for that part of the flight at those altitudes for \(30 \%\) of the passengers.
For flights at cabin pressure altitudes above 15.000 ft , enough oxygen for each passenger, is carried during the entire flight at those altitudes.

EMERGENCY DESCENT IN CASE OF RAPID DEPRESSURIZATION
In case of depressurization, oxygen is supplied to passengers through individual modules, the capacity of which is so that the aircraft must descend and remain below the following profile.

Note: Between FL 80 and FL 100, oxygen must be provided for \(2 \%\) of the passengers. This is achieved by portable oxygen. When this is no longer achievable, descend to FL 80. For performance at FL 80/250 kt, use data for FL 100/LRC given in 2.18 .20 p 3 (two engines) or 2.16 .30 P 6 to 8 (one engine) and increase fuel consumption by \(10 \%\).

\section*{3. FLIGHT PLANNING AND EXECUTION}

\section*{A. ALTITUDE}

Flight route planning should consider the above stated restriction in cabin altitude. When ascending above \(9.550 \pm 350 \mathrm{ft}\), the EXCESS CAB ALT warning will be activated. When ascending above 14.000 ft , the passenger oxygen masks will be provided automatically. Therefore the maximum altitude for prolonged flight is recommended as FL 100. The minimum altitude should be selected by respecting :
- the MSA (minimum safe altitude),
- the turbulence which is uncomfortable for passengers and,
- the low OAT which can be a discomfort to passengers when the cabin is ventilated by ram air only.

\section*{B. LONG RANGE CRUISE DATA}

The normal climb charts will be used for the flight planning, along with the long range cruise chart. Take into account a slight increase in specific fuel consumption over the published figures during climb. In case of loss of pressurization, after an emergency descent, use graphs « LRC at FL 100 or 140 ».

\section*{C. AIRSPEED}

In case structural damage was the cause of the decompression, airspeed should be limited to the minimum ; using slats and flaps as necessary to establish low speed conditions. On the other hand, turbulent conditions are uncomfortable for passengers and gust response should be minimized by reducing airspeed.

\section*{D. SYSTEMS}

Failure occurring in flight :
Apply appropriate abnormal or emergency procedure Failure present at dispatch
. If flight with both packs inoperative :
- PACK VALVES 1 and 2 OFF
- RAM AIR . ON
- If both CABIN PRESSURE systems are inoperative or if structural damage exists :
- PACK VALVES 1 and 2 ON
- MAN PRESS . ON
- V/S CTL UP (full open) Check outflow valve fully open.
- RAM AIR . OFF Take-off
Limit the \(A / C\) rate of climb to about \(500 \mathrm{ft} / \mathrm{mn}\) Climb :
The EXCESS CAB ALT warning may occur. Use the ECAM CLR pb. to clear the warning. Descent
Limit the \(\mathrm{A} / \mathrm{C}\) rate of descent to about \(300 \mathrm{ft} / \mathrm{mn}\) Perform the final approach normally.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
A310 \\
FLIGHT CREW OPERATING MANUAL
\end{tabular}} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & FLIGHT WITHOUT CABIN PRESSURIZATION & REV 29 & SEO 170 \\
\hline
\end{tabular}

FUEL AND TIME TO DESTINATION AT FL 100-2 ENGINES
FROM ANY POINT IN CRUISE TO LANDING - LONG RANGE INCLUDING LANDING PROCEDURE \(=360\) KG

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18 .20} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & FLIGHT WITHOUT CABIN PRESSURIZATION & REV 29 & SEO 170 \\
\hline
\end{tabular}

\section*{FUEL AND TIME TO DESTINATION AT FL 140-2 ENGINES FROM ANY POINT IN CRUISE TO LANDING - LONG RANGE INCLUDING LANDING PROCEDURE = \(\mathbf{3 6 0}\) KG}

SPECIAL OPERATIONS
FERRY FLIGHT WITH SLATS FAILED IN THE RETRACTED POSITION

\section*{1. GENERAL}

With the slats failed in the fully retracted position, the airplane may be ferried in the conditions stated below.
However, each airline has to get approval from its national authorities to perform such a flight.

Note: check that kruger flaps have been secured in the retracted position.

\section*{2. MAX T.O. WEIGHT DETERMINATION}
- Take-off must be performed under no wind or headwind conditions.
- Take-off will be performed with flaps \(20^{\circ}\).
- Take-off will be performed with full thrust.
- Using the graphs on next page, enter with runway slope, airport temperature and pressure altitude and determine on one hand the weight limited by the runway and on the other hand the weight limited by second segment, brake energy and tire speed.
- Retain the lowest one as Max T.O. weight.
- No obstacle has been taken into account. In case of obstacles on the climb out flight path, take-off weather conditions will be restricted to VMC.

\section*{Fan thrust deterioration mode (FTDM)}
- determine the corrected temperature with graph page \(3 / 4\), from the pressure altitude and the actual temperature. This corrected temperature must be read from this graph as schematically shown below. For 3000 ft pressure altitude and \(\mathrm{OAT}=35^{\circ} \mathrm{C}\), corrected temperature \(=39^{\circ} \mathrm{C}\).

- use this temperature to determine the weight limited by the runway (graph page 2) and the weight limited by second segment.
- other limitations (tire speed, brakes energy) are determined with actual temperature.
- obstacles : same as normal mode.

\section*{3. TAKE-OFF SPEEDS}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline T/O weight (tons) & 90 & 100 & 110 & 120 & 130 & 140 & 150 \\
\hline V2 (kt IAS) & 137 & 144 & 152 & 158 & 164 & 170 & 176 \\
\hline
\end{tabular}
\(\mathrm{V} 1=\mathrm{V} 2-11 \mathrm{kt}\) if not limited by brake energy. If brake energy limited \(\mathrm{V} 1=\mathrm{V} 2-15 \mathrm{kt}\)
\(\mathrm{VR}=\mathrm{V} 2-4 \mathrm{kt}\)
Safe pitch attitude : \(8^{\circ}\)
Minimum flaps retraction speed : F
Note : The F speed displayed on the speed scale is the minimum flaps retraction speed corresponding to the aircraft configuration.

\section*{4. LANDING}

Refer to abnormal procedure DUAL FLAPS OR SLATS SYS FAULT.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
FERRY FLIGHT WITH SLATS FAILED IN \\
THE RETRACTED POSITION
\end{tabular}} & \multicolumn{2}{|r|}{2.18 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 25 & SEQ 055 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{SPECIAL OPERATIONS FERRY FLIGHT WITH SLATS FAILED IN the retracted position} & \multicolumn{2}{|r|}{2.18 .30} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3/4} \\
\hline & & REV 31 & SEQ 275 \\
\hline
\end{tabular}

FAN THRUST DETERIORATION MODE CORRECTED TEMPERATURE FOR RUNWAY AND SECOND SEGMENT LIMITATIONS

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
FLIGHT WITH GEAR DOWN AND LANDING GEAR DOORS CLOSED
\end{tabular}} & \multicolumn{2}{|r|}{2.18 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & & REV 30 & SEQ 001 \\
\hline
\end{tabular}

\section*{R}

The LG DOWN VMO/MMO SELECTION switch in the \(R\) avionics compartment must be activated.

\section*{Takeoff}

R Takeoff with tail wind is not recommended.
R It is recommended to use Slats 15/Flaps 0 as takeoff R configuration.
\begin{tabular}{ll}
After takeoff & R \\
\hline Manually disarm AUTO BRK as the automatic disarming at & R \\
gear retraction will not occur. & R \\
& R \\
4. PERFORMANCE & R \\
\hline Flying with the landing gear down and the gear doors & R \\
closed has an effect on : & R \\
- Second segment gradient condition, finaltakeoff condition & R \\
and en-route condition. & R \\
The takeoff weight to be retained is the most limiting of & R \\
these three conditions. & R \\
- Go around performance & R \\
Note: Correctionsto approach climb gradient published & R \\
in paragraph 6 ofthis chapter also apply in case & R \\
of in-flight landing gear retraction failure. & R \\
- In flight performance and flight planning & R \\
Note : Corrections to in flight performance and fight & R \\
planning publishedin paragraph 7 ofthis chapter & R \\
plso apply in case of in-flight landing gear & R \\
alstraction failure. & R
\end{tabular}

R 5. DETERMINATION OF MAX TAKE OFF WEIGHT :
Penalties on performance affect :
- 2nd segment gradient condition
- Final take off condition

\section*{A. 2ND SEGMENT GRADIENT CONDITION :}

The RTOLW charts or the quick reference tables give the basic information necessary for normal take off. In view of simplification, a constant weight reduction is applied whatever is the limitation. This weight reduction covers the most critical case presented by obstacle overflying.
\begin{tabular}{|l|c|c|c|}
\hline Take-off configuration & \(15 / 0\) & \(15 / 15\) & \(20 / 20\) \\
\hline Weight reduction & \(19 \%\) & \(15 \%\) & \(11 \%\) \\
\hline
\end{tabular}
method: define for the prevailing conditions on the airport (temperature, pressure, wind runway...) the max take off weight using the RTOLW chart or the quick reference graphs, then apply the above weight reduction.

\section*{B. FINAL TAKE OFF CONDITION :}
- Determine with the following graph the max take off weight associated with the final take off condition.
- Retain the lowest weight according to the most limiting condition (2nd segment or final take off).
- Check that in case of engine failure the terrain on the route can be cleared by 1000 ft (climbing) or 2000 ft (descending), using the en route net flight path on page 6.
Read the speeds corresponding to this weight in the RTOLW chart or in the quick reference tables.

\section*{6. APPROACH CLIMB PERFORMANCE}

Refer to 2.14 for approach climb requirements.
Further decrease the basic limiting weight by:
- \(14 \%\) in configuration \(15 / 15\)
- 12 \% in configuration 20/20

\section*{7. FLIGHT PLANNING}
A. CLIMB

Climb at 240 kt with both engines at maximum climb power setting. The table page 3 gives the time, distance and fuel consumption according to take-off weight.
B. CRUISE/DESCENT

The recommended cruise/descent speed is 240 kt . Page 4 gives cruise table and page 8 gives descent table at this speed.
Obviously, the ceiling on one engine may be a limiting factor, and the choice of the route should reflect this concern.
C. ENGINE FAILURE

In case of engine failure, the airplane will drift down to the ceiling shown on page 5.
The power setting for drift down will be Max Continuous.
The drift down speed below 15000 ft pressure altitude will be:
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Weight \\
(1000 kg)
\end{tabular} & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 \\
\hline \begin{tabular}{l}
Drift Down \\
Speed (kt)
\end{tabular} & 170 & 175 & 180 & 185 & 190 & 195 & 200 & 205 & 210 & 215 & 220 \\
\hline
\end{tabular}

This speed shall be increased by 2 kt per 1000 ft from pressure altitude above 15000 ft .

\section*{D. HOLDING}

Page 7 gives the holding parameters with slats out. This configuration being the less penalizing for holding.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
FLIGHT WITH GEAR DOWN AND LANDING GEAR DOORS CLOSED
\end{tabular}} & \multicolumn{2}{|r|}{2.18 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & & REV 30 & SEQ 170 \\
\hline
\end{tabular}

CLIMB 2 ENGINES - 240 KT - GEAR DOWN
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{CLIMB 2 ENGINES - 240 KT - GEAR DOWN} \\
\hline \multicolumn{5}{|l|}{MAX. CLIMB THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{3}{|l|}{\begin{tabular}{lr}
\hline \multicolumn{1}{l|}{ FROM BRAKES } & RELEASE PT. \\
TIME (MIN) & FUEL (KG) \\
DIST.(NM) & TAS (KT)
\end{tabular}} \\
\hline & WEIGHT & BRAKE & LEAS & 00KG) & & & & & \\
\hline FL & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 \\
\hline 270 & \[
\begin{array}{rr}
19 & 3010 \\
97 & 309
\end{array}
\] & & & & & & & & \\
\hline 250 & \[
\begin{array}{rr}
\hline 14 & 2441 \\
70 & 294
\end{array}
\] & \[
\begin{array}{rr|}
\hline 16 & 2636 \\
76 & 295
\end{array}
\] & \[
\begin{array}{rr}
17 & 2856 \\
84 & 297
\end{array}
\] & \[
\begin{array}{rr}
18 & 3101 \\
92 & 298
\end{array}
\] & \begin{tabular}{rr}
20 & 3389 \\
101 & 299
\end{tabular} & & & & \\
\hline 230 & \[
\begin{array}{rr}
12 & 2078 \\
55 & 282
\end{array}
\] & \[
\begin{array}{rr|}
\hline 12 & 2228 \\
59 & 283
\end{array}
\] & \[
\begin{array}{rr}
13 & 2392 \\
64 & 284
\end{array}
\] & \[
\begin{array}{rr}
14 & 2570 \\
69 & 285
\end{array}
\] & \[
\begin{array}{rr}
16 & 2770 \\
74 & 286
\end{array}
\] & \[
\begin{array}{rr}
17 & 2991 \\
81 & 286
\end{array}
\] & \[
\begin{array}{rr}
18 & 3240 \\
88 & 287
\end{array}
\] & \begin{tabular}{rr}
20 & 3523 \\
97 & 289
\end{tabular} & \\
\hline 220 & \begin{tabular}{rr}
11 & 1933 \\
49 & 277
\end{tabular} & \[
\begin{array}{rr|}
\hline 11 & 2067 \\
52 & 278
\end{array}
\] & \[
\begin{array}{ll}
12 & 2214 \\
\hline
\end{array}
\] & \[
\begin{array}{rr|}
\hline 13 & 2372 \\
61 & 279
\end{array}
\] & \[
\begin{array}{rr}
14 & 2546 \\
65 & 280
\end{array}
\] & \[
\begin{array}{rr}
15 & 2738 \\
71 & 280
\end{array}
\] & \[
\begin{array}{rr}
16 & 2949 \\
76 & 281
\end{array}
\] & \[
\begin{array}{rr}
18 & 3186 \\
83 & 283
\end{array}
\] & \[
\begin{array}{rr}
19 & 3449 \\
91 & 284
\end{array}
\] \\
\hline 200 & \begin{tabular}{rr}
9 & 1685 \\
39 & 267
\end{tabular} & \begin{tabular}{rr}
9 & 1796 \\
\(42 \quad 268\)
\end{tabular} & \begin{tabular}{rr}
10 & 1917 \\
45 & 269
\end{tabular} & \[
\begin{array}{rr}
\hline 11 & 2046 \\
48 & 269
\end{array}
\] & \[
\begin{array}{rr}
12 & 2186 \\
52 & 269
\end{array}
\] & \[
\begin{array}{rr}
12 & 2338 \\
55 & 269
\end{array}
\] & \[
\begin{array}{rr}
13 & 2502 \\
59 & 270
\end{array}
\] & \[
\begin{array}{rr}
\hline 14 & 2681 \\
64 & 271
\end{array}
\] & \[
\begin{array}{rr}
\hline 15 & 2876 \\
69 & 272
\end{array}
\] \\
\hline 180 & \begin{tabular}{rr}
7 & 1475 \\
\(32 \quad 258\)
\end{tabular} & \begin{tabular}{rr}
8 & 1570 \\
34 & 259
\end{tabular} & \[
\begin{array}{rr}
8 & 1671 \\
36 & 259
\end{array}
\] & \[
\begin{array}{rr}
9 & 1779 \\
39 & 260
\end{array}
\] & \begin{tabular}{rr}
10 & 1895 \\
42 & 260
\end{tabular} & \[
\begin{array}{rr}
10 & 2020 \\
44 & 260
\end{array}
\] & \[
\begin{array}{rr}
\hline 11 & 2154 \\
47 & 260
\end{array}
\] & \[
\begin{array}{rr}
12 & 2299 \\
51 & 261
\end{array}
\] & \[
\begin{array}{rr}
12 & 2454 \\
54 & 262
\end{array}
\] \\
\hline 160 & \[
\begin{array}{rr}
6 & 1292 \\
26 & 249
\end{array}
\] & \[
\begin{array}{rr}
7 & 1372 \\
28 & 250
\end{array}
\] & \begin{tabular}{rr}
7 & 1458 \\
30 & 250
\end{tabular} & \[
\begin{array}{rr}
8 & 1550 \\
32 & 250
\end{array}
\] & \[
\begin{array}{rr}
\hline 8 & 1648 \\
34 & 250
\end{array}
\] & \[
\begin{array}{rr}
9 & 1753 \\
36 & 250
\end{array}
\] & \[
\begin{array}{rr}
9 & 1864 \\
38 & 251
\end{array}
\] & \[
\begin{array}{rr}
\hline 10 & 1984 \\
41 & 251
\end{array}
\] & \[
\begin{array}{rr}
10 & 2111 \\
43 & 253
\end{array}
\] \\
\hline 140 & \[
\begin{array}{rr}
5 & 1125 \\
21 & 240
\end{array}
\] & \[
\begin{array}{rr}
6 & 1194 \\
23 & 241
\end{array}
\] & \[
\begin{array}{rr}
6 & 1267 \\
24 & 241
\end{array}
\] & \[
\begin{array}{rr}
6 & 1345 \\
26 & 241
\end{array}
\] & \[
\begin{array}{rr|}
\hline 7 & 1428 \\
27 & 241 \\
\hline
\end{array}
\] & \[
\begin{array}{rr}
7 & 1517 \\
29 & 241
\end{array}
\] & \[
\begin{array}{rr}
8 & 1611 \\
31 & 241
\end{array}
\] & \[
\begin{array}{rr}
8 & 1712 \\
33 & 242
\end{array}
\] & \[
\begin{array}{rr}
9 & 1818 \\
35 & 243
\end{array}
\] \\
\hline 120 & \[
\begin{array}{rr}
\hline 4 & 971 \\
17 & 230 \\
\hline
\end{array}
\] & \begin{tabular}{rr}
5 & 1030 \\
18 & 231
\end{tabular} & \[
\begin{array}{rr}
5 & 1092 \\
19 & 232
\end{array}
\] & \begin{tabular}{rr}
5 & 1158 \\
21 & 232
\end{tabular} & \begin{tabular}{rr}
6 & 1228 \\
\(22 \quad 232\)
\end{tabular} & \[
\begin{array}{rr}
6 & 1303 \\
23 & 231
\end{array}
\] & \[
\begin{array}{rr}
6 & 1382 \\
25 & 231
\end{array}
\] & \begin{tabular}{rr}
7 & 1467 \\
26 & 232
\end{tabular} & \[
\begin{array}{rr}
7 & 1556 \\
28 & 234 \\
\hline
\end{array}
\] \\
\hline 100 & \begin{tabular}{rr}
4 & 826 \\
14 & 220
\end{tabular} & \[
\begin{array}{rl}
\hline 4 & 875 \\
14 & 221
\end{array}
\] & \[
\begin{array}{rr}
4 & 927 \\
15 & 221
\end{array}
\] & \begin{tabular}{rr}
4 & 982 \\
16 & 222
\end{tabular} & \[
\begin{array}{rr}
\hline 5 & 1041 \\
17 & 221
\end{array}
\] & \begin{tabular}{rr}
5 & 1104 \\
18 & 221
\end{tabular} & \[
\begin{array}{rr}
5 & 1170 \\
19 & 221
\end{array}
\] & \[
\begin{array}{rr}
6 & 1241 \\
20 & 222
\end{array}
\] & \[
\begin{array}{rr}
\hline 6 & 1315 \\
22 & 223
\end{array}
\] \\
\hline 50 & \[
\begin{array}{ll}
2 & 487 \\
6 & 183
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 514 \\
7 & 184
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 544 \\
7 & 185
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 576 \\
7 & 185
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 610 \\
8 & 184
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 646 \\
8 & 183
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 685 \\
9 & 183
\end{array}
\] & \[
\begin{array}{ll}
\hline 3 & 727 \\
9 & 185
\end{array}
\] & \[
\begin{array}{rl}
\hline 3 & 770 \\
10 & 187
\end{array}
\] \\
\hline 15 & \[
\begin{array}{ll}
\hline 1 & 262 \\
2 & 121
\end{array}
\] & \[
\begin{array}{ll}
1 & 276 \\
2 & 123
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 291 \\
2 & 123
\end{array}
\] & \[
\begin{array}{ll}
1 & 309 \\
3 & 123
\end{array}
\] & \[
\begin{array}{ll}
1 & 327 \\
3 & 121
\end{array}
\] & \[
\begin{array}{ll}
1 & 348 \\
3 & 119
\end{array}
\] & \[
\begin{array}{ll}
\hline 1 & 370 \\
3 & 119
\end{array}
\] & \[
\begin{array}{ll}
\hline 2 & 394 \\
3 & 122
\end{array}
\] & \[
\begin{array}{ll}
2 & 419 \\
3 & 125
\end{array}
\] \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 21101000E5KG270 00185900021.0500 .0300 .0101240 .000 .000 .0000
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
FLIGHT WITH GEAR DOWN AND LANDING GEAR DOORS CLOSED
\end{tabular}} & \multicolumn{2}{|r|}{2.18.40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 21 & SEQ 160 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{17}{|c|}{CRUISE 2 ENGINES - 240 KT - GEAR DOWN} \\
\hline \multicolumn{9}{|l|}{MAX. CRUISE THRUST LIMITS ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{4}{|c|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{4}{|l|}{\begin{tabular}{lr}
EGT \({ }^{\circ} \mathrm{C}\) & MACH \\
EPR & IAS \\
KG/H/ENG & TAS \\
NM/1000KG & \\
\hline
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { WEIGHT } \\
& (1000 \mathrm{KG}) \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{FL100} & \multicolumn{2}{|l|}{FL150} & \multicolumn{2}{|l|}{FL170} & \multicolumn{2}{|l|}{FL190} & \multicolumn{2}{|l|}{FL210} & \multicolumn{2}{|l|}{FL230} & \multicolumn{2}{|l|}{FL250} & \multicolumn{2}{|l|}{FL270} \\
\hline 95 & \[
\begin{aligned}
& \hline 355 \\
& 1.155 \\
& 3216 \\
& 43.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.434 \\
240 \\
277
\end{array}
\] & \[
\begin{aligned}
& \hline 350 \\
& 1.201 \\
& 3145 \\
& 47.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.477 \\
240 \\
299
\end{array}
\] & \[
\begin{aligned}
& \hline 350 \\
& 1.225 \\
& 3137 \\
& 49.1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.496 \\
240 \\
308
\end{array}
\] & \[
\begin{aligned}
& \hline 355 \\
& 1.253 \\
& 3145 \\
& 50.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 240 \\
& 318
\end{aligned}
\] & \[
\begin{aligned}
& 362 \\
& 1.286 \\
& 3169 \\
& 51.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 371 \\
& 1.327 \\
& 3202 \\
& 52.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline 558 \\
& 240 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 382 \\
& 1.378 \\
& 3254 \\
& 53.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .581 \\
& 240 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& 395 \\
& 1.443 \\
& 3316 \\
& 54.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .605 \\
& 240 \\
& 361
\end{aligned}
\] \\
\hline 100 & \[
\begin{aligned}
& 356 \\
& 1.158 \\
& 3247 \\
& 42.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.434 \\
240 \\
277
\end{array}
\] & \[
\begin{aligned}
& 352 \\
& 1.205 \\
& 3180 \\
& 47.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.477 \\
240 \\
299
\end{array}
\] & \[
\begin{aligned}
& 352 \\
& 1.230 \\
& 3171 \\
& 48.6 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.496 \\
240 \\
308
\end{array}
\] & \[
\begin{aligned}
& \hline 357 \\
& 1.258 \\
& 3181 \\
& 50.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.516 \\
240 \\
318
\end{array}
\] & \[
\begin{aligned}
& 364 \\
& 1.292 \\
& 3207 \\
& 51.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 373 \\
& 1.334 \\
& 3241 \\
& 52.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.558 \\
240 \\
339
\end{array}
\] & \[
\begin{aligned}
& \hline 385 \\
& 1.387 \\
& 3301 \\
& 52.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .581 \\
& 240 \\
& 350
\end{aligned}
\] & \[
\begin{aligned}
& 399 \\
& 1.456 \\
& 3366 \\
& 53.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .605 \\
& 240 \\
& 361
\end{aligned}
\] \\
\hline 105 & \[
\begin{aligned}
& \hline 358 \\
& 1.161 \\
& 3280 \\
& 42.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .434 \\
& 240 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& 354 \\
& 1.210 \\
& 3217 \\
& 46.5 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.477 \\
240 \\
299
\end{array}
\] & \[
\begin{aligned}
& 354 \\
& 1.235 \\
& 3210 \\
& 48.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.496 \\
240 \\
308
\end{array}
\] & \[
\begin{aligned}
& \hline 359 \\
& 1.264 \\
& 3222 \\
& 49.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 240 \\
& 318
\end{aligned}
\] & 366
1.299
3249
50.5 & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 376 \\
& 1.342 \\
& 3286 \\
& 51.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .558 \\
& 240 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 389 \\
& 1.397 \\
& 3355 \\
& 52.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .581 \\
& 240 \\
& 350
\end{aligned}
\] & & \\
\hline 110 & \[
\begin{aligned}
& \hline 359 \\
& 1.165 \\
& 3316 \\
& 41.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.434 \\
240 \\
277
\end{array}
\] & \[
\begin{aligned}
& 356 \\
& 1.214 \\
& 3258 \\
& 45.9 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.477 \\
240 \\
299
\end{array}
\] & \[
\begin{aligned}
& 356 \\
& 1.240 \\
& 3250 \\
& 47.4 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.496 \\
240 \\
308
\end{array}
\] & \[
\begin{aligned}
& 361 \\
& 1.270 \\
& 3266 \\
& 48.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 240 \\
& 318
\end{aligned}
\] & \begin{tabular}{l}
369 \\
1.306 \\
3295 \\
49.8 \\
\hline 372
\end{tabular} & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 379 \\
& 1.351 \\
& 3333 \\
& 50.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .558 \\
& 240 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 392 \\
& 1.409 \\
& 3409 \\
& 51.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .581 \\
& 240 \\
& 350
\end{aligned}
\] & & \\
\hline 115 & \[
\begin{aligned}
& \hline 360 \\
& 1.168 \\
& 3354 \\
& 41.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .434 \\
& 240 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& 358 \\
& 1.219 \\
& 3302 \\
& 45.3
\end{aligned}
\] & \[
\begin{array}{r}
.477 \\
240 \\
299
\end{array}
\] & \[
\begin{aligned}
& 359 \\
& 1.246 \\
& 3294 \\
& 46.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .496 \\
& 240 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& 364 \\
& 1.277 \\
& 3313 \\
& 48.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.516 \\
240 \\
318
\end{array}
\] & \[
\begin{aligned}
& 372 \\
& 1.315 \\
& 3345 \\
& 49.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 383 \\
& 1.361 \\
& 3393 \\
& 49.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .558 \\
& 240 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& \hline 396 \\
& 1.423 \\
& 3469 \\
& 50.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .581 \\
& 240 \\
& 350
\end{aligned}
\] & & \\
\hline 120 & \[
\begin{aligned}
& \hline 362 \\
& 1.172 \\
& 3396 \\
& 40.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.434 \\
240 \\
277
\end{array}
\] & \[
\begin{aligned}
& \hline 360 \\
& 1.225 \\
& 3349 \\
& 44.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .477 \\
& 240 \\
& 299
\end{aligned}
\] & \[
\begin{aligned}
& \hline 361 \\
& 1.252 \\
& 3343 \\
& 46.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .496 \\
& 240 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& \hline 366 \\
& 1.285 \\
& 3364 \\
& 47.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 240 \\
& 318
\end{aligned}
\] & \[
\begin{aligned}
& \hline 375 \\
& 1.324 \\
& 3399 \\
& 48.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 387 \\
& 1.372 \\
& 3455 \\
& 49.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .558 \\
& 240 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 400 \\
& 1.437 \\
& 3532 \\
& 49.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .581 \\
& 240 \\
& 350
\end{aligned}
\] & & \\
\hline 125 & \[
\begin{aligned}
& \hline 364 \\
& 1.176 \\
& 3440 \\
& 40.3 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .434 \\
& 240 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& \hline 362 \\
& 1.231 \\
& 3399 \\
& 44.0 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .477 \\
& 240 \\
& 299
\end{aligned}
\] & \[
\begin{aligned}
& \hline 363 \\
& 1.259 \\
& 3395 \\
& 45.4 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .496 \\
& 240 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& \hline 369 \\
& 1.292 \\
& 3417 \\
& 46.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 240 \\
& 318
\end{aligned}
\] & \[
\begin{aligned}
& \hline 379 \\
& 1.333 \\
& 3456 \\
& 47.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 391 \\
& 1.384 \\
& 3521 \\
& 48.1 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .558 \\
& 240 \\
& 339
\end{aligned}
\] & \[
\begin{aligned}
& 404 \\
& 1.453 \\
& 3601 \\
& 48.5 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .581 \\
& 240 \\
& 350
\end{aligned}
\] & & \\
\hline 130 & \[
\begin{aligned}
& \hline 366 \\
& 1.181 \\
& 3487 \\
& 39.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .434 \\
& 240 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& 365 \\
& 1.237 \\
& 3452 \\
& 43.3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.477 \\
240 \\
299
\end{array}
\] & \[
\begin{aligned}
& 366 \\
& 1.266 \\
& 3451 \\
& 44.7 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.496 \\
240 \\
308
\end{array}
\] & \[
\begin{aligned}
& \hline 372 \\
& 1.301 \\
& 3475 \\
& 45.8 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.516 \\
240 \\
318
\end{array}
\] & \[
\begin{aligned}
& \hline 383 \\
& 1.343 \\
& 3516 \\
& 46.7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & 395
1.396
3591
47.1 & \[
\begin{aligned}
& .558 \\
& 240 \\
& 339
\end{aligned}
\] & & & & \\
\hline 135 & \[
\begin{aligned}
& 367 \\
& 1.186 \\
& 3535 \\
& 39.2 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.434 \\
240 \\
277
\end{array}
\] & \[
\begin{aligned}
& 367 \\
& 1.244 \\
& 3507 \\
& 42.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .477 \\
& 240 \\
& 299
\end{aligned}
\] & \[
\begin{aligned}
& \hline 369 \\
& 1.274 \\
& 3508 \\
& 43.9 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .496 \\
& 240 \\
& 308
\end{aligned}
\] & \[
\begin{aligned}
& \hline 376 \\
& 1.310 \\
& 3536 \\
& 45.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.516 \\
240 \\
318
\end{array}
\] & \[
\begin{aligned}
& \hline 387 \\
& 1.353 \\
& 3580 \\
& 45.8 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& \hline 399 \\
& 1.410 \\
& 3661 \\
& 46.2 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 558 \\
& 240 \\
& 339
\end{aligned}
\] & & & & \\
\hline 140 & \[
\begin{aligned}
& 369 \\
& 1.190 \\
& 3586 \\
& 38.7
\end{aligned}
\] & \[
\begin{aligned}
& .434 \\
& 240 \\
& 277
\end{aligned}
\] & \[
\begin{aligned}
& 370 \\
& 1.250 \\
& 3564 \\
& 41.9
\end{aligned}
\] & \[
\begin{aligned}
& .477 \\
& 240 \\
& 299
\end{aligned}
\] & \[
\begin{aligned}
& 372 \\
& 1.282 \\
& 3568 \\
& 43.2
\end{aligned}
\] & \[
\begin{array}{r}
.496 \\
240 \\
308
\end{array}
\] & \[
\begin{aligned}
& 380 \\
& 1.319 \\
& 3600 \\
& 44.2
\end{aligned}
\] & \[
\begin{aligned}
& .516 \\
& 240 \\
& 318
\end{aligned}
\] & \[
\begin{aligned}
& 391 \\
& 1.365 \\
& 3653 \\
& 44.9
\end{aligned}
\] & \[
\begin{aligned}
& .536 \\
& 240 \\
& 328
\end{aligned}
\] & \[
\begin{aligned}
& 403 \\
& 1.426 \\
& 3735 \\
& 45.3
\end{aligned}
\] & \[
\begin{aligned}
& .558 \\
& 240 \\
& 339
\end{aligned}
\] & & & & \\
\hline
\end{tabular}

04 P-05 A310-324-01 PW4152 12101000E5KG270 00185900011.0 .0 .0001240 .000 .000 .0000
FCOM-B0-02-18-40-004-160
Per \(10^{\circ} \mathrm{C}\) above ISA subtract \(0.2 \mathrm{NM} / \mathrm{t}\) to specific range.

\section*{SPECIAL OPERATIONS}
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{3}{|c|}{2.18 .40} \\
\hline \multicolumn{2}{|c|}{ PAGE 5 } & \\
\hline \multicolumn{2}{|c|}{ REV 31 } & SEO 160 \\
\hline
\end{tabular}

\section*{ONE ENGINE GROSS CEILINGS \\ DRIFT DOWN SPEED ANTI-ICING OFF - ONE AIR CONDITIONING PACK ON MAX CONTINUOUS THRUST}
C.G. POSITION = 27 \%
R NOMINAL THRUST

\begin{tabular}{|l|c|c|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & ISA & ISA +20 \\
\hline ENG ANTI-ICE ON & -250 ft & -400 ft \\
\hline TOTAL ANTI-ICE ON & -800 ft & -1200 ft \\
\hline
\end{tabular}
R FAN THRUST DETERIORATION MODE :
R Ceiling value must be decreased by 800 ft .
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
FLIGHT WITH GEAR DOWN AND LANDING GEAR DOORS CLOSED
\end{tabular}} & \multicolumn{2}{|r|}{2.18 .40} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & & REV 31 & SEQ 160 \\
\hline & « EN ROUTE » NET FLIGHT PATH CONDITIONING ON - ANTI ICING T - 1 ENGINE AT MAX CONTINU & & \\
\hline
\end{tabular}
C.G. \(=18 \%\)

ISA
NOMINAL THRUST

R FAN THRUST DETERIORATION MODE
R The En-Route Net flight path must be decreased by 800 ft .

SPECIAL OPERATIONS
FLIGHT WITH GEAR DOWN AND
LANDING GEAR DOORS CLOSED
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.18 .40} \\
\hline \multicolumn{2}{|c|}{ PAGE 7 } & \\
\hline \multicolumn{2}{|c|}{ REV 24 } & SEO 060 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{HOLDING 2 ENGINES-GEAR DOWN} & \multicolumn{2}{|l|}{S-Speed} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
MAX. CRUISE THRUST LIMITS CONFIGURATION 15/0 \\
ECON. AIR CONDITIONING \\
ANTI-ICING OFF
\end{tabular}} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
C G=27.0 \%
\end{gathered}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { EPR } \\
& \text { FF (KG/H/ENG) }
\end{aligned}
\]} \\
\hline \begin{tabular}{l}
WEIGHT \\
(1000KG)
\end{tabular} & FL 15 & FL 50 & FL100 & FL120 & FL140 & FL160 & FL180 & FL200 \\
\hline 140 & \[
\begin{array}{r}
1.134 \\
3429
\end{array}
\] & \[
\begin{array}{r}
1.155 \\
3405
\end{array}
\] & \[
\begin{array}{r}
1.196 \\
3354
\end{array}
\] & \[
\begin{array}{r}
1.218 \\
3360
\end{array}
\] & \[
\begin{array}{r}
1.243 \\
3367
\end{array}
\] & \[
\begin{array}{r}
1.272 \\
3366
\end{array}
\] & \[
\begin{array}{r}
1.306 \\
3369
\end{array}
\] & \[
\begin{array}{r}
1.345 \\
3386
\end{array}
\] \\
\hline 135 & \[
\begin{array}{r}
\hline 1.129 \\
3296
\end{array}
\] & \[
\begin{array}{r}
\hline 1.149 \\
3275
\end{array}
\] & \[
\begin{array}{r}
1.187 \\
3227
\end{array}
\] & \[
\begin{array}{r}
\hline 1.207 \\
3218
\end{array}
\] & \[
\begin{array}{r}
1.231 \\
3231
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.258 \\
3231
\end{array}
\] & \[
\begin{array}{r}
\hline 1.290 \\
3230
\end{array}
\] & \[
\begin{array}{r}
1.327 \\
3241
\end{array}
\] \\
\hline 130 & \[
\begin{array}{r}
\hline 1.123 \\
3166
\end{array}
\] & \[
\begin{array}{r}
\hline 1.142 \\
3143
\end{array}
\] & \[
\begin{array}{r}
1.179 \\
3101
\end{array}
\] & \[
\begin{array}{r}
1.197 \\
3083
\end{array}
\] & \[
\begin{array}{r}
1.219 \\
3091
\end{array}
\] & \[
\begin{array}{r}
1.245 \\
3097
\end{array}
\] & \[
\begin{array}{r}
1.275 \\
3096
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.309 \\
3100 \\
\hline
\end{array}
\] \\
\hline 125 & \[
\begin{array}{r}
\hline 1.118 \\
3044
\end{array}
\] & \[
\begin{array}{r}
1.136 \\
3019
\end{array}
\] & \[
\begin{array}{r|}
\hline 1.170 \\
2983
\end{array}
\] & \[
\begin{array}{r}
1.187 \\
2966
\end{array}
\] & \[
\begin{array}{r}
1.208 \\
2958
\end{array}
\] & \[
\begin{array}{r}
1.233 \\
2970
\end{array}
\] & \[
\begin{array}{r}
\hline 1.260 \\
2969
\end{array}
\] & \[
\begin{array}{r}
1.292 \\
2969
\end{array}
\] \\
\hline 120 & \[
\begin{array}{r}
\hline 1.113 \\
2911
\end{array}
\] & \[
\begin{array}{r}
1.130 \\
2885
\end{array}
\] & \[
\begin{array}{r}
1.162 \\
2854
\end{array}
\] & \[
\begin{array}{r}
\hline 1.178 \\
2837
\end{array}
\] & \[
\begin{array}{r}
1.196 \\
2820
\end{array}
\] & \[
\begin{array}{r}
1.219 \\
2827
\end{array}
\] & \[
\begin{array}{r}
1.246 \\
2833
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.276 \\
2832
\end{array}
\] \\
\hline 115 & \[
\begin{array}{r}
\hline 1.107 \\
2790
\end{array}
\] & \[
\begin{array}{r}
1.124 \\
2766
\end{array}
\] & \[
\begin{array}{r}
1.154 \\
2738
\end{array}
\] & \[
\begin{array}{r}
1.169 \\
2722
\end{array}
\] & \[
\begin{array}{r}
1.186 \\
2705
\end{array}
\] & \[
\begin{array}{r}
1.207 \\
2697
\end{array}
\] & \[
\begin{array}{r}
1.232 \\
2709
\end{array}
\] & \[
\begin{array}{r}
1.260 \\
2708
\end{array}
\] \\
\hline 110 & \[
\begin{array}{r}
\hline 1.101 \\
2658
\end{array}
\] & \[
\begin{array}{r}
\hline 1.118 \\
2636
\end{array}
\] & \[
\begin{array}{r}
1.146 \\
2609
\end{array}
\] & \[
\begin{array}{r}
\hline 1.160 \\
2596
\end{array}
\] & \[
\begin{array}{r}
\hline 1.176 \\
2581
\end{array}
\] & \[
\begin{array}{r}
1.195 \\
2565
\end{array}
\] & \[
\begin{array}{r}
1.218 \\
2569
\end{array}
\] & \[
\begin{array}{r}
1.244 \\
2576
\end{array}
\] \\
\hline 105 & \[
\begin{array}{r}
1.095 \\
2540
\end{array}
\] & \[
\begin{array}{r}
1.112 \\
2515
\end{array}
\] & \[
\begin{array}{r}
1.139 \\
2486
\end{array}
\] & \[
\begin{array}{r}
1.152 \\
2477
\end{array}
\] & \[
\begin{array}{r}
1.167 \\
2462
\end{array}
\] & \[
\begin{array}{r}
1.184 \\
2447
\end{array}
\] & \[
\begin{array}{r}
1.204 \\
2437
\end{array}
\] & \[
\begin{array}{r|}
\hline 1.229 \\
2448
\end{array}
\] \\
\hline 100 & \[
\begin{array}{r}
\hline 1.089 \\
2427
\end{array}
\] & \[
\begin{array}{r}
1.106 \\
2393
\end{array}
\] & \[
\begin{array}{r}
1.131 \\
2364
\end{array}
\] & \[
\begin{array}{r}
\hline 1.144 \\
2356
\end{array}
\] & \[
\begin{array}{r}
1.157 \\
2346
\end{array}
\] & \[
\begin{array}{r}
1.173 \\
2331
\end{array}
\] & \[
\begin{array}{r}
1.192 \\
2317
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.214 \\
2317
\end{array}
\] \\
\hline 95 & \[
\begin{array}{r}
\hline 1.083 \\
2304
\end{array}
\] & \[
\begin{array}{r}
1.099 \\
2262
\end{array}
\] & \[
\begin{array}{r}
1.124 \\
2235
\end{array}
\] & \[
\begin{array}{r}
1.135 \\
2225
\end{array}
\] & \[
\begin{array}{r}
\hline 1.148 \\
2218
\end{array}
\] & \[
\begin{array}{r}
1.163 \\
2206
\end{array}
\] & \[
\begin{array}{r}
\hline 1.180 \\
2192
\end{array}
\] & \[
\begin{array}{r}
1.199 \\
2179
\end{array}
\] \\
\hline 90 & \[
\begin{array}{r}
\hline 1.078 \\
2195
\end{array}
\] & \[
\begin{array}{r}
1.092 \\
2152
\end{array}
\] & \[
\begin{array}{r}
1.117 \\
2118
\end{array}
\] & \[
\begin{array}{r}
\hline 1.128 \\
2108
\end{array}
\] & \[
\begin{array}{r}
1.139 \\
2100
\end{array}
\] & \[
\begin{array}{r}
1.153 \\
2092
\end{array}
\] & \[
\begin{array}{r}
1.169 \\
2079
\end{array}
\] & \[
\begin{array}{|r|}
\hline 1.187 \\
2066
\end{array}
\] \\
\hline
\end{tabular}

03 H-04 A310-324-01 PW4152 14101000E5KG270 001859015011.30 .00 .0001209 .0000 .0000 .0000 FCOM-BO-02-18-40-007-060

FLIGHT WITH GEAR DOWN AND
LANDING GEAR DOORS CLOSED
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{2.18 .40} \\
\hline \multicolumn{2}{|c|}{ PAGE 8 } & \\
\hline \multicolumn{2}{|c|}{ REV 21 } & SEO 060 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{10}{|c|}{DESCENT 2 ENGINES - 240 KT - GEAR DOWN} \\
\hline \multicolumn{3}{|l|}{IDLE THRUST ECON. AIR CONDITIONING ANTI-ICING OFF} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { ISA } \\
\text { CG }=27.0 \%
\end{gathered}
\]} & \multicolumn{5}{|l|}{MAX CABIN RATE OF DESCENT -350 FT/M} \\
\hline \[
\begin{gathered}
\hline \text { WEIGHT } \\
\text { (1000KG) }
\end{gathered}
\] & \multicolumn{4}{|c|}{110} & \multicolumn{4}{|c|}{130} & \\
\hline FL & TIME
(MIN) & FUEL (KG) & \[
\begin{aligned}
& \hline \text { DIST. } \\
& \text { (NM) }
\end{aligned}
\] & EPR & TIME (MIN) & \[
\begin{aligned}
& \hline \text { FUEL } \\
& \text { (KGG) }
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { DIST. } \\
& \text { (NM) }
\end{aligned}
\] & EPR & \[
\begin{aligned}
& \text { IAS } \\
& \text { (KT) }
\end{aligned}
\] \\
\hline 270 & 7.8 & 141 & 38 & IDLE & 8.6 & 157 & 42 & IDLE & 240 \\
\hline 250 & 7.2 & 135 & 35 & IDLE & 8.0 & 150 & 39 & IDLE & 240 \\
\hline 240 & 6.9 & 132 & 33 & IDLE & 7.7 & 147 & 37 & IDLE & 240 \\
\hline 220 & 6.4 & 125 & 30 & IDLE & 7.1 & 140 & 33 & IDLE & 240 \\
\hline 200 & 5.8 & 118 & 27 & IDLE & 6.5 & 132 & 30 & IDLE & 240 \\
\hline 180 & 5.2 & 110 & 24 & IDLE & 5.8 & 123 & 27 & IDLE & 240 \\
\hline 160 & 4.6 & 102 & 21 & IDLE & 5.1 & 114 & 23 & IDLE & 240 \\
\hline 140 & 4.0 & 93 & 18 & IDLE & 4.5 & 104 & 20 & IDLE & 240 \\
\hline 120 & 3.4 & 83 & 15 & IDLE & 3.8 & 93 & 17 & IDLE & 240 \\
\hline 100 & 2.8 & 72 & 12 & IDLE & 3.1 & 80 & 14 & IDLE & 240 \\
\hline 50 & 1.2 & 34 & 5 & IDLE & 1.3 & 38 & 6 & IDLE & 240 \\
\hline 15 & . 0 & 0 & 0 & IDLE & . 0 & 0 & 0 & IDLE & 240 \\
\hline
\end{tabular}

SPECIAL OPERATIONS
OPERATIONS FROM FLUID CONTAMINATED RUNWAY

\section*{1. GENERAL}

This section presents the recommandations of Airbus Industrie for operations from wetrunways or from runways which are covered with contaminants such as standing water, slush, or snow.
The performance data are not certified and shall be considered as guidance only.
Note : When no RTOLW chart specifically computed for the relevant wet or contaminated runway condition is available, the conservative performance data published in this section can be used.

\section*{CAUTION}

Do not takeoff on icy runway.

\section*{2. DEFINITION}

Damp : A runway is damp when it is not perfectly dry, but when the water which is on it does not give it a shiny appearance.
Wet: A runway is considered as wet when it has a shiny appearance due to a thin layer of water on it, but when this layer does not exceed 3 mm depth, not leading to a risk of hydroplaning.
Standing water: is caused by heavy rainfall and/or insufficient runway drainage. Its depth is more than 3 mm .
Slush : is water saturated with snow, which spatters when stepping firmly on it. It is encountered at temperatures around \(5^{\circ} \mathrm{C}\) and its density is approximately \(0.85 \mathrm{Kg} / \mathrm{liter}\) (\(7.1 \mathrm{lbs} / \mathrm{US}\) GAL.)
Wet snow : is a condition where, if compacted by hand, snow will stick together and tend to form a snowball. Its density is approximately 0.4 \(\mathrm{Kg} /\) liter (\(3.35 \mathrm{lbs} / \mathrm{US}\) GAL)
Dry snow : is a condition where snow can be blown if loose, or if compacted by hand, will fall apart again upon release. Its density is approximately \(0.2 \mathrm{Kg} /\) liter (\(1.7 \mathrm{lbs} / \mathrm{US}\) GAL)
Compacted snow: is a condition where snow has been compressed (atypical friction coefficient is 0.2)
ICY: is a condition where the friction coefficient is 0.05 or below.
The performance given in this chapter have been divided into two categories which are distincted by the depth of the contaminant. For each of these categories it has been defined an equivalent depth of contaminant for which the performance deterioration is the same.
(1) WET RUNWAY and EQUIVALENT (see performance in paragraph 4).
Equivalent of wet runway is runway covered with less than:
- 2 mm (0.08 inch) slush
- \(3 \mathrm{~mm}(0.12\) inch) standing water
- 4 mm (0.16 inch) wet snow
- 15 mm (0.59 inch) dry snow
(2) CONTAMINATED RUNWAY (see performance in paragraph 5)
A linear equivalence between depth of slush and snow has been defined :
- 12.7 mm (\(1 / 2\) inch) wet snow is equivalent to 6.3 mm (1/4 inch) slush
- 25.4 mm (1 inch) wet snow is equivalent to \(12.7 \mathrm{~mm}(1 / 2\) inch) slush
- 50.8 mm (2 inches) dry snow is equivalent to 6.3 mm (1/4 inch) slush.
- 101.6 mm (4 inches) dry snow is equivalent to 12.7 mm (\(1 / 2\) inch) slush

Notes: 1-On a damp runway we consider that there is no performance limitation.
2 - It is not recommended to takeoff from a runway covered with more than 4 inches of dry snow or 1 inch of wet snow.

\section*{3. OPERATIONAL CONDITIONS}

Performance data as published in this section are based on the following assumptions :
- one engine failed at \(\mathrm{V}_{1}\)
- uniform depth and density of the contaminant layer over the complete length of the runway
- antiskid and ground spoilers are operative
- friction coefficient based on studies and checked by actual tests
- 15 ft screen height instead of 35 ft at the end of TOD
In addition, for contaminated runways only :
- drag due to rolling resistance of the wheels
- drag due to spray on airframe and gears
- one engine with reverse thrust for deceleration phase
- maximum take off thrust is used.

Notes : 1 - In case of inoperative system, refer to MEL dispatch conditions.
2 - In case of obstacles the net flight path overflies them by 15 ft instead of 35 ft .

\section*{4. TAKEOFF PERFORMANCE DETERMINATION}

The determination of maximum takeoff weight (or flex temperature on wet runway and equivalent only) is based on the use of the RTOLW charts. Apply the corresponding instructions given in the following tables.
Notes: 1 - Apply all the corrections (QNH, bleed) as usual.
2 - The method is based on the use of the RTOLW
charts estab/ished at optimum \(V_{2} / V\) s. In case of fix \(V_{2} / V s\), the results may be slightly different.

SPECIAL OPERATIONS

\section*{WET RUNWAY - USE OF RTOLW CHART}

R A. Determine maximum takeoff weight or flexible temperature and associated takeoff speeds on dry runway.
R B. Apply the following decrements to maximum takeoff weight or flexible temperature and to takeoff speeds versus takeoff configuration and runway length :
\(\mathrm{R} \quad\) Note: The speed decrements must be applied even if the actual takeoff weight is lower than the maximum takeoff weight, and whatever the thrust used for takeoff (maximum or flexible).
1. Braking with reverse thrust:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TAKEOFF CONFIGURATION & \multicolumn{3}{|c|}{SLATS 15/FLAPS 0} & \multicolumn{3}{|r|}{SLATS 15/FLAPS 15} & \multicolumn{3}{|r|}{SLATS 20/FLAPS 20} \\
\hline RUNWAY LENGTH (m) (ft) & \[
\begin{gathered}
3000 \\
10000
\end{gathered}
\] & \[
\begin{gathered}
3500 \\
11500
\end{gathered}
\] & \[
\begin{gathered}
4000 \\
13000 \\
\text { and above }
\end{gathered}
\] & \[
\begin{aligned}
& 2000 \\
& 6500
\end{aligned}
\] & \[
\begin{aligned}
& 2500 \\
& 8000
\end{aligned}
\] & \[
\begin{gathered}
3000 \\
10000 \\
\text { and above }
\end{gathered}
\] & \[
\begin{aligned}
& 1500 \\
& 5000
\end{aligned}
\] & \[
\begin{aligned}
& 2000 \\
& 6500
\end{aligned}
\] & \[
\begin{gathered}
2500 \\
8000 \\
\text { and above } \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\text { FLEX T/0: } \\
\text { Temperature } \\
\text { decrement } 0^{\circ} \mathrm{C} \text {) }
\end{gathered}
\] & 4 & 1 & 0 & 7 & 5 & 2 & 7 & 6 & 2 \\
\hline MAX T/0 :
Weight
decrement (1000 kg) & 2.5 & 1.0 & 0 & 3.5 & 3.0 & 1.5 & 3.5 & 3.0 & 1.5 \\
\hline \[
\begin{gathered}
\mathrm{V}_{1} \text { decrement } \\
(\mathrm{kt})
\end{gathered}
\] & 3* & 0* & 0* & 11 & 9 & 8 & 11 & 10 & 9 \\
\hline \(V_{\mathrm{R}}\) and \(V_{2}\) decrement (kt) & 1 & 1 & 0 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline
\end{tabular}
2. Braking without reverse thrust:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline TAKEOFF CONFIGURATION & \multicolumn{3}{|c|}{SLATS 15/FLAPS 0} & \multicolumn{3}{|r|}{SLATS 15/FLAPS 15} & \multicolumn{3}{|r|}{SLATS 20/FLAPS 20} \\
\hline \begin{tabular}{l}
RUNWAY LENGTH \\
(m) \\
(ft)
\end{tabular} & \[
\begin{gathered}
3000 \\
10000
\end{gathered}
\] & \[
\begin{gathered}
3500 \\
11500
\end{gathered}
\] & \[
\begin{gathered}
4000 \\
13000 \\
\text { and above }
\end{gathered}
\] & \[
\begin{aligned}
& 2000 \\
& 6500
\end{aligned}
\] & \[
\begin{aligned}
& 2500 \\
& 8000
\end{aligned}
\] & 3000
10000
and above & \[
\begin{aligned}
& 1500 \\
& 5000
\end{aligned}
\] & \[
\begin{aligned}
& 2000 \\
& 6500
\end{aligned}
\] & \[
\begin{gathered}
2500 \\
8000 \\
\text { and above } \\
\hline
\end{gathered}
\] \\
\hline \[
\begin{gathered}
\text { FLEX T/0: } \\
\text { Temperature } \\
\text { decrement (}{ }^{\circ} \mathrm{C} \text {) }
\end{gathered}
\] & 7 & 2 & 0 & 11 & 7 & 2 & 11 & 10 & 4 \\
\hline MAX T/0 :
Weight
decrement (1000 kg) & 4.5 & 2.0 & 0 & 5.5 & 5.0 & 2.0 & 6.0 & 5.5 & 2.5 \\
\hline \begin{tabular}{l}
\(\mathrm{V}_{1}\) decrement \\
(kt)
\end{tabular} & 7* & 2* & 0* & 14 & 13 & 12 & 16 & 14 & 13 \\
\hline \(V_{R}\) and \(V_{2}\) decrement (kt) & 2 & 2 & 0 & 3 & 3 & 3 & 3 & 3 & 3 \\
\hline
\end{tabular}
* Further decrease \(\mathrm{V}_{1}\) by :
- 1 kt per 2000 ft pressure altitude
- 1 kt per \(6^{\circ} \mathrm{C}\) difference between OAT or flexible temperature and TREF (no further decrement when OAT below TREF).

Note : Minimum V1 value due to VMCG limitation : 119 kt IAS in 15/0 and 118 kt in 15/15 and 20/20.
1. Actual TOW \(=\) Maximum TOW.

If \(V_{1}\) is lower than minimum \(V_{1}\) take this last value as \(V_{1}\) and further decrease weight by 2000 kg per kt difference between both values.
2. Actual TOW lower than maximum TOW.

If \(V_{1}\) corresponding to actual TOW is lower than minimum \(V_{1}\) :
If maximum TOW has a \(V_{1}\) equal to or above minimum \(V_{1}\), retain minimum \(V_{1}\) as \(V_{1}\) and decrease flexible temperature by \(3^{\circ} \mathrm{C}\) per kt difference between both values.
In some seldom cases where \(V_{1}\) corresponding to maximum TOW falls below minimum \(V_{1}\), decrease maximum TOW by 2000 kg per kt difference between both values. Limit the actual TOW to the value found after this decrement. Take V1 equal to minimum \(V_{1}\) and decrease flexible temperature by \(3^{\circ} \mathrm{C}\) per kt difference between this last value and \(V_{1}\) corresponding to the actual TOW.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\(\overbrace{\text { (3) }}^{\text {A310 }}\)} & \multirow[t]{3}{*}{SPECIAL OPERATIONS operations from fluid CONTAMINATED RUNWAY} & \multicolumn{2}{|r|}{2.18 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & & REV 25 & SEO 050 \\
\hline
\end{tabular}

\section*{R 5. TAKEOFF PERFORMANCE DETERMINATION ON CONTAMINATED RUNWAY}
A. 6.3 mm (\(1 / 4\) inch) water
\(R\) - Determine maximum takeoff weight on dry runway.
R - Apply the following decrement versus takeoff configuration and runway length to determine a corrected weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TAKEOFF CONFIGURATION & \multicolumn{3}{|c|}{SLATS 15/FLAPS 0} & \multicolumn{3}{|c|}{SLATS 15/FLAPS 15} & \multicolumn{2}{|l|}{SLATS 20/FLAPS 20} \\
\hline \[
\begin{aligned}
& \text { RUNWAY LENGTH } \\
& (\mathrm{m}) \\
& (\mathrm{ft})
\end{aligned}
\] & \[
\begin{array}{r}
3000 \\
10000
\end{array}
\] & \[
\begin{array}{r}
3500 \\
11500
\end{array}
\] & \[
\begin{gathered}
4000 \\
13000 \\
\text { and above }
\end{gathered}
\] & \[
\begin{aligned}
& 2000 \\
& 6500
\end{aligned}
\] & \[
\begin{aligned}
& 2500 \\
& 8000
\end{aligned}
\] & \[
\begin{gathered}
3000 \\
10000 \\
\text { and above }
\end{gathered}
\] & \[
\begin{aligned}
& 2000 \\
& 6500
\end{aligned}
\] & \[
\begin{gathered}
2500 \\
8000 \\
\text { and above }
\end{gathered}
\] \\
\hline \[
\begin{aligned}
& \text { Weight decrement } \\
& (1000 \mathrm{~kg})
\end{aligned}
\] & 26.0 & 22.0 & 15.0 & 25.0 & 25.0 & 20.5 & 20.0 & 20.0 \\
\hline
\end{tabular}

R - Enter the following tables with the corrected weight to determine MTOW.
R - Then determine takeoff speeds associated with the actual takeoff weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{SLATS 15/FLAPS 0} \\
\hline \[
\begin{gathered}
\hline \text { CORRECTED } \\
\text { WEIGHT } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & 100 & 105 & 109 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
\text { (1000 kg) } \\
\hline
\end{gathered}
\] & 82 & 99 & 109 & \multicolumn{11}{|c|}{EQUAL to Corrected weight} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ACTUAL WEIGHT (1000 kg) & \[
\begin{gathered}
82 \\
\text { and below }
\end{gathered}
\] & 85 & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline V2 (kt IAS) & 128 & 130 & 134 & 138 & 141 & 145 & 148 & 151 & 154 & 158 & 160 & 164 & 166 & 170 & 173 & 176 & 178 \\
\hline VR (kt IAS) & 124 & 126 & 130 & 134 & 137 & 141 & 144 & 147 & 150 & 154 & 156 & 160 & 162 & 166 & 169 & 172 & 174 \\
\hline V1 (kt IAS) & 119 & 119 & 119 & 119 & 119 & 119 & 120 & 123 & 126 & 130 & 132 & 136 & 138 & 142 & 145 & 148 & 150 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{SLATS 15/FLAPS 15} \\
\hline \[
\begin{gathered}
\text { CORRECTED } \\
\text { WEIGHT } \\
\text { (1000 kg) } \\
\hline
\end{gathered}
\] & \(<112\) & 112 & 115 & 120 & 122 & 125 & 130 & 135 & 140 & 145 & 150 & 155157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & Takeoff in 15/15 impossible restart the process from a RTOLW in 15/0 & 94 & 106 & 117 & 122 & \multicolumn{7}{|l|}{EQual to corrected weight} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 \mathrm{~kg})\)
\end{tabular} & \begin{tabular}{c}
94 \\
and below
\end{tabular} & \(\mathbf{1 0 0}\) & \(\mathbf{1 0 5}\) & \(\mathbf{1 1 0}\) & \(\mathbf{1 1 5}\) & \(\mathbf{1 2 0}\) & \(\mathbf{1 2 5}\) & \(\mathbf{1 3 0}\) & \(\mathbf{1 3 5}\) & \(\mathbf{1 4 0}\) & \(\mathbf{1 4 5}\) & \(\mathbf{1 5 0}\) & \(\mathbf{1 5 5}\) & \(\mathbf{1 6 0}\) \\
\hline \(\mathrm{V}_{2}(\mathrm{kt} \mathrm{IAS})\) & 128 & 132 & 135 & 138 & 141 & 144 & 147 & 150 & 153 & 156 & 159 & 161 & 164 & 165 \\
\hline \(\mathrm{VR}_{\mathrm{k}}(\mathrm{kt} \mathrm{IAS})\) & 122 & 126 & 129 & 132 & 135 & 138 & 141 & 144 & 147 & 150 & 153 & 155 & 158 & 159 \\
\hline \(\mathrm{~V}_{1}(\mathrm{kt} \mathrm{IAS})\) & 118 & 118 & 118 & 118 & 118 & 118 & 120 & 123 & 126 & 129 & 132 & 134 & 137 & 138 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{SLATS 20/FLAPS 20} \\
\hline \[
\begin{aligned}
& \hline \text { CORRECTED } \\
& \text { WEIGHT } \\
& (1000 \mathrm{~kg}) \\
& \hline
\end{aligned}
\] & < 118 & 118 & 120 & 125 & 128 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{aligned}
& \text { MTOW } \\
& (1000 \mathrm{~kg})
\end{aligned}
\] & Takeoff in 20/20 impossible restart the process from a RTOLW in \(15 / 0\) or \(15 / 15\) & 100 & 105 & 122 & 128 & \multicolumn{7}{|l|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 ~ k g)\)
\end{tabular} & \begin{tabular}{c}
100 \\
and below
\end{tabular} & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline \(\mathrm{~V}_{2}(\mathrm{kt} \mathrm{IAS})\) & 129 & 133 & 135 & 139 & 141 & 145 & 147 & 150 & 152 & 156 & 158 & 160 & 162 \\
\hline \(\mathrm{VR}_{\mathrm{k}}(\mathrm{kt} \mathrm{IAS})\) & 123 & 127 & 129 & 133 & 135 & 139 & 141 & 144 & 146 & 150 & 152 & 154 & 156 \\
\hline \(\mathrm{~V}_{1}(\mathrm{kt} \mathrm{IAS})\) & 118 & 118 & 118 & 118 & 118 & 118 & 120 & 123 & 125 & 129 & 131 & 133 & 135 \\
\hline
\end{tabular}

R Note: MTOW is lower than corrected weight when takeoff speeds are limited by VMCA and/or VMCG.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
OPERATIONS FROM FLUID CONTAMINATED RUNWAY
\end{tabular}} & \multicolumn{2}{|r|}{2.18.50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 25 & SEQ 050 \\
\hline
\end{tabular}
B. 12.7 mm (\(1 / 2\) inch) water
\(R\) - Determine maximum takeoff weight on dry runway.
R - Apply the following decrement versus takeoff configuration and runway length to determine a corrected weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
TAKEOFF \\
CONFIGURATION
\end{tabular} & \multicolumn{3}{|c|}{ SLATS 15/FLAPS 0 } & \multicolumn{2}{c|}{ SLATS 15/FLAPS 15 } & \multicolumn{2}{c|}{ SLATS 20/FLAPS 20 } \\
\hline RUNWAY LENGTH & \begin{tabular}{r}
3000 \\
\((\mathrm{~m})\) \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{r}
3500 \\
11500
\end{tabular} & \begin{tabular}{r}
4000 \\
and above
\end{tabular} & \begin{tabular}{c}
2000 \\
6500
\end{tabular} & 2500 & \begin{tabular}{r}
3000 \\
10000 \\
and above
\end{tabular} & \begin{tabular}{c}
2000 \\
6500
\end{tabular} & \begin{tabular}{c}
2500 \\
and above
\end{tabular} \\
\hline \begin{tabular}{c}
Weight decrement \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 24.0 & 20.0 & 12.5 & 23.5 & 23.5 & 19.0 & 20.5 & 19.0 \\
\hline
\end{tabular}
\(\mathrm{R} \quad\) - Enter the following tables with the corrected weight to determine MTOW.
R - Then determine takeoff speeds associated with the actual takeoff weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{15}{|c|}{SLATS 15/FLAPS 0} \\
\hline R & \[
\begin{aligned}
& \hline \text { CORRECTED } \\
& \text { WEIGHT } \\
& (1000 \mathrm{~kg}) \\
& \hline
\end{aligned}
\] & 100 & 105 & 108 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline R & \[
\begin{aligned}
& \text { MTOW } \\
& (1000 \mathrm{~kg})
\end{aligned}
\] & 85 & 102 & 108 & \multicolumn{11}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline R & ACTUAL WEIGHT (1000 kg) & \[
\begin{gathered}
85 \\
\text { and below }
\end{gathered}
\] & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & & 140 & 145 & & 50 & 155 & 160 \\
\hline R & V2 (kt IAS) & 130 & 134 & 138 & 141 & 145 & 148 & 151 & 154 & 158 & 160 & 164 & & 166 & 170 & & 73 & 176 & 178 \\
\hline R & VR (kt IAS) & 126 & 130 & 134 & 137 & 141 & 144 & 147 & 150 & 154 & 156 & 160 & & 162 & 166 & & 69 & 172 & 174 \\
\hline R & V1 (kt IAS) & 119 & 119 & 119 & 119 & 119 & 121 & 124 & 127 & 131 & 133 & 137 & & 139 & 143 & & 46 & 149 & 151 \\
\hline & \multicolumn{19}{|c|}{SLATS 15/FLAPS 15} \\
\hline R & \[
\begin{aligned}
& \hline \text { CORRECTED } \\
& \text { WEIGHT } \\
& (1000 \mathrm{~kg}) \\
& \hline
\end{aligned}
\] & \multicolumn{6}{|c|}{< 111} & 111 & 115 & 120 & 125 & 130 & 135 & 5 & & & 150 & 155 & 157 \\
\hline \[
\begin{aligned}
& \mathrm{R} \\
& \mathrm{R}
\end{aligned}
\] & \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg})
\end{gathered}
\] & \multicolumn{6}{|l|}{Takeoff in 15/15 impossible restart the process from a RTOLW in 15/0} & 94 & 109 & 120 & \multicolumn{9}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline R & ACTUAL WEIGHT (1000 kg) & \[
\begin{gathered}
94 \\
\text { and below }
\end{gathered}
\] & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline R & V2 (kt IAS) & 128 & 132 & 135 & 138 & 141 & 144 & 147 & 150 & 153 & 156 & 159 & 161 & 164 & 165 \\
\hline R & VR (kt IAS) & 123 & 127 & 130 & 133 & 136 & 139 & 142 & 145 & 148 & 151 & 154 & 156 & 159 & 160 \\
\hline R & \(\mathrm{V}_{1}\) (kt IAS) & 118 & 118 & 118 & 118 & 118 & 118 & 121 & 124 & 127 & 130 & 133 & 135 & 138 & 139 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ SLATS 20/FLAPS 20 } \\
\hline \begin{tabular}{c}
CORRECTED \\
WEIGHT \\
\((1000 \mathrm{~kg})\)
\end{tabular} & \(<114\) & 114 & 115 & 120 & 123 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \begin{tabular}{c}
MTOW \\
\((1000 \mathrm{~kg})\)
\end{tabular} & \begin{tabular}{l}
Takeoff in 20/20 impossible restart the \\
process from a RTOLW in 15/0 or \(15 / 15\)
\end{tabular} & 99 & 103 & 114 & 123 & EQUAL TO CORRECTED WEIGHT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 ~ k g)\)
\end{tabular} & \begin{tabular}{c}
99 \\
and below
\end{tabular} & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline \(\mathrm{~V}_{2}(\mathrm{kt} \mathrm{IAS})\) & 129 & 133 & 135 & 139 & 141 & 145 & 147 & 150 & 152 & 156 & 158 & 160 & 162 \\
\hline \(\mathrm{VR}_{\mathrm{k}} \mathrm{kt}\) IAS) & 124 & 128 & 130 & 134 & 136 & 140 & 142 & 145 & 147 & 151 & 153 & 155 & 157 \\
\hline \(\mathrm{~V}_{1}(\mathrm{kt} \mathrm{IAS})\) & 118 & 118 & 118 & 118 & 118 & 120 & 122 & 125 & 127 & 131 & 133 & 135 & 137 \\
\hline
\end{tabular}

R Note: MTOW is lower than corrected weight when takeoff speeds are limited by VMCA and/or VMCG.
C. 6.3 mm (\(1 / 4\) inch) slush

R - Determine maximum takeoff weight on dry runway.
R - Apply the following decrement versus takeoff configuration and runway length to determine a corrected weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
TAKEOFF \\
CONFIGURATION
\end{tabular} & \multicolumn{3}{|c|}{ SLATS 15/FLAPS 0 } & \multicolumn{2}{c|}{ SLATS 15/FLAPS 15 } & \multicolumn{2}{c|}{ SLATS 20/FLAPS 20 } \\
\hline \begin{tabular}{c}
RUNWAY LENGTH \\
\((\mathrm{m})\) \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{r}
3000 \\
10000
\end{tabular} & \begin{tabular}{r}
3500 \\
11500
\end{tabular} & \begin{tabular}{r}
4000 \\
13000 \\
and above
\end{tabular} & \begin{tabular}{r}
2000 \\
6500
\end{tabular} & \begin{tabular}{c}
2500 \\
8000
\end{tabular} & \begin{tabular}{r}
3000 \\
10000 \\
and above
\end{tabular} & \begin{tabular}{c}
2000 \\
6500
\end{tabular} & \begin{tabular}{c}
2500 \\
8000 \\
and above
\end{tabular} \\
\hline \begin{tabular}{c}
Weight decrement \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 20.5 & 17.0 & 10.0 & 21.5 & 20.0 & 14.5 & 20.5 & 14.5 \\
\hline
\end{tabular}
\(R\) - Enter the following tables with the corrected weight to determine MTOW.
R - Then determine takeoff speeds associated with the actual takeoff weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{ SLATS 15/FLAPS 0 } \\
\hline \begin{tabular}{c}
CORRECTED \\
WEIGHT \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 99 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \begin{tabular}{c}
MTOW \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 84 & 91 & 105 & \multicolumn{9}{c|}{ EQUAL TO CORRECTED WEIGHT } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ACTUAL WEIGHT (1000 kg) & \[
\begin{gathered}
84 \\
\text { and below }
\end{gathered}
\] & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline V2 (kt IAS) & 129 & 134 & 138 & 141 & 145 & 148 & 151 & 154 & 158 & 160 & 164 & 166 & 170 & 173 & 176 & 178 \\
\hline VR (kt IAS) & 125 & 130 & 134 & 137 & 141 & 144 & 147 & 150 & 154 & 156 & 160 & 162 & 166 & 169 & 172 & 174 \\
\hline V1 (kt IAS) & 119 & 119 & 119 & 119 & 119 & 122 & 125 & 128 & 132 & 134 & 138 & 140 & 144 & 147 & 150 & 152 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{13}{|c|}{SLATS 15/FLAPS 15} \\
\hline \[
\begin{gathered}
\hline \text { CORRECTED } \\
\text { WEIGHT } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & < 111 & 111 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg})
\end{gathered}
\] & Takeoff in 15/15 impossible restart the process from a RTOLW in 15/0 & 96 & 109 & 120 & \multicolumn{8}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 \mathrm{~kg})\)
\end{tabular} & \begin{tabular}{c}
96 \\
and below
\end{tabular} & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline V 2 (kt IAS) \(^{\text {VR (kt IAS) }}\) & 129 & 124 & 132 & 135 & 138 & 141 & 144 & 147 & 150 & 153 & 156 & 159 & 161 & 164 \\
\hline \(\mathrm{~V}_{1}\) (kt IAS) & 118 & 118 & 130 & 133 & 136 & 139 & 142 & 145 & 148 & 151 & 154 & 156 & 159 & 160 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{SLATS 20/FLAPS 20} \\
\hline \[
\begin{aligned}
& \hline \text { CORRECTED } \\
& \text { WEIGHT } \\
& (1000 \mathrm{~kg}) \\
& \hline
\end{aligned}
\] & < 114 & 114 & 115 & 120 & 123 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg})
\end{gathered}
\] & Takeoff in 20/20 impossible restart the process from a RTOLW in \(15 / 0\) or \(15 / 15\) & 99 & 103 & 114 & 123 & \multicolumn{8}{|l|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 ~ k g)\)
\end{tabular} & \begin{tabular}{c}
99 \\
and below
\end{tabular} & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline \(\mathrm{~V}_{2}\) (kt IAS) & 129 & 133 & 133 & 135 & 141 & 145 & 147 & 150 & 152 & 156 & 158 & 160 & 162 \\
\hline \(\mathrm{VR}_{\mathrm{R}}\) (kt IAS) & 123 & 127 & 129 & 133 & 135 & 139 & 141 & 144 & 146 & 150 & 152 & 154 & 156 \\
\hline \(\mathrm{~V}_{1}\) (kt IAS) & 118 & 118 & 118 & 118 & 118 & 120 & 122 & 125 & 127 & 131 & 133 & 135 & 137 \\
\hline
\end{tabular}

Note: MTOW is lower than corrected weight when takeoff speeds are limited by VMCA and/or VMCG.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
OPERATIONS FROM FLUID CONTAMINATED RUNWAY
\end{tabular}} & \multicolumn{2}{|r|}{2.18 .50} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & & REV 25 & SEO 050 \\
\hline
\end{tabular}
D. \(12.7 \mathrm{~mm}(1 / 2\) inch \()\) slush
\(R \quad\) - Determine maximum takeoff weight on dry runway.
R - Apply the following decrement versus takeoff configuration and runway length to determine a corrected weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
TAKEOFF \\
CONFIGURATION
\end{tabular} & \multicolumn{3}{|c|}{ SLATS 15/FLAPS 0 } & \multicolumn{2}{c|}{ SLATS 15/FLAPS 15 } & \multicolumn{2}{c|}{ SLATS 20/FLAPS 20 } \\
\hline \begin{tabular}{c}
RUNWAY LENGTH \\
\((\mathrm{m})\) \\
(ft)
\end{tabular} & \begin{tabular}{r}
3000 \\
10000
\end{tabular} & \begin{tabular}{r}
3500 \\
11500
\end{tabular} & \begin{tabular}{r}
4000 \\
13000 \\
and above
\end{tabular} & \begin{tabular}{c}
2000 \\
6500
\end{tabular} & \begin{tabular}{c}
2500 \\
8000
\end{tabular} & \begin{tabular}{r}
3000 \\
10000 \\
and above
\end{tabular} & \begin{tabular}{c}
2000 \\
6500
\end{tabular} & \begin{tabular}{c}
2500 \\
and above
\end{tabular} \\
\hline \begin{tabular}{c}
Weight decrement \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 23.5 & 20.5 & 22.0 & 24.5 & 24.0 & 23.5 & 24.5 & 20.5 \\
\hline
\end{tabular}

R - Enter the following tables with the corrected weight to determine MTOW.
R - Then determine takeoff speeds associated with the actual takeoff weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{18}{|c|}{SLATS 15/FLAPS 0} \\
\hline R & \[
\begin{aligned}
& \hline \text { CORRECTED } \\
& \text { WEIGHT } \\
& (1000 \mathrm{~kg}) \\
& \hline
\end{aligned}
\] & 95 & 99 & 100 & 105 & 110 & 11 & & 20 & 125 & 130 & 135 & 140 & 14 & & 0 & 155 & 157 \\
\hline R & \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & 89 & 99 & & & & & & JAL & TO CO & RREC & ED W & EIG & & & & & \\
\hline R & ACTUAL WEIGHT (1000 kg) & & elow & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline R & V2 (kt IAS) & & & 134 & 138 & 141 & 145 & 148 & 151 & 154 & 158 & 160 & 164 & 166 & 170 & 173 & 176 & 178 \\
\hline R & VR (kt IAS) & & & 130 & 134 & 137 & 141 & 144 & 147 & 150 & 154 & 156 & 160 & 162 & 166 & 169 & 172 & 174 \\
\hline R & V1 (kt IAS) & & & 119 & 119 & 120 & 124 & 127 & 130 & 133 & 137 & 139 & 143 & 145 & 149 & 152 & 155 & 157 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{SLATS 15/FLAPS 15} \\
\hline \[
\begin{gathered}
\hline \text { CORRECTED } \\
\text { WEIGHT } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & \multicolumn{5}{|c|}{< 106} & 106 & 110 & 112 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & \multicolumn{5}{|l|}{Takeoff in 15/15 impossible restart the process from a RTOLW in 15/0} & 93 & 107 & 112 & \multicolumn{10}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline ACTUAL WEIGHT (1000 kg) & \[
\begin{gathered}
93 \\
\text { and below }
\end{gathered}
\] & 100 & 105 & 110 & 115 & 120 & & 125 & 130 & & 135 & 140 & 14 & & 150 & 155 & & 160 \\
\hline V2 (kt IAS) & 127 & 132 & 135 & 138 & 141 & 144 & & 147 & 150 & & 153 & 156 & 15 & & 161 & 164 & & 165 \\
\hline VR (kt IAS) & 123 & 128 & 131 & 134 & 137 & 140 & & 143 & 146 & & 149 & 152 & 15 & 5 & 157 & 160 & & 161 \\
\hline V1 (kt IAS) & 118 & 118 & 118 & 118 & 120 & 123 & & 126 & 129 & & 132 & 135 & 13 & 88 & 140 & 143 & & 144 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{SLATS 20/FLAPS 20} \\
\hline \[
\begin{gathered}
\hline \text { CORRECTED } \\
\text { WEIGHT } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & < 108 & 108 & 110 & 112 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg})
\end{gathered}
\] & Takeoff in 20/20 impossible restart the process from a RTOLW in \(15 / 0\) or \(15 / 15\) & 99 & 104 & 112 & \multicolumn{10}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 ~ k g)\)
\end{tabular} & \begin{tabular}{c}
99 \\
and below
\end{tabular} & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & \(\mathbf{1 6 0}\) \\
\hline \(\mathrm{~V}_{2}(\mathrm{kt} \mathrm{IAS})\) & 129 & 133 & 135 & 139 & 141 & 145 & 147 & 150 & 152 & 156 & 158 & 160 & 162 \\
\hline \(\mathrm{VR}_{\mathrm{k}}(\mathrm{kt}\) IAS) & 124 & 128 & 130 & 134 & 136 & 140 & 142 & 145 & 147 & 151 & 153 & 155 & 157 \\
\hline \(\mathrm{~V}_{1}(\mathrm{kt} \mathrm{IAS})\) & 118 & 118 & 118 & 120 & 122 & 126 & 128 & 131 & 133 & 137 & 139 & 141 & 143 \\
\hline
\end{tabular}

\footnotetext{
Note : MTOW is lower than corrected weight when takeoff speeds are limited by VMCA and/or VMCG.
}
E. Compacted snow
- Determine maximum takeoff weight on dry runway.

R

R
R
R

R
- Enter the following tables with the corrected weight to determine MTOW.
- Then determine takeoff speeds associated with the actual takeoff weight.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
TAKEOFF \\
CONFIGURATION
\end{tabular} & \multicolumn{3}{|c|}{ SLATS 15/FLAPS 0 } & \multicolumn{2}{c|}{ SLATS 15/FLAPS 15 } & \multicolumn{2}{|c|}{ SLATS 20/FLAPS 20 } \\
\hline \begin{tabular}{c}
RUNWAY LENGTH \\
\((\mathrm{m})\) \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{r}
3000 \\
10000
\end{tabular} & \begin{tabular}{r}
3500 \\
11500
\end{tabular} & \begin{tabular}{c}
4000 \\
13000 \\
and above
\end{tabular} & \begin{tabular}{c}
2000 \\
6500
\end{tabular} & \begin{tabular}{c}
2500 \\
8000
\end{tabular} & \begin{tabular}{c}
3000 \\
10000 \\
and above
\end{tabular} & \begin{tabular}{c}
2000 \\
6500
\end{tabular} & \begin{tabular}{c}
2500 \\
and above
\end{tabular} \\
\hline \begin{tabular}{c}
Weight decrement \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 8.0 & 5.5 & 8.5 & 10.0 & 9.5 & 9.0 & 10.5 & 4.5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{19}{|c|}{SLATS 15/FLAPS 0} \\
\hline \[
\begin{gathered}
\hline \text { CORRECTED } \\
\text { WEIGHT } \\
(1000 \mathrm{~kg}) \\
\hline
\end{gathered}
\] & 91 & 95 & 100 & 105 & 1 & & 115 & 120 & 125 & 13 & & 135 & 140 & 145 & 15 & & 5 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg})
\end{gathered}
\] & 82 & 95 & \multicolumn{16}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline \begin{tabular}{l}
ACTUAL \\
WEIGHT \\
\((1000 \mathrm{~kg})\)
\end{tabular} & \multicolumn{2}{|l|}{\[
\begin{gathered}
82 \\
\text { and below }
\end{gathered}
\]} & 85 & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline V2 (kt IAS) & \multicolumn{2}{|c|}{128} & 130 & 134 & 138 & 141 & 145 & 148 & 151 & 154 & 158 & 160 & 164 & 166 & 170 & 173 & 176 & 178 \\
\hline VR (kt IAS) & \multicolumn{2}{|c|}{124} & 126 & 130 & 134 & 137 & 141 & 144 & 147 & 150 & 154 & 156 & 160 & 162 & 166 & 169 & 172 & 174 \\
\hline V1 (kt IAS) & \multicolumn{2}{|c|}{119} & 119 & 119 & 119 & 122 & 126 & 129 & 132 & 135 & 139 & 141 & 145 & 147 & 151 & 154 & 157 & 159 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{15}{|c|}{SLATS 15/FLAPS 15} \\
\hline \[
\begin{aligned}
& \hline \text { CORRECTED } \\
& \text { WEIGHT } \\
& (1000 \mathrm{~kg})
\end{aligned}
\] & < 106 & 106 & 110 & 112 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg})
\end{gathered}
\] & Takeoff in 15/15 impossible restart the process from a RTOLW in 15/0 & 97 & 107 & 112 & \multicolumn{10}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 \mathrm{~kg})\)
\end{tabular} & \begin{tabular}{c}
94 \\
and below
\end{tabular} & 100 & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 160 \\
\hline \(\mathrm{~V}_{2}(\mathrm{kt} \mathrm{IAS})\) & 128 & 132 & 135 & 138 & 141 & 144 & 147 & 150 & 153 & 156 & 159 & 161 & 164 & 165 \\
\hline \(\mathrm{VR}_{\mathrm{R}} \mathrm{kt}\) IAS) & 123 & 127 & 130 & 133 & 136 & 139 & 142 & 145 & 148 & 151 & 154 & 156 & 159 & 160 \\
\hline \(\mathrm{~V}_{1}(\mathrm{kt} \mathrm{IAS})\) & 118 & 118 & 118 & 118 & 120 & 123 & 126 & 129 & 132 & 135 & 138 & 140 & 143 & 144 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{SLATS 20/FLAPS 20} \\
\hline CORRECTED
WEIGHT
(1000 kg) & < 111 & 111 & 115 & 118 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & 157 \\
\hline \[
\begin{gathered}
\text { MTOW } \\
(1000 \mathrm{~kg})
\end{gathered}
\] & Takeoff in 20/20 impossible restart the process from a RTOLW in \(15 / 0\) or \(15 / 15\) & 99 & 112 & 118 & \multicolumn{9}{|c|}{EQUAL TO CORRECTED WEIGHT} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
\((1000 ~ k g)\)
\end{tabular} & \begin{tabular}{c}
99 \\
and below
\end{tabular} & 105 & 110 & 115 & 120 & 125 & 130 & 135 & 140 & 145 & 150 & 155 & \(\mathbf{1 6 0}\) \\
\hline \(\mathrm{~V}_{2}(\mathrm{kt} \mathrm{IAS})\) & 129 & 133 & 135 & 139 & 141 & 145 & 147 & 150 & 152 & 156 & 158 & 160 & 162 \\
\hline \(\mathrm{VR}_{\mathrm{k}}(\mathrm{kt}\) IAS) & 123 & 127 & 129 & 133 & 135 & 139 & 141 & 144 & 146 & 150 & 152 & 154 & 156 \\
\hline \(\mathrm{~V}_{1}(\mathrm{kt} \mathrm{IAS})\) & 118 & 118 & 118 & 118 & 119 & 123 & 125 & 128 & 130 & 134 & 136 & 138 & 140 \\
\hline
\end{tabular}

Note: MTOW is lower than corrected weight when takeoff speeds are limited by VMCA and/or VMCG.

\section*{6. SPRAY PATTERN}

There is a little chance of fluid ingestion in the engines, which in any case, should not jeopardize safety. The risk of ingestion is independent of the contaminant depth.
During power setting and initial acceleration, a small ingestion is possible, which should disappear when the aircraft speed is over 60 kt .

\section*{7. CROSSWIND}

Referto PROCEDURESANDTECHNIQUES-INCLEMENT WEATHER OPERATIONS

\section*{8. TAXIING}

When taxiing on slippery surfaces, maintain an adequate distance to the preceeding aircraft. Taxy at a maximum speed of 10 kt . Note that antiskid is not operating at low speed.
Nose wheel steering should be used in small but progressive movements supported by differential power when necessary in small radius turns.
Retract slats and flaps in slush conditions to avoid contamination of the mechanism and subsequent damage by frozen slush.

Extend the high lift devices for T/0 configuration and perform the taxi checklist at the end of taxiing.

\section*{9. TAKEOFF}

Set the thrust as symmetrically as possible to avoid yawing moments in the first part of the takeoff roll.
For contaminated runway use full engine thrust.
R Avoid large or rapid rudder inputs.
Hold the control column firmly but not excessively in the forward position to increase nose wheel contact. Do not lift the nose wheel in an attempt to avoid contamination of the aircraft, since this will produce additional drag.
Rotate, lift off, retract gear and high lift devices in the normal manner.
Takeoff should not be aborted for minor deficiencies even at low speeds.
R Maintain directional control with the rudder, this also R provides small inputs to the nosewheel. Regain center line with differential braking when stopping distance permits.

\section*{10. LANDING}

Landing on contaminated runways without anti-skid should be avoided.
Approach at normal speed. Use maximum reverse thrust as soon as possible after touch down.
Apply brakes normally with steady pressure. Maintain directional control with the rudder as long as possible.
After reaching taxi speed, use nose wheel steering with care.

The use of auto-braking is strongly recommended provided the contaminant is evenly distributed.
In crosswind conditions do not decrab completely as the aircraft will yaw on the slippery runway due to its weathercock stability.
When landing distance permits the centerline can be regained by using differential braking. Use the reversers in the usual way, knowing that if it becomes necessary, the full reverse could be maintained until the aircraft is fully stopped. When the aircraft is at taxiing speed, follow the taxiing recommendations.
CAUTION : It is recommended not to use single reverser when landing on wet or contaminated runways when cross winds exceed 20 kt.

\section*{11. AFTER LANDING AND PARKING}

If the approach was made in icing condition or snow, or if the runway was covered by snow or slush do not retract the slats and flaps to the fully retracted position to avoid damage to the structure by frozen slush and/or snow. Shut down the engines, have the ground crew check that there is no significant amount of ice, slush or snow in the flap and slat mechanism.
When the mechanisms are clean, retract slats and flaps using the green system electro-hydraulic pumps.
When the mechanisms are contaminated, keep slats and flaps extended.

\section*{12. EXAMPLE}

\section*{Initial conditions}

Runway length : 3500 m (11500 ft)
OAT \(=48^{\circ} \mathrm{C}\)
No wind
Pressure altitude : 0 ft
Slats \(15^{\circ} /\) Flaps \(0^{\circ}\)
Determination of takeoff performance from
RTOLW-chart :
\begin{tabular}{|c|c|c|c|}
\hline WEIGHT 1000 kg & -10 & - 5 & 0 \\
\hline 150.0 & \[
\begin{array}{lr}
35 & 4-4 \\
.0 & * * * * \\
151-153-157
\end{array}
\] & \[
\begin{array}{cr}
46 & 2-4 \\
2 \\
156-157-161
\end{array}
\] & \[
\begin{array}{lr}
48 & 2-4 \\
1.0 & * * * * \\
163-164-167
\end{array}
\] \\
\hline 147.5 & \[
\begin{aligned}
& 43 \\
& 1.4-4-4 * * \\
& 149-152-156
\end{aligned}
\] & \[
\begin{array}{cr}
48 & 2-4 \\
.7 & * * * * \\
157-157-161
\end{array}
\] & \[
\begin{array}{lr}
50 & 2-4 \\
1.1 \\
163-163-16
\end{array}
\] \\
\hline 145.0 & \[
\begin{array}{lr}
\hline 47 & 4-4 \\
.8 & * * * * \\
151-151-156
\end{array}
\] & \[
\begin{array}{lr}
50 & 4-4 \\
1.0 & * * * * \\
158-158-162
\end{array}
\] & \[
\begin{array}{lr}
52 & 4-4 \\
1.1 & * * * * \\
162-162-166
\end{array}
\] \\
\hline 142.5 & \[
\begin{aligned}
& 50 \quad 4-4 \\
& : 4 \\
& 152-152-156
\end{aligned}
\] & \[
\begin{array}{lr}
52 & 4-4 \\
1.2 \\
160-160-163
\end{array}
\] & \[
\begin{array}{lr}
54 & 4-4 \\
1.0 \\
162-162-16 *
\end{array}
\] \\
\hline 140.0 & \[
\begin{array}{cr}
52 & 4-4 \\
.9 \\
153-153-157
\end{array}
\] & \[
\begin{array}{lr}
54 & 4-4 \\
1.2 \\
159-159-162
\end{array}
\] & \[
\begin{array}{lr}
56 & 4-4 \\
1.0 \\
162-162-165
\end{array}
\] \\
\hline 137.5 & \[
\begin{array}{lr}
55 & 4-4 \\
.1 \\
155-155-159
\end{array}
\] & \[
\begin{array}{lr}
56 & 4-4 \\
1.2 \\
158-158-161
\end{array}
\] & \[
\begin{array}{lr}
58 & 4-4 \\
1.0 \\
160-160-164
\end{array}
\] \\
\hline
\end{tabular}
a. Takeoff performance on dry runway

Maximum TOW \(=151000 \mathrm{~kg}\)
\(\mathrm{V}_{1}=163 \mathrm{kt}, \mathrm{VR}=164 \mathrm{kt}, \mathrm{V}_{2}=167 \mathrm{kt}\).
b. Takeoff performance determination for wet runway (braking with reverse thrust, see page 2).
\begin{tabular}{|c|c|c|c|}
\hline TAKEOFF CONFIGURATION & \multicolumn{3}{|c|}{SLATS 15/FLAPS 0} \\
\hline RUNWAY LENGTH
\((\mathrm{m})\)
\((\mathrm{ft})\) & \[
\begin{aligned}
& 3000 \\
& 10000
\end{aligned}
\] & \[
\begin{gathered}
3500 \\
11000
\end{gathered}
\] & \[
\begin{gathered}
4000 \\
13000 \\
\text { (and above) }
\end{gathered}
\] \\
\hline \begin{tabular}{l}
FLEX T/O: \\
Temperature decrement (\({ }^{\circ} \mathrm{C}\))
\end{tabular} & 4 & 1 & 0 \\
\hline MAX T/O:
Weight decrement (1000 lb) & 2.5 & 1.0 & 0 \\
\hline \[
\begin{gathered}
\mathrm{V}_{1} \text { decrement } \\
(\mathrm{kt})
\end{gathered}
\] & 3* & 0* & 0* \\
\hline \(\underset{\substack{V_{R} \text { and } \\ \text { (kt) }}}{\substack{\text { decrement } \\ \text { (kt }}}\) & 1 & 1 & 0 \\
\hline
\end{tabular}
* Further decrease \(\mathrm{V}_{1}\) by :
- 1 kt per 2000 ft pressure altitude
- 1 kt per \(6^{\circ} \mathrm{C}\) difference between OAT or flexible temperature and TREF (no further decrement when OAT below TREF)
- Maximum TOW \(=151000-1000\)
\[
=150000 \mathrm{~kg} \text { (on wet runway). }
\]

Assumed actual takeoff weight : 140000 kg
- Associated corrected speeds and temperature values:
Flex temp \(=56-1=55^{\circ} \mathrm{C}\)
\(\mathrm{V}_{1}\) correction : Okt + correction due to TFEX \(=55^{\circ} \mathrm{C}\) : 2 kt (TREF \(=42^{\circ} \mathrm{C}\))
\(\mathrm{V}_{1}=163-2=161 \mathrm{kt}\) (check above VMCG limitation) \(\mathrm{V} R=164-1=163 \mathrm{kt}\) \(V_{2}=167-1=166 \mathrm{kt}\)
c. Takeoff performance determination for runway covered with \(1 / 2\) inch water (see page 4)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
TAKEOFF \\
CONFIGURATION
\end{tabular} & \multicolumn{3}{|c|}{ SLATS 15/FLAPS 0 } \\
\hline \begin{tabular}{c}
RUNWAY LENGTH \\
\((\mathbf{m})\) \\
\((\mathrm{ft})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{3 0 0 0}\) \\
\(\mathbf{1 0 0 0 0}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{3 5 0 0}\) \\
\(\mathbf{1 1 5 0 0}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{4 0 0 0}\) \\
13000 \\
and above
\end{tabular} \\
\hline \begin{tabular}{c}
Weight decrement \\
\((1000 \mathrm{~kg})\)
\end{tabular} & 24 & 22 & 12.5 \\
\hline
\end{tabular}
- Corrected weight \(=151000-22000=129000 \mathrm{~kg}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{ SLATS 15/FLAPS 0 } \\
\hline \begin{tabular}{c}
CORRECTED \\
WEIGHT \\
(1000 kg)
\end{tabular} & \(\mathbf{1 0 0}\) & \(\mathbf{1 0 5}\) & \(\mathbf{1 0 8}\) & \(\mathbf{1 1 0}\) & \(\mathbf{1 1 5}\) & \(\mathbf{1 2 0}\) & \(\mathbf{1 2 5}\) & \(\mathbf{1 3 0}\) \\
\hline \begin{tabular}{c}
MTOW \\
\((1000 \mathrm{lb})\)
\end{tabular} & 85 & 102 & 108 & \multicolumn{5}{|c|}{\begin{tabular}{c}
EQUAL TO \\
CORRECTED \\
WEIGHT
\end{tabular}} \\
\hline
\end{tabular}
- Maximum takeoff weight \(=129000 \mathrm{~kg}\)

Assumed actual takeoff weight : 103000 kg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
ACTUAL \\
WEIGHT \\
(1000 lb)
\end{tabular} & \begin{tabular}{c}
85 \\
and \\
below
\end{tabular} & 90 & 95 & 100 & 105 & 110 & 115 & 120 & 125 \\
\hline V2 (kt IAS) & 130 & 134 & 138 & 141 & 145 & 148 & 151 & 154 & 158 \\
\hline VR (kt IAS) & 126 & 130 & 134 & 137 & 141 & 144 & 147 & 150 & 154 \\
\hline V1 (kt IAS) \(^{2}\) & 119 & 119 & 119 & 119 & 119 & 121 & 124 & 127 & 131 \\
\hline
\end{tabular}
- Associated speeds
\[
\begin{aligned}
& V_{2}=143 \mathrm{kt} \\
& V_{R}=139 \mathrm{kt} \\
& V_{1}=119 \mathrm{kt}
\end{aligned}
\]

Remark : Linear interpolation is permitted between adjacent columns on all tables.

\section*{1. GENERAL}

The system design and engine installation reliability of this airplane comply with the capability criteria for ETOPS
R flights of CTC 20 (DGAC), AC 120-42 A (FAA), CAP 513 R (CAA UK) or AMJ 120-42/IL N \({ }^{\circ} 20\) (draft, JAA) when configured, maintained and operated in accordance with
R
for Extended Range Operations », also referred to as the
R CMP document (Configuration, Maintenance and Procedure).
This statement of capability does not constitute an operational approval to conduct extended range operations.

R The supplement 13 (section 6-02-13) to the Flight Manual \(R\) refers to the approved Standard for Extended Range \(R\) Operations and defines the applicable limitations, procedures and performance.

The operator has the responsability to also show compliance with his national regulation and to obtain operational approval from his national authorities.

\section*{2. OPERATIONAL LIMITATIONS}

\section*{A. Definitions}

R For the purpose of AC 120-42 A and AMJ 120-42, Extended Range Operations are those intended to be conducted over a route that contains a point further than 60 minutes from an adequate airport at the selected one-engine-inoperative speed in still air and ISA (or prevailing delta ISA) conditions.
R An adequate airport is an airport which satisfies the R aircraft performance requirements applicable at the expected R landing weight, and is sufficiently equipped to be safely R used. In particular it should be expected that at the anticipated time of use it will be available and

R meteorological information and at least one let down aid for an instrument approach.
R A suitable airport is a confirmed adequate airport which \(R \quad\) satisfies the dispatch weather minima requirements for \(R \quad\) ceiling and visibility within the required validity period. R Airport conditions should also ensure that a safe landing \(R\) with one engine and/or airframe system inoperative is R possible.

\section*{B. Area of operation}

The maximum distance from an adequate airport must be determined for ISA (or prevailing delta ISA) and no wind conditions taking into account the aircraft performance with one engine inoperative and the other engine at not more than MCT.

To determine the maximum distance from an adequate airport, a diversion speed strategy must be defined as well as an aircraft reference weight for performance determination.

The same diversion speed strategy (refer to FCOM section 2.16) must be considered for :
- establishing the area of operation ;
- calculating the single-engine fuel planning,
- conducting the diversion in case of engine failure (conditions permitting).

The ETOPS reference gross weight is to be assessed by the operator for each route or area of operation and shall be a conservative representative value of the aircraft gross weight at the critical point of the route or at the various critical points of all the routes included in the area of operation.

The one engine inoperative descent and cruise speed law must be selected so that the associated net flight path clears the enroute obstacles with the regulatory margin.

The FCOM section 2.16 .50 provides data for 3 speed schedules. The associated approved net flight path are published in the Flight Manual Supplement 13.

When the diversion strategy is selected, the maximum distance from a diversion airport, for different maximum diversion times, can be directly determined using the table provided in this section. The area of possible ETOPS operation can then be drawn on plotting charts.

Another method to determine the maximum distance to a diversion airport is to read the one-engine-inoperative TAS (at the FL for best TAS) in the cruise tables of section 2.16.50 taking into consideration the appropriate strategy and minimum altitude to clear obstacles. In that case the maximum distance to a diversion airport will be found in multiplying this one-engine-inoperative-TAS by the maximum diversion time.
Operators whoseauthorities requirean approved one-engineinoperative speed to be stated in the Flight Manual must use this speed.

\section*{3. DISPATCH CONSIDERATION}

\section*{A. MMEL/MEL}

The dispatch requirements applicable to an ETOPS flight are identified, in the Airbus Industrie MMEL, by the following provisos:
- "For ER operations...",
or
- "Except for ER operations".

The ETOPS dispatch requirements are not to be considered once airborne (e.g. to assess the aircraft status prior to entering the ETOPS segment).

\section*{B. Communication and navigation facilities}

The COM system design has provision to install 3 VHF and 2 HF transceivers, insuring full compliance with ETOPS requirements on any kind of routes.
The NAV system meets the ETOPS requirements for enroute or approach navigation.
The configuration defined by 2 IRS in conjunction with 2 FMS comply with the MNPS criteria and is approved as sole means of navigation for flight up to the maximum aircraft endurance.

Above \(73^{\circ} \mathrm{N}\), heading information will be lost or become unreliable depending on aircraft equipment.

Note: For operation within MNPS area, the approval from the national authorities must be obtained.

\section*{C. Fuel and oil supply}

Fuel and oil supply must be determined considering both the engine and pressurization failure or the pressurization failure alone occuring at the most critical point on the route. Forecast wind and temperature conditions must be considered as well as forecast icing conditions.
An ETOPS critical fuel planning, considering these two scenarios, must be established and compared to the standard fuel planning (non ETOPS).
D. ETOPS fuel scenarios

For establishing the ETOPS Critical Fuel planning, two diversion scenarios must be considered as follows :
\(1^{\circ}\) Pressurization failure + engine failure

(1) Selected speed in accordance with the speed strategy selected for the ETOPS area of operation.
(2) or above if required by obstacle clearance and/or if supplementary oxygen is available.

\section*{\(2^{\circ}\) Pressurization failure}

Same flight profile, but with 2 engines operative and diversion cruise at LRC at FL 100 or above.
For each scenario, the required block fuelshall be computed in accordance with the operator's ETOPS fuel policy and with the regulatory ETOPS critical fuel reserves described hereafter.

Depending on the strategy and on the one-engine-inoperative speed selected for the single-engine diversion scenario, any one of these two scenarios may happen to result in the highest fuel requirement.
The scenario resulting in the highest fuel requirement is referred to as the ETOPS critical fuel scenario, the associated minimum block fuel requirement is referred to as the ETOPS critical fuel planning.

\section*{E. ETOPS critical fuel reserves}

For the computation of the ETOPS critical fuel reserves and of the complete ETOPS critical fuel planning, the diversion fuel shall include the following fuel provisions:
- fuel burn-off from the critical point to the end of descent (e.g. 1500 ft) at the diversion airport,
- \(5 \%\) of the above fuel burn-off, as contingency fuel,
- \(5 \%\) fuel mileage penalty or a demonstrated performance factor,
- 15 minutes holding at 1500 ft at green dot speed,
- first (IFR) approach/go-around/second (VFR) approach,
- effect of any CDL and/or MEL item,
- if icing conditions are forecast :
* effect of NAI + WAI systems,
* effect of ice accretion on the unheated surfaces of the aircraft :
The fuel provisions associated with the effects of NAI/WAI systems and the ice accretion on the unheated surfaces can be adjusted as a function of the forecast exposure time.
The fuel provision for ice accretion on the unheated surfaces is in percentage three times the forecast exposure time in hours. For example, assuming a 1.5 hours total exposure time (en route to, and at the diversion airport), the fuel provision is \(4.5 \%\) of the fuel burnt during the considered exposure time. In case of moderate icing forecast, the above fuel provision is divided by two.
- For operations above 138 minute diversion time, if the above effect of ice accretion is less than \(5 \%\), this effect should be rounded-up to \(5 \%\) to provide a provision for weather avoidance.
- APU fuel consumption, if required as a power source (MEL).

SPECIAL OPERATIONS
\begin{tabular}{|l|l|l|}
\hline & \multicolumn{2}{|c|}{2.18 .70} \\
\hline \multicolumn{2}{|c|}{ PAGE 3 } & \\
\hline \multicolumn{2}{|c|}{ REV 29} & SEO 001 \\
\hline
\end{tabular}

APU Fuel Consumption

Based on experience, it is Airbus Industrie recommendation to consider the following non mandatory fuel provisions :
- effect of a demonstrated performance factor, for all standard and ETOPS fuel requirement computations,
- carriage of contingency fuel from the departure to the CP, when computing the ETOPS critical fuel planning.

The complete ETOPS critical fuel planning for the ETOPS critical fuel scenario (i.e. from the departure to the CP and then from the CP to the diversion airport) shall be compared to the standard fuel planning (i.e. from the departure to the destination and alternate) computed in accordance with the company fuel policy and applicable operational requirements. The highest of both fuel requirements shall be considered as the minimum required block fuel for the subject flight.
F. Dispatch fuel requirement from Critical Point to landing ETOPS diversion fuel requirements for dispatch are provided at the end of this section. Data for the engine failure case alone are not provided as this scenario is never critrical.

\section*{H. Dispatch weather minima}

Weather forecasts for en route alternate must meet the operator's applicable weather minimum requirements. If the applicable requirement is AC 120-42A or AMJ 120-42, the following applies:
An airplane can be dispatched for an ETOPS flight provided the meteorological forecasts, at each enroute alternate airports, for a period starting one hour before the earliest expected time of landing and ending one hour after the latest expected time of landing, meet the following regulatory dispatch weather minima requirements.

Note 1: Minimalowerthan following ones can beestablished taking into consideration the peculiarities of a specific route provided these minima have been agreed by the national operational authorities and reported in the route specification.

Note 2 : Once the aircraft is airborne, dispatch weather minima do not apply anymore. Normalor company minima apply to each enroute alternate.
1. AC \(120-42 \mathrm{~A}\) dispatch weather minima (FAA) :

Note: Should a circling approach be anticipated at a given enroute alternate, the corresponding published circling minima must be considerd and increased by adding 400 ft to the published ceiling minima and 1600 m to the published visibility minima.

\section*{}

\section*{G. Cockpit preparation}

Additional system checks are required prior to each ETOPS flight. These checks are listed in the Standard Operating Procedures.
2. AMJ 120-42/IL 20 dispatch weather minima (JAA)

The operator must use either table 1 or table 2, but not a combination of both.
Table 1
\begin{tabular}{|c|c|c|}
\hline Approach Facility Configuration & Alternate Airfield Ceiling & Weather Minima Visibility \\
\hline Foraerodromeswithat leastoneoperational navigation facility, providing a precision ornon-precisionrunway approach procedure or a circling manoeuvrefroman instrument approach procedure & A ceiling derived by adding 400 feet to the authorised DH, MDH (DA/MDA) or circling minima & A visibility derived by adding 1500 meters to theauthorised landing minima \\
\hline \multicolumn{3}{|l|}{The weather minima below apply at airports which are equipped with precision or non-precision approaches on at least two separate runways (two separate landing surfaces)} \\
\hline For airports with at least two operational navigation facilities providing a precision ornon-precisionrunwayapproach procedure to separate suitable runways & A ceiling derived by adding 200 feet to the higher of the two authorised \(\mathrm{DH} / \mathrm{MDH}\) (DA/MDA) for the approaches & A visibility derived by adding 800 meters to the higher of the two authorised landing minima \\
\hline
\end{tabular}

Table 2
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Type of Approach} & \multicolumn{4}{|l|}{Planning Minima
(RVR visibility required and ceiling if applicable)} \\
\hline & \multicolumn{4}{|l|}{Aerodrome with} \\
\hline & \begin{tabular}{l}
at least \\
2 separate approach procedures based on 2 separate aids serving 2 separate runways
\end{tabular} & at least 2 separate approach procedures based on 2 separate aids serving 1 runway & or & \begin{tabular}{l}
at least \\
1 approach procedure based on 1 aid serving 1 runway
\end{tabular} \\
\hline Precision Approach Cat II, III (ILS, MLS) & Precision Approach Cat I Minima & \multicolumn{3}{|l|}{Non-Precision Approach Minima} \\
\hline Precision Approach Cat I (ILS, MLS) & Non-Precision Approach Minima & \multicolumn{3}{|l|}{Circling minima or, if not available non-precision approach minima plus \(200 \mathrm{ft} / 1000 \mathrm{~m}\)} \\
\hline Non-Precision Approach & The lower of non-precision approach minima plus \(200 \mathrm{ft} / 1000 \mathrm{~m}\) or circling minima & \multicolumn{3}{|l|}{The higher of circling minima or non-precision approach minima plus \(200 \mathrm{ft} / 1000 \mathrm{~m}\)} \\
\hline Circling Approach & \multicolumn{4}{|l|}{Circling minima} \\
\hline
\end{tabular}

\section*{4. DIVERSION DURING EXTENDED RANGE OPERATIONS}
A. Diversion decision making

The technical criteria governing a re-routing or diversion decision can be classified into four categories, as follows:
- loss of MNPS capability, before entering the MNPS area (as applicable)
- weather minima at diversion airport(s) going below the company/crew en-route minima, before reaching the ETOPS Entry Point, or diversion airport(s) becoming unsuitable for any reason,
- failure cases (refer to Note) requiring a diversion to the nearest airport (cases leading to a LAND ASAP message on the ECAM and/or in the ORH).
Note: Failure cases requiring LAND ASAP
- IN FLT ENG FIRE
- APU FIRE
- SINGLE ENG OPERATION (Engine Shutdown or Continued Engine Operation at /dle Thrust) - LOSS OF BOTH ENG. GENERATORS
- SMOKE/MINEOPTBAYSMOKE/AVNCS SMOKE
- BAT SMOKE (if applicable)
- CARGO COMPT SMOKE (included only in the US AFM)
- DUAL HYD. SYS LO PR.
- failure cases resulting in increased fuel consumption, exceeding the available fuel reserves.
Comments and recommendations
- Electrical Generation
\begin{tabular}{|c|c|c|c|c|}
\hline & AVAILABLE GENERATORS AT DISPATCH & AFTER 1st GEN FAILURE & AFTER 2nd GEN FAILURE or APU not available & AFTER 3rd GEN FAILURE \\
\hline & \[
\begin{aligned}
& 2 \text { ENG. GEN } \\
& 1 \text { APU GEN } \\
& 1 \text { STBY GEN (b) }
\end{aligned}
\] & START APU (a) NO DIVERSION & \begin{tabular}{l}
NO DIVERSION REQUIRED \\
(c)
\end{tabular} & DIVERSION REQUIRED \\
\hline & \[
\begin{aligned}
& 2 \text { ENG GEN } \\
& 1 \text { APU GEN }
\end{aligned}
\] & \multirow{3}{*}{\begin{tabular}{l}
NO DIVERSION REOUIRED \\
(c)
\end{tabular}} & \multirow{3}{*}{DIVERSION REQUIRED} & \multirow{3}{*}{\begin{tabular}{l}
NOT \\
APPLICABLE
\end{tabular}} \\
\hline & \[
\begin{aligned}
& 2 \text { ENG GEN } \\
& 1 \text { STBY GEN (b) }
\end{aligned}
\] & & & \\
\hline & 1 ENG GEN 1 APU GEN 1 STBY GEN (b) & & & \\
\hline
\end{tabular}
(*) For operations with a diversion time greater than 120 minutes, all 4 electrical generators are required to be operative at dispatch.
(a) For start limitation refer to Operating Limitations chapter.
(b) STBY GEN channel must be tested during cockpit preparation if a test of the STBY GEN channel is required for ETOPS operations.
(c) Crew may choose to divert after assessment of the overall situation.
Aircraft status in the present failure case, and if a subsequent generator failure occurs, must be considered taking into account actual meteorological conditions, suitable airport characteristics and approach facilities or any pertinent operational condition.
- Fire Protection

In case of CARGO SMOKE warning, even if the Flight Manual does not require LAND ASAP, a diversion must be initiated, the nearest suitable airport should be selected irrespective of the fire suppression system protection time. Refer also to FCOM 2.04.10 page 1 on this subject.
- Fuel System

Some failure cases may lead to fuel gravity feeding which implies unusable fuel quantity and flight at lower altitude. Due consideration of fuel remaining available and fuel consumption may necessitate diversion.
- Hydraulic system

In case of green system failure STBY GEN is lost. After first electrical ENG GEN subsequent failure : Start APU. Diversion decision is identical to the dispatch without STBY GEN.

\section*{B. Diversion performance data}

The FCOM section 2.16 provides descent and cruise procedures, and associated performance data for the following diversion strategies :
- Standard strategy.
- Obstacle strategy.
- Fixed speed strategy.

For ETOPS operations, any one of the above diversions strategies can be used provided that the selected strategy and speed schedule is used in :
- establishing the Area of Operation (maximum diversion distance),
- calculating the diversion fuel requirements for the single-engine ETOPS fuel scenario,
- demonstrating the applicable obstacle clearance requirements (net flight path and net ceiling).
During the diversion, the flight crew is expected to use the planned speed schedule. However, based on the evaluation of the actual situation, the pilot in command has the authority to deviate from this planned one-engine-inoperative speed.
C. Guidelines for diversion procedure

The following guidelines should be followed in case of diversion :
- Complete the related failure procedure,
- Inform ATC,
- Initiate the descent,
- Determine the nearest suitable alternate,
- Divert to the selected enroute alternate,
- Apply the pre-planned diversion strategy and speed schedules or adjust the speed as dictated by the assessment of the present situation.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18.70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 6} \\
\hline & EXTENDED RANGE OPERATIONS & REV 29 & SEQ 120 \\
\hline
\end{tabular}

\section*{D. Determination of 60 minutes maximum diversion distance (JAR-OPS 1.245)}
- No wind
- Diversion level after engine failure : FL 170

R - Single engine diversion speed schedule : VMO/MM0
R Note: Using the JAR-OPS 1.245 method, obstacles have not to be considered to determine if a route is or is not an ETOPS
E. Maximum distance (still air and ISA) to diversion airport, in nautical miles
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{SPEED SCHEDULE} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { REFERENCE } \\
& \text { GROSS WEIGHT } \\
& (\mathrm{KG})
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline \text { OPTIMUM } \\
\text { FL } \\
\text { FOR } \\
\text { DIVERSION }
\end{gathered}
\]} & \multicolumn{5}{|c|}{DISTANCE (NM)} \\
\hline & & & \multicolumn{5}{|c|}{Diversion time (min)} \\
\hline & & & 60 & 90 & 120 & 150 & 180 \\
\hline \multirow[t]{5}{*}{M. 80 / 300 kt} & 85000 & 260 & 440 & 660 & 880 & 1100 & 1320 \\
\hline & 100000 & 250 & 435 & 650 & 870 & 1085 & 1300 \\
\hline & 115000 & 240 & 430 & 640 & 855 & 1065 & 1280 \\
\hline & 130000
145000 & 220 & 420 & 630
615 & 885 & 1040 & 1245 \\
\hline & 160000 & 180 & 405 & 600 & 790 & 985 & 1180 \\
\hline \multirow[t]{6}{*}{M. 80 / 320 kt} & 85000 & 240 & 450 & 675 & 895 & 1120 & 1340 \\
\hline & 100000 & 230 & 445 & 665 & 885 & 1110 & 1330 \\
\hline & 115000 & 210 & 440 & 655 & 870 & 1090 & 1305 \\
\hline & 130000 & 200 & 435 & 650 & 860 & 1075 & 1285 \\
\hline & 145000 & 180 & 425 & 635 & 840 & 1045 & 1255 \\
\hline & 160000 & 160 & 420 & 620 & 820 & 1020 & 1220 \\
\hline \multirow[t]{6}{*}{M. 80 / 340 kt} & 85000 & 210 & 455 & 680 & 905 & 1135 & \\
\hline & 100000 & 200 & 450 & 675 & 900 & 1125 & 1350 \\
\hline & 115000 & 190 & 445 & 665 & 890 & 1110 & 1335 \\
\hline & 130000 & 180 & 440 & 655 & 875 & 1090 & 1310 \\
\hline & 145000 & 160 & 435 & 645 & 855 & 1070 & 1280 \\
\hline & 160000 & 150 & 425 & 650 & 835 & 1040 & 1250 \\
\hline
\end{tabular}

For \(\triangle\) ISA up to \(+10^{\circ} \mathrm{C}\) : add \(1 \mathrm{NM} /\) hour \(/{ }^{\circ} \mathrm{C}\);
- For \(\triangle\) ISA \(>+10^{\circ} \mathrm{C}\) : Check effect of \(\triangle\) ISA on TAS in Section 2.16.30 thru 2.16.50.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18.70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 7} \\
\hline & EXtended range operations & REV 22 & SEO 120 \\
\hline
\end{tabular}

\section*{ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING ONE ENGINE OUT - CRUISE AT 300 KT} Including : emergency descent - cruise 300kt at FL 100
final descent 250 kt - holding 15 min at FL 15
IMC procedure - Go Around - \(2^{\text {nd }}\) IMC procedure \(5 \%\) allowance for wind errors - APU fuel burn

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18.70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 8} \\
\hline & EXTENDED RANGE OPERATIONS & REV 22 & SEQ 120 \\
\hline
\end{tabular}

ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING
ONE ENGINE OUT - CRUISE AT 320 KT
Including: emergency descent - cruise 320kt at FL 100
final descent 250 kt - holding 15 min at FL 15
IMC procedure - Go Around - \(2^{\text {nd }}\) IMC procedure
5\% allowance for wind errors - APU fuel burn

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18.70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 9} \\
\hline & EXTENDED RANGE OPERATIONS & REV 22 & SEO 120 \\
\hline
\end{tabular}

\section*{ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING ONE ENGINE OUT - CRUISE AT 340 KT} Including : emergency descent - cruise 340kt at FL 100
final descent 250kt - holding 15 min at FL 15
IMC procedure - Go Around - \(\mathbf{2}^{\text {nd }}\) IMC procedure \(5 \%\) allowance for wind errors - APU fuel burn

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{2}{|r|}{2.18 .70} \\
\hline & & \multicolumn{2}{|l|}{PAGE 10} \\
\hline & EXTENDED RANGE OPERATIONS & REV 22 & SEQ 120 \\
\hline
\end{tabular}

\section*{ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING ONE ENGINE OUT - LONG RANGE CRUISE}

Including : emergency descent - long range cruise at FL 100 final descent 250kt - holding 15 min at FL 15 IMC procedure - Go Around - \(2^{\text {nd }}\) IMC procedure
5\% allowance for wind errors - APU fuel burn

\author{
FUEL \\ CONSUMPTION \\ (1000 kg)
}

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{SPECIAL OPERATIONS} & \multicolumn{3}{|c|}{2.18.70} \\
\hline & & PAGE 11 & 12 & \\
\hline & EXTENDED RANGE OPERATIONS & REV 22 & SEO & 120 \\
\hline
\end{tabular}

\section*{ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING}

\section*{ALL ENGINES - LONG RANGE CRUISE}

Including : emergency descent - long range cruise at FL 100
final descent 250kt - holding 15 min at FL 15
IMC procedure - Go Around - \(2^{\text {nd }}\) IMC procedure
5\% allowance for wind errors

\section*{1. GENERAL}

Reduced Vertical Separation Minimum (RVSM) airspace is any airspace or route between FL290 and FL410 (inclusive) where aircraft are separated vertically by 1000 ft instead of 2000 ft .
The A310 system design complies with the design criteria of JAA Information leaflet \(\mathrm{N}^{\circ} 6\) and FAA 91-RVSM Interim guidance Material for RVSM operations.
The statement of RVSM capability is also indicated in the AFM.
To meet RVSM requirements, the aircraft must be upgraded in accordance with RVSM modifications 11468 or 11469 (SB A310-34-2112).

\section*{2. OPERATIONAL APPROVAL}

The above statement of capability does not constitute an operational approval to fly in RVSM airspace. The operational approval is to be granted by the operator's national authorities after assessment of the airline capability to meet RVSM requirements.
The above mentioned JAA/FAA documents also cover requirements to obtain operational approval.

\section*{3. REQUIRED EQUIPMENT FOR RVSM}

RVSM regulations require the following equipment to be operative :
- 2 ADCs and 2 main Altimeters
- 1 ATC transponder
- 1 Auto Pilot Function
- 1 FCU
- 1 FWC

The Airbus Industrie MMEL has been approved making reference to the list of required equipment published in the AFM.

\section*{4. PROCEDURES}

The SOPs (FCOM 2.03) and the ABN and EMER procedures (FCOM 2.05 and 2.04) apply. For flights in RVSM airspace, these procedures must be complemented by the following :

\subsection*{4.1. Flight Preparation}

The crew must pay particular attention to conditions that may affect operation in RVSM airspace. These include but may not be limited to :
- verifying that the particular aircraft is approved for RVSM operations,
- reported and forecast weather on the route of flight
- review of maintenance logs and forms to determine the condition of equipment required for flight in RVSM airspace. Ensure that maintenance action has been taken to correct defects to required equipment.
- check that both main altimeters indication (QNH reference) does not differ from the airport elevation by more than 75 ft .
- check on ground that the two main altimeter indications are within the tolerances provided in FCOM 2.02.15.

\subsection*{4.2. In flight procedures}

\section*{Prior to entry into RVSM airspace}

The required equipment for RVSM listed above must be operating normally.
Should any of this equipment fail prior to entering the RVSM airspace, the crew must request a new clearance so as to avoid flight in this airspace. Main altimeter indications should be checked to agree within the tolerances in FCOM 2.02.15.
Main and standby altimeter indications should be recorded.

\section*{Within RVSM airspace}

AP should be engaged in CMD within RVSM airspace for cruise and flight level changes.
During transitions between flight levels, the aircraft should not overshoot or undershoot the cleared flight levels by more than 150 ft .
At intervals of approximately one hour, check that main altimeter indications agree within the tolerances in FCOM 2.02.15. The usual scan of flight deck instruments is an adequate means of compliance.
Use the ATC and the AP, associated with one of the ADC which is within tolerance.

\subsection*{4.3. Post Flight}

The crew must report any malfunction or deviation in maintaining the assigned altitude (including loss or malfunction of any of the required equipment or altimeter tolerances outside of those provided in 2.02.15), and provide sufficient detail to enable maintenance to troubleshoot and repair the system.

\subsection*{4.4. Abnormal and Emergency Procedures}

When in RVSM airspace, the following contingencies which affect the ability to maintain the assigned flight level must be notified to ATC.
- failure of both Autopilots,
- loss of altimeter system redundancy,
- failure of any other equipment affecting the ability to maintain the assigned flight level, or
- encountering severe or very severe turbulence.

\section*{Note : Appendix 5 of above mentioned JAA/FAA regulation contain detailed guidance for contingency procedures for North Atlantic airspace.}

If unable to notify ATC and obtain ATC clearance prior to deviating from the assigned flight level, the crew must follow the established contingency procedure and obtain ATC clearance as soon as possible.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
REDUCED VERTICAL SEPARATION MINIMA \\
(RVSM)
\end{tabular}} & \multicolumn{2}{|r|}{2.18.90} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 25 & SEO 001 \\
\hline
\end{tabular}

\section*{LEFT INTENTIONALLY BLANK}

\section*{1. GENERAL}

The aircraft navigation system required by regulation to fly within a RNP airspace shall comply with RNAV functionality criteria and with navigation position accuracy and integrity criteria.
When referring to RNP-X, the value of X is the navigation accuracy expressed in NM, which has to be met with a probability of \(95 \%\).
A RNP value can be associated to an airspace, a route, a SID, a STAR, a RNAV approach or a RNAV missed approach procedure.
Depending of the RNP value and the airspace environment (ground radio navaid), different navigation equipment may be necessary.
An operational approval from the airline's national authorities may be necessary.

\section*{1. RNP CAPABILITY}

\subsection*{1.1 NAVIGATION SYSTEM CAPABILITY (for reference only) :}
- RNP-10 capability in oceanic or remote areas is shown in compliance with § 12.b of FAA Notice 8400.12A.
- Navigation system with GPS PRIMARY Function meets certification requirements of FAA AC 20-130A and TSO C 129 in class C1 (for navigation system with multiple sensor inputs).
- European BRNAV (RNP-5) capability is shown in compliance with certification requirements of FAA AC 90-45A.
- P-RNAV (RNP-1) capability meets the certification requirements of JAA TGL 10 (compliance with § 8.2 "Database integrity" has not been demonstrated).

\subsection*{1.2 FMS ACCURACY}

In order to match a given RNP value, the FMS estimated position accuracy (also called Estimated Position Error) must be better than the RNP value. This is obviously dependent on the FMS navigation-updating mode (GPS, DME/DME, VORDME, or IRS).
On the CDU PROG page the required and the estimated position accuracy are displayed and determine the HIGH/LOW accuracy indication (refer to FCOM 1.19.40).
The required accuracy can be either the default value, which is a function of the phase of flight, or a value manually entered by the crew.

When flying in RNP environment, the crew can insert the appropriate RNP value in the REQUIRED ACCUR field of the PROG page.
- when HIGH is displayed, the RNP requirement is estimated fulfilled
- when LOW is displayed, the RNP requirement is estimated not fulfilled, in that case :
- crew crosscheck navigation with raw data if available,
- if the cross check is negative, or if raw data is not available, crew inform ATC
When leaving RNP environment, the crew will clear the manually entered required accuracy.

\subsection*{1.2.1 Without GPS PRIMARY function}

RNP accuracy criteria are met provided the radio navaid coverage supports it for:
- RNP-1 en route and in terminal area provided a required accuracy of \(1.2 \mathrm{NM}^{(1)}\) is manually entered in CDU.
- RNP-0.3 in approach provided a required accuracy of \(0.36 \mathrm{NM}^{(1)}\) is manually entered in CDU.
Note: (1) Radial equivalent to the specified XTK/ATK accuracy

\subsection*{1.2.2 With GPS PRIMARY function}

RNP requirements are met, provided GPS PRIMARY is available, for :
- RNP-1 en route
- RNP-0.5 in terminal area provided AP or FD in NAV mode is used
- RNP-0.3 in approach provided AP or FD in NAV mode is used

\section*{2. BRNAV IN EUROPEAN AIRSPACE}

In this airspace the radio navaid coverage is assumed to support RNP-5 accuracy.

\subsection*{2.1 Required equipment}

The minimum required equipment to enter BRNAV airspace is:
- One RNAV system which means :
- 1 FMS
- 1 CDU
- 1 VOR for FM navigation update
- 1 DME for FM navigation update
- 1 IRS
- Flight Plan Data on 2 ND's
- For aircraft without FMS switching option, 2 FMS are necessary to have 2 ND F-PLN displays.

\subsection*{2.2 Procedures}

Except when GPSPRIMARY is availablecrosscheck periodically FMS position with radio navaid raw data.
The manual selection of a required navigation accuracy on CDU is optional.
- If manual entry of a required accuracy is desired, use the radial equivalent to 5 nm XTK/ATK accuracy that is 6.1 nm .
- When leaving the RNP-5 airspace, or when entering terminal area, revert to the default required accuracy or enter appropriate value on CDU.

Check navigation accuracy with navaid raw data or GPS MONITOR page, if one of the following CDU or ECAM messages is displayed :
- NAV ACCUR DOWNGRAD
- FMC POSITION MISMATCH
- VERIFY A/C POSITION
- ECAM : FM/GPS POS DISAGREE
- If accuracy check confirms that RNP-5 capability is lost or if both FMS are failed : inform ATC and revert to conventional navigation
- If accuracy check confirms that only one FMS position is incorrect, resume navigation with the other FMS.
If IRS ONLY navigation, the BRNAV capability is kept during 2 hours independently of the estimated accuracy displayed on CDU.

\section*{3. RNP-10 IN OCEANIC OR REMOTE AREAS}

In this kind of airspace the aircraft is expected to fly for a long period of time outside radio navaid coverage.
There is no limitation for aircraft fitted with GPS.

\subsection*{3.1 Required equipment}

Minimum required equipment to enter a RNP-10 airspace is:
- 2 long range navigation systems, which means :
- 2 FMS
-2 CDU
- 2 GPS (if required by flight time outside radio navaid coverage)
- 2 IRS

Refer also to Regional Supplementary Procedures of ICAO Doc 7030 for specific requirements in a particular airspace.

\subsection*{3.2 Procedures}

The manual selection of a required accuracy on CDU is optional.
- If manual entry of a required accuracy is desired, use the radial equivalent to 10 NM XTK/ATK accuracy that is 12.2 NM .
- When leaving the RNP-10 airspace, revert to the default required accuracy or enter appropriate value.
Check navigation with POSITION MONITOR page and GPS MONITOR page, if one of the following CDU or ECAM messages is displayed :
- FMC POSITION MISMATCH
- VERIFY A/C POSITION
- ECAM : FM/GPS POS DISAGREE
- Use AP with the navigation system checked correct
- If unable to determine which system is correct, inform ATC and look for navaid raw data confirmation as son as possible
In IRS ONLY navigation, the RNP-10 capability is kept during 5.7 hours, according to FAA Notice 8400.12A., independently of the estimated accuracy displayed on CDU.

\section*{4 P-RNAV FOR EUROPEAN TERMINAL} PROCEDURES
For terminal procedures requiring P-RNAV capability within european airspace, radio navaid coverage is assumed to support RNP-1 accuracy.

\subsection*{4.1 Required equipment}

The minimum required equipment to fly a \(\mathrm{P}-\mathrm{RNAV}\) procedure is:
- One RNAV system which means :
- 1 FMS
- 1 CDU
- 1 VOR or GPS for FMS navigation update
- 1 DME or GPS for FMS navigation update
- 1 IRS
- 1 FD
- Flight Plan Data on 2 ND's
- For aircraft without FMS switching option, 2 FMS are necessary to have 2 ND F-PLN displays.
For terminal procedures with legs below the MSA, or without appropriate radar coverage, two RNAV systems may be mandated by the procedure chart.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
REQUIRED NAVIGATION PERFORMANCE \\
(RNP)
\end{tabular}} & \multicolumn{2}{|r|}{2.18.95} \\
\hline & & \multicolumn{2}{|l|}{PAGE 3} \\
\hline & & REV 33 & SEO 110 \\
\hline
\end{tabular}
\(\mathrm{R} \quad\) The procedure, as loaded from the navigation database \(R \quad\) should not be modified unless instructed to do so by the \(R \quad\) ATC (DIR TO..., insertion of waypoints loaded from the R navigation database).
\(R\) If GPS PRIMARY is not available, check or enter RNP-1 in
R the CDU and check HIGH accuracy is displayed.
\(R \quad\) When leaving the terminal procedure, revert to the default R RNP or enter the appropriate value on the CDU.
\(\mathrm{R} \quad\) Check navigation accuracy with navaid raw data or GPS \(R \quad\) MONITOR page, if one of the following CDU or ECAM \(R\) messages is displayed:
R - NAV ACCUR DOWNGRAD
R - FMC POSITION MISMATCH
R - VERIFY A/C POSITION
R - ECAM : FM/GPS POS DISAGREE
R

\subsection*{4.2 Procedures}

When GPS PRIMARY is not available, crosscheck periodically FMS position with radio navaid raw data.

The terminal procedure (RNAV SID, RNAV STAR, RNAV TRANSITION, ...) must be loaded from the FMS navigation database, and checked for reasonableness by comparing the F-PLN page waypoint sequencing, tracks, distances and altitude constraints with the procedure chart.
- If accuracy check confirms that RNP-1 capability is lost or if both FMS are failed : inform the ATC and revert to conventional navigation.
- If accuracy check confirms that only one FMS position is incorrect, resume navigation with the other FMS.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
SPECIAL OPERATIONS \\
REQUIRED NAVIGATION PERFORMANCE \\
(RNP)
\end{tabular}} & \multicolumn{2}{|r|}{2.18.95} \\
\hline & & \multicolumn{2}{|l|}{PAGE 4} \\
\hline & & REV 33 & SEQ 110 \\
\hline
\end{tabular}

INTENTIONALLY LEFT BLANK
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{OPERATIONS ENGINEERING BULLETINS} & \multicolumn{2}{|r|}{2.19.00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 1} \\
\hline & CONTENTS & REV 36 & SEC 001 \\
\hline
\end{tabular}

Pages

\subsection*{19.00 CONTENTS}
19.10 GENERAL DESCRIPTION

Definition. 1
Type of OEB. 1
OEB content and
management. 1
Review of the OEBs. 2
Distribution. 2

\subsection*{19.20 LIST OF EFFECTIVE OEB}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{OPERATIONS ENGINEERING BULLETINS} & \multicolumn{2}{|r|}{2.19.00} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & CONTENTS & REV 36 & SEQ 001 \\
\hline
\end{tabular}

\section*{DEFINITION}

An Operations Engineering Bulletin (OEB) is issued to rapidly inform operators of any deviations from initial design objectives that have a significant operational impact. An OEB provides the operators with technical information and temporary operational procedures that address these deviations.

\section*{TYPE OF OEB}

OEBs can either be red or white, depending on their level of priority.
- RED OEBs are issued to indicate that noncompliance with the recommended procedures may have a significant impact on the safe operation of the aircraft.
RED OEBs are printed on red paper, and are filed in the OEB section of both the FCOM 2 and the QRH.
- WHITE OEBs are issued to indicate that noncompliance with the recommended procedures may have a significant impact on aircraft operation. WHITE OEBs are printed on white paper, and are also filed in the OEB section of both the FCOM 2 and the QRH.

Airbus strongly recommends that all Operators rapidly apply the OEB corrective actions as soon as they become available, particularly for red OEBs.

The information in the OEB is recommended by Airbus, but may not be approved by Airworthiness Authorities. However, the procedures of the red OEBs are also issued via Temporary Revisions (TRs) of the Airplane Flight Manual (AFM). If the procedures contained in the red OEB differ from the procedures in the AFM TR, the approved AFM TR remains the reference.

\section*{CONTENT AND COVERAGE}

An OEB :
- Is temporary and usually focuses on one operational subject only
- Is included in the FCOM Chapter 2.19.20. The procedural part of each white or red OEB (OEB PROC) is provided in the OEB section of the QRH, so that the flight crew can easily access the procedures.
- Remains applicable until the appropriate corrective actions are completed.

\section*{Note} \(\begin{array}{ll}\text { After installation of the OEB corrective } & \mathrm{R} \\ \text { modification/Service Bulletins (SB), if an } & \mathrm{R} \\ \text { Operator reinstalls any spare equipment for } & \mathrm{R} \\ \text { which there was an OEB associated to, it is } & \mathrm{R} \\ \text { the Operator's responsibility to ensure that } & \mathrm{R} \\ \text { this OEB be applied again for the applicable } & \mathrm{R} \\ \text { aircraft. } & \mathrm{R}\end{array}\)

OEBs IN THE FCOM :
OEBs are filled in numerical order.
The content of each OEB includes :
- The reason for issue

R
- Technical explanations of the deviation from the initial design objectives
- The operational impact if the flight crew does not apply the OEB procedure
- The conditions for applying the OEB procedures: R
- ECAM warning/caution affected by the OEB

R
- Cockpit effects R
- Flight phases
- Specific event
- The OEB operational procedure(s) to be applied
- The corrective actions that cancel the OEB if \(R\)

OEBS IN THE QRH :
Each FCOM OEB has an associated "OEB PROC" in R the OEB section of the ORH (19.00) that includes :
- The title of the OEB PROC
- The OEB operational procedure(s) that the flight crew must apply.

All OEB PROCs are filed by type of OEB (RED OEB PROC first, then WHITE OEB PROCs), and in numerical order for each type of OEB.

\section*{LEOEB :}

On the first page of both FCOM 2.19 .20 section and ORH OEB section, there is a LIST OF EFFECTIVE OEBs (LEOEB) page, to enable the flight crew to easily review the OEBs before flight.
The FCOM (QRH) LEOEB is updated and reissued each time an OEB (OEB PROC) is revised or added to the QRH, or when there is an OEB (OEB PROC) validity change.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{OPERATIONS ENGINEERING BULLETINS
GENERAL DESCRIPTION} & \multicolumn{2}{|r|}{2.19.10} \\
\hline & & \multicolumn{2}{|l|}{PAGE 2} \\
\hline & & REV 36 & SEO 001 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 801-1 & JAN 2005 ALL & Introducing feom bulletin \\
\hline 802-1 & JAN 2005 ALL & understanding buffet margin \\
\hline 803-1 & \[
\begin{aligned}
& \text { JAN } 2005 \\
& \text { ALL }
\end{aligned}
\] & GREEN DOT SPEED \\
\hline 804-1 & JAN 2005 ALL & crude oil smoke areas \\
\hline 805-1 & \[
\begin{aligned}
& \text { JAN } 2005 \\
& \text { ALL }
\end{aligned}
\] & Radio alti fluctuations \\
\hline 806-2 & \[
\begin{aligned}
& \text { MAR } 2006 \\
& \text { ALL }
\end{aligned}
\] & FQI ACCURACY \\
\hline 807-1 & JAN 2005 ALL & APProach energy management \\
\hline 808-1 & JAN 2005 ALL & MMEL AND MEL USE \\
\hline 809-1 & JAN 2005 ALL & CDL USE \\
\hline 810-1 & JAN 2005 ALL & Windshear phendmenom \\
\hline 811-1 & \[
\begin{aligned}
& \text { JAN } 2005 \\
& \text { ALL }
\end{aligned}
\] & Preventing unnecessary ifsd \\
\hline 812-1 & JAN 2005 ALL & Eng lack of throttle respons \\
\hline 813-1 & JAN 2005 ALL & ENG LOSS OF throttle control \\
\hline 814-1 & JAN 2005 AL L & fuel temperature limitations \\
\hline 815-1 & JAN 2005 ALL & volcanic activity-ash \\
\hline 816-1 & JAN 2005 ALL & CROSSWIND LANDING technique \\
\hline 817-2 & \[
\begin{aligned}
& \text { JUN } 2008 \\
& \text { ALL }
\end{aligned}
\] & AVOIDING TAIL STRIKES \\
\hline 818-1 & JAN 2005 ALL & Electronic interference \\
\hline 819-1 & \[
\text { JAN } 2005
\]
ALL & AVOID DISORDER IN COCKPIT \\
\hline 820-1 & JAN 2005 ALL & FMS Navigation data base \\
\hline 821-1 & JAN 2005 ALL & ON GRd bleed leak-high oat \\
\hline 822-1 & \[
\text { JAN } 2005
\]
ALL & dispatch with act not used \\
\hline 823-1 & JAN 2005 ALL & Pre-stall and mach nb buffet \\
\hline 824-1 & JAN 2005 ALL & FCU ALTITUDES OVERSHOOT \\
\hline 825-1 & JAN 2005 ALL & BEING PREPARED FOR GO-AROUND \\
\hline 826-1 & JAN 2005 ALL & ECAM/QRH USE FOR SMOKE PROC \\
\hline 827-1 & JAN 2005 ALL & USE OF RUDDER \\
\hline 828-1 & JAN 2005 ALL & EGPWS database \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l||}
\hline Issued bApAp/ST-F & File in FCOM 2.19 & \begin{tabular}{l}
Bulletin/lssue N \(^{\circ}: 125 / 3\) \\
Date : June 98
\end{tabular} \\
\hline
\end{tabular}

\section*{SUBJECT : INTERMITTENT ELECTRICAL POWER SUPPLY - INTERRUPTION CAUSED BY IDG FEEDER CONNECTOR PIN/SOCKET ARCING}

\author{
R Applicable to : All aircraft equipped with PW4000 or CF6-80C2 engines. \\ R Cancelled by: Mod 10679 (SB 71-2017) for PW engines or Mod 10680 (SB 71-2018) for GE engines.
}

\section*{1-REASON FOR ISSUE}

The purpose of this OEB is to provide flight crews with background information and operational recommendations regarding the potential intermittent electrical power supply interruption caused by IDG feeder connector pin/socket arcing, on aircraft fitted with PW4000 or GE CF680 C 2 engines.

\section*{2 - BACKGROUND INFORMATION}

The aircraft electrical power is supplied by two three-phase Integrated Drive Generators (IDG).
The IDG three phases and neutral are connected to the aircraft electrical system by a set of 4 cables known as the IDG feeder.

To allow for engine removal, the IDG feeder can be disconnected, at the engine/pylon interface, at the level of a type connector.

Operations Engineering Bulletins are issued by Airbus Industrie as the need arises to quickly transmit technical and procedural information. They are distributed to all FCOM holders and to others who need advice of changes to operational information Information in this bulletin are recommended by Airbus Industrie but may not be approved by Airworthiness Authorities. In case of conflict with the certified Flight Manual, the latter will supersede.

In-service experience has evidenced that the pin/socket retention force may come to be degraded resulting in pin/socket arcing and consequent intermittent electrical power supply interruption affecting one or several phases.

The above phenomenon is usually evidenced by one or a combination of the following typical occurrences (or the recurrence thereof) :
- Flickering of PFD, ND, ECAM or FMS/CDU CRT's,
- Disengagement of ATS, YAW DAMPER or PITCH TRIM,
- Warnings and/or flags affecting ADC, FAC or FWS data.

\section*{3 - PROCEDURE}

Should the IDG feeder pin/socket arcing be suspected, as evidenced by one or a combination of the above typical occurrences (or the recurrence thereof), proceed as follows :
- using the BUS EQUIPMENT LIST (QRH), positively identify the affected generator,
- apply the following procedure :

APU START

Note : APU should be started (if available) only if current altitude is compatible with APU in-flight restart envelope.

GEN (affected) OFF/R
- perform a log book entry for maintenance assessment and corrective action prior to the next flight.

\section*{SUBJECT : SELECTION OF ENG ANTI ICE BELOW 15000 FT}

R Applicable to: All aircraft equipped with PW4000 engines.
R Cancelled by: Mod 8874 (SB 73-2020) or Mod 10265 (SB 73-2022) or Mod 10633 (SB 732028) or Mod 10767 (SB 73-2029) or Mod 11113 (SB 73-2030) or Mod 11624 (SB 73-2032).

\section*{1 - REASON FOR ISSUE}

To provide background information and operational recommendations for the selection of ENG ANTI ICE, for any operation below 15000 ft .

\section*{2- BACKGROUND INFORMATION}

So as to provide a greater ventilation of the HPC rotor drum and thus prevent the potential for HPC blade tip rub and engine surge when performing a snap reacceleration with a heat soaked engine, it is required to force a higher idle level by selecting the ENG ANTI ICE to ON for any operation below 15000 ft .

This requirement is enforced by AD 91-05-20 and Consigne de Navigabilité 90-141-114 (b) Rev 1 or further revision.

\footnotetext{
Operations Engineering Bulletins are issued by Airbus Industrie as the need arises to quickly transmit technical and procedural information. They are distributed to all FCOM holders and to others who need advice of changes to operational information
Information in this bulletin are recommended by Airbus Industrie but may not be approved by Airworthiness Authorities. In case of conflict with the certified Flight Manual, the latter will supersede.
}

The provision of this OEB is to be complied with until the installation of FADEC SCN 10E, or subsequent standard on both engines, per above listed Airbus Industrie Modifications or Service Bulletins.

\section*{3 - PROCEDURE}

The following procedure must be complied with, as follows :
- BEFORE TAKEOFF : select ENG ANTI ICE ON.
- AFTER TAKEOFF : keep ENG ANTI ICE ON until after crossing 15000 ft .
- CLIMB : above 15000 ft , set ENG ANTI ICE OFF, if not required by icing conditions.
- DESCENT : set ENG ANTI ICE ON before reaching 15000 ft .

Operations
Engineering
\begin{tabular}{|c|c|c|}
\hline a Issued by STL & File in FCOM 2.19 & \begin{tabular}{l}
Bulletin/lssue \({ }^{\circ}{ }^{\circ} 148 / 3\) \\
Date : November 2006
\end{tabular} \\
\hline
\end{tabular}

\section*{SUBJECT: \\ ATA 34 - TCAS / VSI INDICATOR FAULT INDICATION AND PARTIAL DISPLAY IN SOME MULTIPLE AIRCRAFT ENCOUNTER}

APPLICABLE TO: All aircraft fitted with the following configuration : TCAS CHANGE 7:

HONEYWELL: MOD 12025 OR MOD 12034 (SB 34-2148)
R
OR MOD 12339 (SB 34-3160)
Or
ROCKWELL-COLLINS: MOD 12043 (SB 34-2149) or MOD 12354 (SB 34-2159)
and

THALES TCAS / VSI indicator:
MOD 10107 (SB 34-2069)

CANCELLED BY: New VSI part number - MOD 12766 (SB 34-2191)

\footnotetext{
Operations Engineering Bulletins are issued by Airbus as the need arises to quickly transmit technical and procedural information. They are distributed to all FCOM holders and to others who need advice of changes to operational information
Information in this bulletin are recommended by Airbus but may not be approved by Airworthiness Authorities.
In case of conflict with the certified Flight Manual, the latter will supersede.
}

\section*{I - REASON FOR ISSUE}

The purpose of this OEB is to inform all A310 operators whose aircraft are fitted with TCAS CHANGE 7.0 about potential THALES TCAS / VSI indicator fault indication and partial display.
Reason for Issue 2 : corrective action now available
R Reason for Issue 3 : applicability updated

\section*{II - DESCRIPTION}

During a multiple aircraft encounter (e.g. intruders are encountered both above and below simultaneously), the "MAINTAIN VERTICAL SPEED, MAINTAIN" Resolution Advisory message may be triggered as circumstances dictate. Although this audio message is correctly generated, the "RA FAIL" flag may be simultaneously and unduly displayed on the Vertical Speed Indicator (VSI). If this occurs, the VSI does not display the red and green arc as it should.

As soon as this particular conflict is cleared, the "RA FAIL" flag disappears and TCAS / VSI indicator automatically returns to normal operation.

\section*{III - OPERATIONAL RECOMMENDATIONS}

In case of TCAS Resolution Advisory, the corresponding audio message must be followed even if the "RA FAIL" flag is displayed on the VSI.
If the "MAINTAIN VERTICAL SPEED, MAINTAIN" Resolution Advisory message is triggered, the current vertical speed must be maintained to keep the current flight path accordingly.

The awareness of the traffic situation is still available through the traffic advisory information which is correctly displayed on the VSI.

\section*{IV - CORRECTIVE ACTION}

The logic default described paragraph II and can be corrected by Service Bulletin (34-2191) installing a new VSI Part Number.

DATE : JAN 05
File in FCOM 2.20
Issued by STLW

\section*{SUBJECT : INTRODUCING FCOM BULLETIN}

Applicable to : All aircraft

FCOM BULLETINS give more information concerning technical/operational matters closely related to the two volumes of the FCOM. This information will be different in content from that of the OPERATION ENGINEERING BULLETINS.

OEBs are issued as the need arises to quickly transmit technical and procedural information when a specific problem arises which has an operational impact.

The FCOM BULLETIN is issued when deemed advisable. It deals with one subject and includes additional or summarized information with regard to aircraft operation, system descriptions, performance, regulations... and contains data which is not elligible for incorporation in the FCOM itself. Each subject has an individual subject number.

FCOM BULLETINS have no impact on published procedures.
FCOM BULLETINS are sent depending on aircraft configuration. Thus each FCOM holder may not receive all FCOM BULLETINS. Restrictive applicability is indicated if any in the Bulletin itself.
R The List of Effective FCOM BULLETINS is given in R FCOM 2.19.20. FCOM BULLETINS and OEBs share \(R\) the same listing. The list of effective FCOM R BULLETINS comes after the list of effective OEBs.
R The List of Effective OEBs/FCOM BULLETINS is \(R\) updated at each new issue of an OEB or FCOM R BULLETIN.

It is recommended to file FCOM BULLETINS in FCOM volume 2 section 20.

DATE : JAN 05
File in FCOM 2.20
Issued by STLW

\section*{SUBJECT : UNDERSTANDING AND MANAGING THE BUFFET MARGIN Subject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} 02 / 2\) - Subject \(\mathrm{N}^{\circ} 2\)}

Applicable to: All aircraft

I - REASON FOR ISSUE AND SCOPE
- The purpose of this FCOM BULLETIN is to provide flight crews with summarized information regarding the BUFFET MARGIN.

\section*{II - BACKGROUND INFORMATION}

\section*{II. 1. FCOM GRAPHICAL INFORMATION}
- Information regarding the BUFFET MARGIN (margin relative to buffet onset) is provided in the FCOM under two forms, as follows :
- BUFFET ONSET Chart (FCOM Vol. 2 OPERATING LIMITATIONSI

* The BUFFET ONSET chart (presented here above in a schematic form) provides for a given set of flight conditions (MN, FL, CG, GW), the following information :
- Load Factor which, if reached, would result in buffet onset.

Note: Starting from a level flight under 1 g , the BUFFET MARGIN can be, therefore, defined as follows :

\section*{BUFFET MARGIN = ALLOWABLE LOAD FACTOR - 1}
- Bank Angle, resulting in the same load factor, representing the available maneuvering capability before reaching the buffet onset.
- High Speed and Low Speed buffet speeds (in MN) under 1 g .
* The BUFFET ONSET chart can be refered to whenever an accurate assessment of the available buffet margin is considered.
* It is to be stressed that Gross Weight, Flight Level and Mach Number have a direct combined effect on the available buffet margin. The following correlation factors can be memorized as resulting in a 0.10 g decrease in buffet margin :
- being 10 tons heavier, at given FL and MN, or
- increasing altitude by 2000 ft , at given GW and MN ,
or
- deviating by 0.02 MN from the optimum maneuvrability MN (e.g. 0.80 on A 310) at given GW and FL.
* Considering the above correlation factors, the altitude and Mach number can be selected/traded so as to maintain/recover the desired buffet margin.
- CRUISE LEVEL CHART (FCOM Vol. 2 FLIGHT PLANNING)

* The CRUISE LEVEL CHART (presented here above in a schematic manner) provides, for a given Mach number the following information :
- OPTIMUM ALTITUDE: The optimum altitude is defined so as to provide the maximum fuel performance (maximum specific range), at given MN, as a function of the GW. The buffet margin available at the optimum altitude is greater than 0.4 g (\(\mathrm{n}>1.4 \mathrm{~g}\)).
- MAXIMUM RECOMMENDED ALTITUDE : The maximum recommended altitude is defined so as to provide a 0.3 g buffet margin (\(\mathrm{n}=1.3 \mathrm{~g}\)), thus allowing adequate cruise maneuvering capability. At the maximum recommended altitude, the fuel performance remains within \(1.5 \%\) of the above optimum.
- MAXIMUM ALTITUDE: This is the maximum altitude, as a function of the GW, which can be sustained in level flight at given Mach number and temperature, using the maximum cruise setting.

III - FMS COMPUTATION AND DISPLAY
- The FMS also computes and defines an OPTIMUM ALTITUDE and a MAXIMUM ALTITUDE using complex multi-variables algorythms, as follows :
- OPTIMUM ALTITUDE :
* The optimum altitude is calculated, based on the selected strategic mode, by minimizing the total cost for a given FPLN, taking into account the initial gross weight as well as the predicted wind and temperature profiles.
* For typical revenue service operation (ECON strategic mode, typical cost index), the FMS OPTIMUM ALTITUDE is equal to the FCOM OPTIMUM ALTITUDE and thus provides also a buffet margin greater than 0.4 g (\(\mathrm{n}>1.4 \mathrm{~g}\))
Note: For detailed background, reference can be made to the FCOM 2-02-19, USE OF SPERRY (SMITHS) FMS, MACH FOR STRATEGIC MODE IOPTIMUM CRUISE MACH) AND OPTIMUM ALTITUDE FOR STRATEGIC MODE (OPTIMUM CRUISE ALTITUDE) charts.
- MAXIMUM ALTITUDE :
* The FMS MAXIMUM ALTITUDE is provided as an absolute altitude combining the following criteria :
1 - Maximum altitude which can be sustained in level flight at the maximum CR setting.

2 - Maximum altitude which can be reached with a minimum vertical speed of \(+300 \mathrm{ft} / \mathrm{mn}\) at the maximum CL setting.

3 - Maximum altitude which can be reached before buffeting with the following buffet margin :
- SPERRY FMS : 0.2 g
- SMITHS FMS : 0.2 g or 0.3 g depending on selected pin programming.
4 - Maximum altitude which can be flown with a speed/mach higher than GREEN DOT and lower than VMO/MMO.
* The above criteria are summarized on the graph presented hereafter in a schematic manner:

* The FMS MAXIMUM ALTITUDE (MAX FL) is displayed on the following FMS pages :
- INIT B (SPERRY), as soon as weight data have been entered,
- PROGRESS (SPERRY)/PERFormance (SMITHS) page.
* Flight crews should be aware that when operating with the FMS buffet margin set to 0.2 g , the buffet margin available when flying at the FMS MAXIMUM ALTITUDE can be significantly lower than 0.3 g (\(\mathrm{n}=\) 1.3 g)
* Considering a set of initial conditions (e.g. point (A)), the effect of altitude (point (B)) and Mach number (point (C)) on the available buffet margin are clearly illustrated, thus supporting the recommendation for selecting/trading altitude and Mach number so as to maintain/recover the desired buffet margin.

\section*{IV - MANAGING THE AVAILABLE BUFFET MARGIN}
- The FCOM and FMS guidance, in term of BUFFET MARGIN, is provided so as to offer operational flexibility. However, it is the flight crew responsibility to assess the adequate and necessary BUFFET MARGIN with regards to the actual flight conditions, in term of :
- Gross weight,
- Altitude,
- Mach number,
- Turbulence,
- Desired maneuverability (desired bank angle capability).
- Based on the above referenced FCOM general recommendations, as well as specific operational recommendations such as :
- Flying at or below the optimum altitude for FLIGHT IN SEVERE TURBULENCE to provide sufficient buffet margin (FCOM \(R\) PROCEDURES AND TECHNIQUES - R INCLEMENT WEATHER OPERATION - R FLIGHT IN SEVERE TURBULENCE)
- Considering a \(15^{\circ}\) maximum bank angle selection when flying in non-NAV AP guidance - i.e. HDG SEL - (FCOM PROCEDURES AND TECHNIQUES - USE OF AFS - LATERAL MODES).
- FMS MAXIMUM ALTITUDE can be flown provided that :
- no turbulence is encoutered or predicted,
- flight plan features limited heading changes (almost straight flight along the considered period).
- For typical operation, the cruise altitude and Mach number should be selected in order to ensure a BUFFET MARGIN equal to or greater than \(0.3 \mathrm{~g}(\mathrm{n}=1.3 \mathrm{~g})\) as follows :
- Altitude : OPTIMUM ALTITUDE \(\pm 2000 \mathrm{ft}\), thus also keeping the fuel performance (Specific Range) within \(1.5 \%\) of the optimum,
- Mach number: FMS target speed or selected fixed Mach number.
- Whenever deviating from the above recommendations e.g. :
- High initial cruise altitude or early step climb for ATC reasons,
- High Mach number operation, such as MIN TIME STRATEGIC MODE or fixed Mach number in TACTICAL (PERF) MODE,
the BUFFET MARGIN should be managed by the flight crew.
- So as to assist the flight crews in their decision making process, the BUFFET ONSET chart and the CRUISE LEVEL CHART have been complemented with a new chart, titled MANAGEMENT OF BUFFET MARGIN, (presented hereafter in a typical form) providing direct reading information regarding the set of flight conditions (Altitude, Gross Weight, Mach Number) assuring a 0.3 g BUFFET MARGIN (\(\mathrm{n}=1.3 \mathrm{~g}\)). This chart has been incorporated in the FCOM Vol. 2 - FLIGHT PLANNING MANAGEMENT OF BUFFET MARGIN.

- Whenever the available BUFFET MARGIN is a concern (e.g. encountered or predicted turbulence) the step climb decision and point should be carefully evaluated, considering :
- the present Gross Weight and BUFFET MARGIN,
- the estimated BUFFET MARGIN at intended step climb altitude,
- the overall saving, as confirmed by the FMS STEP CLIMB PREDICTION.

Note : As illustrated on the CRUISE LEVEL CHART provided hereafter, delaying a step climb may provide the desired BUFFET MARGIN retention, with a negligible impact on the trip fuel burn-off.

\section*{V - CONCLUSION}
- The FCOM and the FMS provide guidance information in term of BUFFET MARGIN and/or resulting capability in term of :
- maneuverability (bank angle)
- optimum, maximum recommended and maximum altitudes.
- However, it remains the flight crew responsibility and initiative to assess and maintain the BUFFET MARGIN considered adequate and necessary for the prevailing flight conditions.

\section*{SUBJECT : GREEN DOT SPEED \\ Subject extracted from former FCOM Bulletin \({ }^{\circ} \mathbf{0 3 / 2}\) - Subject \({ }^{\circ}{ }^{\circ} 3\) No technical change from previous issue}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE}

Differences on GREEN DOT indications between FMS, PFD (FAC) and FCOM may occur. This bulletin explains the reasons of these differences and shows that these differences have no impact on the safety or on the operation of the aircraft.

\section*{2. GREEN DOT DEFINITION}

The green dot speed is defined to give the best climb gradient capability in clean configuration (close to the best lift to drag ratio). It is used for different purposes :
2.1. For the ENGINE OUT CONFIGURATION it represents:
- The FINAL TAKE OFF SPEED and thus the optimum climb speed.
- The DRIFT DOWN SPEED which provides the best descent flight path and thus ensures the best obstacle clearance.
2.2. With ALL ENGINES OPERATING it indicates the speed allowing the best climb gradient. For exemple it represents the target speed in LVL CH mode or PROF (MAX CLB), when during climb the ATC requests to expedite through a given FL.
2.3. The GREEN DOT SPEED is very close to the MAX ENDURANCE SPEED ; it is therefore used as :
- Recommended speed for holding pattern in clean configuration.
- Lower limit for ECON SPD target (SPERRY) or optimum cruise speed (SMITHS).
2.4. The GREEN DOT SPEED is finally the recommended MANEUVERING SPEED in clean configuration, which provides adequate margin relative to VS (between 1.4 VS and 1.5 VS), for example to follow a circuit for approach or for holding pattern.
From these four objectives, the first one is the predominant objective and has led to the definition of GREEN DOT SPEED by the formula :
A310 :
\(\mathrm{GD}(\mathrm{kt})=\mathrm{GW}+100+2 \mathrm{kts}\) per 1000 ft above 20000 ft
where GW \(=\) Gross weight expressed in tons.

This formula has been certified and is used to compute the NET FLIGHT PATH, and to determine the Final Takeoff point in the Takeoff paths as published in the Approved Flight Manual (AFM).

\section*{3. GREEN DOT COMPUTATION :}

The crew obtains GREEN DOT speed value by three different ways :
1) Flight Augmentation Computer
(FAC) \(\rightarrow\) PFD Speed Scale
2) FMS \(\rightarrow\) Takeoff / Approach page on CDU
3) FCOM as published in FCOM Vol. 2 TAKE OFF and in the QRH.
All using the same algorithms.
The observed differences come only from the weight determination.
3.1. FCOM GREEN DOT :

The FCOM indicates the speeds as a function of the actual weight, resulting from the formula determined for certification and approved in the AFM as indicated above.
3.2. FAC GREEN DOT :

The FAC uses the same formula ; the difference comes from the weight determination :
The weight is deduced from the measure of various aircraft parameters provided by the ADC : Angle of attack, speed, load factors, altitude.
3.3. FMS GREEN DOT :

The FMS uses also the same formula ; the difference comes also from the weight determination.
The gross weight is processed as follows :
Once the crew has inserted the various weights on the INIT page \(B\) (SPERRY) or on START page 2 (SMITHS) when engines are not running, or on the Fuel page (engines running), the FMS updates continuously the aircraft current weight using Fuel Quantity and fuel flow data.
The GREEN DOT SPEED as provided on the CDU Takeoff page is computed using the expected Takeoff weight.
The GREEN DOT SPEED as provided on the CDU Approach/Go Around pages is computed using the expected landing weight.
The GREEN DOT SPEED computed by the FMS represents also the lower limit for the ECON SPEED. It is also computed using the current aircraft gross weight as processed with Fuel Flow and Fuel Quantity data and the current aircraft altitude.

\section*{4. POSSIBLE COMPUTATION DIFFERENCES}
4.1. BELOW 20000 ft
4.1.1 Effect of Angle of Attack (AOA) probe calibration.
The AOA probe calibration and setting tolerance is \(\pm 0.3^{\circ}\).
This tolerance leads to a variation on the gross weight assessment and thus to a corresponding variation in the green dot computation (on the order of \(\pm 5 \mathrm{kts})\).
4.1.2 Effect of CG position and of thrust. The GREEN DOT SPEED formula has been determined for a fixed (forward) CG position of \(17 \%\) with one engine at max continuous thrust and the other engine in windmilling condition.

Shifting the CG aftwards (forward) decreases (increases) the AOA at a given A/C lift coefficient (given GW, given airspeed). This leads also to a variation of the gross weight assessment and to a corresponding variation in the green dot computation (on the order of \(\pm\) \(3 \mathrm{kts} / 10 \%\) CG variation).
Thrust effect is similar to center of gravity effect.
A thrust variation results in AOA variation at a given \(A / C\) GW and airspeed (for a thrust variation from idle to max climb it may change the Green Dot computation by up to \(7 \mathrm{kts})\).

\subsection*{4.2. ABOVE 20000 ft}

Apart from the thrust effect which becomes less sensible above 20000 ft , the influences described in section 4.1 remain applicable.
A new effect has to be added which is the compressibility effect. This effect introduces a modification of the relation lift coefficient-angle of attack as a function of mach number and is not considered by the FAC.
This also leads to a variation on the Gross Weight assessment and consequently on GD computation (this difference varies with GW and Mach number and may reach up to \(\pm 8 \mathrm{kts})\).

\subsection*{4.3. EXAMPLES}

To illustrate the above effects two cases have been chosen (A310-300) :
1st case:
Weight : 100 Tons
Altitude : 41000 ft
Mach : 0.82 - AFT CG position
Green Dot \((\) FCOM \()=242 \mathrm{kts}\)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Effect } & \begin{tabular}{c}
Potential variation \\
on GD \\
(given by FAC)
\end{tabular} \\
\hline \begin{tabular}{l}
Probes calibration \\
and tolerance
\end{tabular} & \(\pm 4.4 \mathrm{kts}\) \\
\hline \begin{tabular}{l}
CG position effect \\
\((27\) to \(-37 \%\))
\end{tabular} & -2.2 kts \\
\hline \begin{tabular}{l}
Compressibility \\
effect
\end{tabular} & +8 kts \\
\hline Total & \begin{tabular}{c}
Between +1.4 kts \\
and +10.2 kts
\end{tabular} \\
\hline
\end{tabular}

In this example the difference GDFAC GDFcom may reach up to 10 kts .

Weight : 154 Tons
Altitude : 33000 ft
Mach : 0.79 - Flight at AFT CG
Green Dot \((F C O M)=280\) kts
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Effect } & \begin{tabular}{c}
Potential variation \\
on GD \\
(given by FAC)
\end{tabular} \\
\hline \begin{tabular}{l}
Probes calibration \\
and tolerance
\end{tabular} & \(\pm 5 \mathrm{kts}\) \\
\hline CG position effect & -2.5 kts \\
\hline \begin{tabular}{l}
Compressibility \\
effect
\end{tabular} & -8 kts \\
\hline Total & \begin{tabular}{c}
Between -5.5 kts \\
and -15.5 kts
\end{tabular} \\
\hline
\end{tabular}

The difference GDFAC - GDFCOM may reach up to 15.5 Kts .

\section*{5. CONCLUSION}

The green dot speed as computed by the FAC and indicated on the Speed Scale of the PFD may deviate from its theoretical value.

This has no operational consequence :
- When the FAC Green Dot Speed is used as target speed for a single engine drift down, a \(\pm\) 10 kts variation on target speed leads to a \(\pm\) 300 ft variation on the Engine Out Gross ceiling which is far above the net ceiling (in average 5000 ft above).
- When the FAC Green Dot Speed is used as target speed for holding, a \(\pm 10\) kts variation has a negligeable effect on the fuel consumption (about \(1 \%\)).
- When the FAC Green Dot Speed is used as maneuvering speed it is systematically above VLS. Therefore flying FAC Green Dot Speed gives always adequate margins versus VS, when limiting bank angle to \(30^{\circ}\).
- The Green Dot used as lower limit for ECON SPEED target by the FMS should not be considered as an operational limitation.
Moreover it does not apply to the tactical mode (chosen cruise Mach number).

DATE : JAN 05
File in FCOM 2.20
Issued by STLW

\section*{SUBJECT : OPERATION IN AREAS CONTAMINATED BY CRUDE OIL SMOKE Subject extracted from former FCOM Bulletin N \({ }^{\circ} 04 / 1\) - Subject \({ }^{\circ} 5\) No technical change from previous issue}

Applicable : All aircraft

\section*{1. REASON FOR ISSUE AND SCOPE}
- The purpose of this FCOM BULLETIN is to provide flight crews with background information and operational recommendations for operation in areas contaminated with crude oil smoke.

\section*{2. BACKGROUND INFORMATION}
- Although no detailed and direct information is available concerning the particulars of the crude oil smoke contamination, information provided by french meteorological and petroleum institutes estimate the oil smoke clouds to be composed of :
- 90 \% heavy particles which would not reach over 5000 ft ,
- \(10 \%\) lighter particles likely to culminate up to, approximately, 25000 ft .
- Crude oil smoke is understood to be mainly composed of greasy/oily particles and non-abrasive soot. The associated gases are understood to have a high sulphur content.
- In the event of a crude oil smoke cloud encounter, the immediate operation of engines and aircraft systems is not anticipated to be adversely affected.
- However extended or repeated exposure is anticipated to result in engines and airframe/systems contamination. Separate information is planned to be released for maintenance personnel awareness.

\section*{3. OPERATIONAL RECOMMENDATIONS}
- Although forecasting the horizontal and vertical extension of the contaminated areas (using usual meteorological forecasting models) appears to be largely impeded by the particular nature of the smoke emission as well as by factors such as convection or turbulence, records should be established and kept up-dated gathering any available information regarding the extension or variations of the contaminated area.
- Flight into areas of known crude oil smoke contamination should be avoided, mainly during night time or day time IMC, as crude oil smoke may not be visible.
- Crude oil smoke being composed of small particles, the weather radar should not be relied upon for detection as no weather radar return is to be expected.
- Should a crude oil smoke cloud be encountered, the flight crew should be alert to consider the following procedure steps, as required by particular conditions :

CREW OXYGEN MASKS/ SMOKE GOGGLES

AS REQUIRED
- As smoke/fumes may be present in the cockpit and result in breathing disconfort and/or eyes irritation.

PASSENGER OXYGEN
AS REQUIRED
- No breathing difficulties are anticipated except, depending on contamination, for passengers with known breathing deficiency.

\section*{ENGINE PARAMETERS MONITOR}
- Although limited exposure is not anticipated to affect the engine inlet sensors and, consequently, the compressor stability and fuel control functions.
- Any parameter shift should be reported in log book for maintenance awareness and action.
- Flight crew should be also aware of the possible following conditions and alert to react, as required :
- one or several smoke warnings triggering as a result of contamination within the air conditioning system,
- unreliable airspeed indication, due to pitot/static system contamination,
- reduced VHF communication range and/or VHF interference caused by incorrect static discharge due to accumulation of greasy particles on the aircraft skin,
- reduced visibility due to oily deposit and carbon particles collecting on the windshields.
- When operating in areas contaminated with crude oil smoke, a particular attention should be paid to the following areas, during the normal aircraft walkaround inspection, for any evidence of oily deposit and/or carbon particles contamination :
- radome,
- windshields,
- airframe probes and sensors,
- engine fan blade and inlet probes and sensors.
- In case of finding or doubt, maintenance determination/confirmation should be called for, and maintenance action taken, as required.

\section*{4. FOLLOW-UP}
- The above background and recommendations are provided on the basis of preliminary information being available regarding crude oil smoke and its potential effects on aircraft operation.
- This FCOM BULLETIN will be complemented and/or revised, as dictated by in-service experience.

\section*{SUBJECT : RADIO ALTIMETER FLUCTUATIONS ON CONTAMINATED SURFACE Subject extracted from former FCOM Bulletin \({ }^{\circ} 05 / 2\) - Subject \({ }^{\circ} 9\) No technical change from previous issue}

\section*{Applicable to : All aircraft}
1. REASON FOR ISSUE AND SCOPE
- The purpose of this FCOM BULLETIN is to provide flight crews with background information and operational guidance regarding radio altimeter fluctuations on contaminated surfaces (ramp, taxiway, runway).

\section*{2. BACKGROUND INFORMATION}
- Radio altimeter fluctuations on contaminated runways has been observed during both aircraft development and revenue service.
- Radio altimeter antenae and coaxial cables have been selected to minimize this phenomenon, although various degrees of fluctuations may be observed during :
- aircraft parking,
- taxi-in and taxi-out,
- takeoff roll and landing-roll,
due to :
- parasitic reflections on contaminated surface and adjacent obstacles,
or
- water streaming, between antenae, along fuselage skin.
- However the observed fluctuations do not occur when the aircraft is airborne. This can be explained by:
- The greater antena pulse reflection angle which minimizes the potential for parasitic reflections,
- The flow-off phenomenon which wipes out any streaming water between radio altimeter antenae.
- the above is supported by experience in as much as whenever radio altimeter fluctuations have been observed:
- at taxi-out and take-off : they stopped after lift-off,
- at roll-out and taxi-out : they were not present during final approach and flare phases.
3. OPERATIONAL ASPECT
- Providing no red warning (red RA on PFD) is generated, the radio altimeter fluctuation can be attributed to the surface (ramp, taxiway, runway) contamination and the aircraft dispatched without maintenance action.

DATE : MAR 06
File in FCOM 2.20
Issued by STLW

\section*{SUBJECT : FQI ACCURACY \\ Subject extracted from former FCOM Bulletin \(N^{\circ} 05 / 2\) - Subject \(N^{\circ} 11\)}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE}

The purpose of this FCOM BULLETIN is to provide flight crews with background information regarding Fuel Quantity Indication (FQl) accuracy.
\(R \quad\) The issue 2 of this bulletin is published to correct

\section*{2. BACKGROUND INFORMATION}
- The accuracy of the FQl system, whatever the aircraft is on the ground or in flight is \(\pm 1 \%\) of the maximun tank capacity \(\pm 1 \%\) of the actual fuel quantity.
- The tolerance of the fuel flow (FF) meter is \(\pm\) \(1 \%\). The accuracy of the fuel used (FU) indication which is an integration of the FF is estimated to be better than \(\pm 1.5 \%\).
- The accuracy of the Magnetic Level Indicators (dipsticks) is approximately \(\pm 5 \%\).
- APU fuel consumption is not included in the FU indication. It is always less than \(185 \mathrm{~kg} / \mathrm{h}\).
- Each aircraft's calibration is checked to be within limits prior to delivery.
- As per regulation, each tank FQI will read zero at or before the tank is empty.
- The following graph gives the FQI errors measured on ground on the A 310-300 fleet.

- The graph shows :
- All FQI errors are within the designed requirement.
- Fuel on board quantity is generally higher than quantity indicated by FQI.
- All A310 A/C types show similar FQ1 errors.
- As a matter of good airmanship, crews check the fuel on board (FOB) plus fuel used (FU) against the block fuel during flight. Whereas this type of monitoring would detect fuel leaks, when used as a check on real fuel on board during the flight,the following inherent errors must be considered:
- on BLOCK FUEL (error constant through flight) \(= \pm 1 \%\) of the max tank capacity \(\pm 1 \%\) of indicated Block Fuel.
- on FU (error increasing during flight) = \(\pm 1.5 \%\) of Fuel Used.
- on FOB (error decreasing during flight) \(=\) \(\pm 1 \%\) of the max tank capacity \(\pm 1 \%\) of the indicated Fuel On Board.

As an example :
- A/C max capacity: 50 tonnes
- Block fuel : 40 tonnes \(\rightarrow\) error \(= \pm 900 \mathrm{~kg}\)
- FOB : 10 tonnes \(\rightarrow\) error \(= \pm 600 \mathrm{~kg}\)
- FU : 30 tonnes \(\rightarrow\) error \(= \pm 450 \mathrm{~kg}\)

Thus in an extreme case :
BLOCK FUEL \(=F O B+F U \pm 1950 \mathrm{~kg}(+\) APU FU if any)
and this with no system fault.

\section*{3. OPERATIONAL GUIDELINES}
- In pratical terms, the Block Fuel maximum error may be reduced. This will depend on a responsible judgement based on knowledge of a particular A/C FOI calibration curve. I.e, assuming no FOI modification following \(A / C\) delivery, this curve will be reasonably constant (on ground) and thus for a given uplift, real error can be deduced. This calibration may be done by any operator when deemed necessary. Nevertheless it is not applicable to in-flight reading.
- Remember max error on FOB is \(\pm 1 \%\) of \(R\) max gaugeable fuel quantity \(\pm 1 \%\) of \(R\) actual fuel quantity in flight.
- FU is the primary parameter to determine fuel consumption. (max error \(\pm 1.5 \%\))
- Dipsticks do not give a more accurate result than FQI and therefore they should not be used to check FQI. They only have to be used when FQI is inoperative.

\section*{SUBJECT : ENERGY LEVEL MANAGEMENT DURING APPROACH Subject extracted from former FCOM Bulletin \({ }^{\circ} 06 / 2\) - Subject \({ }^{\circ} 13\) No technical change from previous issue}

\section*{Applicable to : All aircraft}
1. REASON OF ISSUE AND SCOPE

The purpose of this FCOM bulletin is to provide flight crews with background information and operational recommendations regarding the management of the energy level (primarily during approach).

\section*{2. BACKGROUND INFORMATION}

The following typical graph, generally valid for all airplane models, shows the evolution of the thrust required to compensate the drag. Speed becomes lower than VLS during the approach/landing phase.

At speed below the speed for minimum drag the thrust required to maintain level flight increases. At low thrust and speed below VLS there is no energy margin, the consequence could be a high rate of descent.

\section*{3. LOW SPEED ENVELOPE.}

A310 is a conventional aircraft at low speed having a stall warning system, alpha floor and either good natural stall characteristics or enhanced characteristics provided by the FLC system dependent on configuration.

VLS : is the lowest limit of the normal flight envelope. It is defined as a margin with respect to the stall. VLS depends on \(A / C\) configuration and flight phase but it is not G - load dependent. For altitudes lower than 25000 ft VLS is equal to 1.2 Vs at take-off or 1.3 Vs in other flight phases.
\(\alpha\) floor: When the pre-programmed angle of attack is detected thrust latch (THRL) engages if autothrottle is armed. This function is available from lift-off to 100 ft radio altitude before landing.
\(V_{\text {ss }} \quad\) : is the speed at which activation of the aural stall warning and stick shaker occurs. Vss is G-load dependent.

Stall warning does not prevent a loss of flight path manoeuvrability when the \(A / C\) is below normal operational speed. It is not designed to protect against a lack of speed monitoring during approach.

\section*{4 ENGINE RESPONSE NEAR IDLE}

The following diagram shows a typical engine response to a quick throttle movement from idle to TO-GA in approach condition.
 TOGA is about 8 seconds.

\section*{- Applicable certification requirements}

There are 2 requirements relative to engine response, one being an engine certification rule (FAR 33), the other an aircraft certification rule (FAR 25/JAR).

The FAR 33 requirement specifies a time of 5 seconds or less to accelerate from \(15 \%\) to \(95 \%\) of the take-off thrust, without bleed air extraction. It must be noticed that current approach idle setting correspond to thrust levels of 6-7 \% of maximum take-off thrust. This requirement is therefore not appropriate to our purpose.
The FAR 25 requirement says that the thrust achieved 8 seconds after an acceleration from idle should allow a rate of climb of at least \(3.2 \%\), in the landing configuration

There is no requirement for the time taken to accelerate from idle to take off power.

\section*{5 ENERGY}

Approach at or below Vapp at idle thrust is potentially hazardous, since at this speed, there may be no energy available to alter the flight path so as to maintain or gain altitude until sufficient thrust is applied.
The following graph shows the effect on the drag when the speed becomes lower than Vref.

As a consequence this results in an increased altitude loss as shown below when thrust or speed are lower than normal, in order to regain a rate of climb.

\section*{SUBJECT : MMEL AND MEL USE Subject extracted from former FCOM Bulletin \({ }^{\circ} 06 / 2\) - Subject \({ }^{\circ} 16\)}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE}

To provide Airbus operators with a simple explanation of the relationship between the MMEL and MELs, and how to use an MEL.

\section*{2. PURPOSE OF THE MMEL}

The main purpose of the MMEL is to permit the dispatch of an airplane with pieces of equipment or functions inoperative, when a failure has been detected in the previous flight or in transit, and to avoid as much as possible delays and cancellations.
The MMEL is issued by Airbus and approved by DGAC for non US operators and issued and approved by FAA for US operators.
3. FROM THE MMEL TO AN MEL

Regulation requires that each operator prepares and keeps current a MEL using the MMEL as a guide line. The MMEL cannot in any case be used as a MEL.
A MEL cannot be less restrictive than the MMEL and should cover all the items depending on National regulations. In particular, conditions indicated "as required by regulations" in the MMEL should be fully identified in the MEL.
The MEL is agreed/Approved by National Authorities.

\section*{4. CONTENTS OF THE MEL}

An airline's MEL should contain at least the following sections :
- The list of ECAM cautions/warnings associated with corresponding MMEL entries extracted from MMEL Section OOE.
- The list agreed/approved by relevant National Authorities of all equipment which may be inoperative for dispatch. This list is established using the approved section 01 of the MMEL.
- Associated Operational Procedures extracted from MMEL Section 02.
- Associated Maintenance Procedures extracted from MMEL Section 03 or AMM (Aircraft Maintenance Manual)

\section*{5. HOW TO USE AN MEL}

When a failure is detected and identified, the crew must enter in the airline's MEL to determine if a subsequent dispatch is allowed and under which conditions.
- The approved section of the MEL indicates the conditions which must be fulfilled for dispatch.
All items are listed following ATA (Air Transport Association) classification (see below in para.6.).
All items not listed in this section are NO-GO (dispatch prohibited) except equipment or functions which are obviously not affecting airworthiness or flight safety.
- If a * is associated with the item, inoperative equipment, component, system or function must be placarded in the cockpit.
- If a (o) is associated with the item, an operational procedure must be applied.

Either on the ground or/and in flight, crew actions are required and described in the operational procedures section of the MEL.
- If a (m) is associated with the item, a maintenance procedure must be applied.
On ground, before dispatch, maintenance actions are required and described in the maintenance procedures section of the MEL or in the AMM.
6. ATA 100 BREAKDOWN

The ATA (Air Transport Association) breakdown is the official reference for the classification of airplanes systems and/or functions.
This is achieved using 6 digits (ex : 21-23-00 ELECTRONICS RACKS AIR EXTRACTION).

The two first digits for the ATA chapter (ex : 21 AIR CONDITIONING), and remaining digits for systems and functions classification in the ATA chapter.
Only the two first digits are used in the A310 MMEL. The list of ATA chapters is given in chapter 00 of the MMEL.

\section*{7. EXAMPLE}

DATE : JAN 05
File in FCOM 2.20
Issued by STLW

\section*{SUBJECT : CONFIGURATION DEVIATION LIST USE}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE}

During maintenance checks or during a preflight exterior inspection, it can be noticed that some airframe or engine parts of the aircraft may be missing or damaged. This does not systematically prevent from dispatching the aircraft under certain conditions. For secondary airframe or engine part missing, the dispatch authorization and associated conditions are provided by the Configuration Deviation List (CDL). This chapter of the Flight Manual is the reference for this kind of situation, as well as the MMEL is the reference for inoperative equipment or functions. This FCOM Bulletin summarizes the functioning and rules of the CDL.

\section*{2. PURPOSE OF THE CDL}

The Configuration Deviation List is a part of the Flight Manual which allows the aircraft dispatch with secondary airframe or engine parts missing in order to avoid as much as possible delays and cancellations. As a part of the Flight Manual, the CDL is approved by Airworthiness Authorities.
Although the CDL belongs to the limitation chapter of the Flight Manual (Chapter 2), it is inserted in the appendix part of the A310 Flight Manual (in 6.03 .00), as required by regulation. It may be included in the operator Dispatch Deviation Guide or Minimum Equipment List.
Associated to the dispatch authorization, the CDL provides operational restrictions (like performance penalties, weather condition restrictions...etc) and if necessary reference to maintenance actions that are to be applied before the aircraft dispatch.

\section*{5. ACCUMULATION OF MISSING PARTS}
- No more than one part or one combination of parts of one system can be missing.

This means that no more than one CDL item (that can be a group of parts of the same nature) or item combination is allowed per ATA chapter except if otherwise specified in the list.
- Parts of different systems may be simultaneously missing.
Items from different systems (ATA chapters) can be missing simultaneously except if otherwise specified.

\section*{6. PERFORMANCE PENALTIES}

Performance penalties can be given as dispatch condition for some items. This paragraph explains how to handle them, especially in case of parts simultaneously missing.
- Performance penalties are cumulative unless specific penalties for particular combination of missing parts are indicated :

\section*{Example :}

Item 1 missing involves a MTOW penalty of 150 kg . Item 2 missing involves a MTOW penalty of 200 kg . If item 1 and item 2 are missing simultaneously, the MTOW penalty is 350 kg .
- If no performance penalty is indicated for an item, no more than three such items can be missing without taking further penalty. For each missing item, from the fourth, takeoff, landing, en route limiting weight must be reduced by \(50 \mathrm{~kg}(100 \mathrm{lb})\).

Example :
Item 1 missing but no performance penalty indicated. Same thing for item 2, item 3 and 4.
If items 1 to 3 are missing simultaneously, there is no penalty.
If items 1 to 4 are missing simultaneously, the penalty is then 50 kg .

\section*{7. DAMAGED PART}

In case a part of the airframe is damaged but not missing, the damage tolerance must be checked in the AMM and in the SRM (Structure Repair Manual) for dispatch authorization. If the damaged part have to be removed, it may then be covered by the CDL to allow dispatch.

\section*{8. EXAMPLE OF CDL PAGE}

\section*{SUBJECT : WINDSHEAR PHENOMENON Subject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} \mathbf{0 6 / 2}\) - Subject \(\mathrm{N}^{\circ} 17\)}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE AND SCOPE}

The purpose of this FCOM BULLETIN is to provide flight crews with summarized information regarding the windshear phenomenon.

\section*{2. METEOROLOGICAL CONDITIONS}

Windshear-related problems are generally connected to " a change in wind direction and / or speed over a very short distance in the atmosphere ". The most prominent meteorological conditions conducive to this are :
- convective storm shear (air mass and frontal thunderstorms, downburst, wet and dry microburst),
- non-convective (cold and warm) frontal systems,
- windshear associated with strong winds near the ground.

\subsection*{2.1 Windshear associated with convective clouds and storm cells}
- The air-mass thunderstorm develops from localized earth surface heating with air rising and cooling to form cumulus clouds. As these keep growing, heavy rain and hail precipitation begins to develop in the higher areas thereby cutting off the updraft energy source and eventually dissipating the thunderstorm cell. A surge of cold air emerging from the heavy rain and associated downdraft can produce :
. a downburst, i.e. strong downdrafts inducing an outburst of damaging winds on or near the ground,
a gust front with blowing dust on the earth surface,
- a shear boundary with turbulent flow due to interaction with the warm, undisturbed environmental air,

- Frontal thunderstorms are usually more tilted in the vertical allowing precipitation to fall away from the updraft and airflow intensity within the storm accelerating much more than for the simple air-mass thunderstorm, sometimes resulting in a tornado.
- Microburst consist of intense, no rotating, highly localized downward airflows with velocities up to \(7000 \mathrm{ft} / \mathrm{min}\) that may emanate below a convective cloud base. Some of these microbursts will expose penetrating aircraft to major safety hazards whatever technique is used in anticipation / reaction.

APPROX TRANSIT TIME AT 150-KNOTS AVERAGE GROUND SPEED : 45 SECONDS
Wet Microburst Cross-section

Microbursts can take 2-5 minutes to develop maximum intensity and may then be sustained for an equal period of time. They tend to develop in groups which may be merged delaying dissipation to 30 minutes. Present knowledge contends that approximately one in a hundred heavy rain thunderstorms produce microbursts. It was determined that microbursts can also occur in relatively dry conditions. Once it gains sufficient downward momentum a downflow with evaporative cooling accelerates to the earth's surface to induce a «dry microburst» with very light or non-existant precipitation, called virga. "Wet microbursts" are expected to occur in the wet regions of the world. Dry microbursts are commonly seen in the dry areas and most likely below cumulus cloud when dew point is \(30^{\circ} \mathrm{C}\) or more below ambient temperature.

Changes in meteorological conditions associated with both macro and microbursts tend to be very complicated.
\(\left.\begin{array}{lll}\text { CONDITIONS } & \begin{array}{l}\text { MACROBURSTS }\end{array} & \begin{array}{l}\text { MICROBURSTS } \\ \text { Air temperature } \\ \text { ISA }+15^{\circ} \\ \text { decreasing }\end{array}\end{array} \begin{array}{l}\text { ISA }+15^{\circ} \\ \text { increasing or } \\ \text { decreasing }\end{array}\right]\)

\subsection*{2.2 Windshear associated with non-convective frontal systems}

Substantial differences in winds can be encountered by approaching and departing aircraft close to low pressure centers and their associated cold, warm and occluded fronts.

Penetrating a cold front on either side leads to a headwind increase, potentially bringing a performance increasing shear. Pilots are advised to beware of thunderstorms in the vicinity that may contribute to amplify windshear conditions.
Penetrating a warm front on either side exposes to a headwind decrease, potentially results in a performance decreasing shear generally not exceeding performance limits of the aircraft.
Windshear at a warm front is more severe than at a cold front with large head / tail and vertical wind changes in the lowest 1000 ft AGL.
The magnitude of the windshear may become significant when :
- The temperature difference accross the front is at least \(6^{\circ} \mathrm{C}\).
. the temperature gradient of the front shows a minimum of \(6^{\circ} \mathrm{C}\) over 50 NM ,
. the speed of frontal movement is greater than 30 kts.

\subsection*{2.3 Windshear associated with strong winds near the ground}

Very similar to a surface boundary layer with increasing winds and approximately constant wind direction.

Low altitude jet streams may be found in a variety of situations such as strong low altitude jet winds, nocturnal jet winds, terrain induced low altitude windshear, mountain-wave and downslope flows, strong surface winds combined with small hills or large buildings, lake and seabreeze windshear due to temperature gradients between sun-heated terrain and water-cooled air. In particular, strong temperature change accross an inversion may trigger very variable wind conditions.

\section*{3. DETECTION OF CONDITIONS}

\subsection*{3.1 OPTIONAL SYSTEMS INTEGRATED ON THE AIRCRAFT \\ PREDICTIVE WINDSHEAR}

Predictive Windshear is incorporated into the weather radar system to enable the detection of a microburst windshear event within 5NM forward of the aircraft. It is based on dynamic Doppler effects.
When a windshear is detected, the system generates the appropriate annunciation to the crew to alert them of a potential danger. There are different alert levels depending on :
- the severity of the windshear event detected,
- the distance and angular position between the aircraft and the windshear,
- the altitude and speed of the aircraft,
- the flight phase.

The Predictive Windshear system provides advanced warning for the crew to escape a windshear event using normal handling technique or to initiate a recovery maneuver earlier.

\section*{REACTIVE WINDSHEAR}

Reactive Windshear advises the crew when windshear conditions have been entered. The system generates an audio and visual warning to the crew. The FAC measures the difference between the actual energy state and the minimum energy state for flight security. At a defined threshold, a message is displayed on the PFD and an aural warning alert is provided to the crew :
- at takeoff, from lift off up to 1000 ft RA.
- at landing, from 1000 ft RA down to 50 ft RA.

\subsection*{3.2 BRIEFING AND PREPARATION}
a) ANALYSE the weather informations during preflight:
. weather messages provided by the airline,
. aviation surface observations,
. NOTAMS,
. SIGMETS, particularly convective sigmets, terminal forecasts,
area forecasts, possibly mentionning the Low Level Wind Shear Alert System (LLWSAS) installed on the periphery of certain airports (USA only).
b) BE AWARE of pilot reports (PIREPS) on wind shear. PIREPS should include :
. location of shear encountered,
. altitude of shear encountered,
. airspeed changed experienced (knots gained or lost)
. type of aircraft undergoing the shear,

Note: It is also strongly recommended that pilots report any windshear encountered to Air Traffic Control.
c) LOOK OUT for weather clues on the way to the airport and / or from the cockpit (parked, taxi or airborne) such as:
. extreme variations in wind velocity / direction in a very short time span,
isolated rainshowers with or without lightning showing divergences from the raincore and clear curling horizontal vortex rolls, within 5 miles of the airport,
heavy precipitation along intended flight path,
lightning, thunderstorms or evidence of any tornadic feature in airport vicinity,
evidence of a gust front such as blowing dust on the airport surface, suggesting the possible passage of a thunderstorm within 15 minutes, evidence of convective activity particularly with anvil clouds in dry areas, supercells, low echos, cumulonimbus mammatus and altocumulus.
d) DO NOT IGNORE the existence of other types of windshear due to local obstructions, topographical and meteorological conditions described in 3 c).
Note: It is critical for pilots to realize that each particular windshear observational evidence should be considered cumulative : simultaneous conditions may increase severity of effects.
e) EXAMINE the approach or takeoff area with the airplane weather radar to determine whether thunderstorm cells are in the vicinity of the airport or intended flight path,
. Since areas having high rainfall rates are ordinarily accompanied by turbulence, radar echoes from precipitation can be associated with turbulence, especially for thunderstorms with small lines, tornadoes, protruded fingers, V-shaped targets and scalloped edges,
in some instances the radar echoes may be severely attenuated in passing through large areas of moderate rainfall rate, small areas of high rainfall rate or dry hail (no liquid coating for reflection),
since radar echoes are due to precipitation reflection, dry environment situations and conditions to dry microbursts may not be detectable by weather radar ;
. flight operations below 10000 ft such as takeoff and landings require 2 to 3 degrees upward tilt for target detections up to 40 NM ; if there is significant weather activity, the tilt angle should be adjusted to provide a solid ground return outside of the desired range to ensure that no overscanning will occur.
f) MONITOR closely the airplane instruments whenever windshear is suspected:
. any rapid change in the relationship between airspeed and groundspeed represents a windshear ; the IRS installed on the aircraft allows to compare airplane groundspeed with its airspeed, both displayed on the ND's.
airspeed tendency:
- acceleration in headwind / updraft,
- deceleration in tailwind/downdraft,
indicated by a pointer arrow starting from the speed symbol on the PFD's,
direction and intensity of wind (computed by the IRS and displayed on ND's) allows to compare at the initial approach altitude (1500 to 2000 ft AGL) with the reported runway surface wind to check any shear situation between the airplane and the runway,
speed margin from stick shaker speed (shown by a red and black strip along the speed scale of the PFD's),
vertical deviation of flight path vector (FPV) bird symbol (displayed on the PFD's and calculated by the IRS) when below the horizon line means the aircraft's flight path is converging toward the ground,
rate of descent (on stabilized ILS approach) :
- high rate suggesting a strong tailwind,
- low rate suggesting a strong headwind,
rate of climb :
- high rate suggesting a strong headwind,
- low rate suggesting a strong tailwind.
pitch attitude :
increasing - with headwind shear,
- with downdraft shear,
decreasing - with tailwind shear,
- with updraft shear,
wind correction angle needed to keep the localizer or VOR needle centered and giving an indication of the wind direction:
- increasing yaw right / roll left, left with increasing crosswind left,
- increasing yaw left / roll right, right with increasing crosswind right,
power needed:
to hold the glideslope :
- less power necessary suggesting a strong tail wind,
- more power necessary suggesting a strong headwind,
to hold a climb angle :
- less power necessary suggesting a strong headwind,
- more power necessary suggesting a strong tailwind,
4. INFLUENCE OF WINDSHEAR ON AIRCRAFT PERFORMANCE

\subsection*{4.1 Decreased performance}

Headwind to tailwind
Headwind to calm
Calm to tailwind
Headwind to decreased headwind.

\section*{APPROACH WITH A TAILWIND SHEAR}

. Airspeed decreases, lift decreases,
. Aircraft nose begins to pitch down,
. Aircraft begins to drop below the glide slope,
In this case the Aircraft is both slow an low in a "power deficient» state.

\section*{Consequences:}
. either the pilot pulls the nose up to recapture the glide slope without having added sufficient power: the Aircraft will loose altitude very rapidly and may even reach the ground before the power deficiency is corrected resulting in a hard landing.
or sufficient power is set to regain the glideslope before reaching the ground: the "double reverse" problem arises if the pilot does not quickly retard the throttles after glide recapture, i.e. throttles set too high for a stabilized approach in a no-wind condition leading to a long and fast landing.

\section*{TAKEOFF WITH A TAILWIND SHEAR}

. Airspeed decreases, lift decreases,
. Aircraft nose begins to pitch down,
- Aircraft drops below its nominal flight path,

\section*{Consequences :}

Because of aircraft inertia, attitude and ground speed will be initially maintained upon encountering windshear but airspeed will decrease, causing a reduction in lift which will result in a downward acceleration and a nose down pitching moment.
Assuming no pilot action, the aircraft will descend below its nominal flight path.
Because of aircraft stability, original angle of attack and airspeed will eventually be recovered, but on a different flight path below the nominal one.

\subsection*{4.2 Increased performance}

Tailwind to headwind
Calm to headwind
Tailwind to calm
Headwind to increased headwind

\section*{APPROACH WITH A HEADWIND SHEAR}

The reverse of the previous case prevails :
- airspeed increases, lift increases,
. Aircraft nose begins to pitch up,
Aircraft balloons above the glide slope,
In this case the Aircraft is both fast and high in a "power excessive » state.

\section*{Consequences :}
either the pilot does not initially reduce power and the aircraft will gain altitude and airspeed resulting in a long, fast landing and the possibility of an overrun.
or the pilot reduces thrust to regain the glideslope and the initial airspeed: the "double reverse" problem arises if throttles are not re-opened leading to a high sink rate and possibly a short and hard landing.

\section*{TAKEOFF WITH A HEADWIND SHEAR}

The reverse of the previous case prevails :
- airspeed increases, lift increases,
. Aircraft nose begins to pitch up,
. Aircraft rises above its nominal flight path
Two more comments should be made
- A headwind shear should not cause a problem since it normally leads to increased aircraft performance.
- The resulting increase in lift may however lead to an excessive angle af attack which could eventually trigger stickshaker activation.

. at point \(A\) the aircraft is on speed and on glide slope.
. at point \(B\) it encounters an increasing headwind. Its airspeed and pitch increases and it balloons above the glide slope.
. at point \(C\) the "moment of thruth " occurs:
If the pilot does not fully appreciate the situation, he may attempt to regain the glide slope by reducing power and pushing the nose down.
But between C and D the headwind ceases, a strong downdraft is entered and the tailwind begins to increase.
The consequences are that sink rate becomes rapidly excessive and that ground impact becomes very difficult to avoid.

\section*{Consequences :}
- a go-around initiated at point C or sooner would probably be successful since the aircraft is fast and high at this point,
- gradual groundspeed decay shortly after point B coupled with rapidly increasing airspeed could have allowed detection of impending signs of downdraft,

\section*{TAKEOFF THROUGH MICROBURST}

airspeed decreases
. A / C nose begins to pitch down
. A / C drops below its nominal flight path.

\section*{Consequences:}
. Initally the pilot may not appreciate fully the situation since he is taking off in increased performance shear conditions. Progression into the downburst core causes a violent and rapid loss of lift, followed by a high sink rate with very little loss of airspeed. Exiting the downburst core below the nominal flight path (after 20 to 40 seconds) is then followed by a low-level decreased performance tailwind shear.

In a microburst the angle of attack is instantly decreased causing an immediate loss of lift. As the A / C accelerates downward, the relative wind is altered restoring the angle of attack.

R

\subsection*{4.4 Climb and acceleration capability}
- Engine-out capability provides twin engine aircraft with a thrust / weight ratio that permits very ample aircraft response to windshear conditions. At typical initial climb, approach and go-around speeds, an aircraft may require 20 to 30 seconds to clear the distance affected by most severe windshear effects. Optimum use of the aircraft's climb and acceleration capability has to be negotiated over this time span to counter the loss of height or lift in the encounter.
- This section graphically discusses an aircraft's ability to withstand windshear through optimized use of its climb and acceleration capability. Control of pitch attitude and full thrust allows management of this by trading airspeed margin for altitude down to stick shaker in extreme case.
Level flight acceleration capability can be compared directly to horizontal windshear. In the following graphic example (\(\mathrm{GW}=126.7 \mathrm{~T}\), \(\mathrm{OAT}=27^{\circ} \mathrm{C}\), Press. Alt. \(=4000 \mathrm{ft}, \mathrm{VAPP}=145\) \(\mathrm{kts})\) the aircraft has the capability to maintain level flight in a \(2.7 \mathrm{kt} / \mathrm{s}\) increasing tailwind shear and will eventually be accelerating relative to the ground at \(2.7 \mathrm{kt} / \mathrm{s}\) with constant airspeed. If the horizontal shear exceeds the level flight acceleration capability the aircraft will lose airspeed and descend unless pitch attitude is increased to change angle of attack.

\section*{CLIMB GRADIENT OR LEVEL FLIGHT \\ ACCELERATION CAPABILITY}

Likewise, climb gradient capability at constant airspeed can be compared directly to a downdraft. In the example just referred to the aircraft has the capability to maintain level flight in a \(2040 \mathrm{ft} / \mathrm{min}\) downdraft without any airspeed change. If the downdraft exceeds this climb gradient capability the aircraft will descend unless pitch attitude is increased to adapt angle of attack.

As illustrated below, climb gradient capability can be maintained at a marginal loss by bleeding off airspeed until a maximum pitch attitude of \(17.5^{\circ}\).

CLIMB GRADIENT MAINTAINABILITY

- In practice, windshear conditions will very often be a combination of horizontal an vertical shear components. This will make it necessary to establish a tradeoff between climb gradient and acceleration requirements.

Note: Refer to the procedures in" PROCEDURES
AND TECHNIQUE" INCLEMENT
WEATHER OPERATION

\section*{SUBJECT : PREVENTING UNNECESSARY ENGINE IN-FLIGHT SHUTDOWNS Subject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} 07 / 2\) - Subject \({ }^{\circ} 19\)}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE AND SCOPE}
- This FCOM BULLETIN has been reissued for the following reasons :
- Incorporation of former FCOM BULLETIN \(\mathrm{N}^{\circ} 05 / 2\) - Subject \(\mathrm{N}^{\circ} 7\) LOSS OF ENGINE PARAMETER INDICATION in Paragraph 5 of this FCOM BULLETIN.
- References have been updated (FCOM pages, FCTM pages, ...)
- The purpose of this FCOM BULLETIN is to foster the concept of PREVENTING UNNECESSARY ENGINE IN-FLIGHT SHUTDOWNS by :
- creating the required industry mindset,
- providing airlines management and flight crews with an enhanced awareness and understanding of engine related indications and their relation to engine malfunctions,
- providing flight crews with amplified guidelines for fault validation through the cross-check and/or monitoring of other engine parameters.
- providing flight crews with enhanced procedures to maximize the engine recovery or restartability.
- Before proceeding any further, it should be emphasized that the above concept is not intended :
- to encourage flight crews to deviate from the published procedures and guidelines,
- to restrict, in any manner, the flight crew authority to take a conservative precautionary decision, depending on the prevailing circumstances and/or available clues.

\section*{2. BACKGROUND INFORMATION}
- In the frame of ETOPS activities, all IFSD events are thoroughly analyzed. Design, maintenance and operational factors are equally investigated.
- The typical operational factors being evaluated are :
- crew awareness : symptoms, indications, warnings.
- action guidance availability and adequacy :
* ECAM procedure,
* Paper check-list (QRH) additional procedural steps or information,
* Advisory conditions guidelines,
* Operations Engineering Bulletins (OEB),
* Background information (FCOM).
- crew decision/action compliance with the published procedure.
- engine restartability aspect.
- Along these lines, so as to minimize the number of IFSD events and meet the goal of 0.02 total IFSD rate per thousand hours, required for ETOPS operation with 180 minutes diversion time, an In-Flight Shutdown team was created by one engine manufacturer, gathering specialists from the engine and airframes manufacturers, as well as customer airlines.
- This FCOM BULLETIN provides a synthesis of the actions taken, as a result of these activities, in terms of :
- Operational documentation,
- Flight crew training policy.
- Whenever directly applicable or transferable, the decisions taken have been extended to other engines types and models. The material contained in this FCOM BULLETIN, as well as the corresponding procedures or recommendations changes, are therefore applicable to all engine/airframe combinations.
3. ABNORMAL PROCEDURES (FCOM 2.05.70)
- ENGINE STALL :
- The published procedures have been entirely re-assessed, and revised, as required, to enhance surge margin augmentation and surge recovery by considering :
* priority steps,
and
* conditional steps.
- ENGINE FAIL :
- The published procedure and associated expanded information has been revised to consider a possible normal windmilling or starter assisted relight, using the ENG RESTART IN FLIGHT procedure, if the flame out was due to external causes (e.g. massive rain ingestion) and/or if no damage is suspected.
- ENG OVER LIMIT :
- The published procedure applicable to the JT9D-7R4 and PW 4000 engines has been revised to reflect a simplified concept, considering only two options, as follows:
* the engine parameter(s) can be returned and maintained within limits : normal engine operation may be resumed to next landing.
or
* the engine parameter(s) cannot be returned or maintained within limits : if conditions permits, the engine must be shutdown.
- ENG RESTART IN FLIGHT :
- The published procedure has been revised with the concern of maintaining the aircraft pressurization, by re-opening the pack valves, in case of unsuccessful restart attempts.
- ENG OIL LOPR :
- The published procedures are being revised so as to enhance the confirmation of the OIL LO PRESS condition by the OIL PRESS reading, prior to initiating the ECAM procedure for engine shutdown.
- The ECAM conditional step :

\section*{■ IF OIL PRESS BELOW XX PSI :}

Has been amplified by incorporating the following expanded information :
- If the low oil pressure condition (OIL LO PRESS local warning light and ENG OIL LO PR ECAM procedure) is not confirmed by the OIL PRESS reading on the RH ECAM ENGINE page, continue normal operation while monitoring the OIL PRESS reading and other engine primary and secondary parameters (a low oil pressure switch defect may be suspected).
- The first step of the guidelines, associated with the ADVISORY condition (OIL PRESS < YY PSI), in FCOM 2.05.90 has been correspondingly refined as follows:
- If the OIL LO PRESS local warning light and associated ENG OIL LO PR ECAM procedure are note activated, continue normal engine operation (an oil pressure transmitter defect may be suspected).
- ENG OIL TEMP HI :
- The published procedures have been re-evaluated with a view of possibly confirming the ENG OIL TEMP HI, by cross-check and monitoring of other engine parameters.
- The engineering analysis conducted confirmed by development testing, evidenced two different oil temperature responses to engine malfunction, thus dictating two different ENG OIL TEMP HI procedure concepts, as follows :
* Pratt \& Whitney engines : the engine oil temperature may be the first and/or only engine parameter to reflect an engine malfunction or impending failure and, hence, the engine shutdown is warranted should the sole OIL TEMP exceeds the transient or maximum certified limits.
The procedure concept remains unchanged.
* General Electric engines : the engine oil temperature will not be the first nor the only engine parameter to reflect an engine malfunction or impending failure. Taking credit of this feature, a more flexible procedure concept has been developed to allow the confirmation of the ENG OIL TEMP HI condition, by cross-check and monitoring of other engine parameters, prior to initiating the engine shutdown procedure.

\section*{4. ADVISORY CONDITIONS (FCOM 2.05.90)}
- The table of ADVISORY CONDITIONS related to the ENGINE (FCOM 2.05.90) has been entirely re-written so as to emphasize the following features of the ADVISORY concept :
- The ADVISORY concept is meant for crew awareness (attention getter) and monitoring.
- The guidelines associated with ADVISORY conditions are meant to assist rather than direct the crew decision and action.
- Along these lines, the existing guidelines have been amplified so as to enhance :
- The fault condition validation through cross-check and monitoring of :
* affected engine other parameters and behaviour,
* opposite engine parameters.
- Further parameters monitoring.

\section*{5. LOSS OF ENGINE PARAMETER INDICATION}
- An engine parameter may be lost or become blanked as the result of either :
- an hardware discrepancy (sensor/probe, connector/terminal block, wiring harness, ...),
or
- a failed indication software check (case of engine parameter signals being processed by the FADEC or by an electronic indicator).
- The loss of engine parameter indication may affect any one of engine primary or secondary parameters, such as :
- EPR (as applicable);
- N1 or N2,
- EGT.
- Should an engine parameter indication be lost or become blanked, without any other indication and/or evidence of engine malfunction, the engine can be operated normally for the remainder of the flight.

\section*{6. FCOM BULLETINS}
- Two FCOM BULLETINS topics address issues originating from the IFSD related activities :

\section*{* SUBJECT \({ }^{\circ} 812\) : ENGINE LACK OF THROTTLE RESPONSE}
* SUBJECT N \({ }^{\circ} 813\) : ENGINE LOSS OF THROTTLE CONTROL

SUBJECTS \(\mathrm{N}^{\circ} 812\) and 813 segregate the lack of throttle response (engine response aspect) from the loss of throttle control (throttle control mechanical or electrical system operation).
They extend the scope of the topic to the less frequent occurrences of:
- engine auto-acceleration,
or
- engine failing to decelerate in response to a throttle retard command.

\section*{7. FLIGHT CREW TRAINING}
- A cooperative effort was initiated to transfer the lesson learnt and messages stemming out of the IFSD related activities into the airframe manufacturer's training programs.
- So as to be fully efficient, the revised operational procedures, recommendations and guidelines must be highlighted to flight crews at all stages of their training :
- Transition course,
- Line training,
- Reccurent training/proficiency checks,
- ETOPS training.
- As far as operator's training programs are concerned, the following suggestions are offered for consideration :
- Transition training course _ :
* The existing Simulator Drill Briefing Notes (or equivalent) should be expanded to address and comment additional scenarios related to engine abnormal conditions.
- Line training course
* The training captain's briefings (pre-flight and cruise briefings) should be expanded to address and comment the concept of PREVENTING UNNECESSARY IN-FLIGHT SHUTDOWN (while confirming the flight crew authority to take a conservative precautionary decision, should prevailing circumstances and/or available clues so dictate).
- ETOPS training course
* In addition to the above suggestions, a particular emphasis should be placed on the management of ADVISORY conditions.

\section*{8. IN-SERVICE EXPERIENCE REPORTING}
- The IFSD events, as well as other operational or engineering issues with operational repercussion, are periodically addressed in the following documents :
- A310 Quaterly Service Reports, issued by the Product Support-Service Engineering department,
- A310 Technical Follow-Up (TFU) system, issued by the Product Support-Technical Support department.
- These documents are forwarded to each operator's engineering department and are also available form the local AIRBUS Field Service office.
- Inter-offices procedures have been set-up so as to enhance the use of the TFU system, for operational events and engineering issues with operational repercussion, by providing :
- a detailed description of the phenomenon and operational repercussions.
- a detailed cross-reference to the applicable operational recommendations (FCOM, MMEL, OEB, FCOM Bulletin).

\section*{9. CONCLUSION}
- Operators (Fleet captains, Training captains and individual flight crews) are encouraged to thoroughly consider the above material, in conjunction with the various referenced, documents, and largely promote (whenever and wherever applicable) the various concepts, procedures, recommendations and guidelines stemming out of the continued analysis of IFSD events.

\section*{SUBJECT : ENGINE LACK OF THROTTLE RESPONSE Subject extracted from former FCOM Bulletin \(N^{\circ} 07 / 2\) - Subject \(N^{\circ} 20\) No technical change from previous issue}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE AND SCOPE}
- The purpose of this FCOM BULLETIN topic is to provide flight crews with background information, and understanding, as well as with operational guidelines, regarding the lack of engine response to throttle lever command.
- This bulletin :
- segregates the lack of throttle response (engine response aspect) from the loss of throttle control (throttle control mechanical or electrical system operation) : this latter aspect is being developed in SUBJECT \(N^{\circ} 813\), hereafter.
- describes the engine operating characteristics during transient operation (acceleration and deceleration).
- extends the scope of the topic to the less frequent occurences of :
* engine auto-acceleration,
or
* engine failing to decelerate in response to a throttle retard command.
- The following aspects are developed hereafter:
- Background information,
- Engine control basic operating characteristics,
- Transient operation : engine acceleration and deceleration,
- Factors affecting the engine acceleration
capability,
- Factors affecting the engine deceleration capability,
- Operational guidelines.

\section*{2. BACKGROUND INFORMATION}
- The lack of engine response to throttle lever command may be caused by a variety of system malfunctions or conditions, typically involving :
- Fuel Control Scheduling,
- Compressor Airflow Scheduling (Variable Stator Vanes operating off-schedule),
- Gas path deterioration,
- Operating conditions (Bleed load),
- Environmental conditions (Rain, Hail or Sleet ingestion).
- Slow engine acceleration or lack of engine response to throttle lever command may result in a rejected take-off or in a precautionary in-flight shut-down.

\section*{3. ENGINE CONTROL BASIC OPERATING CHARACTERISTICS}
- The greater this difference, the higher the engine deceleration rate.
- The basic operating characteristics of the engine fuel control system are defined by the following operating curves, drawn on Figure 1, in a "Fuel / Air Ratio versus N2" graph :

Figure 1
- Acceleration Schedule : this curve defines the maximum fuel/air ratio (maximum amount of fuel) which can be delivered by the fuel control system, at a given N2.
- Deceleration Schedule : this curve defines the minimum fuel / air ratio delivered by the fuel control system, at a given N2.
- Steady State Operating Line (also refered to as the Required-to-Run Line) : this curve defines the fuel / air ratio (amount of fuel) required to sustain steady state (stabilized) engine operation, at a given N2.
- At given N2, the difference between the maximum fuel/air ratio which can be delivered by the fuel control system (Point B on the Acceleration Schedule) and the fuel / air ratio required to sustain steady state operation (Point \(A\) on the Steady State Operating Line) is refered to as the Fuel Margin and represents the engine acceleration capability :
- The greater the Fuel Margin, the higher the engine acceleration capability.
- Conversely, the difference between the fuel / air ratio delivered to sustain steady state operation at a given N2 (Point A on the Steady State Operating Line) and the minimum fuel / air ratio which would be delivered when retarding the throttle lever (Point \(\mathbf{C}\) on the Deceleration Schedule) represents the engine deceleration capability :
4. TRANSIENT OPERATION : ENGINE ACCELERATION AND DECELERATION
- During an engine acceleration (refer to Figure 2, hereafter), as the throttle lever is advanced from Point A to Point B, the fuel/air ratio increases until the Acceleration Schedule is reached.
As the engine accelerates, the fuel/air ratio follows the Acceleration Schedule until it reaches the Governing Line corresponding to the new throttle position. At that time, the fuel/air ratio decreases along this Governing Line until the engine stabilizes, Point B, in a new steady state condition.

Figure 2
- Conversely, during an engine deceleration (refer to Figure 3, hereafter), as the throttle lever is retarded from Point \(\mathbf{C}\) to Point D, the fuel/air ratio decreases until the Deceleration Schedule is reached. As the engine decelerates, the fuel/air ratio follows the Deceleration Schedule until it reaches the Governing line corresponding to the new throttle position. At that time, the fuel/air ratio increases along this Governing line until the engine stabilizes, Point D, in a new steady state condition.

Figure 3

\section*{5. FACTORS AFFECTING THE ENGINE ACCELERATION CAPABILITY}
- The engine "as new" acceleration capability (fuel margin) may come to be reduced as the result of variations in the respective positions of the Acceleration Schedule and the Steady State Operating Line, as follows (refer to Figure 4, hereafter) :
- Downward shift (lean shift) of the Acceleration Schedule, possibly caused by :
* wear affecting the Acceleration Schedule mechanism (cam, cam follower,...) of the fuel control unit (applicable only to hydromechanical controls).
* mis-adjustment of the fuel density (specific gravity) selector on the fuel control unit.
- Upward shift of the Steady State Operating Line, as the result of :
* Bleed load extraction : Nacelle Anti-Ice, Wing Anti-Ice, Fuel Heating (as applicable), Bleed air system leakage,
* Gas path deterioration,
* Massive water ingestion (e.g. rain, hail or sleet).

Figure 4
- Under extreme conditions (refer to Figure 5, here after), the Steady State Operating Line may come to intersect the Acceleration Schedule resulting in a zero, or even negative, fuel margin, with the following consequences on the engine operation :
- Zero fuel margin (Point A and A'): Lack of acceleration upon throttle lever command, the engine remains hanging in its steady state condition,
- Negative fuel margin (Point B) : engine auto-deceleration, usually refered to as Roll-back or Run-down, resulting in a thrust loss and, possibly, sub-idle operation or flame-out.

Figure 5
- High altitude, low ambiant temperature, low Mach number are operational factors also affecting the available fuel margin, at given engine condition.
- Fuel filter icing and/or clogging may also result in slow engine acceleration or lack of throttle response.
- Slow engine acceleration or lack of throttle response, when advancing throttle lever from the idle position, may be the result of the idle setting being trimmed below the published limits.

\section*{6. FACTORS AFFECTING THE ENGINE DECELERATION CAPABILITY}
- The engine "as new" deceleration characteristics may happen to become altered as the result of variations in the respective positions of the Deceleration Schedule and the Steady State Operating Line, as follows (refer to Figure 6, hereafter) :
- Increased deceleration rate (possibly resulting in deceleration surge events), due to the downward shift (lean shift) of the Deceleration Schedule, caused by :
* wear affecting the Deceleration Schedule mechanism (cam, cam follower, ...) of the fuel control unit (applicable only to hydromechanical controls).
- Decreased deceleration capability (possibly resulting in the engine failure to decelerate in response to a throttle retard command) due to a large upward shift (rich shift) of the Deceleration Schedule, caused by :
* excessive wear or significant miss-rigging affecting the Deceleration Schedule mechanism of the fuel control unit (mechanical controls only).

Figure 6
- Under extreme conditions, the shifted Deceleration Schedule may come to intersect the Steady State Operating Line, resulting in a zero or negative deceleration capability, with the following consequences on the engine operation :
- zero deceleration capability (Point A, on Figure 6, here above) : Lack of deceleration in response to a throttle retard command,
- Negative deceleration capability (Point B) : engine auto-acceleration until a new steady state condition (fuel/air ratio versus N 2) is reached (Point C).
- Should one of the above infrequent conditions occurs, the engine control may be regained by increasing the air bleed extraction (i.e. selecting the ENG ANTI-ICE and WING ANTI-ICE to ON, selecting the airconditioning mode to normal flow).
As indicated under § 5 ., increasing the air bleed load will shift the Steady State Operating line upward, possibly enough to provide sufficient margin to allow the engine to decelerate from its hung condition (Point A) or to limit the magnitude of the auto-acceleration (Point B).

\section*{7. OPERATIONAL GUIDELINES}
- The acceleration characteristics of an engine exhibiting a slow acceleration or lack of throttle response may be enhanced by considering the following actions, flight conditions permitting :
- reducing bleed air extraction,
- reducing non-essential high load electrical users (e.g. galleys),
- activating the fuel heating system, as applicable and only if fuel filter icing is suspected,
- reducing altitude, (as the fuel margin increases with decreasing altitude),
- increasing airspeed (recovery of a low idle hang-up condition),
- minimizing the hydraulic demand (e.g. delaying the slats/flaps and/or landing gear extension) during the recovery attempt.
- Should the condition develop into a roll-back or flame-out, the ENGINE FAIL or BOTH ENGINE FLAME-OUT procedures should be referred to.
- The deceleration characteristics of an engine exhibiting a lack of response to a throttle retard command, or departing into an uncommanded auto-acceleration, may be enhanced by increasing the air bleed load.

FCOM Bulletin \(N^{\circ} 812 / 1\) Page 4 of 5
- In case of lack of throttle response in an idle or above idle condition, the engine can be kept operating (so as to take benefit of the available electrical, hydraulic and pneumatic power services), unless certified limits are exceeded.
- Should the engine control be not recovered and the engine be in an out-of-idle condition, the engine should be shutdown for the approach and the SINGLE ENG OPERATION procedure applied (in accordance with FCOM ABNORMAL PROCEDURES).

\section*{SUBJECT : ENGINE LOSS OF THROTTLE CONTROL Subject extracted from former FCOM Bulletin \(\mathbf{N}^{\circ} 07 / 2\) - Subject \(N^{\circ} 21\) No technical change from previous issue}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE AND SCOPE}
- The purpose of this FCOM BULLETIN topic is to provide flight crews with background information and understanding, as well as with operational guidelines, regarding the possible loss of engine throttle control in flight.

\section*{2. BACKGROUND INFORMATION}
- The loss of throttle control may be caused by a variety of system malfunctions or conditions, depending on the engine type of control, as follows:
- Non-FADEC engines :
* throttle control freezing, usually as the result of water ingress in the throttle control push-pull cable sheath and subsequent water freezing, in the un-heated portions of the cable routing (i.e. pylon area),
* throttle control jamming, usually as the result of a push-pull cable over-temperature exposure (typically due to a bleed air leak in the vincinity of the cable routing),
* throttle control disconnection, usually located at the level of the connection between the push-pull cable and the rack-box located on the fuel control unit (HMC or MEC).
- FADEC engines
* disagreement between the two throttle lever resolver signals (generated by the center pedestal-mounted resolvers and sent to the FADEC channels) :
both signals disagree but are within a reasonnable range : the FADEC select the higher throttle position signal, which may result in a power level in excess of the desired thrust setting.
both signals disagree but one signal is out of reasonnable range : the FADEC select the other signal, although the THROTTLE FAULT ECAM warning message and procedure are activated, the engine operation may not be affected.
* Loss of both throttle lever resolver signals to the FADEC :
the FADEC will retain the last healthy value of the throttle position signal(s) and will set and freeze the thrust setting based on this value, thus resulting in a power level which may be higher or lower than the desired thrust setting.

\section*{3. OPERATIONAL GUIDELINES}
- In the event of a loss of throttle control, the applicable procedures must be referred to, as follows :
- Non-FADEC engines: THROTTLE JAM,
- FADEC engines : THROTTLE FAULT.
- In flight, in case of a loss of throttle control in an idle or above-idle condition, the engine can be kept operating (so as to take benefit of the available electrical, hydraulic and pneumatic power services), unless certified limits are exceeded.
- Before approach, should the engine throttle control be not recovered and the engine be in an out-of-idle condition, the engine should be shutdown for the approach and the SINGLE ENG OPERATION procedure applied (in accordance with FCOM ABNORMAL PROCEDURES).

\section*{SUBJECT : UNDERSTANDING AND MANAGING THE FUEL TEMPERATURE LIMITATIONS \\ Subject extracted from former FCOM Bulletin \({ }^{\circ} 07 / 2\) - Subject \({ }^{\circ}{ }^{\circ} 22\) \\ No technical change from previous issue}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE AND SCOPE}
- The purpose of this FCOM BULLETIN topic is to provide flight crews with back ground information, as well as with operational guidelines, for a better understanding and management of fuel temperature limitations.
2. UNDERSTANDING THE PUBLISHED TAT OR FUEL TEMPERATURE LIMITATIONS
- The FCOM Vol. 2 OPERATING LIMITATIONSSYSTEMS combines two completely different fuel temperature limitations, as follows :
- Fuel freezing point limitation: This limitation provides an operating margin to prohibit the operation under fuel temperature conditions which could result in the precipitation of waxy products in the fuel, with consequential effects on the engine operation (instability, power loss or flame-out).
- Fuel heat management system limitation (as applicable) : this limitation reflects the engine capability to warm-up a water-saturated fuel to such a point that no accumulation of ice cristals may clog the fuel filter.

\footnotetext{
Note: This later limitation applies only to certain engine models, as follows :
* CF6-80C2 : dispatch and in flight limitation,
* PW4000 : dispatch limitation only.
}
- The most restrictive of the two above limitations is to be considered.

\section*{3. ASSESSING THE TANK FUEL TEMPERATURE}
- The tank fuel temperature is defined with reference to the OUTR TK, for the following reasons:
- the OUTR TK is the coldest tank, due to its low thermal inertia (relative thickness, capacity, thin air gap insulation above fuel surface),
- the OUTR TK is the back-up tank in case of loss of fuel feed capability from CTR and INR tanks.
- In absence of outer tank fuel temperature indication (Pre Mod 5875 for A310), the tank fuel temperature is assessed through a correlation with the TAT.
- From development testing, confirmed by additional records obtained in revenue service, it was assessed that after thermal stabilization (typically 2 to 3 hours after the top of climb) the outer tank fuel temperature is within \(2^{\circ} \mathrm{C}\) of the TAT, as illustrated by figures 1 thru 9 , hereafter.
- Figures 1 thru 3 reflect the flight test data collected during the development testing of the A310-200 and A310-300,
- Figure 4 thru 6 reflect the modelling of the tank fuel temperature profile, as derived from the above flight test data,
- Figures 7 thru 9 reflect data collected during revenue service flights, which are fully consistent with the above flight test data and the models derived thereof.
- The following summarizes the observations and conclusions resulting from the analysis of Figures 1 thru 9 :
- Prior to thermal stabilization, the TAT is a conservative indicator of the actual OUTR tank fuel temperature (however, in case of TAT increase - warmer area or step-descent - the TAT/OUTR tank fuel temperature relationship is reversed, as illustrated by Figures 6 and 9).
- The tank fuel temperature profile (gradient of temperature decay) is a function of :
* the initial tank fuel temperature (Figures 1 and 2).
* The magnitude of the TAT changes (Figures 3 thru 5).
- The time to fuel thermal stabilization is essentially independent from the above factors. Whatever the initial tank fuel temperature and the magnitude of the TAT change, the tank fuel temperature will decrease (respectively increase) with a rate function of these factors (Figure 4) to reach a complete thermal stabilization after typically 2 to 3 hours (Figures 1, 2, 3 and 7, \(8,9)\).
- The fuel temperature in the CTR tank (absence of direct contact with ouside static or total temperature), INR tank (high thermal inertia) and TRIM tank (mixing of CTR and INR tanks fuel during aft transfers) is typically 3 to \(8^{\circ} \mathrm{C}\) above that of the OUTR tank (Figures 1 thru 3). Engine fuel feeding from the OUTR tanks is therefore the limiting criteria.
- The tank fuel temperature response to any significant change in the TAT, typically features a 10-minute time-lag (Figures 1, 2, 3 and 7, 8).
- After the installation of a fuel temperature probe in the LH OUTR TK (Mod. 5875), a direct tank fuel temperature reading is available (on the ECAM MEMO page) with a \(+/-2^{\circ} \mathrm{C}\) accuracy.
4. DEFINING THE APPLICABLE TAT OR FUEL TEMPERATURE LIMITATION(S)
- Whether the OUTR TK fuel temperature is assessed through a correlation with the TAT or by direct reading, the resulting value is accurate within \(\pm 2^{\circ} \mathrm{C}\) (correlation accuracy or indicating system accuracy), thus resulting in a common definition of the applicable TAT or OUTR TK fuel temperature limitation, relative to the Fuel Freezing Point, as follows :

ACTUAL FUEL FREEZING POINT
+ ENGINE MANUFACTURER MARGIN \(+2^{\circ} \mathrm{C}\left(+3^{\circ} \mathrm{C}\right.\) for FAA)
- If the actual freezing point of the fuel being used for the flight is unknown, the minimum fuel specification values provided in FCOM Vol. 2 OPERATING LIMITATIONS-SYSTEMS must be used.
- The engine manufacturer's margin depends on the engine design philosophy in terms of overall heat management (management of interactive heat exchanges between the cold soaked incoming fuel and the engine oil/IDG oil). The capability of the engine heat management system also governs the possible consideration of additional fuel temperature limitations so as to prevent fuel filter clogging due to the accumulation of ice particles :
- the engine's manufacturer margins relative to the Fuel Freezing Point are respectively as follows :
* Pratt and Whitney : \(0^{\circ} \mathrm{C}\),
* General Electric : \(3^{\circ} \mathrm{C}\)
- The additional fuel temperature limitations, as applicable, are defined for each individual engine model in the FCOM Vol. 2 OPERATING LIMITATIONS-SYSTEMS.
- The most restrictive of the two above limitations must be complied with at any time during the full flight regime.

\section*{5. OPERATIONAL GUIDELINES}
- The management and accomodation of the fuel temperature limitations can be handled primarily at flight planning level by :
- Assessing the forecasted SAT/TAT temperature profile over the route (temperature forecasts are usually accurate within \(+/-\) to \(2^{\circ} \mathrm{C}\)).
- Assessing the potential for encountering SAT/TAT lower than the applicable. TAT limitation (Pre Mod 5875) or resulting in an OUTR TK fuel temperature being lower than the applicable tank fuel temperature limitation (Post Mod. 5875)
- As required, the following alternatives may be considered:
* Planning the flight at a lower altitude and/or a faster Mach Number so as to increase the TAT. However the extra fuel burn shall be accounted for in the fuel/payload computation.
- Note 1: Whenever the tropopause is substantially low (e.g. polar tropopause, winter period), decreasing the altitude may not provide the corresponding expected increase in SAT / TAT.
- Note 2: Although increasing the Mach Number by 0.01 will result in an increase in TAT in the order of 0.5 to \(1^{\circ} \mathrm{C}\), to the expense of a significant increase in fuel consumption, this option may be considered, whenever adopting a random route or a lower cruise altitude is not operationally realistic or possible.
* Planning the flight via a random route avoiding an area of extremely low SAT. However the extra fuel burn may also limit the available payload.

\section*{Note: . Adopting a random route may not be possible in areas constrained by a track system (e.g. North Atlantic, North Pacific).}
* Planning the flight at normal altitude and Mach Number, but considering an additional amount of contingency fuel to account for a possible Mach Number increase, re-routing or step-down, should the actual SAT/TAT or OUTR TK fuel temperature, when in flight, so dictate.
- On aircraft not featuring the OUTR TK fuel temperature indication (Pre Mod 5875) it is recommended to record the TAT (e.g. on the computerized flight plan log), at periodic intervals (at least when checking each waypoint), so as to keep track of the TAT history throughout the flight.

Should a TAT increase - warmer area or step-descent - be observed (thus resulting in an inversion of the TAT - to - OUTR TK fuel temperature relationship, as illustrated on Figures 6 and 9), reference should be made to the coldest TAT previously observed (i.e. prior to the TAT increase) so as to recover a conservative indicator of the actual OUTR TK fuel temperature. This coldest TAT value should have been previously checked to comply with the applicable limitation.

\section*{6. AIRCRAFT ENVIRONMENTAL ENVELOPE}
- An extended environmental envelope has been approved by the certification authorities, only if associated with the fuel temperature indication system.
- For this reason, the extended envelope (FCOM Vol. 2 OPERATING LIMITATIONS-AIRCRAFT GENERAL) is effective only for the post Mod 5875 configuration.
- All aircraft systems have been checked and confirmed to be capable of the extended envelope, however the full benefit of this extended envelope may be limited by the tank fuel temperature limitation.

\section*{7. CONCLUSION}
- The environmental envelope and the fuel temperature limitation are operating limits and therefore should not be deliberately violated.
- These limitations can be better understood and accomodated using the information and flight planning and monitoring guidelines provided hereabove.
- Should these limitations be unintentionally exceeded, crew action must be taken to come back within the prescribed limits as rapidely as practically possible.

Figure 1

Figure 2

FCOM Bulletin N \({ }^{\circ} 814 / 1\) Page 4 of 10

Figure 3

Figure 4

Figure 5

FCOM Bulletin \(N^{\circ} 814 / 1\) Page 6 of 10
OUTER TANK FUEL TEMPERATURE RESPONSE TO TAT VARIATIONS

Figure 6

Revenue service flight UIO-MIA

Figure 7

Figure 8

Revenue service flight VIE-JFK

Figure 9
```

SUBJECT : VOLCANIC ACTIVITY AWARENESS
VOLCANIC ASH ADVISORY
Subject extracted from former FCOM Bulletin N`08/1 - Subject N`24
No technical change from previous issue

```

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE AND SCOPE}
- The purpose of this FCOM Bulletin is to provide flight crews with background information, as well as operational guidelines, regarding VOLCANIC ACTIVITY AWARENESS and VOLCANIC ASH ADVISORY.

\section*{2. BACKGROUND INFORMATION}
- Partial or total engine power loss events caused by volcanic ash ingestion, while infrequent, are major flight safety concerns.
- The lessons learnt from past experience and the recognition of the volcanic threat to aviation safety have lead AIRBUS to propose recommendations for establishing an airline program for Volcanic Activity Awareness and Volcanic Ash advisory.
- Flight crew procedures will not be addressed herein since AIRBUS recommendations for OPERATION IN AREAS CONTAMINATED BY VOLCANIC ASH are published, in all Flight Crew Operating Manuals (FCOM), in the consolidated INCLEMENT WEATHER OPERATION section (PROCEDURES AND TECHNIQUES Chapter).

\section*{3. RECOMMENDATIONS}
- Airlines can play an instrumental role in the overall volcanic activity notification and volcanic ash advisory process.
- Airlines are key contributors at both ends of the airways volcano watch and warning loop as follows:
* Flight Crews, in reporting to the ATC (by immediate radio transmission or/and by filling the ICAO Special Air Report - model VAR) any observation of volcanic activity or any encounter with a volcanic ash cloud.
* Flight Operations Departments, in providing flight crews with :
- Pre-departure Area Briefing and Route Forecast,
- En-route up-dating information and advisories.
- The following communication links can be used to obtain timely up-dated information on the volcano eruptive activity :
* Volcanic Watch Function :
- The Volcanic Watch Function consists in collecting, compilling, processing and up-dating detailed information regarding the active and pre-eruptive volcanoes likely to affect the company area of operation.
- This function can be assigned to the following departments, as applicable :

\section*{. Flight Operations,}
or
Flight Safety Office.
- So as to assess the volcanic threat for each company route the following information sources and communication links can be used :
. Air Information Service (AIS), for active NOTAM's.
. Meteorologial Watch Offices, Airport Offices and Regional Area Forecast Centers for active SIGMET's.
. On-site Aviation Authorities for additional information, such as data and maps related to the ash cloud observed and forecasted extension.
. International organisations such as ICAO, IATA, IFALPA.
. Inter-airlines agreements.
. Company outside stations.
- The Volcanic Watch Function provides synthetized and up-dated information to all operational departments (Flight Operations, Dispatch, Outside Stations,...) as follows :
. Map(s) of active volcanoes and hazard areas,

Relevant data to be included in the Pre-departure Area Briefing and Route Forecast.
. Specific procedures for en-route information up-dating (e.g. HF company frequency, ACARS, en route FIS and ATC).
* Flight crews pre-flight briefing and documentation :
- All flight crews, operating a flight to/from/through an area likely to be affected by volcanic activity, should be provided with the following Information and documents :
. On a systematic basis :
\(\diamond\) Map(s) of active volcanoes and hazards area
\(\diamond\) ICAO Special Air Report - Model VAR (refer to the sample appended hereafter).
As dictated by current volcanic eruptive activity :
\(\diamond\) Last active NOTAM's,
\(\diamond\) Last active SIGMET's
\(\diamond\) Data or map(s) reflecting the observed ash cloud location, extension and/or trajectory forecast.
\(\diamond\) Upper wind analysis and forecast at selected flight levels.
\(\diamond\) Satellite images.
* En-route information up-dating :
- The activity of an erupting volcano usually features series of eruptions sometimes separated by only a few hours. En-route up-dating of the pre-flight briefing information is therefore of paramount importance to minimize the potential for volcanic ash cloud encounter.
- The following communication links can be used to obtain timely up-dated information on the volcano eruptive activity:
. Company FLIGHT WATCH frequency,
ACARS,
VOLMET broadcasts (SIGMETs),
FLIGHT Information Service (SIGMET's)
- Detailed up-date should be sollicitated and obtained regarding the following aspects :
. Notification of new eruption(s),
. Location, height, extension and forecasted trajectory of volcanic ash cloud.
. Notification of airspace restrictions (closure of air routes, activation of contingency routes).
* Flight crew initial and recurrent training :
- So as to build-up a flight crew mind-set regarding the Volcanic Ash threat, volcanic ash awareness should be addressed as part of the flight crew initial and recurrent training, as follows :
. Understanding volcanic ash and volcanic ash clouds, as any other weather systems, and their threat to jet aircraft operation,
Highlighting the published procedures related to volcanic ash cloud avoidance, recognition of encounter and encounter recovery.
Placing a particular attention, during the simulator session related to the BOTH ENGINE FLAME OUT procedure, to the slow engine acceleration characteristics to be expected upon engine restart after volcanic ash ingestion.
. Stressing the Instrumental contribution of flight crew air reports and the use of the ICAO Special Air Report of volcanic activity (model VAR).

\section*{4. CONCLUSION}
- Although significant achievements have been realized, over the past decade, in setting up the International Airways Volcano Watch network and in casting the foundations of a Worldwide Communications and Alert System, the international effort is continuing for :
* consolidating and extending the Airways Volcano Watch network,
* achieving the Worldwide Communication and Alert System, to provide swift warnings/advisories to airlines and en-route flight crews.
- Although the Volcanic Ash Threat to Aviation Safety is a worldwide issue requiring international actions, individual pro-active actions of all concerned will bring a vital contribution to the overall effort.

MODEL VAR

ICAO SPECIAL AIR REPORT OF VOLCANIC ACTIVITY

\section*{SUBJECT : CROSSWIND LANDING TECHNIQUE Subject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} 08 / 1\) - Subject \(\mathrm{N}^{\circ} 25\)}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE AND SCOPE}

The aim of this FCOM BULLETIN is to provide flight

R
R

\section*{2. BACKGROUND INFORMATION}

R When the aircraft flies towards the runway in R crosswind conditions, it comes with a certain drift R angle. It is not recommended that the aircraft flares R and touches down with this drift or crab angle ; R particularly in case of large crab angle.
R Two different landing techniques or a combination R of both can be used : the "wing down technique" R and the "crab angle" technique.
R The data presented hereafter is intended to help in R optimizing the choice of the most appropriate \(R\) technique depending on wind intensity. It fosters R FCOM PROCEDURES AND TECHNIQUES R INCLEMENT WEATHER OPERATIONS on crosswind \(R\) landings.

\subsection*{2.1 Demonstrated crosswind (reference Flight Manual)}
- "Demonstrated crosswind" is the maximum crosswind which was experienced during the flight test campain for which sufficient recorded data is available. It is not necessarily the maximum crosswind that the aircraft is able to cope with.
- It is also deliberate that demonstrated crosswind is not given in the limitation section but is in the performance section of the Flight Manual.
- Demonstration of crosswind capability is made on dry or wet runways and it is usually considered that given figures are equally applicable to dry or wet runways.
- Calculations have been performed to estimate the maximum crosswind components that the aircraft are capable of coping with. (Refer to the table below)
- The maximum crosswind for automatic landing is defined in the limitation section of the Flight Manual. In this case it has to be understood as a limitation.
\begin{tabular}{|l|c|c|c|}
\hline & \begin{tabular}{c}
Maximum \\
demonstrated \\
\((\mathrm{kt})\)
\end{tabular} & \begin{tabular}{c}
Maximum \\
calculated \\
\((\mathrm{kt})\)
\end{tabular} & \begin{tabular}{c}
Maximum \\
autoland \\
\((\mathrm{kt})\)
\end{tabular} \\
\hline A310 & 28 & 37 & 20 \\
\hline
\end{tabular}

\subsection*{2.2 Effect of runway contamination}
- It is a matter of fact that a poor runway friction coefficient will affect both braking action and the capability to sustain high crosswind components.
- The table below applicable to all Airbus models indicates the maximum recommended crosswinds related to estimated runway braking action.
\begin{tabular}{|l|c|c|c|}
\hline \begin{tabular}{c}
Reported \\
braking \\
action
\end{tabular} & \begin{tabular}{c}
Reported \\
runway \\
friction \\
coefficient
\end{tabular} & \begin{tabular}{c}
Maximum \\
crosswind \\
(kt)
\end{tabular} & \begin{tabular}{c}
Equivalent \\
runway \\
condition
\end{tabular} \\
\hline Good & \(\geqslant 0,4\) & Maximum & 1 \\
\hline Good/medium & 0,39 to 0,36 & 30 & 1 \\
\hline Medium & 0,35 to 0,3 & 25 & \(2 / 3\) \\
\hline Medium/poor & 0,29 to 0,26 & 20 & \(2 / 3\) \\
\hline Poor & \(\leqslant 0,25\) & 15 & \(3 / 4\) \\
\hline Unreliable & & 5 & \(4 / 5\) \\
\hline
\end{tabular}

Equivalent runway condition :
1: Dry, damp, or wet runway (less than 3 mm water depth)
2 : Runway covered with slush

3 : Runway covered with dry snow
4 : Runway covered with standing water with risk of hydroplaning or wet snow
5 : Runway with high risk of hydroplaning

\subsection*{2.3 Landing with one engine inoperative}

The maximum crosswind capability must be reduced by 2 kt in case of landing with one engine inoperative.

\subsection*{2.4 Landing with one thrust-reverser inoperative}

The remaining thrust-reverser should not be used when the crosswind component is higher than 20 kt .

\section*{3. CROSSWIND LANDING TECHNIQUE}

\section*{Final approach}
- The final approach under crosswind conditions may be conducted :
- With a steady sideslip : the "wing down" technique consists in aligning the fuselage with the runway centerline using a combination of into-wind aileron and opposite rudder to correct the drift.
- With "crab angle" : the technique is to keep wings level and a crab angle down to touchdown or at least close to it. Actual touchdown with large crab angle still applied should be avoided. Therefore rudder is used to decrab and align the aircraft just prior to touchdown.
This wings-level / crabbed approach is recommended by Airbus.
- Touchdown with a crab angle almost immediately results in the fuselage alignment, and therefore produces a yaw rate sometimes uncomfortable for passengers.

\section*{Decrab technique}

R The Airbus recommended decrab technique is a
normal cross control smooth action on the rudder and on the yoke in order to achieve the following operational objectives :
- On the rudder, in order to zeroe the crab angle (or significantly reduce the crab angle in case of high crosswind).
- Laterally on the yoke, in order to keep wings level (and if needed prevent the aircraft to drift away from runway centerline with slight into-wind wing down).
This decrab technique shall be applied during the flare, preferably not too early, in order to avoid too many lateral adjustments.

\section*{Crosswind landing technique for high crosswind intensity}
- For high wind intensity it may be necessary to touchdown using a combination of both techniques. The graphs that are published at the end of this bulletin show bank angle versus crab angle for three magnitudes of crosswind intensity (10,20 , and 30 kt) and indicate the relevant flight controls and geopetrical limits.

These graphs are computed for steady state conditions and are given as guidance for pilots to choose the appropriate technique.
- Up to a crosswind of 20 kts a zero crab angle landing can be performed with a maximum of about 5 degrees of bank.
- Above 20 kts crosswind, zero crab angle landing would require a higher bank angle and, between 25 and 30 kt, a rudder control limit may be reached on A310.
- Therefore, above a certain magnitude of crosswind, a combination of bank and crab angle at touchdown is desirable.
- Crab angles up to 5 degrees are usually comfortable for both pilots and passengers and in the roll axis sufficient margin remains to preserve geometrical limitations.

Bank angle to ground contact is a function of the pitch. At normal touchdown pitch, the approximate bank angle limit is 11 degrees on A310.
At near zero pitch, the engine will hit the ground first ; when at high pitch, the wing tip will touch first.

\section*{Crosswind landing technique on contaminated runway}
- With a reduced runway friction coefficient, at touchdown the aircraft will yaw due to crosswind as an effect of weathercock stability. In that case, the pilot should not attempt to decrab completely before touchdown.
On a very slippery runway, a touchdown with crab angle is recommended. The crab angle is then zeroed when lateral ground reaction becomes sufficient to modify the aircraft trajectory.
Maintaining the fuselage aligned on a slippery runway may lead to the aircraft skidding sidewise.
When touching down with a crab angle on a \(R\) contaminated runway:
- either the surface friction coefficient is high enough to decrab the aircraft immediately and it is therefore unlikely that the aircraft will subsequently skid sideways ;
or
- surface friction coefficient is not sufficient to decrab the aircraft immediately and it is better to initially keep this crab angle.
To offset the effect, the optimum procedure is a combination of both procedures with a smooth transition between them.

\section*{Nose wheel steering}
- In general, use of the nose wheel steering of the handwheel is not recommended and unnecessary at high speed.
On A310 the rudder pedals crosswind also command nose wheel steering at all speeds with a constant authority of 6 degrees maximum nosewheel rotation angle.
Nosewheel steering through rudder pedals is suitable for ensuring a smooth transition from aerodynamic control to ground control.
The handwheel should not be used before reaching taxi speed.

\section*{4. CROSSWIND LANDING GRAPHS}
- The graphs shown hereafter (Figures 1 to 3) give, for a typical landing weight and full flaps configuration, the relation between bank angle and crab angle as a function of airspeed.
Rudder limits are shown on the graph, with a specific crosswind component.
- Roll geometry limits, being well beyond flight control limits, are not indicated.
- Graphs can be used by entering a desired crab angle to find the required bank angle or vice versa. Vref for the reference weight of computation can be found on the speed axis of the graph.

\section*{5. CONCLUSION}
- The wings-level/crabbed approach is recommended by Airbus.
- However, actual touchdown with large crab angle still applied should be avoided. Therefore, the decrab technique as described in \(\S 3\) here above should be applied just prior to touchdown.

\section*{A310 CRAB ANGLE VERSUS BANK ANGLE IN CROSSWIND CONDITIONS}
\(\mathrm{GW}=120000 \mathrm{Kg} \quad\) SLATS \(/\) FLAPS \(=30 / 40\)
10 Kt CROSSWIND COMPONENT

Figure 1

\section*{A310 CRAB ANGLE IN CROSSWIND CONDITIONS}
\(\mathrm{GW}=120000 \mathrm{Kg}\)
SLATS/FLAPS \(=30 / 40\)
20 Kt CROSSWIND COMPONENT

Figure 2

A310 CRAB ANGLE IN CROSSWIND CONDITIONS
\(\mathrm{GW}=120000 \mathrm{Kg}\)
SLATS \(/\) FLAPS \(=30 / 40\)
30 Kt CROSSWIND COMPONENT

Figure 3

\section*{SUBJECT : AVOIDING TAIL STRIKES Subject extracted from former FCOM Bulletin \(N^{\circ} 08 / 1\) - Subject \(N^{\circ} 26\)}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE AND SCOPE}

R The purpose of this FCOM Bulletin is to provide \(R\) flight crews with background information and \(R\) operational guidelines regarding "avoiding tail \(R\) strikes".
\(R\) The issue 2 of this bulletin is published to \(R\) standardize the format of the angles given in the R tables.

\section*{2. BACKGROUND INFORMATION}

The lessons from experience with inadvertent tail strikes have lead Airbus to consider the causes of such incidents and ways to avoid them.

\section*{3. OPERATIONAL GUIDELINES}
- The causes of inadvertent tail strikes are associated very often with a degraded or hostile environment such as crosswind, birds on runway, heavy rain etc..
- The first consideration in avoiding a tail strike is to be aware of the aircraft geometry limits.

\subsection*{3.1 Aircraft geometry limits}

Two pitch attitudes are of primary importance :
- the geometry limit corresponding to main gear oleo fully extended (\(\theta_{1}\))
- the geometry limit corresponding to main gear oleo fully compressed (\(\theta_{2}\)).
\begin{tabular}{|c|c|}
\hline Main Gear Oleo Position & Pitch attitude \(\theta\) \\
\hline Fully extended \(\theta 1\) & \(15.2^{\circ}\) \\
\hline Fully compressed \(\theta 2\) & \(13.2^{\circ}\) \\
\hline
\end{tabular}

\section*{Touch-down attitude criteria}

The following table provides the ground clearance in degrees at landing (all numbers are mean value).
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
\(\theta\) max at \\
Touchdown \\
(main gear oleo \\
fully extended)
\end{tabular} & \begin{tabular}{c}
\(\theta\) APPR \\
(Attitude at \\
VREF (1))
\end{tabular} & \begin{tabular}{c}
\(\theta\) Touchdown \\
(Attitude at \\
Touchdown \\
VREF - 8 kt(2))
\end{tabular} & Margin (3) \\
\hline \(15.2^{\circ}\) & \(5^{\circ}\) & \(9.3^{\circ}\) & \(5.9^{\circ}\) \\
\hline
\end{tabular}
(1) Flight path in approach \(=-3^{\circ}\)
(2) Flight path at touch-down \(=-1^{\circ}\). Vertical velocity = approximately \(3 \mathrm{ft} /\) second
(3) Margin \(=\theta\) max- \(\theta\) touch-down.

When the approach speed is increased by 5 kt , the margin increases by approximately \(1.3^{\circ}\) (attitude at touch-down decreased by \(1.3^{\circ}\)).

We may conclude that tail strikes are mainly a function of landing attitude \(\theta\). But rate of rotation and the indicated airspeed have also to be considered.

\subsection*{3.2 Tail strikes at takeoff}

Early rotation, over rotation, rotation with large roll input, excessive pitch rate, improper shock absorber servicing, or a combination of these factors are the main causes of tail strikes at takeoff.

\section*{Early rotation}

Early rotation occurs when :
- a too low VR is computed
- the rotation is initiated prior to VR.
- Erroneous VR computation may occur when the takeoff speeds are not crosschecked, or when incorrect loadsheet data is used. At hot-and-high elevation airfield, the error can be critical, if a too low VR is used.
- Rotation initiated prior to VR due to:
- Flaps improperly set for the calculated VR
- Improper pitch trim setting
- Bird or obstacle avoidance leading to early rotation
- Early rotation due to turbulence or windshear encountered during the takeoff roll. In such an event, FAA recommends rotation 2000 ft before the end of the runway.

\section*{Over-rotation or excessive pitch rate}

These two causes are generally associated with a second factor in tail strike incidents (one engine out, aircraft out of trim, improper use of FD pitch command bar, additive inputs from both pilots, early rotation, etc.).

The following results have been obtained during flight test certification. The manufacturer has to demonstrate a safe takeoff at \(\mathrm{V}_{\mathrm{R}}-10 \mathrm{Kt}\) (2 engines) and VR -5 Kt (1 engine).

The pitch and the pitch rate obtained during these tests are indicated for information purposes only and are in no case certified limits.

Note: VR represents the speed at aircraft rotation in order to obtain \(\mathrm{V}_{2}\) at 35 ft in the event of an engine failure.

The usual rotation of \(3 \%\) second prevents a tail strike unless the rotation is initiated at a speed which is far too low. This rotation is obtained in 5 to 6 seconds for an average 15 to \(18^{\circ}\) takeoff attitude.

\section*{After tail strike}

If a tail strike occurs, apply the AFTER TAIL STRIKE procedure.

Selected results are presented below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Aircraft & \begin{tabular}{c}
Weight \\
\(\mathbf{k g}\)
\end{tabular} & CG & Config. & \begin{tabular}{c}
Rotation \\
speed
\end{tabular} & \(\theta^{\circ} / \mathbf{s}\) & \(\theta\) at lift-off \\
\hline \multirow{2}{*}{ A310 } & 137430 & \(17.9 \%\) & \(15 / 0\) & \begin{tabular}{c}
VR-10 \\
2 engines
\end{tabular} & \(6.8 \% / s\) & \(11.6^{\circ}\) \\
\cline { 2 - 7 } & 134430 & \(18 . \%\) & \(15 / 0\) & \begin{tabular}{c}
VR-5 \\
1 engine out
\end{tabular} & \(6^{\circ} / \mathrm{s}\) & \(11.2^{\circ}\) \\
\hline
\end{tabular}

\subsection*{3.3. Tail strike at landing}

Industry statistics show that tail strikes are more likely to occur at landing than at takeoff (2 to 1).
Deviation from normal landing technique, and pitch up effect of landing at aft CG seem to be the principal causes.

\subsection*{3.3.1. Ground reaction at aft CG}

At pronounced aft CG, the ground reaction at touch-down has a pitch-up effect when the attitude exceeds a given value.
The aft CG maximum value and the corresponding maximum attitude, are presented below.
Above this max attitude, pitch-up will occur and will have to be manually counteracted.
\begin{tabular}{|l|c|c|c|c|}
\hline Aircraft & CG & \begin{tabular}{c}
touch \\
down \\
(VREF-8)
\end{tabular} & \begin{tabular}{c}
max \\
attitude
\end{tabular} & Margin \\
\hline A310 & \(36.5 \%\) & \(8.7^{\circ}\) & \(13.2^{\circ}\) & \(4.5^{\circ}\) \\
\hline
\end{tabular}

Margin : Max attitude - \(\theta\) touch-down
Margin must be \(2^{\circ}\) at least. Therefore, when this is inadequate, the landing speed has to be increased.
\(\theta\) Touch-down : mean value of pitch attitude at touch-down assuming a deceleration of 8 kt during flare (Vref-8), and a flight path of \(-1^{\circ}\) at touch-down (approximately \(3 \mathrm{ft} /\) second).

\subsection*{3.3.2. Deviation from normal landing technique}

Deviation from normal landing technique remains the most common cause of tail strikes specifically:
. Allowing the speed to decrease well below VApp
. Prolonged hold-of for a smooth landing
. Flare started too high
Too high sink rate, just prior reaching the flare height.
. Bouncing at touchdown
. Failure to lower the nose gear after MLG touchdown.
- Allowing speed to decrease well below VAPP before flare
Flying at too low speed means high AOA and high pitch attitude, thus reducing ground clearance. When reaching flare height, the pilot will have to significantly increase the pitch to reduce the sink rate. This may lead the pitch to go beyond the critical angle.
Wind gradient on finals may also lead to an inappropriate attitude during the flare. A windshear from headwind to tailwind leads to lower aerodynamic speed. In this event, the first reflex of the pilot is to increase the attitude, as he approaches the ground.
- Prolonged hold off for a smooth touchdown

As the pitch attitude increases, the pilot needs to focus further ahead to assess the aircraft's position in relation to the ground. The attitude and distance relationship can lead to a pitch attitude increase beyond the critical angle.

\section*{- Too high flare}

A high flare can result in a combination of decreased airspeed and long float. Since both lead to increased pitch attitude, the result is reduced tail clearance.
- Too high a sink rate, just prior reaching the flare height.
In case of a too high sink rate close to the ground, the pilot may attempt to avoid a firm touchdown by commanding a high pitch rate.
This action will significantly increase the pitch attitude and, as the resulting lift increase may be insufficient to significantly reduce the sink rate, a firm touchdown may occur. In addition, the high pitch rate may be difficult to control after touchdown, particularly in case of bounce.

\section*{- Bouncing a touchdown}

In case of bounce at touchdown, the pilot may be tempted to increase the pitch attitude so as to ensure a smooth second touchdown. If the bounce results from a firm touchdown associated with a high pitch rate, it is important to control the pitch so that it does not further increase beyond the critical angle.

\section*{- Failure to lower the nose gear after MLG touchdown}

Keeping the nose high increases the risk of tail strike if an additional factor such as an unexpected wind gust or spoiler deployment for example, adds a pitch up moment.

\subsection*{3.3.3. Landing technique}

The first important point in avoiding tail strikes is to reach the flare height with the appropriate speed and the correct path angle \(\left(-3^{\circ}\right)\) towards the touch-down point.

Autothrust and the Flight Path Vector (FPV) are very good assets in judging correctly to the flare height.

\section*{- Flare technique}

From stabilized approach conditions, the fare height is about 30 ft .
The thrust reduction is progressive from 35 ft . It has to be coordinated with the pitch rate, especially when crosswinds are encountered.

The attitude increment between the start of flare and touch-down is close to \(4.5^{\circ}\), assuming an 8 kt speed decay and \(-1^{\circ}\) flight path angle at touch-down (\(3 \mathrm{ft} / \mathrm{second}\)).

Because of the downward visibility of all modern aircraft, it may be difficult to judge an abnormal pitch attitude. The PNF should monitor the pitch attitude on the PFD and call "PITCH, PITCH" whenever the pitch attitude exceeds \(10^{\circ}\).
After touchdown, the pilot must fly the nosewheel smoothly, but without delay, onto the runway, remaining prepared to counteract any residual pitch up effect of the ground spoilers. Moreover, deflected elevators increase the load on the main gear, providing better breaking.

\section*{- Bouncing at touchdown}

In case of a light bounce, maintain the pitch attitude and complete the landing, while keeping thrust at idle.
Do not allow the pitch attitude to increase, particularly following a firm touchdown with a high pitch rate.
In case of a high bounce, maintain the pitch attitude and initiate a go-around. Do not try to avoid a second touchdown during the go-around. Should it happen, it would be soft enough to prevent damage to the aircraft, if pitch attitude is maintained. Only when safely established in the go-around, retract flaps one step and the landing gear. A landing should not be attempted immediately after a high bounce, as thrust may be required to soften the second touchdown, and the remaining runway length may be insufficient to stop the aircraft.

\section*{SUBJECT : ELECTRONIC INTERFERENCE FROM PORTABLE EQUIPMENT CARRIED ON BY PASSENGERS Subject extracted from former FCOM Bulletin No08/1 - Subject N \({ }^{\circ} 28\) No technical change from previous issue}

\section*{Applicable to : All aircraft}
- Airlines often wonder whether they should allow passengers to operate electronic devices in the cabin without any limit.
Federal Aviation Regulation (FAR) section 91.21 allows passengers to operate :
" - Portable voice recorders
- Hearing aids
- Heart pacemakers
- Electric shavers
- Any other portable electronic device that the operator of the aircraft has determined will not cause interference with the navigation or communication system of the aircraft on which it is to be used."

It is obvious that the myriad portable devices that now exist or that may be available in the future cannot be tested.
- As far as aircraft specific electrical flight controls and engine control computers on Airbus aircraft are concerned, there is no chance of their operation being affected by passenger-operated electronic devices, due to the high level of protection applied to these systems.
- Nevertheless, this question arises for navigation and communication receivers and is applicable to any aircraft.
A study has been conducted by an RTCA (Radio Technical Commission for Aeronautics) special commitee.
- The conclusion is that the probability of a passenger-operated device interfering with the ILS localizer during a typical flight is about one in a million. Airbus recommendations is that no electric or electronic devices should be used during Takeoff and landing.
- During any flight phase, Airbus recommends to prohibit the use of any device that intentionally produces signals (Mobile phones, Radio transmitters, and remote-control toys...).

\section*{SUBJECT : AVOID DISORDER IN THE COCKPIT Subject extracted from former FCOM Bulletin N \({ }^{\circ} 09 / 1\) - Subject \({ }^{\circ}{ }^{\circ} 29\) No technical change from previous issue}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE}

The purpose of this FCOM Bulletin topic is to remind pilots of the importance of maintaining an orderly cockpit environment and highlight the hazards caused by misplaced objects.

\section*{2. BACKGROUND INFORMATION}

Many hazards are caused by placing objects in improper places in the cockpit. The most common being the following.
- Coffee cups placed on the glareshield or pedestal, unexpected turbulence or unintentional knocking by the crew may cause fluid to be spilled onto the cockpit control panels causing damage to the equipment which may have an immediate effect on the flight or at best lead to an early and expensive overhaul of the equipment.
- Books placed on the glareshield. These may fall off and operate some switches/ pushbuttons or even damage equipment.
- Books place on the pedestal. These may cause switches or pushbuttons to be activated, especially if they have to be pushed around while operating other controls.
At worst the rudder trim might be activated or even a fuel lever pushed off, at best a radio selection could be deselected.

\section*{3. RECOMMENDATIONS}

It is highly recommended that all objects are placed and stored at their designated place in the cockpit.
Cups should be placed in the cupholders provided.
Books should be kept in the library space provided and put back as soon as you have finished using them.

A rubbish sack should be provided behind the crew seating and used for all rubbish.
Meal trays should be collected by flight attendants as soon as possible, or be placed on the floor behind the crew when finished.

\section*{SUBJECT : FMS NAVIGATION DATA BASE \\ Subject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} 10 / 1\) - Subject \(\mathrm{N}^{\circ} 32\) No technical change from previous issue}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE AND SCOPE}

The aim of this FCOM Bulletin is to highlight the importance of the Navigation Data Base accuracy and therefore the importance of its update and its correctness.
As any NAV data base discrepancy or false coding may induce navigation errors and lateral or vertical misguidances, this FCOM Bulletin provides flight crews with operational recommendations.

\section*{2. INCORRECT NAV DATA BASE CASES}

\subsection*{2.1 Navigation data base discrepancies}
- Numerous in-service events have been reported during the last few years, which are caused by 3 different types of Navigation Data Base discrepancies :
- Nav data base not updated on time,
- Incorrect coding or impossibility of coding of published procedures.
- Coding errors.
2.1.1. Nav data base not updated on time

When a Nav Data Base is not updated on time, results may lead to incorrect position or misguidance :
- 1st example

STAR MEN2 (LFBO) was modified but not incorporated in the Nav D.B. As a result the STAR displayed on the ND was not the published one.
- 2nd example

TRANS between STAR VAREK and NDB03 was not coded at Ajaccio (LFKJ). Misguidance was the consequence.
2.1.2. Nav data base incorrect coding

Nav data base error leading to FMS position error :
- Example

Erroneous position of runway threshold at EDDF (0.5 NM of error) inducing a false updating at takeoff, and a too high altitude at landing over the threshold during non precision approach.
Generally incorrect coding in the NAV D.B. induces misguidance in SID or STAR :
- 1st example

STAR VAREK at Ajaccio (LFKJ).
The leg STP-VAREK was coded as a TF (track to fix) and the following leg was coded as a CF (course to fix). Due to the imprecision of the magnetic variation in the area, both legs were not lined up and the \(\mathrm{a} / \mathrm{c}\) had to turn, after VAREK WPT, to capture the next leg.
- 2nd example

STAR PERIK 1 and GORON 1 AT Genova (LSGG).
These STARs end at WPT SINEL located in the middle of the APPR 23.
This creates a F-PLN discontinuity and the procedure is not flyable. The Nav D.B. error is linked to both coding and procedure concept.

- 3rd example

On several non precision approaches, the final descent angle is coded for the last leg only instead of the last 2 legs. Again this creates a level off segment which does not exist.

\subsection*{2.1.3 Coding errors}

Coding errors generally have very similar effects on the FMS system and may induce position errors as well as misguidance.
- 1st example

Erroneous position of runway threshold at LFMT RWY 32R inducing a lateral offset during non precision approach
- 2nd example

ILS/DME coded as an ILS only preventing autotuning of the DME in approach (IWW and IGG at EGKK).

\subsection*{2.2 Problems linked to ARINC 424 specification}

If an item is not specified in the ARINC 424, it will not be part of the Nav D.B.
For example :
No specific field reserved for THR RED/ACCEL ALT. As a result, it is not possible to link such information to a company route (e.g noise abatement). Defaulted value is provided instead.

\subsection*{2.2.1 Systematic coding of HF leg in procedures}

When a Final Approach procedure displays a Holding Pattern, this pattern is systematically coded in the APPR VIA or STAR as an HF leg; this means that this holding is always taken into account in the F-PLN, assuming one turn ; in certain cases, this is realistic but in most circumstances, it is not.

If the HF leg is of no use, it corrupts all predictions and performance computations. Furthermore if a holding pattern is required by ATC, then the crew has all means to insert it into the F-PLN, and be then provided with realistic estimates.
As a consequence, realistic coding of procedure turns should be requested.

\subsection*{2.2.2 Circle to land}

At many airports approaches are defined only in one direction; while the landing runway may be in the other direction.
If the weather is poor, a defined instrument approach is carried out down to circle to land MDA, and then a circle to land trajectory is flown.

Circle to Land feature is not part of current ARINC specification ; this forces the crews to improvise in order to get a realistic trajectory on the ND, and to get proper predictions on CDU.

\section*{3. RECOMMENDATIONS}

Tomorrow, the increasing number of RNAV approaches will require faultless Nav Data Base approach procedures since it will not always be systematically possible to monitor the guidance by using raw data.
In order to control and correct NAVIGATION Data Base all pilots are encouraged to report to their flight operations any misbehaviour which may have been induced by an incorrect data base.
This can be done during normal operations :
* during preflight by checking the consistency of the CDU F-PLN versus ATC F-PLN. Refer to current FCOM ;
* in flight by performing the navigation accuracy assessment on a regular basis as described in the FCOM procedures and techniques chapter, or VOL 2.

\section*{4. CONCLUSION}

On a short term basis, the Nav Data Base improvement is a matter of step by step error detection which mainly requires pilot attention during preflight and in flight.

On a longer term basis, the Nav Data Base improvement requires decisions and actions of concerned agencies/ authorities and Nav Data Base manufacturers.

It has to be reminded that the aircraft constructor has no control over the data base used by each operator.

\section*{SUBJECT : BLEED LEAKS DURING AIR CONDITIONING ON GROUND USING THE APU BLEED IN HIGH OAT. \\ Suject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} 11 / 1\) - Subject \(\mathrm{N}^{\circ} 34\) No technical change from previous issue}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE}

Several operators have reported experiencing LH BLEED LEAK warnings during turn arounds with high OAT. These warnings are often spurious and caused by the high OAT together with a minor seepage from the bleed ducts or air conditioning pack clamps. No LEAK warnings are generated in flight. The LH BLEED LEAK warning is most often generated due to the fact that this loop covers the area around the air conditioning packs.

In order to determine whether such bleed leak warnings experienced are real or spurious the following procedure has been developed.

\section*{2. RECOMMENDATION}

If the cabin doors are kept closed whenever possible, the air conditioning demand is reduced and the occurrence of false bleed leak warnings may be reduced.
If it can be established that the LH BLEED LEAK warning does not occur with the PACKS OFF, then it is considered as spurious.
To determine if the warning does or does not occur with the PACKS OFF, use the following procedure :
```

i. PACK 1+2
OFF
LH BLEED VALVE . . . . . . . . . . . . . . . OFF/R
APU BLEED . . . . . . . . . . . . . . . . . . . OFF

```

The leak warning will remain present as long as a high temperature is sensed outside the pneumatic duct, regardless of the position of the bleed valves. When the heat has dissipated, the warning will disappear.
ii. When the LEAK warning has disappeared : LH BLEED VALVE AUTO APU BLEED . ON
If the LEAK warning reappears :
- This indicates a real warning, carry out ECAM procedure. Maintenance action is due.
iii. If the LEAK warning does not reappear :
- After engine start and APU bleed switched OFF PACK \(1+2\) ON

If the LEAK warning reappears, the warning is real : carry out the ECAM procedure, maintenance action is due.

> Note: Any occurence of BLEED LEAK warnings should be reported in the logbook, indication of the OAT will be useful to maintenance.

\section*{SUBJECT : DISPATCH WITH ADDITIONAL CENTER TANK(S) (ACT) NOT USED Subject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} 11 / 1\) - Subject \(\mathrm{N}^{\circ} 35\) No technical change from previous issue}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE}

The purpose of this bulletin is to provide the flight crew with operational recommendation to dispatch the a/c when the ACT(s) cannot be used.

\section*{2. HISTORICAL BACKGROUND}

Some operators experienced failures of the ACT system, such that it cannot be used, but do not have sufficient time to remove the tank(s) before the next flight. Therefore, they wish to deactivate the system in order to continue to fly with ACT(s) installed ensuring that no fuel gets into the ACT(s). One of the reasons could be due to a leak of the ACT(s) bladder.

\section*{3. SOLUTION}

The transfer valve must be deactivated in the closed position (Refer to A310 MMEL 01-28 item 45 "TRANSFER VALVE").

As a consequence of the above MMEL action :
- No transfer is possible and the ACT(s) is (are) isolated.
- There is no fuel in this (these) tank(s) or fuel in this (these) tank(s) is considered as unusable and as part of ZFW and is taken into account for CG determination.

\section*{4. CONCLUSION}

The above dispatch condition and associated maintenance procedure are less constraining than the removal of the tank(s) and allow the aircraft to be dispatched.

\section*{SUBJECT : UNDERSTANDING PRE-STALL AND MACH NUMBER BUFFET Subject extracted from former FCOM Bulletin \(\mathrm{N}^{\circ} 11 / 1\) - Subject \(\mathrm{N}^{\circ} 36\) No technical change from previous issue}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE AND SCOPE}
- The purpose of this FCOM Bulletin topic is to provide flight crews with an enhanced understanding of the pre-stall and Mach number buffet phenomena, from both an aerodynamics and flight mechanics (maneuverability) standpoints, as well as with operational guidelines for recognition of and recovery from a buffet onset condition.
- As far as normal flight operations procedures and recommendations are concerned, comprehensive information is available in the FCOM BULLETIN N \({ }^{\circ} 802\) (Understanding and Managing the Buffet Margin) and associated cross-referenced FCOM topics.
- The information contained in this FCOM Bulletin is general in nature and is applicable to any modern jet transport.
- This FCOM Bulletin may appear, at first, to be very detailed and academic, it was prepared in response to operator's request for such detailed background information.

\section*{2. WHERE DOES BUFFET COME FROM ?}
- Whether it is referred to as the pre-stall or Mach number buffet, in all cases the buffet is the result of the airflow separation, caused by pressure gradients, at the upper surface of the wing airfoil.
- This airflow separation results in the airflow becoming turbulent and in the lift being unstable in magnitude and position, thus transmitting vibrations to the wings and, depending on its position, to the horizontal tail unit.
- The buffet level reflects the aircraft response to the disruption created by the airflow separation, the buffet concept is therefore not an aerodynamic phenomenon only (driven only by the wing aerodynamic characteristics) but the overall signature of the airframe aerodynamic and structural characteristics in response to the airflow separation.
- However, this reference to the airflow separation is the only aspect common to both the pre-stall and Mach number buffet. Indeed, the origin of pressure gradients and the way the airflow separation will progress and affect the lift capability is markedly different in the respective cases.
- Defining the point where the buffet becomes objectionable to the pilot is very subjective. For certification purposes, the Buffet Onset is defined by buffet conditions resulting in a 0.2 g peak-to-peak vertical acceleration measured at the Captain seat.
- As recalled later in this bulletin, the concept of Buffet Margin relates only to the Mach number buffet and is to be understood relative to the Buffet Onset, which provides margins relative to the Deterent Buffet (defined as a level sufficient to dissuade the pilot from continuing to increase his pull force or to increase the Mach number).
- It should also be stressed that the buffet speed referred to as the low speed buffet is usually misunderstood as related to the pre-stall condition, whereas it relates to the Mach number buffet condition as explained in \(\S 6\) hereafter.

\section*{3. EFFECT OF THE ANGLE-OF-ATTAK (AoA) AND MACH NUMBER ON THE LIFT COEFFICIENT}
- The airfoil/aircraft lift coefficient (CL) is a function of both the Angle of Attack (AoA) and Mach number (MN) over the entire speed range, as illustraded on Figure 1.

- The AoA effect is intuitive and is appraised by all pilots when training for approach-to-stall/stall/stall recovery.
- The MN effect is less intuitive. Although the MN effect is continuous, starting from low speeds, this effect becomes significant above \(\mathrm{MN}=0.4\) to 0.6 .
- With increasing MN the mechanism associated with the airflow separation and buffet switches from a pre-stall type to a Mach number type, as explained in details in § 4 and 5 hereafter.
- The Figure 1 illustrates the following aspects :
- MN effect on the Lift Coefficient (CL)/Angle of Attack (AoA) relationship (slope of the linear portion of the curve),
- MN effect on the characteristics of the CL decay due to the airflow separation,
- MN effect on the maximum Lift Coefficient (CL MAX).
- The Figure 2 illustrates, in a different form, this latter effect together with the effect of MN on the Lift Coefficient where the Buffet Onset is reached. This Figure will be used later in this Bulletin when discussing the maneuverability aspects (\(\$ 6\) hereafter).

Figure 2

\section*{4. PRE-STALL BUFFET}
- The aerodynamic mechanisms driving the pre-stall buffet and stall are well known from basic training days and are briefly recalled hereafter for comparison purposes only :
- In the low speed range, the airfoil lift coefficient (CL) is essentially a linear function of the Angle of Attack (referred to hereafter as \(A o A\)).
- If the angle of attack is increased, the pressure distribution across the airfoil chord changes (i.e. the minimum pressure - suction - increases in magnitude and moves forwards due to the airflow acceleration around the leading edge) resulting in increasing pressure gradients.
These increasing pressure gradients acting on a low energy boundary layer will result in the progressive separation of the boundary layer and of the overall airflow.
- The turbulence created by the airflow separation, the resulting fluctuation of the lift magnitude and position, as well as the separation wake possibly affecting the tail unit, contribute to producing buffeting.
- As the airflow separation progresses (starting ahead of the trailing edge and moving forwards), the lift curve (lift coefficient as a function of the angle of attack) departs from its linear relationship and collapses with increasing airflow separation, until the complete breakdown of the airflow around the airfoil (stall), at or near the point referrred to as the point of maximum lift coefficient (refer to Figure 1 for illustration).
- The progression of the airflow separation as well as the level of buffet annunciating the stall are characteristics which may vary largely from one aircraft design to the other.
- In summary, the pre-stall buffet onset is an indicator of the impending collapse and breakdown of the lift capability, and resulting stall.

\section*{5. MACH NUMBER BUFFET}
- The aerodynamic mechanisms associated with the Mach number buffet are usually less well known and sometimes misunderstood as regards their effect on the lift capability.
- Above MN \(=0.4\) to 0.6 , the effect of the Mach number on the lift coefficient becomes more significant as explained here below.
- As the aircraft speed increases, the air flow velocity at the upper surface of the wing airfoil increases correspondingly. At some time the airflow velocity will reach the sonic velocity at one point of the airfoil, the associated aircraft MN is referred to as the critical MN.
- As the aircraft MN further increases, the sonic portion of the airflow will extend and become supersonic. This supersonic zone is referred to as the supercritical zone.
- The supersonic airflow returning to subsonic speeds, ahead of the airfoil trailing edge, results in a shockwave and associated local pressure gradients (recompression). This shockwave moves forward or aft as a function of the MN and lift coefficient.
- As the MN or AoA increases and increasing pressure gradients are generated by the shockwave, the boundary layer and aifflow starts separating, at the trailing edge (in the mid part of the wing span), resulting in the shockwave location moving slightly forward and becoming unstable, thus producing turbulence and fluctuating lift, and associated aircraft buffetting.
- Modern airfoils, referred to as supercritical airfoils, feature a supersonic airflow (supercritical zone) extending on a large portion of the chord, thus resulting in a more even distribution of the lift accross the airfoil chord.
This feature results in a lower airflow MN in the supercritical zone and particularly ahead of the shockwave. The lower airflow MN reduces the recompression pressure gradients across the shockwave, and, thus, minimizes the interaction between the shockwave and the aft boundary layer.

In practical terms, supercritical airfoils reduce the recompression shock and, thus, retard the airflow separation and buffet onset.
- Should the MN or load factor (hence the AOA) be further increased, although the separation effect and associated buffet becomes stronger (because of increasing pressure gradients), the airfoil lift capability is not significantly affected, as explained hereafter.
- Indeed, as the MN or the AoA is increased after the start of the airflow separation at the airfoil trailing edge, the airflow separation progresses forward resulting in a decay of the Lift Coefficient as a function of the AoA (as illustrated by Figure 1) but, because the airflow separation remains limited to that portion of the airfoil chord located aft of the shock, there is no complete breakdown of the overall airflow and, hence, no sudden reduction in the overall lift capability.
- Unlike the low speed buffet, the high speed buffet cannot develop into a classic stall condition!
- Should the MN or AoA be allowed to further increase, the airflow separation further progresses forward and inboard (leaving the outboard wing unaffected is a leading wing design criteria) resulting in the lift distribution moving forward, thus producing a pitch-up moment, which is immediately compensated if the aircraft has a stability augmentation system (e.g. alpha trim).
- Should the AoA be allowed to increase further beyond, getting closer to or into the deterent buffet, the increasing airflow separation and associated change in the downwash on the horizontal stabiliser would result in a strong pitch down moment (occuring actually before reaching the theoretical maximum lift coefficient).
- However, although extremely severe and sudden turbulence conditions may result in angle-of-attack excursions in the pitch-up and pitch-down range, these natural behaviours will not (usually) be recognized by the flight crew, from the overall flight path disturbance and recovery.
- In summary, reaching the Mach number buffet onset primarily results in ridding inconfort, without impending loss of lift capability or longitudinal stability.

\section*{6. MANEUVERABILITY ASPECTS}
- The maneuverability of an aircraft at low speed lies in the available speed margin, similarly at high speed the maneuverability lies in the available buffet margin.
- The Buffet Margin is expressed in terms of load factor margin (e.g. 0.3 g) and represents the load factor (i.e. 1.3. g) which can be sustained (in a pull-up or turn) before reaching the buffet onset (at given GW/FL/MN, as explained in FCOM Bulletin 802).
- Looking back briefly into basic aerodynamics provides an easy appraisal and illustration of the buffet margin and maneuverability aspects.
- For a given airfoil profile, the airflow velocity pattern around the profile is a function of the lift being produced (lift coefficient/angle of attack hence gross weight/load factor, at given \(M N / F L\)).
The MN at which the buffet onset will occur is hence also a function of the gross weight/load factor and FL, as illustrated by Figures 2 and 3.

Figure 3
- If we consider, instead of an increasing MN, an increase in load factor (g) at constant MN, as occurs when entering a turn, the following reasoning can be made.
As the turn is entered and sustained, the load factor increases with a corresponding increase in angle of attack and lift coefficient until the CL FOR BUFFET ONSET is reached.
- When operating at a set of conditions (GW/FL/MN) providing a \(1.3 . \mathrm{g}\) buffet margin (FCOM Vol. 2 - FLIGHT PLANNING MANAGEMENT OF BUFFET MARGIN), this will occur when the bank angle results in a 1.3 g load factor (just under \(40^{\circ}\) bank under perfectly stable conditions - refer to FCOM Vol. 2 OPERATING LIMITATIONS).
However, perfectly stable conditions are rarely achieved in normal operation (e.g. turbulence or variation in pitch inputs) and the buffet may be sensed at a lower bank angle because it occurs at given AoA/load factor and not at given bank angle).
- The Figure 2 and 3 provide an immediate illustration of the margin being available, at a given set of conditions (GW, FL, MN and load factor), between :
- the CL required to fly (referred to hereafter as CL1)
and
- the CL for buffet onset (referred to hereafter as CL2)
- From Figures 2 and 3, it is obvious that any change in any condition (MN or FL or GW or load factor) or set of conditions will result in a corresponding change in the Lift Coefficient (CL) margin (CL2 - CL1).
- With reference to Figure 3 symbol (A), it can be evidenced that at given GW/FL/load factor the CL FOR BUFFET ONSET can be reached for two Mach number values, usually referred to as the low and high buffet speeds.
However, if the high buffet speed intuitively relates to Mach number buffet, the low buffet speed should not be considered as related to pre-stall buffet. Indeed, at high Mach number and altitude, both the low and high buffet speed relates to the onset of Mach number buffet.
- With reference to Figure 3 symbol (B), it can be evidenced that at given MN and FL, the CL FOR BUFFET ONSET will be reached for a load factor (or equivalent gross weight) such that :
\(\mathrm{n}=\frac{\mathrm{CL} 2}{\mathrm{CL}}\), with \((\mathrm{n}-\mathbf{1})\) being the available load factor margin to buffet onset, usually referred to as buffet margin.

FCOM Bulletin \(N^{\circ} 823 / 1\) Page 4 of 7
- The available load factor margin (or buffet margin), or the load factor at which the buffet onset is reached, can be plotted as a function of MN (at given GW/FL) as illustrated by Figure 4 hereafter.

- The Figure 4 reveals a MN value providing the maximum available load factor at buffet onset (respectively buffet margin), at given GW/FL. This MN value constitutes the maximum maneuverability MN.
Persisting beyond the buffet onset would only result in added discomfort without any significant increase in maneuverability.
Reducing the load factor by relaxing the pull force will cause the buffet level to reduce.
- If the load factor/AoA is further increased, the buffet level will also increase, due to increasing pressure gradients. Eventually, the deterent buffet will be reached, at which point the ultimum load factor capability will have been attained.
- If the altitude is increased (at given GW and flying at the maximum maneuverability MN), the available load factor/buffet margin decreases until an altitude is reached at which the buffet occurs at \(n=1\), at this MN. This altitude constitutes the aerodynamic ceiling for this GW.
- Similary, if increasing GW are considered (at given FL and flying at the maximum maneuverability MN), the available load factor/ buffet margin decreases until a GW value at which the buffet occurs at \(\mathrm{n}=1\), at this MN. The subject FL constitutes the maximum aerodynamic ceiling for this GW value.
- Flying at the aerodynamic ceiling is not operationally practical nor economically effective in revenue service operation. This is the reason why the FCOM maximum recommended altitude (1.3 g) and the FMS MAX ALT (> \(\mathbf{1 . 2} \mathbf{~ g}\)) provide a maneuverability margin while offering adequate operational flexibility.
- The Figure 5 presents a different illustration of the maneuverability margin by providing the lift capability balance as a function of the MN.
- with reference to the lift equation for level flight
\[
\mathrm{GW}=0.7 \times \mathrm{PS} \times \mathrm{S} \times \mathrm{CL} \times \mathrm{M}^{2}
\]
it can be stated that at given GW, given FL (given Ps) and for a given aircraft (given S) the lift capability required to fly in level flight is reflected by the term \(\mathbf{C L} \times \mathbf{M}^{2}\), which is therefore a constant.
- with reference to the Figures 2 or 3, the lift capability at the buffet onset is similarly reflected by the term CL FOR BUFFET ONSET \(x\) \(\mathbf{M}^{2}\) which is a function of the \(\mathbf{M N}\), as illustrated by Figure 5 .

Figure 5
- from Figure 5, it can be inferred that, at given conditions (GW/FL/load factor), sustained level flight, without buffet, is possible only when :
\(\left(\mathrm{CL} \times \mathrm{M}^{2}\right)\) TO FLY \(<\left(\mathrm{CL} \times \mathrm{M}^{2}\right)\) FOR BUFFET ONSET
i.e. between the low and high buffet speeds.
The higher the GW, the FL or the load factor, the narrower the MN range permitting level flight.
- in practical terms, this means that persisting beyond the point of buffet onset (in terms of load factor/AoA or MN) does not permit to maintain level flight without progressing towards the deterent buffet.
- Thus, when encountering buffet at high Mach number/load factor, an increasing level of discomfort is to be expected, but there is no risk of a sudden loss of lift (stall), reduction in turn capability or loss of control.
However, the recovery actions - suggested in the § 8 hereafter - should be initiated as soon as possible.

\section*{7. RECOGNIZING THE MACH NUMBER BUFFET FROM THE PRE-STALL BUFFET}
- Recognizing the Mach number buffet from the pre-stall buffet may not be evident for the flight crew unless the following becomes a cruise management routine :
- awareness of the initial speed margin (margin to pre-stall buffet) and buffet margin (margin to Mach number buffet) for prevailing flight conditions in terms of GW/FL/MN (refer to FCOM Vol. 2)
- alertness and training to recover from a pre-stall buffet condition (approach to stall) and from a Mach number buffet condition.
- On the A310, the PFD speed scale indexes (VLS, Green Dot) as well as the FMS MAX ALT/MMO-0.02 guidance limits provide visual awareness and protection in terms of speed and buffet margins.

\section*{8. RECOVERY FROM AN HIGH SPEED (MACH NUMBER) BUFFET CONDITION}
- As indicated in the FCOM BULLETIN N \({ }^{\circ} 802\), any change in the following flight conditions will result in a corresponding change in the available buffet margin :
- FL at given GW/MN
- MN at given GW/FL,
- Load factor at given GW/FL/MN.
- Should the buffet margin be managed in accordance with the guidelines provided in FCOM BULLETIN 802 and with the corresponding operational procedures and recommendations set forth in the FCOM, high speed buffet should not be encountered during normal operation.
- However, the following operational scenarios may result in unintentionally consumming/reducing the available buffet margin :
- avoidance maneuver (load factor effect),
- target MN overshoot in standing waves (MN effect),
- unanticipated severe turbulence/gust (AoA effect).
- Should Mach number buffet be experienced (at the low or high buffet speed), the following recovery guidelines are proposed :
- keep AP in CMD,
- reduce bank angle demand or return to wing leveled / level flight conditions (as applicable) to reduce the load factor,
- control pitch to reduce the load factor input (as applicable),
- check the airspeed relative to the speed limits (VLS) and to Green Dot or to the turbulence penetration speed,
- reduce the selected MN (if required, e.g. in tactical mode or in case of high cost index operation),
- consider reducing altitude to increase buffet margin (e.g. in case of severe turbulence).

\section*{9. CONCLUSIONS}
- The pre-stall and Mach number buffet conditions are drastically different aerodynamic phenomena in the way they develop and affect the airfoil lift capability.
The Mach number buffet cannot develop into a stall condition.
- The VLs concept provides built-in margin relative to the stall speed - below 25000 ft and to the Mach number buffet onset (low side) - above 25000 ft .
- The definition of the buffet onset provides built-in margin relative to the deterent Mach number buffet.
- The management of the buffet margin guarrantees a maneuvering capability consistent with the prevailing flight conditions, while offering adequate operational flexibility.
- Should the Mach number buffet onset be unintentionally encountered, adequate awareness and alertness will allow the flight crew to recognize and understand the occurence and apply the corresponding recovery actions provided in paragraph 8 herabove.

\section*{SUBJECT : POSSIBLE OVERSHOOT OR UNDERSHOOT OF SELECTED FCU ALTITUDE (AUTOPILOT AND FMS) Subject extracted from former FCOM Bulletin \(N^{\circ} 12 / 2\) - Subject \(N^{\circ} 37\) No technical change from previous issue}

Applicable to : All aircraft

\section*{1. REASON FOR ISSUE}

Operators have reported occurrences of overshoot of selected FCU ALTITUDES.

The investigation led to highlight that, the cases reported are the consequences of the combination of late FCU altitude selections and the AP and FMS altitude capture laws.

\section*{2. UNDERSTANDING OF AUTOPILOT AND FMS}

ALTITUDE CAPTURE LAWS
The delta altitude required by the AP and FMS to capture the altitude selected on the FCU is a function of the aircraft current vertical speed, as illustrated in the graph below.

- For both, the AP and FMS, the delta altitude required by the two systems for capturing the selected altitude increases as the vertical speed increases.
- Changing the FCU altitude when being too close of the new altitude target, in climb or descent phase, will lead to overshooting/undershooting this selected altitude.
- To illustrate the above statement the following typical scenario has been chosen :

Initial conditions: Climb phase
- A/C current vertical speed \(=4000 \mathrm{ft} / \mathrm{mn}\)
- Altitude selected on the FCU : 20000 ft

\section*{Crew action}
- When the A/C is passing 16000 ft the crew lowers the FCU altitude from 20000 ft to 17000 ft , thus leaving only 1000 ft for the new capture phase.

\section*{Consequences}

The overshoot will be approximately 330 ft if the mode engaged is LVL/CHG (1330 ft required for capture) and approximately 380 ft if the mode engaged is profile (1380 ft required for the capture)

\section*{3. CONCLUSION}

A/C behaviour to overshoot or undershoot selected altitude is explained by crew late action to select FCU altitude and the design of AP and FMS control laws.

Flight crews can keep in mind the following figures : At \(3000 \mathrm{ft} / \mathrm{min}\) vertical speed, when selecting a different altitude on the FCU :
- In LVL/CHG mode, changes must be completed at least 1000 ft before the selected altitude.
- In PROFILE mode, changes must be completed at least 780 ft before the selected altitude.

Otherwise, overshoots and undershoots of selected altitude are possible.

\section*{SUBJECT : BEING PREPARED GO AROUND OPERATIONAL RECOMMENDATIONS FOR MANUAL GO AROUND Sugnect extracted from former FCOM Bulletin \(N^{\circ} 13 / 3\) - Subject \(N^{\circ} 38\) No technical change from previous issue}

Applicable to : All aircraft

\section*{REASON FOR ISSUE AND SCOPE}

The purpose of this FCOM Bulletin is threefold :
- recall the general recommendations for the management of the descent and approach (minimizing the potential for a Go Around),
- enhance the importance of :
- the preparedness for a possible Go Around,
- the commitment to conduct a Go Around, if so required, (being "Go Around-prepared"),
- recall the general recommendations for conducting a manual Go Around (ensuring a safe conduct of the maneuver),
Because the chain of events leading to a possible Go Around is starting as early as the top-of-descent, this FCOM Bulletin recalls the related operational recommendations starting from the Descent Preparation.

\section*{GENERAL}

Because a Go Around is not a frequent occurrence, this FCOM bulletin recalls the importance of being Go Around-prepared :
- having in mind a clear pattern in terms of briefing, callouts, flow and sequence of actions, task sharing and cross-monitoring,
- being ready and committed to abandon an approach should the conditions in terms of weather minimas or flight path stabilization not meet the predefined targets,
- once the Go Around is initiated, being fully committed to positively fly and conduct the planned missed-approach procedure (both vertically and laterally).

\section*{RECOMMENDATIONS}

\section*{Concept of "next target" or "gate"}

Throughout the entire flight a "next target" should be defined at all times.

The "next target" should be any required combination of :
- A position,
- An altitude,
- A speed,
- A configuration

For the approach and landing, the successive "next targets" should constitute "gates" that must be met for the approach to be continued.
If it is anticipated that the "next target" will not be met, the required corrective action(s) must be taken without delay.

The "stabilization point" constitutes a particular "gate" along the final approach, should the required configuration and speed not be obtained or the flight path not be stabilized when reaching the "stabilization point", a Go Around must be considered.

As a reference, a callout must be performed by the PNF if a flight parameter exceeds the following limits during the final approach :
- vertical speed in excess of \(-1000 \mathrm{ft} / \mathrm{mn}\),
- speed lower than VAPP - 5 kt or greater than VAPP +10 kt,
- LOC or GS deviation more than 1 dot

\section*{PF/PNF Task Sharing}

The following applies to any flight phase but bears a particular importance and criticality in the very dynamic phase associated with initiating a Go Around (particularly should a warning be activated during this phase).
The PF must concentrate on the flight path and energy management, by either :
- Supervising the autopilot vertical and lateral guidance and the autothrust operation (awareness of the FMA status and FMA changes),
or
- Flying manually, with adapted FD guidance and ND display.
If manual thrust is selected, a callout "Manual Thrust" must be performed by the PF and acknowledged by the PNF who will then more closely monitor the speed, speed trend and thrust, and callout any excessive deviation.

The PNF must concentrate on monitoring tasks and on performing the actions requested by the PF, this includes :
- performing the standard PNF tasks (SOP actions, FCU actions in manual flying, ECAM and QRH actions in case of failure),
- monitoring the thrust setting,
- monitoring the vertical speed and radio altitude,
- monitoring the pitch attitude and bank angle, the speed and speed trend, the vertical speed, the LOC and GS deviation, and calling out any excessive deviation.

\section*{Descent Preparation - Approach Briefing}

In order to prevent any delay in the initiation of the descent and to ensure an optimum management of the descent profile, the following recommendations are worth being recalled :
- the Descent Preparation and Approach Briefing should be completed typically 10 minutes before the top-of-descent point.
- should a STAR be included in the F-PLN but be expected not to be flown, due to anticipated radar vectors, then the STAR should be checked (track, distance and constraints in terms of altitude and speed) versus the anticipated routing in order to adjust the top-of-descent point accordingly.
- A stabilization point should be defined (in terms of altitude, configuration and speed).
- whenever available, wind forecast entries should be dutifully performed in the FMS for way points close to the top-of-descent point and along the descent.
- should a missed-approach be included in the FMS F-PLN, the missed approach should be reviewed against the applicable approach chart.

\section*{Descent Monitoring}

The descent profile should be monitored, should the flight path be significantly above the desired descent profile (e.g. due to ATC constraint or higher than anticipated tail wind) the desired descent flight path can be recovered by :
- keeping a high airspeed (as long as practical),
- using speed brakes,
- extending the landing gear, should the use of speed brakes not be sufficient.

\section*{Approach Briefing}

In order to enhance the "Go Around preparedness", a formal "Go Around" briefing should be conducted highlighting the key points of the maneuver and the task sharing under normal or contingency conditions.
The Go Around part of the Approach Briefing should recall the following aspects :
- target stabilization point,
- GA callout
- PF/PNF task sharing (flow of respective actions, including desired guidance - mode engagement - speed target, GA altitude, deviations callout),
- missed-approach lateral navigation and vertical profile.

\section*{Final Approach}

As the approach Briefing is performed at the end of the cruise, it is recommended to rebrief the main points of the missed-approach when established on the final approach course or after completing the LANDING checklist (as deemed most suitable).

When flying with the AP in CMD and in order to be ready to react and take over manually, the following aspects should not be underestimated:
- Seat and armrest adjustment, which is of primary importance for a good aircraft handling in a dynamic phase of flight,
- Flying one hand on the control wheel/one hand on the throttle levers.

\section*{Understanding the flight dynamics of the Go Around}

Unlike the takeoff rotation during which the aircraft is pre-trimmed and the thrust already set, the initiation of a Go Around involves a very dynamic sequence of actions and changes (thrust, configuration) affecting the pitch balance.
When initiating a GA at DA/DH, the PF is expected to minimize the altitude loss during this maneuver. Therefore the PF must simultaneously apply a nose up pitch command on the control column and trigger the GO levers (in the following sequence the aircraft is assumed to be initially trimmed).
- This first (nose up) elevator input will initiate a pitch attitude change that will minimize the altitude loss,
- Within a few seconds, the thrust will increase to TOGA, providing a significant additional nose up pitching effect,
- Retracting one step of flaps also results in a slight nose up pitching effect.

As a result of the above three nose up effects :
- the pitch attitude rate increases,
- the nose up pitch force required, to reach and maintain the target pitch attitude, decreases until a nose down pitch force is required to prevent reaching an excessive pitch attitude.
To maintain the desired pitch attitude target (and prevent overshooting this target), the PF must therefore :
- release the backward (nose up) input on the control column,
- apply progressively, as the thrust increases, an increasing forward (nose down) input on the control column,
- re-trim the aircraft (nose down), as necessary.
(as an example, an aircraft trimmed at 6 to 7 degrees nose up for a stabilized final approach must be re-trimmed to 3 to 4 degrees nose up during a manual Go Around).

The above description is only aimed at recalling and illustrating the mechanism of the Go Around maneuver. In fact, the PF should simply "fly the aircraft" while closely monitoring the PFD.

If the pitch attitude is not positively controlled, the pitch will continue to increase and will reach values where the speed will decrease despite the TOGA thrust.

\section*{Transitionig from "almost VMC" to "IMC" conditions}

One of the main reasons for performing a Go Around is related to weather minima.

When approaching the DA/DH or the MDA/H, one crew member is attempting to acquire the required visual references. During this period of time, this crew member is in "almost \(\mathrm{VMC}^{\prime \prime}\) conditions.

Should a Go Around be performed, an immediate transition back to IMC must take place.

It is therefore of primary importance that the other crew member keeps IMC references and be ready to make appropriate callouts if one flight parameter (speed, pitch attitude, bank angle, thrust,....) deviates from the normal and safe value.
To ease this transition, all efforts should be made to initiate the Go Around with wings level and with no roll rate.

\section*{Flying a manual Go Around maneuver}

The operational recommendations and task sharing for the safe conduct of a manual Go Around can be summarized as follows :

For the PF :
- when calling "Go Around - Flaps", without delay:
- trigger the Go levers (follow-through the A/THR operation),
- announce loudly the FMA "Thrust/Go Around" (be aware of the AP engagement status, i.e. AP in CMD or manual flying).
- rotate (at a rate of - typically - 3 degrees/ seconds),
- follow the SRS orders (not exceeding 18 degrees pitch attitude),
- as thrust increases, be prepared to counteract the thrust pitch-up moment,
- trim the aircraft nose down as required,
- the pitch attitude should not be allowed to develop beyond 25 degrees, as such a pitch attitude would result in a significant speed loss ; an immediate and firm elevator nose down command (together with a nose down pitch trim order) would allow to recover the target pitch attitude.

\section*{For the PNF :}
- when hearing the "Go Around - Flaps" callout, without delay :
- retract one step of flaps,
- check the FMA :
- THR/GO AROUND,
- AP/FD engagement status
- announce "Positive Climb" and retract the landing gear, on PF command,
- monitor :
- the airspeed and speed trend,
- the pitch attitude and bank angle,
- the thrust increase (GA thrust on the TRP and on the N1/EPR indicators),
- continue monitoring the flight parameters and callout any excessive deviation :
- speed : if dropping below VLS - 5 kt ,
speed trend : if negative,
pitch attitude : if in excess of 20 degrees,
bank angle : if in excess of 15 degrees (30 degrees if the missed-approach procedure requires a turn),
- thrust : if a significant thrust loss is observed.

\section*{CONCLUSIONS}

Because a Go Around is not a frequent occurrence, the importance of being Go Around-prepared must be emphasized.

While conducting a Go Around maneuver, the strict compliance with the PF/PNF task sharing and the optimum use of the crew resources management (e.g. for monitoring and callout of any flight parameter excessive deviation) bear a paramount importance.
The manual Go Around technique must :
- Minimize the initial altitude loss,
- Prevent from reaching an excessive pitch attitude by :
- following SRS orders (not exceeding 18 degrees pitch attitude),
- considering a 25 degrees pitch attitude as an ultimate barrier from which the pilot should return immediately.

\section*{SUBJECT : PHILOSOPHY REGARDING THE USE OF ECAM/QRH FOR THE SMOKE PROCEDURES Subject extracted from former FCOM Bulletin \({ }^{\circ}\) ¹4/1 - Subject \({ }^{\circ}{ }^{\circ} 39\)}

Applicable to : All aircraft

\section*{REASON FOR ISSUE AND SCOPE}

In 1999, Airbus Industrie conducted a comprehensive review of its smoke-related procedures. This review was founded on fruitful discussions with a number of operators, enabling Airbus Industrie to fully benefit from their experience.
These proactive discussions led to some adaptations of the smoke procedures and to the publication of a new single smoke paper procedure, which proved to be satisfactory to airworthiness authorities and to our customers worldwide.

The procedure gathers the adequate existing smoke procedures for the so-called "hard to identify" smoke origins, with the goal of saving precious time by facilitating the access and handling.

This procedure has been incorporated in the applicable sections of FCOM / QRH with revision 30 for the A310 and revision 25 for the A300-600.

This is the purpose of this FCOM Bulletin to provide background information and recommendations on how to handle this procedure.

\section*{BACKGROUND}

The review enabled to classify the different smoke origins according to their characteristics, and therefore enabled to identify the following two categories:
- "Easy to identify" smoke origins: this includes CARGO SMOKE and BATTERY SMOKE. The main characteristics of these types of smoke warnings are that they are always covered by an ECAM and/or local warning and dedicated procedure. In addition, the smoke source is easy to locate and treat :
- CARGO SMOKE is covered by an ECAM warning and the cargo compartment is fitted with an extinguishing system.
- BATTERY SMOKE is identified via the BAT OVHT warning (aircraft fitted with mod 7483) and fought by action to set OFF affected battery.

Note : aircraft without mod 7483 : BATTERY SMOKE is covered by an ECAM warning and fought by action to set OFF affected battery.

R
R
- "Hard to identify" smoke origins : this concerns AVIONICS SMOKE, AIR CONDITIONING SMOKE, CABIN EQUIPMENT SMOKE, and MINIMUM EQUIPMENT BAY SMOKE. The characteristics of these types of smoke origins are that they may or may not be covered by ECAM warnings and that they are more difficult for the crew to locate and treat. In addition, depending on the situation, the approach is different, as no extinguishing system is available (except for the cabin) and the crew can only try to remove the smoke and stop smoke generation by isolating faulty system(s).

For each of these "hard to identify" smoke sources, an adequate procedure was already available prior to the review : either displayed on ECAM and complemented by the FCOM / QRH or available in the FCOM / QRH. But the need for a single procedure became apparent in order to cope with the difficulty of identifying and fighting the smoke.

In short, the objectives of this review were to :
- Standardise Airbus fleet procedures to ensure a consistent approach for mixed-fleet airlines ;
- Facilitate handling by grouping all the "hard to identify" smoke procedures in a single smoke procedure layout ;
- Identify common actions to be applied whatever the smoke source, in order to save precious time ;
- Assist the crew in its search for the smoke origin ;
- Apply appropriate procedure when the smoke origin is identified.
This new approach would make it easier for the flight crew to find, identify and apply the most appropriate procedure corresponding to the smoke source.

\section*{RECOMMENDATIONS}

The implementation method is as follows. In case of smoke coming from a "hard to identify" source, the optimised way of coping with the smoke is to directly refer to the single paper procedure published in the QRH, made of the following three parts :

\section*{- Common actions}

These actions must be adopted and applied by the crew, as soon as smoke is perceived (visual and/or olfactory), with or without ECAM activation, before trying to determine the smoke origin. These immediate actions enable the crew to quickly refer to the most commonly adopted steps in smoke-related cases, in particular in the case of AVIONICS / MINIMUM EQUIPMENT BAY SMOKE.
- Recommendations in case of dense smoke

In case of dense smoke, the crew must initiate a descent as soon as possible, in order not to waste time and to immediately apply the SMOKE REMOVAL procedure. Indeed, this SMOKE REMOVAL procedure requires the crew to descend to FL 100 / MEA / MORA, to be able to open the cockpit windows.

\section*{- Specific actions}

These procedural steps are to be applied, once the origin of the smoke has been identified. They correspond to the procedures already available before the review, and concern :
- AIR CONDITIONING,
- CABIN EQUIPMENT,
- AVIONICS,
- MINIMUM EQUIPMENT BAY.

For AVIONICS SMOKE and MINIMUM EQUIPMENT BAY SMOKE procedures, the ECAM actions have been recalled in the QRH single smoke paper procedure at the beginning of the relevant specific actions part.
Therefore, the smoke fighting can be done without referring to the ECAM : the QRH is self-contained and going directly to the QRH without performing the ECAM is fully safe.
On the other hand, for each of the "easy to identify" smoke sources, there is no change in the ECAM / QRH philosophy: the crew applies ECAM first and then refers to the QRH.

\section*{CONCLUSION}

To summarize the Airbus recommendations concerning this specific single smoke paper procedure :
- In case of so-called "hard to identify" smoke, with or without ECAM activation, the crew directly goes to the QRH single paper procedure,
- The crew applies the common actions,
- Then, tries to determine the origin of the smoke,
- And depending on this origin, applies the adequate specific actions.
- Furthermore, at any time, and if necessary, the crew can decide to initiate a descent to apply the SMOKE REMOVAL procedure.
It is important to mention that this new paper procedure includes all the steps of the available ECAM procedures (AVIONICS SMOKE and MINIMUM EQUIPMENT BAY SMOKE), that can be found in the specific action part. Therefore, using directly the QRH provides a safe and quick way to fight the smoke source without the need for referring to the ECAM procedure. Nonetheless, the displayed ECAM procedures are still correct and can still be applied. The crew has every reason to remain confident in the ECAM procedures but referring to the ECAM first does not permit to take benefit of the new single procedure concept.
The recommendations given in this FCOM Bulletin apply whatever the ECAM SGU standard and therefore the philosophy to apply the QRH first in case of "hard to identify" smoke source is not challenged by the W30 and W32 ECAM SGU standards.
This new single smoke paper procedure has been widely evaluated and is well supported by all involved parties, including Airbus' training department. Consequently, Airbus instructors are now fully acquainted with this new layout and are currently familiarising trainees on how to implement the new procedure, to further assist pilots in handling aircraft smoke situations.

We are confident that this improvement, combined with the use of enlarged letters for smoke procedures where the oxygen masks and goggles are required, will provide flight crews with the necessary clues to efficiently fight sources of smoke. This will contribute towards improving the industry's level of safety by reducing smoke risks.

\section*{SUBJECT : USE OF RUDDER ON TRANSPORT CATEGORY AIRPLANES Subject extracted from former FCOM Bulletin \({ }^{\circ} 15 / 1\) - Subject \({ }^{\circ}{ }^{\circ} 40\) No technical change from previous issue}

Applicable to : All aircraft

\section*{REASON FOR ISSUE}

On February 8th, 2002, the National Transportation Safety Board (NTSB), in cooperation with the French "Bureau Enquetes Accidents" (BEA), issued recommendations that aircraft manufacturers re-emphasize the structural certification requirements for the rudder and vertical stabilizer, showing how some maneuvers can result in exceeding design limits and even lead to structural failure.

The purpose of this FCOM Bulletin is to re-emphasize proper operational use of the rudder, highlight certification requirements and rudder control design characteristics.

\section*{YAW CONTROL}

\section*{GENERAL}

In flight, yaw control is provided by the rudder, and directional stability is provided by the vertical stabilizer.
The rudder and vertical stabilizer are sized to meet the two following objectives :
- Provide sufficient lateral control of the aircraft during crosswind takeoffs and landings, within the published crosswind limits (refer to FCOM Operating Limitations chapter) ;
- Provide positive aircraft control under conditions of engine failure and maximum asymmetric thrust, at any speed above Vmcg (minimum control speed - on ground).

The vertical stabilizer and the rudder must be capable of generating sufficient yawing moments to maintain directional control of the aircraft.

The rudder deflection, necessary to achieve these yawing moments, and the resulting sideslip angles place significant aerodynamic loads on the rudder and on the vertical stabilizer.

Both are designed to sustain loads as prescribed in the JAR/FAR 25 certification requirements which define several lateral loading conditions (maneuver, gust loads and asymmetrical loads due to engine failure) leading to the required level of structural strength.

\section*{CERTIFICATION REQUIREMENTS}

For certification in accordance with JAR/FAR 25.351, loads on the stabilizer and the rudder are defined, considering yawing maneuvers as shown below, for a range of speeds from VMC (minimum control speed) to VD/MD (maximum design speed), from sea level up to maximum altitude, and over the full range of aircraft weights and Center of Gravity limits :

1 - With the aircraft in unaccelerated and stabilized straight flight, the rudder is suddenly displaced to the maximum available deflection at the current aircraft speed.

2 - With the rudder deflected as shown above, the aircraft yaws to the resulting overswing sideslip angle, and then stabilizes at a somewhat smaller steady-state sideslip angle.

3 - With the airplane yawed to the steady-state (static) sideslip angle corresponding to the above rudder deflection, the certification regulations assume that the rudder is released to neutral.

Note: Because the aircraft has natural yaw stability, returning the rudder to neutral will also result in returning the sideslip to neutral.

JAR/FAR 25 requires the above yawing maneuver to be analyzed over the full range of specified conditions. The most severe loads imposed on the vertical stabilizer and rudder are identified.

The same analysis is performed for lateral gusts, rolling maneuvers and asymmetric engine failure conditions. The most severe of all these cases and associated loads provides the design basis for the vertical stabilizer and rudder.

The above loads define the limit loads according to JAR/FAR 25 requirements. These loads correspond to the maximum loads to be expected once in service.

According to JAR/FAR 25 requirements, the ultimate loads are defined as the limit loads multiplied by a prescribed safety factor of 1.5 unless otherwise specified.
The aircraft structure must be able to support limit loads without detrimental permanent deformation and ultimate loads without failure for at least 3 seconds.
Higher loads could lead to structural failure.

\section*{CAUTION}

Sudden commanded full, or nearly full, opposite rudder movement against a sideslip can generate loads that exceed the limit loads and possibly the ultimate loads and can result in structural failure.
This is true even at speeds below the maximum design maneuvering speed, VA.

Certification regulations do not consider the loads imposed on the structure when there is sudden full, or nearly full, rudder movement that is opposite the sideslip.

\section*{RUDDER CONTROL}

The rudder surface is controlled by 3 actuators, commanded by a cable run from the rudder pedals, to which input yaw damping and turn coordination functions are added by the rudder control system.
The rudder travel limiter system, controlled by the Feel and Limitation Computers (FLC), is designed to progressively reduce the available total rudder travel depending on aircraft speed.
This provides sufficient yaw control within the entire flight envelope, including engine failure and maximum asymmetric thrust.
This also limits the lateral loads on the stabilizer and rudder so that they remain within the certification limits.

Rudder travel is limited as a function of the aircraft speed (IAS), as shown below :

- At low speeds, the rudder deflection required to maneuver the aircraft in yaw is large, and so are the resulting pedal displacement and forces ;
- At higher speeds, pedal displacements and forces are smaller.
Therefore, as speed increases, the rudder deflection required by any lateral maneuver (eg, engine failure and maximum asymmetric thrust) decreases, and consequently, so do rudder pedal displacement and associated forces.
Rudder pedals displacement is almost linearly proportional to rudder deflection.

\((1 \mathrm{daN}=2.248 \mathrm{lb})\)

Thus, to explain the two preceding graphs :
The rudder pedal displacement and the resulting pedal forces required to achieve a given rudder deflection are independent from aircraft speed.
The rudder pedal limiter will give a direct feel feedback of the allowed rudder travel as a function of speed :
- To start moving the rudder pedals from the neutral position, a minimum force of \(+/-10 \mathrm{daN}\) must be applied ("breakout force").
- At low speeds, i.e. up to 165 kt , see ref " A ", maximum rudder deflection (30 degrees) is obtained by moving the rudder pedals to their maximum travel which represents a 30 daN force applied on the pedals.
- At higher speeds, for example at 250 kt , see ref " B ", the maximum available rudder deflection is reduced to approximately 10 degrees. It is consequently obtained with less rudder pedals displacement which represents a 18 daN force applied on the pedals (\(60 \%\) of the maximum force to reach full pedal travel).

In order to avoid exceeding structural loads on the rudder and vertical stabilizer, the following recommendations must be observed.

\section*{1. THE RUDDER IS DESIGNED TO CONTROL THE AIRCRAFT, IN THE FOLLOWING CIRCUMSTANCES :}
1.1 In normal operations, for lateral control :
- During the takeoff roll, when on ground, especially in crosswind conditions ;
- During landing flare with crosswind, for decrab purposes.
- During the landing roll, when on ground.

In these circumstances, large and rapid rudder inputs may be necessary to maintain control of the aircraft.
Rudder corrections should always be applied as necessary to obtain the appropriate aircraft response.

On Airbus aircraft, the rudder control system includes a turn coordination function to achieve acceptable turn coordination.
Note : At low speed, as deemed necessary, rudder pedals may be used to complement this automatic turn coordination.

\subsection*{1.2 To counteract thrust asymmetry}

Full rudder authority can be used to compensate for the yawing moment of asymmetric thrust.
Note : At high speed (i.e. slats retracted), thrust asymmetry (eg, due to an engine failure) has relatively small effect on lateral control of the aircraft.
The amount of rudder required to counter an engine failure and center the sideslip is small.

\subsection*{1.3 In some other abnormal situations :}

The rudder may also be used in some abnormal situations such as :
- Loss of both yaw damper systems. The rudder may be used as deemed necessary, for turn coordination to prevent excessive sideslip.
- Runaway rudder trim. The rudder pedals may be used to return the rudder to neutral.
- Aileron jam. The rudder may be used to initially control the roll.
- Landing gear unsafe indication (gear not downlocked). When a main landing gear is not downlocked, the rudder may be used to establish sideslip in an attempt to downlock the landing gear by aerodynamic side forces.
- Landing with landing gear not downlocked. The rudder can be used for directional control on ground.

In all these normal or abnormal circumstances, proper rudder maneuvers will not affect the aircraft's structural integrity.
Note : In the event of total rudder travel system failure, refer to the relevant RUDDER TRAVEL FAULT procedure.

\section*{2. RUDDER SHOULD NOT BE USED :}
- To induce roll, or
- To counter roll, induced by any type of turbulence

Whatever the airborne flight condition may be, aggressive, full or nearly full, opposite rudder inputs must not be applied. Such inputs can lead to loads higher than the limit, or possibly the ultimate loads and can result in structural damage or failure.

The rudder travel limiter system is not designed to prevent structural damage or failure in the event of such rudder system inputs.

Note : Rudder reversals must never be incorporated into airline policy, including so-called "aircraft defensive maneuvers" to disable or incapacitate hijackers.

As far as dutch roll is concerned, yaw damper action and natural aircraft damping are sufficient to adequately dampen dutch roll oscillations. The rudder should not be used to complement the yaw damper.

Note : Even if both yaw damper systems are lost, the rudder should not be used to dampen the dutch roll. Refer to the YAW DAMPER FAULT procedure.

\section*{3. SPECIAL CASES}

Recovery techniques from upset situations

Proper use of the rudder, particularly during maneuvers intended to address upset recovery, are emphasized in the Airbus Training Program, supported by the industry-produced 1998 "UPSET RECOVERY TRAINING AID".

These upset recovery techniques are summarized in this FCOM Chapter Procedures and Techniques (2.02.09).

\section*{SUBJECT : EGPWS DATABASE}

\section*{Applicable to : All aircraft}

\section*{1. REASON FOR ISSUE AND SCOPE}

This FCOM BULLETIN is sent to all FCOM holders since EGPWS will be rendered mandatory by JAA and FAA early 2005.

Airbus has received some reports of EGPWS warnings that were unduly triggered due to airport data missing from the database.
It is the Airlines responsibility to identify airports where terrain data is missing from the database. During operation around such airports, the enhanced function must be switched off when the aircraft position is less than 15NM from the runway.

The purpose of this bulletin is to provide operators and flight crews with additional information regarding EGPWS database and EGPWS system reaction when airport/terrain data is not included in the database.

FCOM Volume 2 OPERATING LIMITATIONS SYSTEMS provides limitations of the system.

\section*{2. THE ENHANCED GPWS FUNCTIONS}

The purpose of the Enhanced Ground Proximity Warning System (EGPWS) is to alert the crew of potential hazardous conditions with regards to Controlled Flight into Terrain (CFIT).

Two enhanced functions have been added to the basic modes of the GPWS :
- Terrain Awareness and Display (TAD)
- Terrain Clearance Floor (TCF)

These two functions are described in FCOM Volume 1 - FLIGHT INSTRUMENTS - GROUND PROXIMITY WARNING SYSTEM.

\section*{3. THE EGPWS DATABASE}

The terrain database divides the Earth surface into grid cells. These cells are recorded upon the WGS-84 geographic coordinate system for longitude and latitude data. Each cell records the highest terrain altitude in the respective terrain area.

The resolution of the grid varies upon the geographic location ranging from :
\(-0.25 \mathrm{NM} \times 0.25 \mathrm{NM}\)
\(-0.5 \mathrm{NM} \times 0.5 \mathrm{NM}\)
-1 NM \(\times 1\) NM
-2 NM \(\times 2\) NM
- \(5 \mathrm{NM} \times 5 \mathrm{NM}\)

The highest resolution (\(0.25 \mathrm{NM} \times 0.25 \mathrm{NM}\)) is used around airports. This is to avoid producing alerts during normal procedures (the terrain database has to reflect as closely as possible the actual terrain).

The lowest resolution (\(5 \mathrm{NM} \times 5 \mathrm{NM}\)) is used outside airports where such a coarse terrain database cannot interfere with normal en-route trajectories. The database also contains the position of the airport runway center point. This concerns all hard surface runways whatever the surface type is longer than or equal to 3500 ft .

Additionally, the database gives the possibility of incorporating data regarding man-made obstacles in the vicinity of the major airports.

\section*{4. EGPWS REACTION WHEN AIRPORT DATA IS MISSING FROM THE DATABASE}

When an airport/terrain data is not yet covered by the database, the TCF envelope cannot be defined. The system uses the lowest map resolution (\(5 \mathrm{NM} \times 5 \mathrm{NM}\)) as no airport is detected. Therefore, early and unexpected TAD cautions and warnings are triggered. The red EGPWS legend of the GPWS-G/S pushbutton illuminates, the aural warnings "TERRAIN AHEAD" and "TERRAIN AHEAD, PULL-UP" sound and the terrain image pops up on the Navigation Display. When within 15 NM, it is recommended to switch off the enhanced functions (EGPWS TERR MODE pushbutton switched to OFF on the Captain's switching panel) for operations from/to runways not incorporated in the database (FCOM Volume 2 OPERATING LIMITATIONS - SYSTEMS).

\section*{5. THE EGPWS DATABASE UPDATE}

The database update is under the responsibility of the vendor.
The vendor may use one or more sources of data for a particular airport :
1) Data from in-country government and/or regulatory agencies.
2) Data from airlines that have surveyed an airport while establishing layout, approach/departure procedures, etc.
3) Data from commercial vendors who also produce data sets for FMS and other navigational systems.
4) Data from commercial and military surveying agencies that make such information publicly available.
5) Airport layout and physical properties from high-resolution maps and/or digitized data sources.
6) Airport layout and physical properties from imagery.

Some difficulties may be encountered in some areas to compile and validate airport data.
For an official indication of the latest EGPWS database, as well as a list of covered airports, please review the manufacturer document EGPWS Terrain Database Airport Coverage list.
The latest database version can be downloaded from the internet website www.egpws.com.

\section*{6. CONCLUSION}

The enhanced functions of the EGPWS are not reliable when operating around airports which are not included in the database. In this case, these functions must be switched off.
It is the airlines responsibility to identify with the database manufacturer the airports where terrain data is missing.
Airbus strongly recommends that the latest database be loaded on the EGPWC as soon as it is available.
Airbus also recommends to the airline to report to the database manufacturer and to their local airworthiness authorities any EGPWS warning occurence due to airport data missing from the database. It is also recommended that airlines request that their national authorities publish the necessary data in order that the database manufacturer can extend the database coverage to all operated airports.```

[^0]: Note: This table presents typical scenarios and crew resper (amber) TA
 CAUTION scenarios and crew responses applicable to all TCAS. Actual TCAS displays may be slightly different depending VS/ standard installed

[^1]: - Announce ." N1 "

 Note: N1 rotation must be obtained by 40% N2 at the latest.

[^2]: CAUTION
 If APU is running when leaving the aircraft do not switch off the BATTERIES.

[^3]: LOSS OF BRAKING AT LANDING

 # - Pressing simultaneously both brake pedals will override

 #### Abstract

 the autobrake avoiding unwanted differential braking.

 - Max reverse thrust must not be used below 80 kt IAS or IAS fluctuations, whichever occurs first.
 - Brake pedals must be released when the antiskid is switched OFF. Otherwise, the pedal braking orders will be taken into account and the aircraft will react strongly.
 - If brakes are found inoperative, immediately switch BRK/ANTI SKID to ALTN/OFF and modulate brake pressure as required at or below 1000 psi.
 - As antiskid is not available, limit brake pressure to 1000 psi and at low ground speed adjust brake pressure as required

[^4]: | PROCEDURE TITLE |
 | :---: |
 | MEMORY ITEM $\ldots \ldots \ldots$ |

[^5]: * Although the pilot flying requests ECAM actions, this does not preclude the CM1 from either taking control of the aircraft or ordering ECAM actions if he/she considers this necessary.

[^6]: Indications:
 Single chime
 ECAM activation with appropriate warning light
 Left ECAM CRT : LO LEVEL proc
 Right ECAM CRT : FUEL page

