
Flight Crew Operating Manual

FCOM A330 Volume 2

A330

FLIGHT CREW OPERATING MANUAL

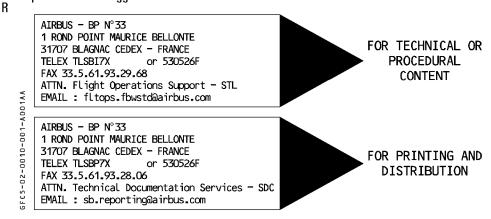
FLIGHT PREPARATION 2

CONTENTS

2.00.00 P 1 SEQ 001 REV 06

00.00	CONTENTS
00.10	ORGANIZATION OF THE MANUAL - FOREWORD 1 - COMMENTS - QUESTIONS - SUGGESTIONS 1 - CONTENT 1 - USE 2 - PAGINATION 3 - REVISIONS 4 - HOW TO INSERT A REVISION 5 - BEST WAY TO GET UPDATED DOCUMENTATION 5
00.20	LIST OF CODES
00.30	LIST OF NORMAL REVISIONS
00.35	RECORD OF TEMPORARY REVISIONS
00.36	LIST OF EFFECTIVE TEMPORARY REVISIONS
00.70	CROSS REFERENCE TALBE
00.75	HIGHLIGHTS
00.80	LIST OF EFFECTIVE PAGES
00.85	LIST OF MODIFICATIONS

ORGANIZATION OF THE MANUAL


2.00.10 P 1 SEQ 001 REV 23

FOREWORD

This manual complements the approved Flight Manual. Airbus has attempted to ensure that the data contained in this manual agrees with the data in the Flight Manual. If there is any disagreement, the Flight Manual is the final authority.

COMMENTS — QUESTIONS — SUGGESTIONS

All manual holders and users are encouraged to submit any Flight Crew Operating Manual questions and suggestions to :

CONTENT

R

R

R

R

R R

R

R

R

R

R

R

R R

R

The Flight Crew Operating manual (FCOM), and the associated Quick Reference Handbook (QRH), are developed specifically for flight crews, in order to provide them with all of the necessary information about the operational, technical, procedural, and performance characteristics that are required for the safe and efficient aircraft operation. These manuals take into account all of the operational procedures to be applied during normal and abnormal/emergency situations that may occur on ground or in flight.

The manuals are not designed to provide basic airmanship skills or piloting techniques. They are intended for flight crews that have already been trained to fly this type of aircraft, and are familiar with the aircraft's handling characteristics.

In addition, the purpose of the FCOM is to:

- Be used as a comprehensive reference guide during initial and refresher flight crew training. Practical and training-related information is addressed in the Flight Crew Training Manual (FCTM).
- Provide Airbus operators with a basis for their development of a customized airline operations manual, in accordance with applicable requirements.

ORGANIZATION OF THE MANUAL

2.00.10

P 2

SEQ 001

REV 23

R The content is divided into four volumes:

R Vol 1 = Systems' description (description of the aircraft systems).

Vol 2 = Flight preparation (performance information, plus loading data).

R Vol 3 = Flight operations (operating procedures, techniques, and performance information).

Vol 4 = FMGS pilot's guide (procedures for FMGS use).

USE

R

R

As a comprehensive set of references, the FCOM:

- can be used by an operator's flight operations department to supplement its own crew manual
- can be issued directly to crew members for training and subsequently for line operations.

WARNINGS, CAUTIONS AND NOTES

WARNING: an operating procedure, technique, etc, which may result in personel

injury or loss of life if not carefully followed.

CAUTION : an operating procedure, technique, etc, which may result in damage to

equipment if not carefully followed.

NOTE : an operating procedure, technique, etc, considered essential to emphasize.

COMPLEMENTARY INFORMATION

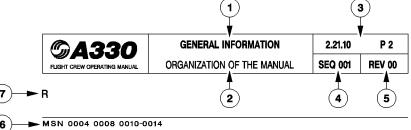
The manual includes technical information required for training as well as complementary information.

- Where a paragraph or schematic is preceded by the heading FOR INFO the
 details given are considered to be nice to know. Knowledge of these items is not
 required for the type rating qualification.
- ECAM warnings and cautions are summarized in a table at the end of each chapter of the volume 1. Numeric values are given for information only.

OPTIONAL EQUIPMENT

The legend riangleleft indicates that a paragraph or a schematic is applicable only if the related equipment is installed.

ORGANIZATION OF THE MANUAL


2.00.10 P 3

SEQ 001 REV 07

PAGINATION

R

3FC5-02-0010-003-A001AC

- Chapter title
- 2 Subchapter title
- (3) FCOM volume number, chapter number, section number, page number
- (4) Sequence number is used for Airbus Industrie management of different aircraft configurations and allows to enter into list of effective pages
- (5) Revision number of the manual at which the page has been revised
- 6 Aircraft MSN :

R

R

- 0004 0008 means that the page is applicable to aircraft MSN 0004 and MSN 0008
- 0010-0014 means that the page is applicable from aircraft MSN 0010 to MSN 0014
- ALL means that the page is applicable to all aircraft covered by the manual. Correspondance between MSN and registration may be found in the cross reference table
- (7) An R in front of a line indicates that the line has been revised.

ORGANIZATION OF THE MANUAL

2.00.10

P 4

SEQ 001

REV 07

REVISIONS

NORMAL REVISIONS

These are issued periodically to cover non-urgent corrections and changes and to add new data

They are accompanied by filing instructions and an updated List of Effective Pages that includes customized pages.

A normal revision record sheet is at the front of each volume.

In addition, each volume has a list of modifications affecting the manual that gives a simple explanation of the technical content of each incorporated modification and its validity per aircraft.

R INTERMEDIATE REVISIONS

- R They are issued between normal revisions to cover changes in the definition of the aircraft
- R or changes in the composition of the fleet of an airline. They are numbered in ascending
- R sequence e.g. 20A, 20B, 20C... for intermediate revisions issued between normal revisions
- R 20 and 21.
- R They are accompanied by filing instructions and an updated list of effective pages.

TEMPORARY REVISIONS

Printed on yellow paper, the Temporary Revisions (TR) are issued to provide information between normal revisions. They are accompanied by filing instructions and an updated customized list of effective TR.

A yellow temporary revision record sheet is at the front of each volume. It is to be filled by the FCOM's owner.

INCORPORATION OF SERVICE BULLETINS IN THE MANUAL

When a service bulletin has been accomplished on one or more aircraft of the operator fleet, and notified to Airbus Industrie, all affected manuals will reflect the new aircraft configuration at next revision. If judged necessary by Airbus Industrie or requested by the operator, a temporary revision or an intermediate revision is issued between normal revisions.

OPERATIONS ENGINEERING BULLETINS

The Operations Engineering Bulletins (OEB) are issued as the need arises to give operators revised or new, but significant, technical and procedural information.

OEBs are provided with an OEB record sheet. It is to be filled by the FCOM's owner.

They are accompanied by filing instructions and an updated customized list of effective OEBs.

R

R

ORGANIZATION OF THE MANUAL

2.00.10

P 5

SEQ 001

REV 06

HOW TO INSERT A REVISION

FILING INSTRUCTIONS

Use the filing instructions as follows:

- REMOVE : The page must be removed. It may be replaced by a new page if

associated with an INSERT instruction. If not, the page is cancelled.

INSERT : The page must be inserted. If not associated with a REMOVE instruction,

the page is new for the operator fleet and does not replace an existing

one.

The column NOTE indicates EFFECTIVITY CHANGE ONLY if the page is revised due to an effectivity change and not due to a technical content.

LIST OF EFFECTIVE PAGES (LEP)

The manual after revision must comply with the LEP, which lists all the pages that are in the manual. The new pages are indicated by N and the revised pages by R.

BEST WAY TO GET UPDATED DOCUMENTATION

As soon as any change has been completed on any airplane, the best way to get updated documentation is to advise:

AIRBUS INDUSTRIE

BP 33

31707 BLAGNAC CEDEX

FRANCE

Telex: TLSBP7X.. or 530526F

FAX 33.5.61.93.28.06

ATTN: Customer Service Directorate - Technical Documentation Services (AI/SE - D)

LIST OF CODES

2.00.20 P 1 SEQ 001 REV 24

To simplify automatic LEP processing some modifications have been grouped under a common code.

	CODE	DESIGNATION
	0001	Mod: 43359 = (43359+43620) = (44575+45481) = (43359+43620+44575) = (43620+44575+45481)
	0002	Mod: 44644 = (43359+43620+44575+44644) = (43359+43620+43756+44675+44644)
	0003	Mod: 44367 = (43620+44367) = (43308+43620+44367)
	0004	Mod: (46028+47930) = (43359+46028+47930) = (43359+43756+46028+47930)
	0005	Mod: 44905 = (43359 + 44905) = (43359 + 43756 + 44905)
	0006	Mod: (40624+40912) = (40912+SSV)
	0007	Mod: (40624 + 43037) = (40624 + 45055) = (40624 + 44629)
	8000	Mod: (43359+47930) = (43359+43620+47930) = (44575+45481+47930) = (43359+43620+44575+47930) = (43620+44575+45481+47930)
	0009	Mod: (43620 + 43756) = (43756 + 44575) = (43620 + 43756 + 44575)
	0010	$ \text{Mod}: (43359 + 43756) = (43359 + 43620 + 43756) = (43756 + 44575 + 45481) = \\ (43359 + 43620 + 43756 + 44575) = (43620 + 43756 + 44575 + 45481) $
	0011	Mod: (44644+47930) = (43359+43620+44575+44644+47930) = (43359+43620+43756+44575+44644+47930)
	0012	Mod: 46028 = (43359 + 46028) = (43359 + 43756 + 46028)
	0013	Mod: (43359 + 44905 + 47930) = (43359 + 43756 + 44905 + 47930)
R	0015	Mod: (40325+43359+43620+43756+44575)
	0016	Mod: (44905+49144+52776) = (44905+52776+QAF) = (44905+52776+QTR)
	0017	Mod: (44905+49144) = (44905+QAF) = (44905+QTR)
	0018	Mod : (40325 + 43359 + 44644) = (40325 + 43359 + 44644 + 43620 + 43756 + 44575)
	0019	Mod : (44367 + 47976) = (43630 + 44367 + 47976) = (43308 + 43620 + 44367 + 47976)
	0020	Mod : (40325 + 43359 + 44575 + 46028) = (40325 + 43359 + 43620 + 43756 + 44575 + 46028)
	0021	Mod: (43308+47976) = (43308+43260+47976)
	0022	STD = Mod: (43037 + 46266) = (45055 + 46266)
	0023	Mod: (43359+43620+43756+44575+57930)
	0024	Mod: (40325+43359+43620+43756+44575+47930)
	0025	Mod: (40325+43359+44644+47930) = (40325+43359+43620+43756+44575+44644+47930)
	0028	Mod: (43359+43620+44575+46028) = (43359+43620+44575+51805) = (43359+43620+43756+44575+51805)
R R R	0029	Mod: (43359+43620+44575+46028+47930) = (43359+43620+44575+47930+51805) = (43359+43620+43756+44575+46028+47930) = (43359+43620+43756+44575+47930+51805)
	0030	Mod: 406028 = 51805 = (43359+56028) = (43359+51805) = (43359+43756+46028) = (43359+43756+51805)
	0031	Mod: (46028+47930) = (51805+47930) = (43359+46028+47930) = (43359+47930+51805) = (43359+43756+46028+47930) = (43359+43756+47930+51805)
	0032	Mod: 46028 = 51805 = (43756 + 46028) = (43756 + 51805)
	0033	Mod : 43756 = 46028 = 41805 = (43756 + 46028) = (43756 + 51805)
_	0034	Mod: 46028 = 51805 = (40624+46028/CPA) = (40624+51805/CPA)
R	0035	Mod: 44905 = (44905+40624)
	0036	Mod: (43239+44905) = (40624+43239+44905)

A330 SIMILATOR FLIGHT CREW OPERATING MANUAL

GENERAL INFORMATION

LIST OF CODES

2.00.20 P 2 SEQ 001 REV 24

0041 Mod: 40518 = 41957 = 47755 = 54122 = (47755+52183+52188) = (54122+47755+52183+52188) = (141957+47755+52183+52188) = (141957+47755+52183+52188) = (141957+47755+52183+52188) = (141957+47755+52183+52188) = (141957+47755+52183+52188) = (141957+47755+52183+52188) = (141957+47755+52183+52188) = (141957+4785+52183+52188) = (141957+4785+52183+48239) = (141957+48239+44914) = (141957+48239+44914) = (141957+48239+44915) = (141957+48239+48	CODE	DESIGNATION
(54122+47755+52183+52188) = (41957+47755+52183+52188) = (54122+41957+47755+52183+52188) = (41957+47755+52183+52188) = (41957+47755+52183+52188) = (41924+1957+47755+52183+52188) = (41925+40624+43239) = (41925+40624+43239+49144) = (41925+43239+49144) = (41925+43239+44905) = (41925+43359+44955+46028+47930) = (41925+43359+44575+46028+47930) = (41925+43359+3620+43756+44575+46028+47930) = (41925+43359+53620+43756+44575+46028+47930) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+43359+53620+43756+44575+47930+51805) = (41925+4325+43239+53620+43756+44575+47930+51805) = (41925+43239+53620+43756+44575+47930+51805) = (41925+43239+53620+43756+44575+47930+51805) = (41925+43239+53620+43756+44575+47930+51805) = (41925+43239+43239+43620+43756+44575+47930+51805) = (41925+43239+		
0042 Mod: (44905+43239) = (44905+40624+43239) 0043 Mod: (44905+43239+49144) = (44905+40624+43239+49144) 0044 Mod: (43239+44905) = (40624+43239+44905) 0045 Mod: (40325+43359+44575+46028+47930) =		(54122+47755+52183+52188) = (41957+47755+52183+52188) =
0043 Mod: (44905+43239+49144) = (44905+40624+43239+49144) 0044 Mod: (43239+44905) = (40624+43239+44905) 0045 Mod: (40325+43359+44575+46028+47930) = (40325+43359+43620+43756+44575+46028+47930) = (40325+43359+53620+43756+44575+47930+51805) 0046 STD = Mod: 54570 = (47755+52183+52188+53722) =	0042	1 ', · · · · · · · · · · · · · · · · · ·
0044 Mod: (43239+44905) = (40624+43239+44905) 0045 Mod: (40325+43359+44575+46028+47930) = (40325+43359+43620+43756+44575+46028+47930) = (40325+43359+53620+43756+44575+47930+51805) 0046 STD = Mod: 54570 = (47755+52183+52188+53722) =		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
0045 Mod : (40325+43359+44575+46028+47930) = (40325+43359+43620+43756+44575+46028+47930) = (40325+43359+53620+43756+44575+47930+51805) 0046 STD = Mod : 54570 = (47755+52183+52188+53722) =		
0046 STD = Mod : 54570 = (47755+52183+52188+53722) =		Mod: (40325+43359+44575+46028+47930) = (40325+43359+43620+43756+44575+46028+47930) =
	0046	STD = Mod : 54570 = (47755+52183+52188+53722) =
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

GENERAL INFORMATION LIST OF NORMAL REVISIONS

2.00.30 P 1 SEQ 001 REV 24

R

N°	ISSUE DATE	
00	JAN 93	
01	JUN 93	
02	OCT 93	
03	NOV 93	
04	FEB 94	
05	MAY 95	
06	JUN 97	
07	JAN 98	
08	JUL 98	
09	JAN 99	
10	JUN 99	
11	DEC 99	
12	MAY 00	
13	OCT 00	
14	MAR 01	
15	SEP 01	
16	APR 02	
17	SEP 02	
18	MAR 03	
19	NOV 03	
20	JUL 04	
21	MAR 05	
22	DEC 05	
23	SEP 06	
24	MAY 07	

R

GENERAL INFORMATION

RECORD OF TEMPORARY REVISIONS

2.00.35

SEQ 001

P 1 REV 07

N° TITLE **STATUS** LOCATION To be filled by the operator, if needed

A330 FCOM VOL.2 REVO24 CROSS REFERENCE TABLE

THIS TABLE GIVES, FOR EACH AIRCRAFT INCLUDED IN THE MANUAL, THE CROSS REFERENCE BETWEEN:

- THE MANUFACTURING SERIAL NUMBER (MSN) WHICH APPEARS IN THE LIST OF EFFECTIVE PAGES

- THE REGISTRATION NUMBER OF THE AIRCRAFT AS KNOWN BY AIRBUS INDUSTRIE.

MSN REGISTRATION

0341 SIM2.2

3 G M

2.00.70 PAGE : CRT001

18 JUN 2007

V CH SEC ---PAGE-- SEQ- --REV-- ----VALIDATION CRITERIA-----

-----REASONS OF CHANGE-----

2 04 46 001 107 REV023 47457=47462=51138=51139

- INCORPORATION OF MOD 51139

M V M V	CH CH	SEC SEC	PAGE PAGE	SEQ- SEQ-	REV	VALIDATION CRITERIA	EFFECTIVITY
2	00	00	001				ALL
2	00	10	001 002	001	REV023		ALL
2	00	10	002	001	REV023		
	00		003 004	001	REVOO7 REVOO7		ALL
	00				REVO06		ALL
	00	20	001 002	001	REVO24	LIST OF CODES LIST OF CODES	ALL
	00						ALL
2	00	35	001	001	REVOO7	RECORD OF TEMPORARY REVISION	ALL
2	00	36	001-LTR	001	REVO24	LIST OF TEMPORARY REVISIONS	ALL
2	00	70	CRT	001	REVO24	CROSS REFERENCE TABLE	ALL
2	00	75	HL	001	REVO24	HIGHLIGHTS	ALL
2	00	80	LEP	001	REVO24	LIST OF EFFECTIVE PAGES	ALL
2	00	85	LOM	001	REVO24	LIST OF MOD/MP/SB	ALL
2	01	00	001	001	REVO18		ALL
2	01	10	001	001	REVO16		ALL
			001				ALL
2	01	20	002	110	REV010	44905	
	01 01	20 20			REVOO6 REVOO6		ALL
	01 01		005 006	001	REVOO6		ALL
2	01	30	001	200	REVO16	CODE:0009	ALL
2	01	30	001 002	108	REVO15	CODE: 0009 47930=43620+44575+47930	
2	01	30					ALL
2	01	30	004	212	REV023	44644 CODE 0019	
	01 01	30 30			REVO15 REVO22	43620+40513 40513	ALL
	01 01			001	REVOO6 REVOO6	43620	ALL
2	01	30	009	100	REV023	47976	ALL
	01					M: 44644	
2	01	30	010A	100	REVO18	M: 44644	ALL
		30 30	011 012	200 001	REVO23 REVO06	M: 44644+47976	ALL

18 JUN 2007 3GM 2.00.80 PAGE 01

FCOM

						VALIDATION CRITERIA	
	01 01		013 014	100 001	REVO15 REVO06	44644	ALL
	01 01		001 002	001 001	REVO12 REVO11		ALL
	01 01		003 004	001 001	REVO11 REVO05		ALL
	01 01		005 006	145 145	REVO15 REVO15	47930 47930	ALL
	01 01					44905 = 43756+44905 44905 = 46028 = 51805	ALL
	01 01		009 010	100 200		44905=46028=51805 43756+44905	ALL
2	01	40	011	100	REV012	44905	ALL
	02 02		001 002	001 100	REVO10 REVO17	43037 = 44629 = 45055	ALL
2	02	05	001	001	REVO07		ALL
	02 02		001 002	001 001	REVOO7 REVO10		ALL
	02 02			001	REVO10 REVO10		ALL
	02 02		005 006	001 001		STD=CPA+40624 BAS=CPA+40624	ALL
2	02	10	007	001	REV010		ALL
	02 02		001 002	001 115	REVO10 REVO10	44905/80E1A4/80E1A3	ALL
	02 02			001 115	REVO10 REVO10	44905/80E1A4/A3	ALL
	02 02		005 006		REVO10 REVO07	44905/80E1A4/A3	ALL
	02 02		001 002	010 001	REVO12 REVO24	GE80E1A2/A3/A4	ALL
	02 02		003 004	001 115	REVO10 REVO23	44905/80E1A4	ALL
	02 02		005 006		REVO10 REVO23	44905/80E1A4	ALL
	02 02		007 008	115 001	REVO23 REVO18	44905/80E1A4 STD	ALL
	02 02		001 002	001 001	REVOO7 REVOO7		ALL

M V CH SEC ---PAGE-- SEQ- --REV-- ----VALIDATION CRITERIA----- ----EFFECTIVITY----M V CH SEC ---PAGE-- SEQ- --REV-- ----VALIDATION CRITERIA----- -----EFFECTIVITY-----

A330

18 JUN 2007

-REV 024

2 02 16 005 001 REV010 BAS=CPA+40624 ALL 2 02 18 001 001 REV007 ALL 2 02 18 002 001 REV010 2 02 18 003 115 REV010 44905/80E1A4/A3 ALL 2 02 18 005 115 REV010 44905/80E1A4/A3 ALL 2 02 18 006 115 REV010 44905/80E1A4/A3 2 02 18 007 001 REV007 ALL 2 02 18 007 001 REV007 ALL 2 02 20 001 010 REV012 GE80E1A2/A3/A4 ALL	
2 02 18 002 001 REV010 2 02 18 003 115 REV010 44905/80E1A4/A3 ALL 2 02 18 004 001 REV010 2 02 18 005 115 REV010 44905/80E1A4/A3 ALL 2 02 18 006 115 REV010 44905/80E1A4/A3 2 02 18 007 001 REV007 ALL	
2 02 18 004 001 REV010 2 02 18 005 115 REV010 44905/80E1A4/A3 ALL 2 02 18 006 115 REV010 44905/80E1A4/A3 2 02 18 007 001 REV007 ALL	
2 02 18 006 115 REV010 44905/80E1A4/A3 2 02 18 007 001 REV007 ALL	
2 02 20 001 010 REV012 GE80E1A2/A3/A4 ALL	
2 02 20 002 001 REV024	
2 02 20 003 001 REV010 ALL 2 02 20 004 115 REV023 44905/80E1A4	
2 02 20 005 001 REV010 ALL 2 02 20 006 115 REV023 44905/80E1A4	
2 02 20 007 115 REV023 44905/80E1A4 ALL 2 02 20 008 001 REV019	
2 02 24 001 115 REV023 44905/GE80E1A4 ALL	
2 02 25 001 225 REV020 44905+49144/GE80E1A4 ALL 2 02 25 002 225 REV020 CODE 0017/80E1A4	
2 02 25 003 225 REV020 CODE 0017/ GE80E1A4 ALL 2 02 25 004 225 REV020 CODE 0017 /GE80E1A4	
2 02 27 001 100 REV015 43037=44629=45055 ALL 2 02 27 002 100 REV015 43037=44629=45055	
2 02 27 003 100 REV007 43037=44629=45055=CPA ALL 2 02 27 004 120 REV008 45055/80E1A4	
2 02 27 005 120 REV008 45055/GE80E1A4 ALL 2 02 27 006 120 REV008 45055/GE80E1A4	
2 02 27 007 120 REV008 45055/GE80E1A4 ALL 2 02 27 008 120 REV008 45055/GE80E1A4	
2 02 27 009 120 REV008 45055/GE80E1A4 ALL	
2 02 30 001 001 REV015 ALL 2 02 30 002 001 REV006 STD=40624+CPA	
2 02 30 003 116 REV013 44905/GE80E1A4 ALL 2 02 30 004 115 REV016 44905/80E1A4	
2 02 30 005 115 REV013 44905/80E1A4 ALL 2 02 30 006 115 REV013 44905/GE80E1A4	

3GM

2.00.80 PAGE 03

M M	v v	CH CH	SEC SEC	PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA	EFFECTIVITY
			30 30	007 008	115 115	REVO13 REVO13	44905/GE80E1A4 44905/80E1A4	ALL
			30 30	009 010	115 001	REVO13 REVO06	44905/80E1A4	ALL
		02 02	30 30	011 012	115 115	REVO13 REVO13	44905/80E1A4 44905/80E1A4	ALL
	2	02	30	013	115	REV013	44905/80E1A4	ALL
		02 02	40 40	001 002	001 115	REVO10 REVO09	44905/80E1A4	ALL
		02 02		003 004	115 115	REVOO9 REVOO9	44905/GE80E1A4 44905/GE80E1A4	ALL
	_	02 02				REVOO9 REVOO9		ALL
	2	02	40	007	115	REVO09	44905/GE80E1A4	ALL
	2	03	00		001	REVO16		ALL
			10 10	001 002	001	REVO11 REVO11		ALL
	2	03	10 10				44905/GE80E1A4/A3 44905/GE80E1A4/A3	ALL
		03 03		005 006	120 001	REVO16 REVO06	44905/GE80E1A3/A4	ALL
		03 03		001 002	001 120	REVO18 REVO16	STD 44905/GE80E1A4/A3	ALL
			00 00		001 001	REVO24 REVO23		ALL
			10 10	001 002		REVO17 REVO22	STD STD	ALL
		04 04				REVO22 REVO23	44905/GE80E1A4	ALL
		04 04		005 006		REVO23 REVO20	44905/GE80E1A4 CODE 0017/GE80E1A4	ALL
		04 04	10 10	007 008			CODE 0017/GE80E1A4 CODE 0017/GE80E1A4	ALL
		04 04	10 10	009 010			CODE 0017/GE80E1A4 CODE 0017/GE80E1A4	ALL
		04 04		011 012	001 001	REVOO6 REVOO6		ALL
	_	04 04	10 10	013 014	001 115	REVOO6 REVO23	44905/GE80E1A4	ALL

-REV 024

0EEA

FCOM

M V	CH CH	SEC SEC	PAGE PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA	EFFECTIVITY
	04 04	10 10		225 225		CODE 0017/GE80E1A4 CODE 0017/GE80E1A4	ALL
	04 04		001 002	001 001	REVOO6 REVO12		ALL
	04 04		003 004	103 001	REVO24 REVOO6	40257=(40257+40518+41957)	ALL
	04 04		005 006	001 001	REVO14 REVOO6		ALL
_	04 04		007 008	115 001	REVO15 REVO11	44905/GE80E1A2/A3/A4	ALL
	04 04		001 002	001 115	REVO18 REVO18	STD 44905/80E1A4/A3	ALL
	04 04		003 004	040 115	REVO18 REVOO9	GE80E1A2/A3/A4 44905/80E1A4/A3/A2	ALL
	04 04		005 006	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	04 04		007 008	115 115	REVO15 REVO11	44905/80E1A4/A3/A2 44905/80E1A4/A3	ALL
2	04	25	009	115	REVO16	44905/80E1A4/A3	ALL
2	04	30	001	001	REVO06		ALL
	04 04		001 002	001 001	REVOO6 REVOO6		ALL
	04 04		001 002	001 001	REVO24 REVO06		ALL
	04 04		003 004		REVOO6 REVOO6		ALL
	04 04		005 006	001 001	REVOO6 REVO24		ALL
_	04 04		007 008	001 001	REVO24 REVO24		ALL
_	04 04		009 010	001 001	REVO14 REVO16		ALL
	04		010A		REVO10		ALL
2	04	40	01 OB	001	REV023	STD	ALL
	04 04		011 012	115 115		44905/80E1A4/A3 44905/80E1A4/A3	ALL
	04 04	40 40	013 014	115 115	REVOO9 REVOO9	44905/80E1A4/A3 44905/80E1A4/A3	ALL

FCOM

M M	v v						VALIDATION CRITERIA	
		04 04		001 002	100 001	REVO23 REVO22	45554	ALL
	2	04	45	003	001	REV023		ALL
		04 04		001 002	107 001	REVO23 REVO23	47457=47462=51138=51139	ALL
		04 04		003 004	105 001	REVO12 REVO22	43724=44661=44662	ALL
	2	04	46	005	001	REV022		ALL
	2	05	00	001	001	REVOO7		ALL
		05 05	10 10	001 002	001 010	REVOO6 REVOO6	GE ALL/PW ALL	ALL
			10 10	003 004	001 001	REVOO6 REVOO6		ALL
		05 05		001 002	001 001	REVOO6 REVOO6		ALL
		05 05		003 004	001 001	REVO20 REVO06		ALL
		05 05		005 006	115 115	REVO20 REVO14	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
		05 05		007 008	115 115	REVO20 REVO14	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	2	05	15	009	115	REVO14	44905/80E1A4/A3/A2	ALL
			20 20	001 002		REVO14 REVO23	GE80E1A2/A4/A3 GE80E1A2/A3/A4	ALL
		05 05	20 20	003 004	010 010	REVO23 REVO07	GE80E1A2/A3/A4 GE80E1A2/A4/A3	ALL
		05 05		001 002	001 115	REVOO6 REVOO9	44905/80E1A4/A3/A2	ALL
		05 05	30 30		115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
		05 05	30 30		115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
		05 05	30 30		115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
		05 05		009 010	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
		05 05	30 30		115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL

-REV 024

0EEA

ΜV	CH	SEC	PAGE	SEQ-	REV	VALIDATION CRITERIA	EFFECTIVITY
	05 05		013 014	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		015 016	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		017 018	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		019 020	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		021 022	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
_	05 05		023 024	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		025 026	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
_	05 05		027 028	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		029 030	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
_	05 05		031 032	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		033 034	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		035 036	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		037 038	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
_	05 05		039 040	115 010	REVOO9 REVOO7	44905/80E1A4/A3/A2 STD-44905/GE80E1A2/A3/A4	ALL
	05 05		041 042	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		043 044	010 115	REVOO7 REVOO9	STD=44905/GE80E1A2/A3/A4 44905/80E1A4/A3/A2	ALL
	05 05		045 046	115 010	REVOO9 REVOO7	44905/80E1A4/A3/A2 GE80E1A2/A4/A3	ALL
	05 05		047 048	010 010	REVOO7 REVO14	GE80E1A2/A4/A3 GE80E1A2/A4/A3	ALL
	05 05		001 002	001 115	REVOO6 REVOO9	44905/80E1A4/A3/A2	ALL
_	05 05		003 004	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL

18 JUN 2007 3GM 2.00.80 PAGE 07

FCOM

M V M V	CH CH	SEC SEC	PAGE	SEQ- SEQ-	REV REV	VALIDATION CRITERIA	EFFECTIVITY EFFECTIVITY
	05 05		005 006	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		007 008	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		009 010	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		011 012	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		013 014	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		015 016	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		017 018	115 115	REVOO9 REVOO9	44905/80E1A4/A3/A2 44905/80E1A4/A3/A2	ALL
	05 05		001 002	001 115	REVOO6 REVOO9	44905/80E1A4/A3/A2	ALL
2	05	50	003	115	REVO09	44905/80E1A4/A3/A2	ALL
	05 05		001 002	001 001	REVOO6 REVO11		ALL
	05 05		003 004	001 001	REVO11 REVO11		ALL
	05 05		005 006	001 001	REVO11 REVO11		ALL
	05 05		001 002	010 010	REVOO6 REVOO6	GE80E1A2/A4/A3 GE80E1A2/A4/A3	ALL
	05 05		003 004	010 010	REVOO6 REVOO6	GE80E1A2/A3/A4 GE80E1A2/A3/A4	ALL
	05 05		005 006	010 010	REVOO6 REVOO6	GE80E1A2/A3/A4 GE80E1A2/A3/A4	ALL
	05 05		007 008	010 010	REVOO6 REVOO6	GE80E1A2/A3/A4 GE80E1A2/A3/A4	ALL

A330 FCOM
VOLUME: 2 FLIGHT PREPARATION
LIST OF MOD/MP/SB AFFECTING THE MANUAL

REVISION : 024

V REV MOD MP TITLE SB

.

.

.

VALIDITY

. 024 40197 POWER PLANT-DEFINE CF6 80E1 POWER PLANT

AND ASSOCIATED SYSTEMS

ALL

. 024 40257 OXYGEN-PASSENGER OXYGEN-INSTALL SYSTEM PROVISIONS FOR FIVE OXYGEN CYLINDERS

GASEOUS SYSTEM

ALL

. 024 40513 FUEL-REFUEL/DEFUEL SYSTEM-INSTALL A FACILITY TO ENABLE REFUEL PRESELECTION

AND INITIATION FROM THE COCKPIT

ALL

. 024 40518 OXYGEN-PASSENGER OXYGEN-EXTEND DURATION

..... OF CHEMICAL 02 SUPPLY TO 20 MINUTES

. 024 41957 OXYGEN -PASSENGER OXYGEN-INSTALL

ALTERNATIVE OXYGEN BOXES EXTENDED

DURATION 22 MINUTES (VENDOR PURITAN)

. 024 43620 FUEL - FCMS - INSTALL STAGE 6.12 FCMC WITH CHANGES TO SOFTWARE FOR A330 AND

A340 A/C

ALL

. 024 43724 AUTOFLIGHT - FMEGC - INSTALL IMPROVED

AUTOPILOT FOR GE ENGINES

ALL

. 024 43756 FUEL - TANKS - INCREASE TRIM TANK

..... CAPACITY BY 230 LITRES

ALL

. 024 44367 FUEL - REFUEL/DEFUEL SYSTEM - INSTALL

PRESSURE SWITCH AT WING CENTRE SECTION

REAR WALL (A330 ONLY)

ALL

. 024 44575 FUEL - FMCS - FIT FCMC (STAGE 7.1) WITH

CHANGES TO SOFTWARE FOR A330 AND A340

AIRCRAFT

ALL

3GM

2.00.85 PAGE 1 18 JUN 2007

A330 FCOM
VOLUME: 2 FLIGHT PREPARATION
LIST OF MOD/MP/SB AFFECTING THE MANUAL

REVISION: 024

MOD MP V REV TITLE SB VALIDITY . 024 44644 FUEL - DISTRIBUTION - INSTALL STRUCTURE AND SYSTEM PROVISIONS FOR ACTIVATION OF CENTER TANK (A330-200) . 024 44905 FLIGHT CONTROLS - GENERAL - ADAPT FLIGHT CONTROLS FOR ST7 ΔLL . 024 45006 LANDING GEAR - NORMAL BRAKING -INSTALL BSCU SOFTWARE STANDARD S6D 024 45055 ENGINE FUEL AND CONTROL - GENERAL -PROVIDE DERATED TAKE-OFF FACILITIES FOR G.E. ENGINES ALL . 024 45554 AUTOFLIGHT-FCU-DEFINE LONG RANGE VERSION OF MODULAR F.C.U. ALL . 024 45900 LANDING GEAR - NORMAL BRAKING -INSTALL BSCU SOFTWARE STANDARD S7A ALL . 024 47457 AUTO FLIGHT - FMGEC - INSTALL FMGEC P1-B7 FOR GE ENGINES ALL . 024 47500 LANDING GEAR - NORMAL BRAKING - INSTALL BSCU SOFTWARE STANDARD S8D . 024 47930 FUEL - FCMS - INSTALL FCMC STAGE 9.0 ALL 024 47976 COMMUNICATION-HF SYSTEM-ACTIVATE DATA LINK FUNCTION FOR HFDR1 ALL

3GM 2.00.85 18 JUN 2007 PAGE

FLY-BY WIRE ON A330/A340

CONTROL SYSTEM (EFCS) - INSTALL RUDDER

. 024 49144 FLIGHT CONTROLS - ELECTRICAL FLIGHT

ALL

.

A330 FCOM
VOLUME: 2 FLIGHT PREPARATION
LIST OF MOD/MP/SB AFFECTING THE MANUAL

REVISION : 024

M V REV MOD MP TITLE

SB VALIDITY

N 024 51139 AUTO FLIGHT - FMGEC - INSTALL STANDARD P1B7 (FROM LEGACY) FOR GE ENGINES

ALL

2.00.85 PAGE 3 3GM 18 JUN 2007

2.01.00

P 1 REV 18

SEQ 001 | R

SIMULATOR	CONTENTO
IGHT CREW OPERATING MANUAL	CONTENTS

	01.00	CONTENTS
	01.10	GENERAL
	01.20	CARGO LOADING
		- GENERAL
		- DESCRIPTION
		- CARGO LOADING SYSTEM
		- CARGO CAPACITY
		- CARGO DOORS OPERATION
		- LOCATION OF SERVICE PANELS
	01.30	FUEL
		- GENERAL INFORMATION
3		- APU START/SHUTDOWN DURING REFUELING/DEFUELING 4
		- REFUELING
		- GROUND FUEL TRANSFER 8
		_ DEFUELING
		- OVERWING GRAVITY REFUELING
		- REFUELING WITH ONE ENGINE RUNNING
		- USE OF MANUAL MAGNETIC INDICATORS
	01.40	WEIGHT AND BALANCE
		- LOAD and TRIM SHEET
		- FUEL INDEX TABLE

AIRBUS TRAINING A330	LOADING	2.01.10	P 1
SIMULATOR FLIGHT CREW OPERATING MANUAL	GENERAL	SEQ 001	REV 16

DEFINITIONS

R — MANUFACTURER'S EMPTY WEIGHT (MEW)

The weight of the structure, power plant, furnishings, systems and other items of equipment that are considered an integral part of the aircraft. It is essentially a "dry" weight, including only those fluids contained in closed systems (e.g. hydraulic fluid).

R — **OPERATIONAL EMPTY WEIGHT (OEW)**

The manufacturer's weight empty plus the operator's items i.e. the flight and cabin crew and their baggage, unusable fuel, engine oil, emergency equipment, toilet chemicals and fluids, galley structure, catering equipment, seats, documents etc.

R — **DRY OPERATING WEIGHT (DOW)**

- R The total weight of an aircraft ready for a specific type of operation excluding all usable
- R fuel and traffic load.
- R Operational Empty Weight plus items specific to the type of flight i.e. catering, R newspapers, pantry equipment etc.

- TAKEOFF FUEL

The weight of the fuel onboard at takeoff.

- OPERATING WEIGHT

R The weight obtained by addition of the operational empty weight and the takeoff fuel.

- TOTAL TRAFFIC LOAD

The weight of the payload including cargo loads, passengers and passengers bags.

– ZERO FUEL WEIGHT (ZFW)

R The weight obtained by addition of the total traffic load and the dry operating weight.

- TAKEOFF WEIGHT (TOW)

The weight at takeoff. It is equal to the addition of the zero fuel weight and takeoff fuel.

- TRIP FUEL

The weight of the fuel necessary to cover the normal leg without reserves.

LANDING WEIGHT

The weight at landing. It is equal to takeoff weight minus trip fuel.

CARGO LOADING

2.01.20 SEQ 001

REV 06

P 1

GENERAL

The aircraft has three lower deck cargo compartments:

- Forward cargo compartment subdivised into compartments 1 and 2.
- Aft cargo compartment subdivised into compartments 3 and 4.
- Bulk cargo compartment, compartment 5.

The main access doors to forward and aft compartments are hydraulically operated. The bulk cargo door gives access to the aft cargo compartment. It is manually operated.

DESCRIPTION

Each compartment is divided into sections, and is designed to be category C as defined by FAR.

A placard in each compartment indicates the maximum authorized gross weight. The compartments have separate lighting.

CARGO LOADING SYSTEM

A semi-automatic cargo loading system, which is installed in forward and aft compartments, loads pallets and containers.

LOADING CARGO LOADING

2.01.20

P 2

SEQ 110

REV 10

CARGO CAPACITY

The maximum cumulative loads for each compartment and section are as follows:

- forward compartment : 18 869 kg (40 200 lb)

aft compartment : 15 241 kg (33 600 lb)bulk compartment : 3 468 kg (7 645 lb)

The following table lists the loading possibilities (including the maximum gross weight per container/pallet).

R

R

ULD	ATA	NAS 3610	IATA	Allowable MGW		Maximum number		
				lb	kg	forward	aft	bulk
Half-size	LD3	2K2	E/G	3500	1587	14	12	
Half-size	LD1	2K2	C/H	3500	1587	7	6	
60.4 × 61.5 in		2K3	X/G/E	3500	1587	14	12	
60.4 × 61.5 in		2K3	Н	3500	1587	7	6	
Full-size	LD6	2L2	F	7000	3174	7	6	
60.4 × 125 in		2L3/2L4	F	7000	3174	7	6	
88 × 125 in		2A1/2A2	F	10200	4626	4	4	
		2A3/2A4/2A6	F					
96 × 125 in		2M1/2M2/2M3	F	11250	5103	4	4	

CARGO LOADING

2.01.20

P 3

SEQ 001 REV 06

CARGO DOORS OPERATION

NORMAL OPERATION

OPENING

On d

<u>On door</u>
- ACCESS DOOR OPERATING HANDLE RELEASE Push handle flap inward.
 DOOR
- DIFFERENTIAL PRESSURE CHECK
Do not operate the latching handle if the red indicator light flashes as an overpressure may exist in the cargo hold.
 DOOR
On door service panel
- SERVICE PANEL ACCESS DOOR OPEN
- LEVER OF MANUAL SELECTOR VALVE HOLD ON OPEN

• When the door is fully open (green light on the service panel is on) :

Operation of the flight controls is inhibited.

 LEVER OF MANUAL SELECTOR VALVE When released, the lever returns to the neutral (STOP) position and shuts down the electric pump after a 10 seconds delay.

The yellow hydraulic system is pressurized (YELLOW ELEC PUMP energized).

Check that the lever has reached the neutral position and the pump operation has stopped. Continuous operation leads to a pump overheat.

CARGO LOADING

2.01.20

SEQ 001

P 4 REV 06

CLOSING

On door service panel

- LEVER OF MANUAL SELECTOR VALVE HOLD ON CLOSE At first the lever locks in an intermediate position, maintaining a pre-set pressurization to prevent the door from dropping open. The operator can then move the lever to CLOSE and the door closes. When it is fully closed, the lever returns to the neutral position and shuts down the electric pump. Ensure that green indicator light goes out.

When the door is fully closed :

On door

— DOOR LATCH AND LOCK Push the latching handle back into its recess. Push the door locking handle downwards to the locked position. When the door is locked, the cargo door indication on ECAM extinguishes and the handle flap mechanism locks the operating handle.

On door service panel

- ACCESS DOOR CLOSE

AUXILIARY OPERATION

In case of an electrical failure or if the electric pump fails, the operator can open or close the doors by working the hand pump.

HAND PUMP OPENING

On door

DOOR UNLOCK
 Unlock the operating handle as if for normal operation.

On ground service panel

- SERVICE PANEL ACCESS DOOR OPEN

LEVER OF ELECTRICAL MANUAL SELECTOR VALVE CLOSE

CARGO LOADING

2.01.20 SEQ 001 P 5

REV 06

On door service panel

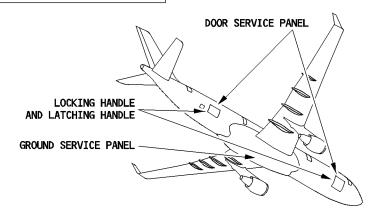
Oil nooi seivice hailei
- SERVICE PANEL ACCESS DOOR OPEN
- LEVER OF MANUAL SELECTOR VALVE HOLD ON OPEN
On ground service panel
- HAND PUMP OPERATE The door opens.
 When door fully opened (green light on the service panel is on or sudden increase of force to operate the hand pump):
On door service panel
- LEVER OF MANUAL SELECTOR VALVE RELEASE
On ground service panel
- LEVER OF ELECTRICAL MANUAL SELECTOR VALVE OPEN
HAND PUMP CLOSING
On ground service panel
- LEVER OF ELECTRICAL MANUAL SELECTOR VALVE CLOSE
On door service panel
- LEVER OF MANUAL SELECTOR VALVE HOLD ON CLOSE
On ground service panel
- HAND PUMP OPERATE The door closes.
On door service panel
- LEVER OF MANUAL SELECTOR VALVE RELEASE Release when door is fully closed.
On ground service panel
- LEVER OF ELECTRICAL MANUAL SELECTOR VALVE OPEN

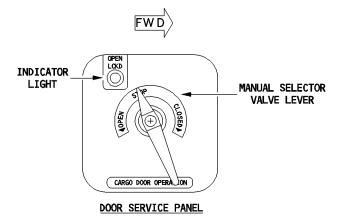
LOADING CARGO LOADING

2.01.20

P 6

SEQ 001 | REV 06

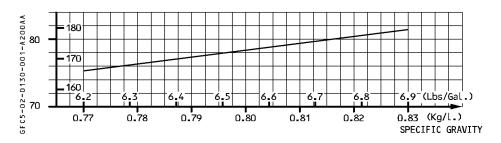

On door


DOOR LATCH AND LOCK
 Lock the operating handle as for normal operation.

On door service panel and ground service panel

- ACCESS DOORS CLOSE

LOCATION OF SERVICE PANELS


USABLE FUEL VOLUME

R

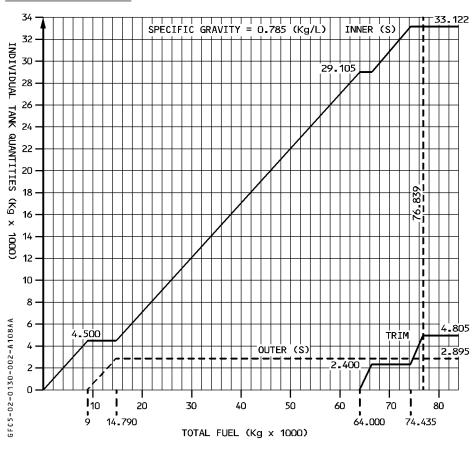
	OUTER TANK	INNER TANK	TRIM TANK	TOTAL
LITERS	3 624 × 2	41 904 × 2	6 230	97 286
US GAL	957 × 2	11 071 × 2	1 646	25 702

USABLE FUEL WEIGHT

USABLE FUEL WEIGHT (x1000Kg) (x1000Lbs)

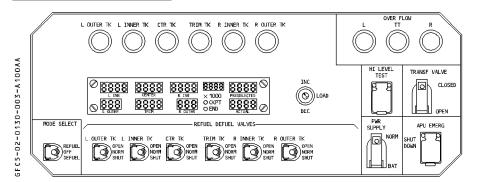
REFUELING

- During automatic refueling, the trim tank is filled when the preselected fuel quantity is greater than 64000 kg, whatever the density.
- With the tanks filled to maximum capacity, there is enough space in each tank to allow for a 2 % thermal expansion of the fuel without its spilling through the vent system.


LOADINGFUEL

2.01.30

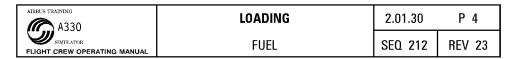
P 2


SEQ 108 | REV 15

REFUEL DISTRIBUTION

Example: Required FOB 70000 kg
Post refuel distribution:
OUTERS (each) 2895 kg
INNERS (each) 30905 kg
TRIM 2400 kg

REFUELING CONTROL PANEL



The correct panel configuration for flight is:

- the MODE SELECT switch at OFF (and guarded)
- all REFUEL/DEFUEL VALVES switches at NORM (and quarded).
- the TRANSF VALVE switch at CLOSED (and guarded)
- the PWR SUPPLY switch at NORM (and guarded)
- the refuel control panel access door closed.

If the above conditions are not fulfilled the following messages are displayed on the ECAM:

- REFUEL IN PROCESS (green) in flight phase 1,10.
- R REFUEL PNL (amber) in flight phases 2, 3, 4, 5.

APU START/SHUTDOWN DURING REFUELING/DEFUELING

APU starts or shutdowns are permitted during refuel/defuel procedures. If it is necessary to operate the APU, the limits that follow apply:

- a) An APU start is not permitted during a refuel/defuel procedure if the APU has failed to start or an automatic shutdown has occurred.
- b) A normal APU shutdown must be completed if a fuel spill has occurred during the refuel defuel procedure.

REFUELING

PREPARATION

R R

R

R

_	ACCESS PLATFORM IN POSITION
_	SAFETY PRECAUTIONS APPLY
	Ensure that no HF transmission (including HF transmission via the HF DATA LINK
	pushbutton) is performed during refueling, and that the tanker and the aircraft are properly grounded.
	Connect the tanker ground cable to the parking ground point before connecting it to a

grounding point on the aircraft. In the cockpit, check that the PARK BRK is ON and that the ACCU PRESS has sufficient pressure. Do not refuel, if a fire or engine overheat warning is displayed. During refueling, do not operate the external lighting.

Note: Refer to the above procedures for APU start/shutdown during refueling.

HI LEVEL TEST:

From	refueling	control	panel	:
------	-----------	---------	-------	---

If there is a failure during the high level test the END light flashes and remains flashing after completion. In addition the affected HI LVL light remains on.

From cockpit:

The HI LEVEL TEST is performed automatically when cockpit FUEL REFUEL pushbutton is pressed. Positive test will initiate refueling. If test fails, "END" It will illuminate steady.

• If HI LEVEL TEST is negative :

A negative Hi LEVEL TEST prevents refueling. This situation is latched until FCMC RESET.

- FCMC 1+ 2 RESET button (cockpit) PULL then PUSH

Note: After FCMC reset re-enter ZFW/ZFCG in the MCDU INIT B page.

MANUAL REFUELING PROCEDURE APPLY Apply manual procedure with continuous monitoring of refueling.

FOR DISPATCH REFER TO MEL

2.01.30

P 6

FUEL

SEQ 100 | REV 22

AUTOMATIC REFUELING

From refueling control panel :
- LOAD PRESELECTOR SET
- REFUEL VALVES CHECK NORM and GUARDED
- MODE SELECT REFUEL
On completion of refueling : END light comes on. It flashes if after refueling an imbalance greater than 3000 kg (6614 lb) exists.
- ACTUAL QUANTITY CHECK
— MODE SELECT OFF and GUARDED
From cockpit :
- BLOCK FUEL on FMGS MCDU INIT B page CONFIRM/SET The CKPT light on the refueling control panel comes on.
<u>Note</u> : Once BLOCK FUEL value has been entered on the MCDU the aircraft will refuel to the MCDU value. Refuel to this value can be started from either panel.
 FUEL REFUEL pushbutton ON ON light comes on and a HI LEVEL TEST is initiated. If test is positive, the refueling will start. At the refuel couplings a green light comes on to signal that the aircraft is ready for refueling. This light remains on as long as the REFUEL pushbutton is switched ON.
On completion of refueling: END light comes on. It flashes if after refueling an imbalance greater than 3000 kg (6614 lb) exists.
- FUEL ON BOARD QUANTITY CHECK
 FUEL REFUEL pushbutton

FUEL

2.01.30

P 7

SEQ 100

REV 06

MANUAL REFUELING

	 DETERMINE FUEL QUANTITY IN EACH TANK Respect distribution in accordance with REFUEL DISTRIBUTION graph
	Note: To refuel the trim tank, one of these conditions must be fulfilled. — the two inner tank inlet valves are open, — both inner tank quantities are each greater than 14 000 kg, — one inner tank quantity is greater than 14 000 kg and the other inner tank inlet valve is open.
	- REFUEL VALVES SHUT
	- REFUEL VALVES (tank(s) to be filled) OPEN
R R	<u>Note</u> : Because the Fuel Control and Monitoring System (FCMS) does not have control of all the tanks, the END light will flash.
	- MODE SELECT REFUEL
	 FUEL QTY MONITOR When the tank contents reach the required level :
	— Corresponding REFUEL VALVES SHUT
	- MODE SELECT OFF and GUARDED
	- REFUEL VALVES NORM and GUARDED

2.01.30 SEQ 001 P 8

FUEL

REV 06

GROUND FUEL TRANSFER

A ground transfer is possible from tank to tank except to the trim tank.

On cockpit overhead FUEL panel :

- TRANSF VALVE

— PUMPS (of the tanks not to be defueled) OF
— PUMPS (of the tanks to be defueled)
On refueling control panel :
— REFUEL VALVES (of tanks not to filled) SHU
— REFUEL VALVES (of tanks to be filled) OPEN
- MODE SELECT REFUE

<u>Note</u>: The TRANSF VALVE opens the left hand aft transfer valve only if one ENG 1 main pump is on, and opens the right hand aft transfer valve only if one ENG 2 main pump is on.

R R

R

FUEL

2.01.30

P 9

EL SEQ 100

REV 23

- FUEL QTY MONITOR • When the tank contents reach the required level : On the refueling control panel: - Corresponding REFUEL VALVES SHUT — TRANSF VALVE CLOSED and GUARDED - MODE SELECT OFF and GUARDED Upon completion of the ground fuel transfer : - REFUEL VALVES NORM and GUARDED Cockpit FUEL panel SET NORMAL CONFIGURATION **DEFUELING** - ACCESS PLATFORM IN POSITION - SAFETY PRECAUTIONS APPLY Ensure that no HF transmission (including HF transmission via the HF DATA LINK pushbutton) is performed during defueling, and that the tanker and the aircraft are properly grounded. Connect the tanker ground cable to the parking ground point before connecting it to a grounding point on the aircraft. In the cockpit, check that the PARK BRK is ON and that the ACCU PRESS has sufficient pressure. Do not defuel, if a fire or engine overheat warning is displayed. During defueling, do not operate the external lighting. Note: 1. For APU start/shutdown during defueling, refer to FCOM 2.01.30 p4. 2. If only one hose is used for defueling, it must be connected to the coupling

R R R

- PUMPS (all) OFF

marked "USE THIS ADAPTOR TO DEFUEL".

LOADING **FUEL**

2.01.30

SEQ 100

P 10 **REV 18**

FLIGHT CREW OPERATING MANUAL

DEFUELING BY SUCTION

Note: Defueling all the tanks by suction is possible.

· If the trim tank contains fuel, then fuel-system interlocks prevent a suction defuel of inner tanks.

On refueling control panel:

- MODE SELECT	 DEFUEL
MODE OFFER!	 DEIGEL

- REFUEL VALVES (of the tanks to be defueled) OPEN

- FUEL QTY MONITOR

When the tank contents reach the required level :

REFUEL VALVES NORM and GUARDED

— MODE SELECT OFF and GUARDED

- Cockpit FUEL panel SET NORMAL CONFIGURATION

DEFUELING WITH FUEL PUMPS

Note: It is only possible to defuel the inner and center tanks. To defuel the other tanks, their fuel must be first transferred to the inner tank.

INNER TANK

On refueling control panel:

REFUEL VALVES		. CHECK NORM
---------------------------------	--	--------------

— MODE SELECT DEFUEL

- TRANSF VALVE OPEN

The LH (RH) aft transfer valves open provided all these conditions are met:

- one or more of the LH (RH) main fuel pumps is (are) on.
- the trim tank is empty
- the inner tank and outer tank inlet valves are closed.

On cockpit overhead FUEL panel:

 PUMPS L1 and R1 (and L2 and R2 if greater flow needed)ON
---	-----

- FUEL QTY MONITOR

LOADINGFUEL

2.01.30

P 10a REV 18

SEQ 100

• When the tank contents reach the required level :

- Corresponding PUMPS OFF

<u>Note</u>: When the fuel quantity in an inner tank decreases to 3 500 kg (7 716 lb) the intertank transfer valves automatically open. The fuel in the outer tanks moves to the inner tanks which can be subsequently defueled.

On refueling control panel:

 TRANSF VALVE 	
IIIWIASI AWFAF	

- MODE SELECT OFF and GUARDED

- REFUEL VALVES NORM and GUARDED

- Cockpit FUEL panel SET NORMAL CONFIGURATION

CENTER TANK

On refueling control panel:

- REFUEL VALVES CHECK N	ORM
-------------------------	-----

- MODE SELECT DEFUEL

On cockpit overhead fuel panel:

- PUMPS L and R	 ON

If trim tank has to be defueled

- T TANK MODE FWD

- FUEL QTY MONITOR

• When the tank contents reach the required level :

- Corresponding PUMPS OFF

On refueling control panel:

- MODE SELECT OFF and GUARDED

- REFUEL VALVES NORM and GUARDED

- Cockpit FUEL panel SET NORMAL CONFIGURATION

OVERWING GRAVITY REFUELING

Overwing gravity refueling is done at the refuel point in the top of each wing.

- SAFETY PRECAUTIONS APPLY

R Disembark all passengers.

R

R

R

R

Ensure that no HF transmission (including HF transmission via the HF DATA LINK pushbutton) is performed during refueling, and that the tanker and the aircraft are grounded.

Connect the tanker ground cable to the parking ground point before connecting it to a grounding point on the aircraft. In the cockpit, check that the PARK BRK is ON and that the ACCU PRESS has sufficient pressure. Do not refuel, if a fire or engine overheat warning is displayed. During refueling, do not operate the external lighting.

Ensure that the slats are retracted, and the flight control safety-locks, with their warning notices, are in position.

<u>Note</u>: For APU start/shutdown during refueling, refer to FCOM 2.01.30 p4.

INNER TANK REFUELING PROCEDURE

 OVERWING REFUEL CAP 		REMOVE
---	--	--------

- If the outer tank is to be refueled :
 - GROUND FUEL TRANSFER PROCEDURE APPLY

Note: This procedure is not applicable for trim tank refueling.

AIRBUS TRAINING A330	LOADING	2.01.30	P 12
SIMULATOR FLIGHT CREW OPERATING MANUAL	FUEL	SEQ 001	REV 06

REFUELING WITH ONE ENGINE RUNNING

- R Refuel with one engine running only at airports where no external ground pneumatic
 R power is available and only when APU is unserviceable.
- R Only the right hand fuel couplings can be used.
 - Overwing gravity filling is not permitted.
- R Disembark all passengers.

R

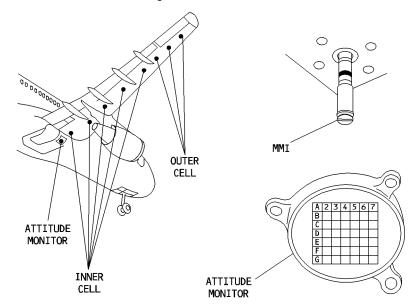
R

R

- Obtain airport authorization.
- R The Airport Fire Department should standby <u>at the aircraft</u> during the entire refueling procedure.
- R Point the aircraft into the wind at a location where the slope is negligible.
- R Set the parking brake and check its pressure.
- R Run engine n° 1 at ground idle with its generator connected.
- R Do not start engine n° 2, shut down engine n° 1 or attempt to start the APU before all fueling operations have been completed.
- R Position the fuel truck under the extremity of the right wing. Its pressure should not exceed 50 psi.
- R Follow automatic or manual refueling procedure.
- R Note: The refuel system must be fully operational.

R OPERATION MONITORING

R During the entire refueling procedure :


- R Monitor the fuel truck shut off valve.
- R Be sure that the fueling company is keeping permanent control of the emergency fuel
 R shut off device.
- R Have a flight crew member in the cockpit monitoring all systems and the running engine.
- R Have a qualified ground crew member at the fueling station to operate the refuel valve
 R switches.

USE OF MANUAL MAGNETIC INDICATORS (MMI)

Indicators are installed in each wing tank and in the center tank.

R

GFC5-02-0130-013-A100AA

AIRCRAFT ATTITUDE
 Note the grid square letter and grid square number shown by the bubble on the attitude monitor.

- ACCESS PLATFORM IN POSITION
- rod magnet and bring the rod down on to the mechanical stop.
- ROD GRADUATION (which aligns with wing bottom surface) READ
- MMI IN PLACE and LOCKED
- Use the table for the applicable aircraft attitude with the grid square letter and number and the applicable MMI stick number to find the volume of fuel in each tank (refer to AMM 12.11.28). Mutiply the result by the specific gravity to find the fuel weight.

AIRBUS TRAINING A330	LOADING	2.01.30	P 14
SIMULATOR FLIGHT CREW OPERATING MANUAL	FUEL	SEQ 001	REV 06

INTENTIONALLY LEFT BLANK

WEIGHT and BALANCE

2.01.40 SEQ 001 P 1 REV 12

LOAD AND TRIM SHEET

This chart allows the determination of the aircraft CG location function of dry operating weight, pantry adjustment, cargo loads, passengers and fuel on board.

The operational limits shown on the load and trim sheet are more restrictive than the certified limits because error margins have been taken into account.

The load and trim sheet needs to be updated when :

- a modification which changes the aircraft certified limits is included or
- a modification (cabin layout, cargo arrangment...) which influences the operational limits is made.

It is the airline's responsability to define a load and trim sheet and to keep it up to date. Hereafter is a description of the load and trim sheet utilization in the standard Airbus Industrie format (see example p3) and for a typical passenger cabin arrangement. Refer to customized load and trim sheet for preparing a revenue flight.

R DATA FOR GENERIC EXAMPLE

```
Dry operating weight = 110 000 kg and CG = 31% Deviation or adjustment = + 100 kg in zone F Cargo = 11 500 kg as : cargo 1 = 2 500 kg ; cargo 2 = 3 000 kg ; cargo 3 = 3 000 kg ; cargo 4 = 2 000 kg ; cargo 5 = 1 000 kg Passengers (75 kg/PAX) = 240 PAX with the following distribution : cabin OA = 20 ; cabin OB = 120 ; cabin OC = 100 Fuel = 72 000 kg
```


WEIGHT and BALANCE

2.01.40

SEQ 001 RE

REV 11

P 2

DESCRIPTION

- a) Enter master data in (1).
- b) Compute dry operating weight index using the formula indicated in (2) and report in (3). Dry operating index = 119.1.
- c) Enter weight deviation in (4) and read corresponding index in (5): -0.51.
- d) Calculate corrected index and report in (6): CORRECTED INDEX = 118.6
- e) Enter cargo weight and PAX number in (7).
- f) Enter index scale (8) with corrected index and proceed through cargo and passengers scales as shown in (9). Then, from the final point (cabin OC), draw a vertical line down to the zero fuel line (10): 139600 kg.
- g) Check that the intersection with zero fuel line determined in table (11) is within the maximum zero fuel weight and zero fuel operational limits. If not rearrange cargo loading.
- h) Read in table 2.01.40 p5 fuel index correction. Fuel on Board: 72 000 kg. Fuel density: 0.780.
 - Read in fuel index table. This example will be continued assuming FUEL INDEX =+8 was found.
 - Carry in scale (12). From this point draw a vertical line down to takeoff weight line (13) at 211 600 kg.
- i) Check that intersection with takeoff line determined in table (11) is within maximum takeoff weight and takeoff operational limits. If not rearrange cargo loading.
- j) Read takeoff CG on CG scale (14): CG = 29.8 %

CAUTION -

R

R

R

If there is no customized trim sheet for your airline in this section 2.01.40 do not use the information enclosed herein for day to day operation as margins and load CG vary with cabin and cargo layout.

(11) (14) 500 kg 500 kg 500 kg 250 kg 10 PAX 500 kg 20 PAX 5 PAX · 8 A330 - XXX VERSION : 30F/C 304/C AIRCRAFT CG (% MAC) 35 36 37 38 GENERIC EXAMPLE Irrelevant Data! Do not use for - 22 9-0C (115 PAX) - 25 Operat 22. 55 DRY OPERATING WEIGHT WEIGHT DEVIATION (PANIRY)
CORRECTED DRY OPER WEIGHT
CARGO
PASSENGERS
ZERO FUEL WEIGHT
TOTAL FUEL
TOTAL WEIGHT INDEX CORRECTION ZONES 6 9 8 ⊾ SHEET MLW = 174 000 kg 9. OB (189 PAX) 118.6 TRIM 9 3 and CORRECTED INDEX LOAD 8 :- 요 FLT Nbr -9 60 FROM: DATE 220-210-2002 110-13 9 130 8 150 PAX WEIGHT (1000 Kg) CG(%MAC) = [(CG-25) × W × 0.029] + 100 119.1 AIRCRAFT WEIGHT (1000 Kg) 31 % WEIGHT CG (1000 Kg) % MAC (1.3.9.6) 3.0.65 STANDARD - 0.51 + 100 kg -0.99 -0.51 +0.92 100 kg +0.99 +0.51 -0.92 2500 3000 3000 2000 1000 GFC5-D2-0140-003-A001AB BASIC INDEX
CORRECTION
DPER ZONES +100 TABLE OVERLEAF CG % MAC \2171,8 M ZFW CDU INPUT TAKE DFF INDEX CORRECTION 9 120 NOTA R FUEL INDEX 110 DRY OPER WEIGHT DEVIATION CABIN OB CABIN OA CABIN OC CARGO 5 CARGO 1 CARGO 2 CARGO 3 CARGO 4 ZONES DRY SE 3 (2) (5)

AIRBUS TRAINING A330	LOADING	2.01.40	P 4
SIMULATOR FLIGHT CREW OPERATING MANUAL	WEIGHT and BALANCE	SEQ 001	REV 05

INTENTIONALLY LEFT BLANK

AIRBUS TRAINING A330 SIMULATOR FLIGHT CREW OPERATING MANUAL

LOADING

WEIGHT and BALANCE

2.01.40 SEQ 145

REV 15

P 5

FUEL INDEX TABLE

Note: This table is valid only when used with the following formulae for the index: $I = W \times (Harm - 36.3495)/2500 + K \text{ or } I = [(CG - 25) \times W \times 0.000029] + K \text{ (Weight in kg, Harm in m).}$

WEIGHT							DEN	NSITY (k	n/l)						
(kg)	0.760	0.765	0.770	0.775	0.780	0.785	0.790	0.795	0.800	0.805	0.810	0.815	0.820	0.825	0.830
2000 4000 6000 8000 10000 11000 11000 12000 14000 16000 22000 24000 22000 24000 23000 33000 33000 34000 35000 55000 6000 64500 65500 66500 66500 66500 67000 68000 67000 68000 72250 73000 72250 73000 73250 73500 73500 74500 74500 74500 74500	-2 -4 -6 -8 -9 -8 -6 -4 +1 -1 -1 -2 -4 -6 -8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	$\begin{array}{c} -4468 \\ -99864 \\ -1120 $	-2 -4 -6 -8 -9 -8 -6 -4 +1 +2 +0 -2 -10 -11 -13 -15 -16 -18 -19 -25 -25 -25 -25 -25 -27 -27 -17 -12 -6 -17 -17 -18 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4 +4	-2 -4 -6 -8 -9 -8 -6 -4 +1 +2 +0 -2 -2 -4 -6 -8 -9 -11 -13 -15 -16 -18 -19 -25 -25 -25 -25 -25 -25 -27 -18 +4 +4 +4 +4 +5 +6 +7 +8 +9 +9 +9 +9 +9 +9 +9 +9 +9 +9 +9 +9 +9	-2 -4 -6 -8 -9 -8 -6 -4 +1 +2 +0 -2 +0 -11 -13 -15 -16 -18 -19 -23 -25 -26 -26 -26 -24 -18 -13 -7 +3 +3 +4 +5 +6 +7 +8 +8 +9 +9 +10 +110 +116 +19	$\begin{array}{c} -24 & -68 & -99 & -64 & -41 & -22 & -44 &$	$\begin{array}{c} -24 & -68 & -99 & -64 & -41 & -123 & -123 & -123 & -124 & $	-2 -4 -6 -8 -9 -8 -6 -4 +1 +12 -4 -55 -7 -7 -9 -111 -133 -144 -8 -15 -25 -27 -25 -27 -26 -25 -25 -27 +14 +4 +4 +4 +5 +6 +6 +7 +7 +7 +7 +7 +7 +7 +7 +8 +8 +8 +8 +9 +9	-2 -4 -6 -8 -8 -6 -6 -4 +1 +2 -4 -5 -7 -7 -9 -111 -122 -144 -9 -9 -3 -25 -27 -27 -27 -27 +2 +2 +2 +3 +4 +5 +6 +6 +6 +6 +7 +7 +7 +7 +8 +8 +8 +8 +8 +8 +8 +8 +8 +8 +8 +8 +8	-2 -4 -6 -8 -9 -8 -6 -4 +1 +2 +0 -2 -3 -5 -7 -9 -11 -12 -14 -17 -19 -26 -27 -27 -26 -27 -27 -26 -27 -27 -26 -27 -27 -28 +1 +2 +1 +2 -29 -21 -21 +2 -21 +2 -21 +2 +2 -21 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2	$\begin{array}{c} -2 \\ -4 \\ -6 \\ -8 \\ -9 \\ -6 \\ -4 \\ +1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1 \\ -1$	-2 -4 -6 -8 -9 -8 -6 -4 +1 +3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-2 -4 -6 -8 -9 -8 -6 -4 +1 +3 +1 -1 -3 -5 -7 -9 -10 -12 -15 -17 -28 -27 -21 -15 -10 +0 +1 +1 +3 +1 -1 -15 -17 -19 -26 -27 -21 -21 -21 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	-2 -4 -6 -8 -9 -8 -6 -4 +1 +3 -15 -7 -7 -10 -12 -15 -17 -19 -22 -26 -27 -28 -27 -28 -27 -28 -27 -28 -40 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	$\begin{array}{c} -2 \\ -4 \\ -8 \\ -8 \\ -4 \\ -4 \\ -10 \\ -10 \\ -11 \\ -10 \\$

Continued on next page.

WEIGHT and BALANCE

2.01.40 SEQ 145

REV 15

P 6

FUEL INDEX TABLE CONT'D

WEIGHT							DEI	NSITY (k	g/l)						
(kg)	0.760	0.765	0.770	0.775	0.780	0.785	0.790	0.795	0.800	0.805	0.810	0.815	0.820	0.825	0.830
74750 75000 75250 75500 75550 75500 76500 76750 77000 777500 777500 777500 777500 777500 779500 78250 78250 789500 78250 789500 90250 80500 80500 80500 80750 81000		+36	+30 +33 +36	+25 +28 +31 +34 +37	+19 +22 +25 +28 +31 +34 +37	+14 +16 +19 +22 +25 +28 +31 +34 +37	+10 +11 +14 +17 +20 +23 +32 +35 +38	+9 +9 +10 +11 +14 +17 +20 +29 +35 +35 +38	+8 +9 +9 +10 +115 +120 +23 +26 +29 +35 +38	+8 +8 +8 +9 +9 +9 +10 +12 +15 +18 +21 +24 +27 +30 +33 +36 +39	+7 +7 +8 +8 +9 +9 +10 +15 +18 +21 +27 +30 +33 +36 +39	+7 +7 +7 +7 +8 +8 +8 +9 +10 +13 +16 +19 +22 +25 +27 +30 +33 +37 +40	+6 +6 +6 +7 +7 +7 +8 +8 +8 +9 +10 +110 +125 +25 +28 +31 +37 +40	+5 +66 +66 +77 +77 +77 +88 +89 +91 +114 +119 +225 +258 +31 +34 +37 +40	+5 +55 +66 +66 +7 +77 +77 +88 +99 +114 +177 +223 +229 +335 +38
FULL	+37	+37	+38	+38	+38	+38	+39	+39	+39	+39	+40	+40	+40	+40	+41

WEIGHT and BALANCE

2.01.40

REV 12

P 7

SEQ 130

FUEL INDEX TABLE PER TANK

The fuel index table has been established assuming a fuel distribution in accordance with refuel distribution chart as given in section 2.01.30 of this volume (for a single specific gravity only).

If after refueling the actual distribution deviates from the chart values, the actual and the load sheed CG will show a discrepancy. The following tables allow to determine the fuel index taking into account the actual fuel quantity in each tank. To determine the actual takeoff CG enter the tables with the actual fuel quantites in each tank, read the fuel index for each tank and use their sum to enter the load sheet. Check that the actual CG is inside the operational limits. If CG is outside the limits transfer fuel to achieve a distribution in accordance with the chart or rearrange the load.

Note: These tables are valid only when used with the following formulae for the index: I=Wx(Harm-33.1555)/2500+K or I=[(CG-25)xWx 0.00029]+K(Weight in kg, Harm in m)

Example

DATA: Fuel density = 0.795 kg/lFuel in inner fuel tanks = 28250 kgFuel in outer fuel tanks = 2200 kgFuel in trim tank = 4400 kgFuel in center tank = 21000 kg

		Weight (kg)		Index
lanca toole	Left	28250	_	19
Inner tank	Right	28250	_	19
Outor took	Left	2200	+	4
Outer tank	Right	2200	+	4
Center	tank	21000	_	27
Trim t	ank	4400	+	47
TOTA	AL	86300	_	10

Find the load sheet with a fuel index of -10.

WEIGHT and BALANCE

2.01.40 SEQ 100 P 8

REV 12

FUEL INDEX TABLE FOR INNER TANK

WEIGHT							DEſ	NSITY (k	g/l)						
(kg)	0.760	0.765	0.770	0.775	0.780	0.785	0.790	0.795	0.800	0.805	0.810	0.815	0.820	0.825	0.830
1000 2000 3000 4000 5000 6000 7000 8000 9000 11000 11200 13000 14000 15000 16000 17000 18000 20000 21000 21000 23000 24000 25000 25000 27000 28000 27000 28000 27000 28000 31000	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -112 -133 -15 -16 -18 -19 -19 -18 -18 -17 -16 -18 -17 -16 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -17 -16 -18 -18 -18 -17 -16 -18 -18 -18 -18 -18 -17 -16 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18	-1-2-3-4-5-6-7-8-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -112 -133 -15 -16 -17 -18 -19 -19 -19 -18 -17 -16 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -112 -133 -15 -16 -17 -18 -19 -19 -19 -19 -19 -19 -19 -15 -15 -15 -15 -15 -15 -15 -15 -15 -15	-1 -2 -3 -4 -5 -6 -7 -8 -9 -9 -11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	-1-2-3-4-5-6-7-8-9-0-1-12-3-3-4-4-5-6-7-8-9-0-1-12-3-3-4-4-5-6-7-8-9-9-1-12-3-3-4-4-5-6-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -13 -14 -15 -16 -17 -18 -19 -20 -20 -19 -19 -18 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -13 -14 -15 -16 -17 -18 -19 -20 -20 -19 -18 -17 -18 -19 -20 -19 -19 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	-1 -2 -3 -4 -5 -6 -7 -8 -9 -101 -112 -133 -14 -15 -16 -17 -18 -19 -20 -20 -20 -19 -18 -17 -16 -17 -18 -19 -17 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -13 -14 -15 -16 -17 -18 -19 -20 -20 -20 -20 -20 -19 -18 -17 -18 -19 -19 -19 -19 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -13 -14 -15 -16 -17 -18 -19 -20 -20 -20 -20 -20 -18 -18 -19 -20 -20 -20 -20 -18 -18 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	-1 -2 -3 -3 -4 -4 -5 -6 -6 -7 -7 -8 -9 -10 -111 -15 -16 -17 -18 -19 -20 -20 -20 -20 -20 -19 -19 -18 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -16 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -20 -20 -20 -20 -20 -19 -19 -16 -17 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19	-1 -2 -3 -3 -4 -4 -5 -6 -6 -7 -7 -8 -9 -100 -111 -14 -15 -16 -17 -18 -18 -19 -200 -200 -200 -200 -200 -18 -18 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -20 -21 -21 -21 -20 -20 -19 -19 -19 -17
FULL	-14	-15	-15	-15	-15	-15	-15	-15	-15	-15	-15	-16	-16	-16	-16

WEIGHT and BALANCE

2.01.40 SEQ 100 P 9

REV 12

FUEL INDEX TABLE FOR OUTER TANK

WEIGHT							DEI	NSITY (k	g/l)						
(kg)	0.760	0.765	0.770	0.775	0.780	0.785	0.790	0.795	0.800	0.805	0.810	0.815	0.820	0.825	0.830
100 200 300 500 600 700 1000 1100 1100 1100 1100 1100	+00 +11 +11 +11 +11 +12 +22 +23 +33 +34 +44 +44 +55 566	+00111+1112222233333444445555666 ++111122222333334444445555666	+0 +0 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +2 +3 +3 +3 +4 +4 +4 +5 +5 +6 +6	+00+11+11+11+11+11+11+11+11+11+1+1+1+1+	+001111222223333334444455555666 +11112222233333344444455555666	+0 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +3 +3 +3 +4 +4 +4 +5 +5 +6 +6	+0 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +2 +3 +3 +3 +4 +4 +4 +5 +5 +6 +6	+0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +3 +3 +3 +4 +4 +4 +5 +5 +6 +6 +6	$\begin{array}{c} +0.01 \\ +0.01 \\ +1.01 \\ +1.01 \\ +1.02 \\ +1.02 \\ +1.01 \\ +1.02 \\ +1.02 \\ +1.03 \\ +1.03 \\ +1.03 \\ +1.04 \\$	+0 +0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +2 +2 +3 +3 +3 +3 +4 +4 +4 +4 +5 +5 +6 +6 +6 +6	+00+11+11+112222223333344444555556666 +00+11+11+11222222333333444444555555666666	+00+11+11+11+11+11+11+11+11+11+11+11+11+	+0 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +3 +3 +3 +3 +4 +4 +4 +5 +5 +6 +6 +6	+00 +11 +11 +11 +11 +11 +12 +22 +22 +33 +33 +33 +34 +44 +44 +45 +55 +66 +66 +66 +7	+0 +1 +1 +1 +1 +1 +1 +1 +1 +2 +2 +2 +3 +3 +3 +4 +4 +4 +5 +5 +6 6 +6 6
FULL	+6	+6	+6	+6	+6	+6	+6	+6	+6	+6	+6	+6	+6	+7	+7

WEIGHT and BALANCE

2.01.40 SEQ 200 P 10

REV 12

FUEL INDEX TABLE FOR TRIM TANK

(kg)	WEIGHT							DEI	NSITY (k	g/l)						
2000	(kg)	0.760	0.765	0.770	0.775	0.780	0.785	0.790	0.795	0.800	0.805	0.810	0.815	0.820	0.825	0.830
4100	100 200 300 400 500 600 700 1000 1100 1100 11200 13300 1400 1500 1500 1600 2100 2200 2300 2200 2200 2200 2200 22	+12 +34 +456 +78 +99 +110 +112 +133 +145 +151 +118 +119 +121 +122 +124 +125 +124 +125 +126 +127 +128 +131 +135 +136 +137 +138 +136 +137 +138 +140 +141 +141 +141 +141 +141 +141 +141	$\begin{array}{c} +23\\ +45\\ +66\\ +78\\ +90\\ +112\\ +113\\ +115\\ +120\\ +212\\ +225\\ +220\\ +220\\ +220\\ +331\\ +335\\ +337\\ +442\\ +443\\ +445\\ +449\\ +440$	+12 +34 +45 +45 +410 +112 +134 +155 +120 +131 +155 +150 +150 +150 +150 +150 +150 +15	+1 +2 +3 +45 +6 +7 +8 +9 +10 +112 +13 +145 +15 +17 +18 +19 +21 +22 +23 +25 +27 +28 +29 +31 +32 +33 +37 +38 +40 +41 +42 +43 +44 +44 +45 +48 +49 +40 +41 +41 +41 +41 +41 +41 +41 +41 +41 +41	$\begin{array}{c} +1\\ +23\\ +45\\ +66\\ +78\\ +90\\ +111\\ +113\\ +115\\ +120\\ +122\\ 24\\ +256\\ 27\\ 28\\ 29\\ 24\\ +225\\ 22\\ 24\\ +225\\ 22\\ 24\\ +225\\ 22\\ 24\\ +225\\ 22\\ 24\\ +225\\ 22\\ 24\\ +225\\ 24\\ 24\\ 24\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25\\ 25$	$\begin{array}{c} +1\\ +23\\ +45\\ +66\\ +78\\ +90\\ +112\\ +113\\ +115\\ +120\\ +122\\ +225\\ +220\\ +220\\ +220\\ +33\\ +335\\ +337\\ +442\\ +448\\ +449\\ +$	$\begin{array}{c} +1\\ +23\\ +45\\ +66\\ +78\\ +90\\ +112\\ +134\\ +157\\ +190\\ +112\\ +134\\ +115\\ +112\\ +112\\ +113\\ +115\\ +112\\ +122\\ +125\\ +122\\ +125\\ +122\\ +125\\ $	$\begin{array}{c} +1\\ +23\\ +45\\ +66\\ +78\\ +90\\ +112\\ +134\\ +157\\ +190\\ +112\\ +133\\ +115\\ +118\\ +190\\ +223\\ +225\\ +220\\ +220\\ +331\\ +335\\ +337\\ +339\\ +442\\ +444\\ +449\\ $	$\begin{array}{c} +1\\ +23\\ +45\\ +66\\ +78\\ +90\\ +112\\ +134\\ +157\\ +190\\ +112\\ +133\\ +115\\ +120\\ +223\\ +225\\ +220\\ +220\\ +220\\ +331\\ +334\\ +367\\ +339\\ +442\\ +449\\ $	+12 +3 +45 +66 +77 +89 +100 +111 +111 +115 +122 +133 +144 +155 +26 +27 +28 +29 +30 +31 +32 +33 +34 +36 +37 +37 +38 +49 +40 +41 +41 +41 +41 +41 +41 +41 +41 +41 +41	+1 +2 +3 +46 +5 +6 +7 +8 +9 +10 +112 +13 +14 +15 +17 +18 +19 +20 +21 +22 +23 +25 +26 +27 +28 +31 +32 +33 +34 +36 +37 +38 +39 +40 +41 +41 +42 +43 +44 +45 +46 +47 +48 +49 +49 +40 +41 +41 +41 +41 +41 +41 +41 +41 +41 +41	+1 +2 +3 +4 +45 +66 +77 +8 +9 +10 +11 +11 +11 +15 +13 +14 +15 +12 +21 +22 +23 +24 +25 +26 +27 +28 +29 +30 +31 +31 +31 +31 +31 +31 +31 +31 +31 +31	+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 +112 +13 +14 +15 +17 +18 +19 +21 +22 +23 +25 +27 +28 +29 +31 +32 +33 +34 +36 +37 +38 +40 +41 +42 +43 +45 +47 +48 +49 +50 +51 +52 +55 +55	+1 +2 +3 +45 +6 +7 +8 +9 +10 +112 +13 +145 +15 +17 +18 +19 +21 +22 +23 +24 +25 +27 +28 +29 +31 +32 +33 +34 +37 +38 +37 +40 +41 +42 +43 +45 +47 +48 +49 +49 +51 +52 +55 +55	+12 +33 +44 +55 +66 +77 +89 +100 +111 +122 +133 +144 +155 +200 +217 +217 +222 +233 +244 +245 +247 +255 +247 +310 +311 +312 +313 +314 +314 +315 +314 +315 +314 +315 +314 +315 +314 +315 +315 +315 +315 +315 +315 +315 +315

WEIGHT and BALANCE

2.01.40 SEQ 100 P 11 REV 12

FUEL INDEX TABLE FOR CENTER TANK

(kg)	0.760						DLI	ISITY (k	9/1/						
	0.700	0.765	0.770	0.775	0.780	0.785	0.790	0.795	0.800	0.805	0.810	0.815	0.820	0.825	0.830
1000 2000 3000 4000 5000 6000 7000 8000 9000 11000 12000 13000 14000 15000 16000 17000 18000 21000 22000 23000 24000 25000 26000 27000 28000 29000 31000 31000 31000 31000 33000	-1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -13 -15 -17 -19 -21 -23 -24 -25 -27 -28 -29 -31 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32	-1 -2 -3 -4 -5 -7 -7 -19 -20 -21 -23 -24 -25 -27 -28 -29 -31 -32 -34 -35 -36 -38 -40 -41	0.770 -1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -29 -31 -33 -34 -44 -35 -36 -37 -48 -49 -37 -48 -49 -37 -48 -49 -49 -49 -49 -49 -49 -49 -49	0.775 -1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -29 -31 -32 -33 -35 -36 -38 -40 -41 -43	0.780 -1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -29 -31 -33 -44 -35 -36 -37 -38 -39 -30 -30 -30 -30 -30 -30 -30 -30	0.785 -1 -2 -3 -3 -4 -5 -7 -7 -8 -9 -9 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -29 -31 -32 -33 -35 -36 -38 -39 -39 -41 -43	0.790 -1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -29 -31 -32 -33 -35 -36 -38 -39 -41 -43	0.795 -1 -2 -3 -3 -4 -5 -7 -7 -8 -8 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -31 -32 -24 -25 -27 -28 -31 -32 -35 -36 -38 -38 -39 -41 -43 -43 -45	0.800 -1 -2 -3 -3 -4 -5 -7 -7 -8 -8 -9 -11 -12 -13 -16 -16 -17 -19 -20 -21 -23 -31 -32 -24 -25 -27 -28 -31 -32 -33 -35 -36 -38 -38 -38 -39 -41 -43 -43 -44	0.805 -1 -2 -3 -3 -4 -5 -7 -7 -8 -8 -9 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -31 -32 -24 -25 -27 -28 -31 -32 -33 -35 -36 -38 -38 -39 -41 -43 -43 -44 -43 -44 -43 -44	0.810 -1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -31 -32 -34 -41 -42 -44	0.815 -1 -2 -3 -4 -5 -7 -8 -9 -9 -11 -12 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -31 -32 -36 -38 -39 -41 -42 -44	0.820 -1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -13 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -31 -32 -33 -35 -36 -38 -39 -41 -42 -44	0.825 -1 -2 -3 -4 -5 -7 -8 -11 -12 -13 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -31 -32 -35 -36 -38 -39 -41 -42 -44	0.830 -1 -2 -3 -4 -5 -7 -8 -9 -11 -12 -13 -15 -16 -17 -19 -20 -21 -23 -24 -25 -27 -28 -29 -31 -32 -33 -34 -35 -36 -37 -37 -39 -30 -31 -32 -32 -33 -34 -35 -36 -37 -37 -38 -39 -30 -30 -30 -30 -30 -30 -30 -30
34000 FULL	-43	-43	-43	-44	-44	-44	-44	-45	-45	-45	-46	-46	-46 -46	-46 -46	-46 -47

2.02.00

P 1

CONTENTS

SEQ 001 | REV 10

	02.00	CONTENTS
	02.05	INTRODUCTION
?	02.10	GENERAL (TEMPERATURE ENTRY) - TAKEOFF PERFORMANCE
	02.12	MTOW CALCULATION (TEMPERATURE ENTRY) - DETERMINATION OF MAXIMUM TAKEOFF WEIGHT AND SPEEDS
	02.14	FLEXIBLE TAKEOFF (TEMPERATURE ENTRY) - DEFINITION OF FLEXIBLE TAKEOFF . 1 - USE OF FLEXIBLE TAKEOFF . 1 - REQUIREMENTS . 1 - RECOMMENDATION . 2 - DETERMINATION OF FLEXIBLE TAKEOFF TEMPERATURE AND SPEEDS . 3 - FLEXIBLE TAKEOFF NOT POSSIBLE . 7 - SUMMARY . 8
7	02.16	GENERAL (WEIGHT ENTRY) - TAKEOFF PERFORMANCE
	02.18	MTOW CALCULATION (WEIGHT ENTRY) - DETERMINATION OF MAXIMUM TAKEOFF WEIGHT AND SPEEDS

TAKEOFFCONTENTS

2.02.00 SEQ 100 P 2

REV 17

02.20	FLEXIBLE TAKEOFF (WEIGHT ENTRY)
	DEFINITION OF FLEXIBLE TAKEOFF
	- REQUIREMENTS
	 DETERMINATION OF FLEXIBLE TAKEOFF
	TEMPERATURE AND SPEEDS
	- SUMMARY 8
02.24	QNH/BLEEDS CORRECTION
02.25	MINIMUM SPEEDS
	- MINIMUM V1/VR/V2 LIMITED BY VMC
02.27	DERATED TAKEOFF — DEFINITION OF DERATED TAKEOFF
	- USE OF DERATED TAKEOFF
	- Takeoff Performance improvement by derating the engines
	 DETERMINATION OF THE MAXIMUM TAKEOFF WEIGHT AND
	ASSOCIATED SPEEDS
02.30	QUICK REFERENCE TABLES
	- INTRODUCTION 1
	- USE OF TABLES
	- CONF 1 + F
	- CONF 2
	– CONF 3
02.40	NET TAKEOFF FLIGHT PATH
	- INTRODUCTION
	- CLOSE OBSTACLE CLEARANCE CONF 1 + F 2
	- REMOTE OBSTACLE CLEARANCE CONF 1 + F
	- CLOSE OBSTACLE CLEARANCE CONF 2 4 - REMOTE OBSTACLE CLEARANCE CONF 2 5
	- CLOSE OBSTACLE CLEARANCE CONF 3 6
	- REMOTE ORSTACLE CLEARANCE CONE 3

TAKEOFF CHARTS

Takeoff charts are required to provide performance at takeoff. It is possible to present the charts in two different ways, one of which is selected by the airline. The different presentations are :

- temperature entry (temperature provided in the left column)
- weight entry (weight provided in the left column)

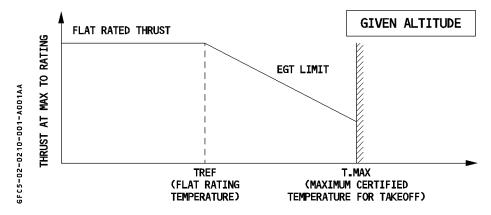
Both presentations are described hereafter. Sections 2.02.10, 2.02.12 and 2.02.14 are relative to temperature entry while 2.02.16, 2.02.18 and 2.02.20 are relative to weight entry.

R The airline may request Airbus to delete any one set of sections from the customized R FCOM.

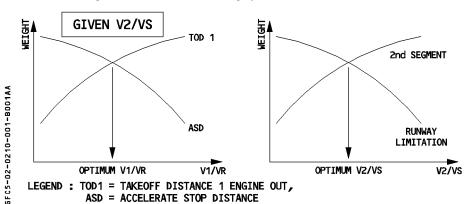
ALL

GENERAL (TEMPERATURE ENTRY)

2.02.10 P 1


SEQ 001

REV 07


TAKEOFF PERFORMANCE

Takeoff optimization is calculated for a given runway and its obstacles and for given conditions of flap setting, temperature, wind and QNH. The calculation produces a maximum permissible takeoff weight (or a maximum takeoff temperature for an actual weight).

The takeoff thrust produced by the engine varies as follows:

The optimization process calculates the speeds which will produce the maximum takeoff weight. To do so, it takes into account the different takeoff limitations, such as TOD, ASD, TOR, second segment..., as shown on the graphs below.

On a typical runway, the performance of a twin engine aircraft is generally limited by the one engine out operation at takeoff. The optimum V2/VS and optimum V1/VR are consequently unique.

R

GENERAL (TEMPERATURE ENTRY)

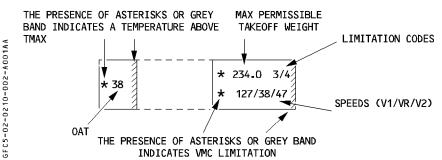
2.02.10

P 2

SEQ 001

REV 10

TAKEOFF CHART DESCRIPTION


The takeoff chart (RTOW: Regulatory Takeoff Weight) is calculated for a specific aircraft version and for a particular runway specified at the top of the chart. The top of the chart also gives some information about the runway and lists the calculation assumptions.

The chart is given for 2 different configurations and 5 wind values per configuration. This allows the crew to select the configuration that gives either:

- the highest permissible takeoff weight, or, for a given weight,
- the highest flexible temperature.

If different configurations give equivalent performance the crew should select the configuration associated with the lowest takeoff speeds.

For each temperature value (and for a given configuration and wind), the chart provides the following information :

The available limitation codes are:

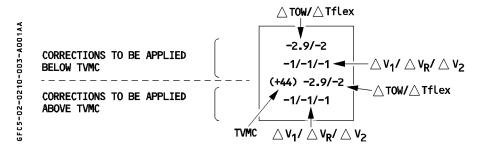
– First segment	: 1
 Second segment 	: 2
– Runway length	: 3
– Obstacles	: 4
– Tire speed	: 5
 Brake energy 	: 6
 Maximum computation weight 	: 7
– Final takeoff	: 8
– VMU	: 9

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

Each takeoff chart is computed for a given set of conditions (air conditioning, QNH, anti ice...) specified at the top of the chart. If the actual takeoff conditions are different, the crew must apply corrections. Two types of corrections are available :

- Conservative corrections on 2.02.24 p 1 (to be used when not provided on the chart).
- $\boldsymbol{-}$ Corrections (less restrictive) listed on the chart, to be applied as explained below.

R


GENERAL (TEMPERATURE ENTRY)

2.02.10 P 3

SEQ 001 | REV 10

DESCRIPTION OF THE CORRECTIONS ON TAKEOFF CHART

The corrections are presented on 4 lines:

TVMC is a temperature value given per column. This is a fictitious value that indicates the temperature above which the speeds are close to a VMC limitation or are VMC limited.

Note: The lower two lines may be shaded on certain chart formats.

R MINIMUM SPEED

- R Minimum V1/VR/V2 due to VMC are provided on the bottom right side of the takeoff chart.
- R They are only applicable in case of speed corrections.
- R These speeds are conservative. They may be slightly higher than V1/VR/V2 displayed on
- R the takeoff chart.

R FLEX TEMPERATURE INDICATOR

- R On the temperature entry chart, the temperature column may display asterisks or have a
- R grey band to indicate temperature values above TMAX and which are flex temperature.

GENERAL (TEMPERATURE ENTRY)

2.02.10

P 4

SEQ 001

REV 10

ADDITIONAL INFORMATION

ONE ENGINE OUT CLIMB PROCEDURE

The performance given in the chart is consistent with the flight path specified for the aircraft with one engine out and takes into account significant obstacles.

When the procedure to be followed is not the standard instrument departure, the chart describes a specific procedure (EOSID).

When the specified procedure requires a turn, except if otherwise stated on the RTOW chart, the turn should be performed with a maximum bank of 15° until the aircraft reaches 1500 feet or green dot.

The acceleration height (or altitude) ensures that the net flight path clears the highest obstacle by at least 35 feet when accelerating in level flight to green dot speed after an engine failure, in the most adverse conditions.

TAKEOFF ON A WET RUNWAY

Takeoff charts computed for wet runway with a 15 feet screen height and/or use of reverse thrust may produce, in some conditions, a maximum takeoff weight (or flexible temperature) higher than that obtained for a dry runway. It is thus mandatory to compare both charts (dry and wet) and retain the lower of the two weights (or flexible temperature) and the associated speeds determined for a wet runway.

Note: The crew need not compare the charts if the top of the WET runway chart specifies "DRY CHECK". (The comparison has already been inserted in the WET runway calculation).

TAKEOFF CONDITIONS 198.0 3/4 152/53/56 TAILWIND TAILWIND WIND HEADWIND HEADWIND TAILWIND TAILWIND TAILWIND WIND HEADWIND T212.6 4/9 219.8 4/5 224.5 5/9 227.5 4/5 230.8 4/9 216.0 4/4 221.2 3/4 226.6 5/4 228.8 4/5 230.9 4/5 147/47/54 156/57/62 161/62/67 161/62/67 161/62/67 151/52/57 156/56/60 160/60/65 163/63/67 165/67/70 226.7 3/4 227.9 4/3 159/59/63 159/61/65 224.6 3/4 227.9 2/3 156/57/61 159/60/64 217.3 4/9 220.9 4/9 224.3 4/9 208.3 4/4 213.7 4/4 219.2 3/4 222.7 3/4 226.0 2/4 150/50/56 153/53/58 155/55/61 143/44/50 147/48/53 152/53/57 154/56/60 157/58/62 202.7 4/9 209.3 4/3 214.6 4/9 217.7 4/9 221.2 4/9 205.3 4/4 210.6 4/4 216.2 3/4 219.7 3/4 223.1 3/4 146/47/53 148/48/54 150/50/55 154/54/59 142/43/48 146/47/52 150/51/56 153/54/58 155/57/61 179-0 4/9 182.9 4/9 188.0 4/3 191.0 4/3 192.2 3/4 180.2 4/4 184.5 3/4 188.7 4/4 191.4 4/4 194.1 3/4 136/36/42 139/39/44 148/48/53 150/51/55 154/54/58 138/40/44 143/43/47 147/47/51 149/50/53 152/52/55 168.8 4/9 173.1 4/4 176.1 4/4 177.8 4/3 179.9 4/3 169.9 4/4 173.8 4/4 177.5 4/4 179.2 4/4 181.7 4/4 136/36/41 137/37/42 139/39/44 151/51/55 153/53/56 137/38/42 142/43/46 146/46/49 147/48/51 150/50/53 OCTOPUS
(TAKEOFF CHART
PROGRAM)
VERSION &
COMPUTATION
DATE 214.1 4/4 219.3 4/3 224.9 3/4 227.0 4/4 229.5 4/3 149/49/55 153/53/58 158/58/63 158/60/64 162/64/67 189.4 4/3 152/52/55 185.5 4/4 150/50/53 Date V8 +,0/+0 - 3,40/+0 +,0/+0 ABXXXAXX* 182.4 4/9 186.2 4/4 191.2 4/3 194.3 4/3 197.1 4/3 183.7 3/4 188.0 4/4 192.3 4/4 195.2 4/4 137/37/43 138/38/44 148/49/53 151/52/56 153/54/58 139/40/44 143/44/8 147/47/51 150/50/54 775-6 4/9 179-6 4/9 184-8 4/3 186-2 4/3 186-3 4/3 176-8 4/4 181-0 3/4 185-0 4/4 187-6 4/4 137/37/42 138/38/43 147/48/52 151/51/55 154/54/58 138/39/43 142/43/47 147/47/50 148/49/52 172.2 4/9 176.2 4/9 180.0 4/4 181.1 3/4 182.8 3/4 173.4 4/4 177.5 4/4 181.2 4/4 183.5 3/4 136/36/42 139/39/44 141/41/45 151/51/55 154/54/58 138/39/43 142/43/46 146/47/50 149/49/52 Version RUNWAY IDENTIFICATION obstacles DRY CONF 2 (元 RUNWAY CONDITION AND DERATE PURPOSE ZZZ FOR 3000 1 3100 1 3000 RUNWAY CONDITION AIRPORT IDENTIFICATION NAME TORA TODA ASDA USE 212.0 4/9 216.5 4/9 222.1 4/9 225.7 4/9 228.9 4/2 214.1 146/46/53 148/48/55 152/52/58 155/56/61 158/59/64 149/49 OPERATIONAL AIRPORT 489 FT 14 C .08 % LON INFLUENCE OF Elevation Isa temp Rwy slope 00 AIRPORT CHARACTERISTICS ENGINE TYPE CONF 1 + 1013 HPA AC OFF AI OFF ENGINE TAKEOFF CONFIGURATION 209.0 3/4 214.3 4/3 146/46/52 149/49/55 205.7 4/9 212.3 4/3 210.9 4/3 215.5 4/9 148/48/54 148/49/55 0+/5| L, 0+/0+/0+ 0+/0+/0+ 0-/0 /0+ 2-/02-Air conditioning A330XXX Anti-icing AIRCRAFT MODEL D ONH HPA OAT °C 2 -10 *****54 냹 -10 10 2 8 46 2 52 О

MAXIMUM ACC. HEIGHT AND ALT.

.1Kt/1000 Kg

MIN V1/VR/VZ = 120/22/28 CHECK VMU LIMITATION CORRECT. V1/VR/VZ = .1Kt,

LINITATION CODES: 1=1st segment Z=2nd segment 3=rurway length 4=obstacles 5=tire speed 6=brake energy 7=max weight 8=final takeoff 9=WMU MINIMUM VALUES OF V1/VR/V2 TO WHICH TAKEOFF SPEEDS MUST BE LIMITED WHEN DECREMENTS ARE APPLIED

V₁/V_R/V₂ DECREMENTS FOR WEIGHTS BELOW THE LOWEST WEIGHT OF A COLUMN

> IAS) - V_2 (KT IAS) 5) (156)

(153)

농

- VR

IAS) (153)

농

7

LIMITATION CODE

MAX WEIGHT (1000 KG) (179.9)

INFLUENCE CORRECTION \triangle WEIGHT \triangle TFLEX \triangle V1 \triangle WR \triangle V2 (TVMC) \triangle WEIGHT \triangle TFLEX \triangle V1 \triangle V \triangle V \triangle V2

TAKEOFF PARAMETERS

MINIMUM &

Min acc height 784Ft Min QNH alt 1280Ft

1965Ft Max QNH alt 2461Ft

height

Max

(OAT) =29 C (OAT) =52 C

Tref

*MIC

MTOW(1000 KG) codes

V1min/VR/V2(KT)

LABEL FOR INFLUENCE M
DW (1000 KG) DTFLEX V
DV1-DVR-DVZ (KT)
TVMC QAT C)
DW (1000 KG) DTFLEX
DV1-DVR-DVZ (KT)
5

*LIMITATION Tmax

TAKEOFFGENERAL (TEMPERATURE ENTRY)

2.02.10 P 6 SEQ 001 REV 11

R

A330XXX		ENGINE		AIRPORT NAME				Version	DATE	
QNH 1013		1013.00 H	IPA .	Elevation	489 FT	TORA	3000 M	15L	ABXXXXX	X * V8
Air cond. AC OFF		Isa temp	14 C	TODA	3000 M	102				
Anti-icing Al OFF			rwy slope	.08 %	ASDA	3000 M	4 obstacles	DDV		
All reversers operating									DRY	
No revei	No reversers on dry runway									
DAT			CONF 1+F					CONF 2		
С	TAILWIND -10 KT	TAILWIND -5 KT	WIND 0 KT	HEADWIND 10 KT	HEADWIND 20 KT	TAILWIND -10 KT	TAILWIND -5 KT	WIND 0 KT	HEADWIND 10 KT	HEADWIND 20 KT
-20	214.9 3/4	220.3 3/4	225.6 3/4	228.9 3/4	232.3 3/4	215.8 3/4	221.1 3/4	226.3 3/4	229.2 3/4	231.1 3/4
	149/49/56	154/54/60	159/59/64	160/60/66	164/64/69	149/51/56	154/56/61	159/60/64	162/63/68	166/68/72
-10	213.3 3/4 147/47/54	218.7 3/4 152/52/58	224.1 3/4 156/56/62	227.5 3/4 160/60/65	230.8 3/4 162/62/67	214.0 3/4 147/49/55	219.4 3/4 152/54/59	224.6 3/4 156/58/63	227.9 3/4 160/61/65	230.0 3/4 163/65/69
0	211.6 3/4	217.1 3/4	100/00/02					100,00,00	226.5 3/4	228.8 3/4
·	145/45/52	150/50/56				USE FO			157/59/63	161/63/67
10	209.9 3/4 143/43/50	215.5 3/4 148/48/54		OPER	IATION.	AL PUR	POSE		225.0 3/4 155/57/61	227.6 3/4 158/60/65
20	207.9 3/4	214.0 3/4	219.4 3/4	222.8 3/4	226.3 3/4	209.1 3/4	214.5 3/4	219.9 3/4	223.5 3/4	226.3 3/4
	142/43/49	146/46/52	150/50/56	153/53/58	156/56/61	141/44/49	146/48/53	150/52/57	153/55/59	156/58/63
30	205.2 3/4 140/42/48	211.4 3/4 144/45/51	217.1 3/4 148/48/54	220.6 3/4 151/51/56	223.8 3/4 154/54/59	206.8 3/4 139/42/47	212.2 3/4 144/46/51	217.6 3/4 148/50/55	221.1 3/4 151/53/57	224.0 3/4 154/56/61
32	203.3 3/4	209.5 3/4	214.9 3/4	218.4 3/4	221.6 3/4	204.8 3/4	210.1 3/4	215.4 3/4	218.9 3/4	221.7 3/4
32	139/41/48	143/44/50	148/48/53	151/51/56	154/54/59	139/42/47	143/46/51	148/50/54	151/52/57	154/56/60
34	201.5 3/4	207.5 3/4	212.8 3/4	216.1 3/4	219.4 3/4	202.8 3/4	208.0 3/4	213.2 3/4	216.6 3/4	219.4 3/4
	139/41/47 199.5 3/4	143/43/49 205.4 3/4	147/47/53 210.5 3/4	150/50/55 213.8 3/4	153/53/58 217.0 3/4	139/41/47 200.7 3/4	143/45/50 205.8 3/4	147/49/54 210.9 3/4	150/52/56 214.3 3/4	153/56/60 217.0 3/4
36	139/40/46	143/43/49	147/47/52	150/50/55	153/53/58	138/41/46	143/45/50	147/49/53	150/51/56	153/55/59
38	197.5 3/4	203.2 3/4	208.1 3/4	211.3 3/4	214.5 3/4	198.5 3/4	203.5 3/4	208.5 3/4	211.9 3/4	214.5 3/4
	138/39/46 195.4 3/4	142/42/48 200.6 3/4	147/47/52 205.4 3/4	150/50/55 208.6 3/4	152/52/57 211.7 3/4	138/40/46 196.1 3/4	142/44/49 201.0 3/4	147/48/53 205.9 3/4	150/51/55 209.2 3/4	153/54/59 211.8 3/4
40	195.4 3/4 138/39/45	142/42/48	147/47/52	149/49/54	152/52/57	196.1 3/4 138/40/45	142/44/49	146/48/53	149/51/55	152/54/58
42	193.1 3/4	197.9 3/4	202.5 3/4	205.5 3/4	208.5 3/4	193.5 3/4	198.3 3/4	203.1 3/4	206.2 3/4	208.8 3/4
72	138/38/44	142/42/48	146/46/52	148/48/53	151/51/56	138/40/45	142/44/49	146/48/52	149/50/54	152/54/57
44	190.4 3/4	195.1 3/4	199.4 3/4	202.5 4/4	205.4 3/4	190.8 3/4	195.5 3/4	200.1 3/4	203.2 3/4	205.8 3/4
4.0	138/38/44 186.5 3/4	142/42/48 191.1 3/4	145/45/50 195.5 3/4	147/47/52 198.3 4/4	150/50/55 201.4 2/4	138/39/44 187.1 3/4	142/44/48 191.7 3/4	146/48/52 196.1 3/4	149/50/54 199.1 3/4	152/53/57 201.7 3/4
46	137/37/43	141/41/46	144/44/49	145/45/50	150/50/54	137/39/44	141/43/47	146/47/51	149/49/53	152/52/56
48	182.6 3/4	187.0 3/4	191.3 4/4	194.1 4/4	196.9 2/4	183.4 3/4	187.6 3/4	191.9 3/4	194.8 3/4	197.4 3/4
	137/37/42	140/40/45	143/43/48	145/45/50	149/49/53	137/39/43	141/43/47	146/46/50	148/49/53	151/52/55
50	178.6 4/4 135/35/41	182.9 4/4 139/39/44	187.0 4/4 142/42/47	190.0 4/4 144/44/48	192.1 4/4 148/48/52	179.4 3/4 137/38/43	183.5 3/4 141/42/46	187.6 3/4 145/46/49	190.4 3/4 148/48/52	192.8 3/4 151/51/54
EO	174.6 4/4	178.6 4/4	182.6 4/4	185.4 4/4	187.8 2/4	175.3 3/4	179.3 3/4	183.2 3/4	185.8 3/4	188.1 3/4
52	134/34/40	138/38/43	141/41/45	143/43/47	147/47/51	136/38/42	141/41/45	145/45/49	148/48/51	150/50/53
*54	170.3 4/4	174.3 4/4	178.1 4/4	180.7 4/4	183.0 2/4	171.2 3/4	174.9 3/4	178.6 3/4	180.9 3/4	183.0 2/4
لتسا	133/33/39	137/37/42	140/40/44	142/42/46	146/46/50	136/37/41 Y CONDITION	140/41/45	144/44/48	146/46/50	149/49/52
WET	+.0/ +0	+.0/ +0	+.0/ +0	+.0/ +0	+.0/ +0	+.0/ +0	+.0/ +0	+.0/ +0	+.0/ +0	+.0/ +0
	-4/ 0/ 0	-3/ 0/ 0	-2/ +0/ +0	2/ +0/ +0	-3/ +0/ +0	-4/ +0/ +0	-3/ +0/ +0	-3/ +0/ +0	-3/ +0/ +0	-2/ +0/ +0
	(+54)2/-1	(+54)2/-1	(+54)6/-1	(+54)6/-1	(+54)6/-1	(+54)6/-1	(+54)6/-1	(+54)6/-1	(+54)6/-1	(+54)6/-1
D QNH HPA	-4/+0/+0 -3/+0/+0 -2/+0/+0 -2/+0/+0 -2/+0/+0 -3/+0/+0 -3/+0/+0 -3/+0/+0 -3/+0/+0 -3/+0/+0 -3/+0/+0 -2/+0/+0 -3/+0/+0 -3/+0/+0 -2/+0/+0 -3/+0/+0									-2/ +U/ +U
-10	-2.0/ -2	-2.5/ -2	-2.3/ -2	-2.3/ -2	-2.2/ -2	-1.7/ -2	-1.7/ -2	-1.9/ -2	-2.4/ -2	-1.9/ -2
	+0/0/0	0/ 0/ 0	0/ 0/ 0	0/ 0/ 0	0/0/0	0/ 0/ 0	0/ 0/ 0	0/ -1/ -1	0/ -1/ -1	0/ -1/ -1
	(+54) -2.0/-2 +0/ +0/ +0	(+54) -2.5/-2 0/ +0/ +0	(+54) -2.3/-2 0/ +0/ +0	(+54) -2.3/-2 0/ +0/ +0	(+54) -2.3/-2 0/ +0/ +0	(+54) -1.7/-2 0/ +0/ +0	(+54) -1.7/-2 0/ +0/ +0	(+54) -1.9/-2 0/ +0/ +0	(+54) -2.4/-2 0/ +0/ +0	(+54) -1.9/-2 0/ +0/ +0
+10		+1.5/ +0	+1.5/ +0	+1.5/ +0	+1.5/ +0	+1.5/ +1	+1.5/ +0	+1.5/ +0	+1.7/ +0	+1.5/ +0
	+0/+1/+1	+0/ +1/ +1		+1/ +1/ +1	+1/ +1/ +1	+0/ +1/ +1	+0/ +0/ +0	+1/+1/+1	+1/+1/+1	+1/+1/+1
	(+54) +1.2/+0 +0/+1/+1	(+54) +1.3/+0 +0/+1/+1	(+54) +.9/+0 +1/ +1/ +1	(+54) +.9/+0 +1/+1/+1	(+54) +.9/+0 +1/ +1/ +1	(+54) +.9/+0 +0/ +1/ +1	(+54) +.9/+0 +0/+0/+0	(+54) +.9/+0 +1/+1/+1	(+54) +1.0/+0 +1/+1/+1	(+54) +.9/+0 +1/+1/+1
Label for I		+u/ +1/ +1 MTOW(1000 KG		* VMC	+1/ +1/ +1 Tref (OAT)	= 29 C	Hu/ +u/ +u Min acc height		+1/ +1/ +1 Min QNH alt 12	
DW (1000 KG) DTFLEX V1min/VR/V2 (kt) *LIMITATION Tmax (OAT) = 52 C Max acc height 1969				1965 FT	Max QNH alt 24					
DV1-DVR-DV2 (KT) LIMITATION CODES : Min V1/VR/V2 = 120/22/28										
(TVMC 0AT C) 1=1st segment 2=2nd segment 3=runway length 4=obstacles CHECK VMU LIMITATION DW (1000KG) DTFLEX 5=tire speed 6=brake energy 7=max weight 8=final takeoff 9=VMU Correct. V1/VR/V2 = .1 KT/100						KC				
DV1-DVR-DV2 (KT)						NU				
		+						•		

GENERAL (TEMPERATURE ENTRY)

2.02.10

P 7

SEQ 001 | REV 10

INTENTIONALLY LEFT BLANK

MTOW CALCULATION (TEMP. ENTRY)

2.02.12

SEQ 001

REV 10

P 1

DETERMINATION OF MAXIMUM TAKEOFF WEIGHT AND SPEEDS

DIRECT CHART READING

The takeoff chart is computed for a given runway under a set of conditions, which are:

- OAT
- Wind
- Configuration
- QNH, air conditioning, anti ice...

Two configurations are produced on the chart. This enables the crew to select that giving the highest permissible takeoff weight. In case of equivalent performance, retain the configuration giving the lower takeoff speeds.

For a given configuration, enter the chart with the OAT and wind value to determine the maximum permissible weight. For an OAT or wind value not presented on the chart, interpolate between two consecutive temperature rows and/or two consecutive wind columns. Conservative OAT or wind values can also be considered. No extrapolation is allowed.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

Retain the maximum takeoff weight, associated configuration and speeds from above. For conditions different from those of the chart, apply relevant corrections.

CONSERVATIVE CORRECTIONS FOR QNH AND BLEEDS FROM FCOM 2.02.24 p 1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

- 1. For the given wind and temperature conditions, read the maximum takeoff weight (choose the configuration giving the highest weight).
- 2. Apply the published weight correction(s) to the maximum takeoff weight (for each correction) to determine the maximum permissible takeoff weight.
- 3. Read the speeds associated with the maximum permissible takeoff weight by entering the chart with the retained configuration and wind value.

Example 1

 $\begin{array}{ccccc} \text{DATA} &: & \text{OAT} & = & 25^{\circ}\text{C} \\ & & \text{Head Wind} & = & 10 \text{ kt} \end{array}$

Air conditioning ON

QNH = 1013 hPa

R Use the chart from 2.02.10 p 6.

Enter the 10 kt head wind column and interpolate for 25°C, CONF 1+F, Maximum takeoff weight (1000 kg) air conditioning OFF

Enter the 10 kt head wind column and interpolate for 25°C, CONF 2,

Maximum takeoff weight (1000 kg) air conditioning OFF222.3

R

TAKEOFF

MTOW CALCULATION (TEMP. ENTRY)

2.02.12

P 2

SEQ 115 | REV 10

Retain CONF 2 as takeoff configuration.

CORRECTIONS FOR WET OR CONTAMINATED RUNWAYS FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

R CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.10 P 6)

A description of this correction is given on 2.02.10 p3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti ice. A maximum of three corrections can be produced on one chart.

To apply the corrections, proceed as follows:

- 1. Enter the chart with given OAT and wind to determine the maximum takeoff weight before correction.
- 2. Apply the first correction:
 - If OAT is less than or equal to TVMC (line 3), apply $\triangle W$ correction from line 1 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 2.
 - Else, (for OAT greater than TVMC), apply $\triangle W$ correction from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4.
- 3. To combine a second (and third, as applicable) correction:
 - If OAT is less than or equal to TVMC (line 3), apply \triangle W correction from line 1 and \triangle V1/ \triangle VR/ \triangle V2 corrections from line 2.
 - Check that the resulting speeds are higher than the minimum speeds displayed on the RTOW chart and that V2 is higher than the VMU limited speed (FCOM 2.02.25).
 - If OAT is higher than TVMC (line3) or if the above speed check is not fulfilled, apply $\triangle W$ correction from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4. No speed check is required.
- $\underline{\underline{Note}}$: $\underline{\underline{QNH}}$ correction is given for \pm 10 hPa. It is allowed to extrapolate linearly for greater $\underline{\underline{QNH}}$ deviation.
 - When using a takeoff chart with failure cases, it is not allowed to combine two failure cases.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.10 p 6, apply the wet correction first.
 - If asterisk or dotted lines appear in the correction boxes, refer to more conservative corrections provided in the FCOM.
 - No speed check is required for the first correction. However, if the first influence correction follows a conservative FCOM correction, a speed check is required.

R

MTOW CALCULATION (TEMP. ENTRY)

2.02.12

SEQ 001

P 3 REV 10

Example 2

DATA : OAT $= 25^{\circ}$ C Head wind = 10 kt

QNH = 1028 hPa

WET runway

R Use the chart from 2.02.10 p 6.

• Enter the 10 kt head wind column and interpolate for 25°C, CONF 2,

· Retain CONF 2 for takeoff.

 \cdot Read associated speeds as V1 = 152 kt, VR = 154 kt, V2 = 158 kt

· Apply WET correction

Associated speeds.

V1 = 152 kt - 3 = 149 kt

VR = 154 kt - 0 = 154 kt

V2 = 158 kt - 0 = 158 kt

(No speed check required for first correction)

Apply QNH correction

 $V1 = 149 \text{ kt} + 1 \times 15/10 = 150 \text{ kt}$

 $VR = 154 \text{ kt} + 1 \times 15/10 = 156 \text{ kt}$

 $V2 = 158 \text{ kt} + 1 \times 15/10 = 160 \text{ kt}$

· Check that the speeds are higher than minimum speeds from the chart and from VMU table.

	Takeoff Configuration : 2							
	TOW	V1	VR	V2				
TOW (RTOW)	222.3	152	154	158				
FCOM correction(s)								
Intermediate value	222.3	152	154	158				
WET Correction	0.0	- 3	0	0				
Intermediate value	222.3	149	154	158				
QNH Correction	+ 2.6	+ 1	+ 2	+ 2				
Final value	224.9	150	156	160				

MTOW CALCULATION (TEMP. ENTRY)

2.02.12

P 4

SEQ 115

REV 10

COMBINING CORRECTIONS FROM FCOM AND CHART

Proceed as follows:

- Enter the chart with selected configuration, OAT and wind to read the maximum takeoff weight.
- Apply corrections from FCOM to determine an intermediate weight. Interpolate associated speeds for intermediate weight in the same column (same wind and configuration).
- 3. Apply corrections from RTOW chart as explained above.

Example 3

 $\begin{array}{cccc} \hbox{DATA} : \hbox{OAT} & = 25^{\circ}\hbox{C} \\ \hbox{Head wind} & = 10 \hbox{ kt} \end{array}$

Air conditioning ON

QNH = 1028 hPa

WET runway

R 1. Use the chart from 2.02.10 p 6.

Enter the 10 kt head wind column and interpolate for 25°C,	CONF 1+F,
Max TO weight (1000 kg) air conditioning OFF	221.7

Enter the 10 kt head wind column and interpolate for 25°C, CONF 2,

Retain CONF 2 for takeoff configuration.

2. First, apply the correction from FCOM page 2.02.24 p 1.

Interpolate takeoff speeds for 215.2 (1000 kg) in the 10 kt head wind column,

R V1 = 150 kt, VR = 152 kt, V2 = 156 kt

3. Apply WET correction

For OAT $<$ TVMC (54°), \triangle W $=$)
Intermediate weight	

Associated speeds,

V1 = 150 kt - 3 = 147 ktVR = 152 kt - 0 = 152 kt

V2 = 156 kt - 0 = 156 kt

Check that the speeds are higher than minimum speeds from the chart and from VMU table.

Apply QNH correction

Associated speed,

 $V1 = 147 \text{ kt} + 1 \times 15/10 = 148 \text{ kt}$

 $VR = 152 \text{ kt} + 1 \times 15/10 = 154 \text{ kt}$ $V2 = 156 \text{ kt} + 1 \times 15/10 = 158 \text{ kt}$

R

MTOW CALCULATION (TEMP. ENTRY)

2.02.12

P 5 REV 10

SEQ 115 | R

Check that the speeds are higher than minimum speeds from the chart and from VMU table. (It is reminded that if the speed checks are not fulfilled, the corrections must be recalculated using those provided on lines 3 and 4).

Since the speed check is fulfilled:

Maximum permissible takeoff weight = 217.8 (1000 kg)

V1 = 148 kt, VR = 154 kt, V2 = 158 kt.

R R

	Takeoff Configuration : 2						
	TOW V1 VR V2						
TOW (RTOW)	222.3						
FCOM correction(s)	- 7.1						
Intermediate value	215.2	150	152	156			
WET Correction	0.0	- 3	0	0			
Intermediate value	215.2	147	152	156			
QNH Correction	+ 2.6	+ 1	+ 2	+ 2			
Final value	217.8	148	154	158			

EXTRAPOLATION

For a takeoff weight lower than those displayed on the chart, associated speeds are calculated as follows:

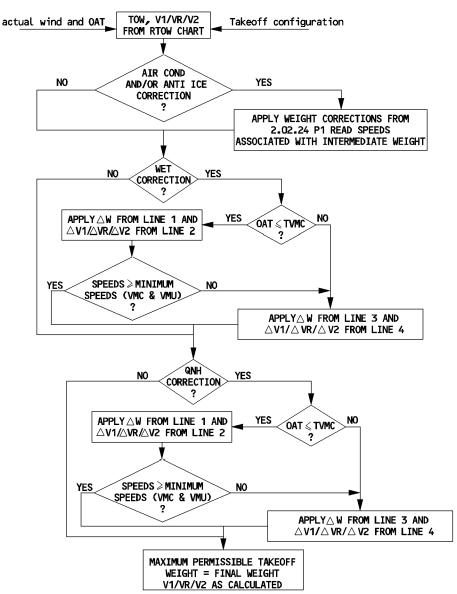
- 1. For given configuration and wind, note the speeds associated with the takeoff weight in the row displaying the highest permissible temperature.
- 2. Apply speed corrections provided at the bottom of the RTOW chart to V1, VR and V2 limited to the minimum speeds.

MAXIMUM STRUCTURAL TAKEOFF WEIGHT

The maximum structural takeoff weight is a weight limitation depending on the aircraft. This limitation is provided in the Flight Manual and in the chapter limitation of the FCOM3. Compare the maximum structural takeoff weight to the maximum permissible takeoff weight computed for given conditions and retain the lower of the two values.

MTOW CALCULATION (TEMP. ENTRY)

2.02.12 SEQ 001


2.12 P 6

REV 07

SUMMARY

R

The following flow diagram gives the different steps to follow.

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14

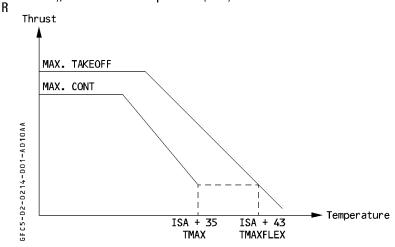
SEQ 010

REV 12

P 1

DEFINITION OF FLEXIBLE TAKEOFF

In many cases the aircraft takes off with a weight lower than the maximum permissible takeoff weight. When this happens, it can meet the required performance (runway, second segment, obstacle,...) with a decreased thrust that is adapted to the weight: this is called FLEXIBLE TAKEOFF and the thrust is called FLEXIBLE TAKEOFF THRUST.


The use of flexible takeoff thrust saves engine life.

USE OF FLEXIBLE TAKEOFF

The pilot can use flexible takeoff when the actual takeoff weight is lower than the maximum permissible takeoff weight for the actual temperature. The maximum permissible takeoff weight decreases when temperature increases, so it is possible to assume a temperature at which the actual takeoff weight would be the limiting one. This temperature is called FLEXIBLE TEMPERATURE or assumed temperature and is entered in the FADEC via the MCDU PERF TO page in order to get the adapted thrust.

REQUIREMENTS

- Thrust must not be reduced by more than 25 % of the full rated takeoff thrust.
- The flexible takeoff N1 cannot be lower than the Max Climb N1 at the same flight conditions.
 - The FADEC takes the above two constraints into account to determine the flexible N1.
- The flexible takeoff thrust cannot be lower than the Max Continuous thrust used for the final takeoff flight path computation (at ISA + 35 at 16600 ft and above).
 - This constraint limits the <u>maximum flexible temperature at ISA + 43</u> (58° C at sea level).
- The flexible temperature cannot be lower than the flat rating temperature, TREF (ISA + 15), or the actual temperature (OAT).

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14

P 2

SEQ 001 | F

REV 24

Flexible takeoff is not permitted on contaminated runways.

 The operator should check the maximum thrust (TOGA) at regular intervals in order to detect any engine deterioration, or maintain an adequate engine performance monitoring program to follow up the engine parameters.

RECOMMENDATION

- In order to extend engine life and save maintenance costs, it is recommended to use flexible thrust reduction.
- · However, to improve the takeoff performance the thrust can be increased by selecting a lower flex temperature.

Using the same takeoff chart, for a given weight, it is possible to :

- Select a temperature lower than the maximum determined one and keep the speeds defined at maximum temperature or,
- Move towards the left side (tailwind) of the takeoff chart while remaining within the same configuration and looking for the same actual takeoff weight at lower temperature.
 This produces a lower flexible temperature and, in general, lower takeoff speeds (V1/VR/V2).

Using one of the two above possibilities, check that the selected temperature is greater than the actual temperature (OAT) and greater than the flat rating temperature (TREF).

TAKEOFF PROCEDURE

Depending on environmental takeoff conditions, the following procedure is recommended.

R

R

CONDITIONS	PROCEDURE	REASON
Dry or wet, well paved runway	 Use the flap setting giving the highest flexible temperature. When flexible temperature difference between two flap settings is low, use the highest flap setting. 	Extend engine life and save maintenance costs.
High altitude takeoff	— Use CONF2/CONF3	Improve comfort.
Badly paved runway or Accelerate stop distance limited runway	 Use CONF2/CONF3 or Move towards left side of the takeoff chart. 	Improve comfort. Improve stopping distance.
Windshear expected along takeoff path	— Use maximum thrust.	Maintain acceleration capability.
Contaminated runway	 Use maximum thrust (flex forbidden). 	Improve stopping distance. Decrease time on runway. Required by regulations.

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14

SEQ 001

P 3 REV 10

DETERMINATION OF FLEXIBLE TAKEOFF TEMPERATURE AND SPEEDS

Before determining the flexible temperature, calculate the maximum permissible takeoff weight (see previous section) and ensure that the actual takeoff weight is lower than the determined maximum takeoff weight.

- Enter the RTOW chart with the wind condition and selected configuration to interpolate for the actual takeoff weight. Read the flexible temperature in the temperature column corresponding to the actual weight.
- · Repeat this process for the other configuration available. Select that configuration giving the highest flexible temperature.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

When the takeoff conditions are different from those provided on the chart, apply the associated corrections.

CONSERVATIVE CORRECTIONS FOR ONH AND BLEEDS FROM FCOM 2.02.24 P 1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

- 1. For a given takeoff weight, wind condition and selected configuration, determine the flexible temperature. Retain the takeoff speeds associated with the actual weight.
- Apply the published temperature correction. To combine two or more corrections, add the different corrections and apply to temperature value. (No speed corrections required).

Example 4

DATA: Actual takeoff weight = 190 000 kg Head wind = 10 kt

Air conditioning ON

QNH = 1013 hPa

R Use the chart from 2.02.10 p 6. Determine the maximum permissible takeoff weight (see example1). The actual weight being lower than the maximum one, flexible takeoff is possible.

Enter the 10 kt head wind column and interpolate for 190 000 kg, CONF 1+F,		
Flexible temperature	50°	С
Enter the 10 kt head wind column and interpolate for 190 000 kg, CONF 2,		
Flexible temperature	50°	С

R R

TAKEOFF

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14

P 4

SEQ 115

REV 23

Equivalent performance is obtained from the two different configurations.
Retain CONF 1 $+$ F as the speeds are lower.
Takeoff speeds are $V1 = 144$ kt, $VR = 144$ kt, $V2 = 148$ kt
Flexible temperature with air conditioning OFF
Air conditioning correction (FCOM 2.02.24 p1)

CORRECTIONS FOR WET RUNWAY FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.10 P6)

A description of this correction is given on 2.02.10 p3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti ice. A maximum of three corrections can be produced on one chart.

To apply the correction, proceed as follows:

- 1. Enter the chart with wind and selected configuration. Interpolate for actual takeoff weight. Read flexible temperature associated with this weight.
- 2. Apply the first correction:

If the flexible temperature is less than or equal to TVMC (line 3), apply \triangle Tflex correction from line 1 and apply speed corrections (\triangle V1/ \triangle VR/ \triangle V2) from line 2.

Else, (flexible temperature greater than TVMC), apply \triangle Tflex from line 3 and \triangle V1/ \triangle VR/ \triangle V2 corrections from line 4.

Check V2 against VMU limitation (FCOM 2.02.25). If V2 is lower than V2 limited by VMU, flexible takeoff is not possible. Set TOGA thrust and retain the speeds associated with maximum permissible takeoff weight or the speeds read in the chart for the actual weight if they are all lower.

<u>No speed correction is required for QNH and bleeds influence</u> (Not applicable to maximum takeoff weight determination).

- 3. To combine a second and/or a third correction, proceed as per point 2.
- 4. Check that the final flexible temperature is :
 - higher than OAT and TREF
 - limited to TMAXFLEX

If the check is fulfilled, retain final flexible temperature as the one to be inserted in the MCDU.

If the check is not fulfilled, (final flexible temperature lower than OAT or TREF), no flexible takeoff is possible.

Use TOGA thrust and retain speeds that have been calculated for the maximum permissible takeoff weight. (See 2.02.14 p7)

- $\underline{\underline{Note}}$: $\underline{\underline{QNH}}$ correction is given for \pm 10 hPa. It is allowed to extrapolate linearly for greater $\underline{\underline{QNH}}$ deviation.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.10 p6, apply the wet influence first.

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14 P 5 SEQ 001 REV 10

Note: — When the flexible temperature is higher than TVMC, it is allowed to limit the flexible temperature to TVMC and apply only corrections from lines 1 and 2.

 If asterisk or dotted lines appear in the correction boxes, refer to more conservative corrections provided in the FCOM.

Example 5

DATA: Actual takeoff weight = 190000 kg

Head wind = 10 ktQNH = 1028 hPa

WET runway

Air conditioning OFF

R Use the chart from 2.02.10 p6. Determine the maximum permissible takeoff weight (see example 2). The actual weight being lower than the maximum one, flexible takeoff is possible.

Enter the 10 kt head wind column and interpolate for 190 000 kg, CONF 2,

Equivalent performance is obtained from the two different configurations.

Retain CONF 1 + F as the speeds are lower.

Takeoff speeds are V1 = 144 kt, VR = 144 kt, V2 = 148 kt

Apply WET correction

Associated speeds,

V1 = 144 kt - 2 = 142 kt

VR = 144 kt - 0 = 144 kt

V2 = 148 kt - 0 = 148 kt

R Since the correction on V2 is 0, no V2 check against VMU limitation is necessary.

Apply QNH correction

Check that OAT/TREF < flex temperature ≤ TMAXFLEX

No speed correction.

Takeoff speeds are V1 = 142 kt. VR = 144 kt. V2 = 148 kt

		Takeoff Configu	uration:1+F	
	Tflex	V1	VR	V2
Chart temperature	50	144	144	148
FCOM correction(s)				
Intermediate value	50	144	144	148
WET Correction	0	– 2	0	0
Intermediate value	50	142	144	148
QNH Correction	0	0	0	0
Final value	50	142	144	148

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14

P 6 REV 23

SEQ 115

COMBINING CORRECTIONS FROM FCOM AND CHART

- 1. Apply corrections from FCOM (see 2.02.24 p1).
- 2. Apply corrections from the RTOW chart. Apply speed corrections except for QNH and bleed influences.

Example 6

DATA: Actual takeoff weight = 190 000 kg

Head wind = 10 kt

Air conditioning ON

ONH = 1028 hPa

WET runway

Use the chart from 2.02.10 p6. Determine the maximum permissible takeoff weight (see example 3). The actual weight being lower than the maximum one, flexible takeoff is possible.

• Enter the 10 kt head wind column and interpolate for 190 000 kg, CONF 1+F,	
Flexible temperature	. 50° C

· Enter the 10 kt head wind column and interpolate for 190 000 kg, CONF 2,

• Equivalent performance is obtained from the two different configurations. Retain CONF 1 + F as the speeds are lower.

Takeoff speeds are V1 = 144 kt, VR = 144 kt, V2 = 148 kt

· First, apply the correction from FCOM page 2.02.24 p1.

No speed correction.

Apply WET correction

Associated speeds,

V1 = 144 kt - 2 = 142 kt

VR = 144 kt - 0 = 144 kt

V2 = 148 kt - 0 = 148 kt

Since the correction on V2 is 0, no V2 check against VMU limitation is necessary.

Apply QNH correction

Maximum flexible temperature

Check that OAT/TREF < flex temperature ≤ TMAXFLEX

No speed correction.

Takeoff speeds are V1 = 142 kt. VR = 144 kt. V2 = 148 kt

R

R

R

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14

P 7 REV 23

SEQ 115 | R

F

	Takeoff Configuration: 1 + F			
	Tflex	V1	VR	V2
Chart temperature	50	144	144	148
FCOM correction(s)	- 6	0	0	0
Intermediate value	44	144	144	148
WET Correction	0	– 2	0	0
Intermediate value	44	142	144	148
QNH Correction	0	0	0	0
Final value	44	142	144	148

FLEXIBLE TAKEOFF NOT POSSIBLE

In some cases when the actual takeoff weight is lower than the maximum permissible one but no flexible takeoff possible (that is flexible temperature lower than TREF or OAT) :

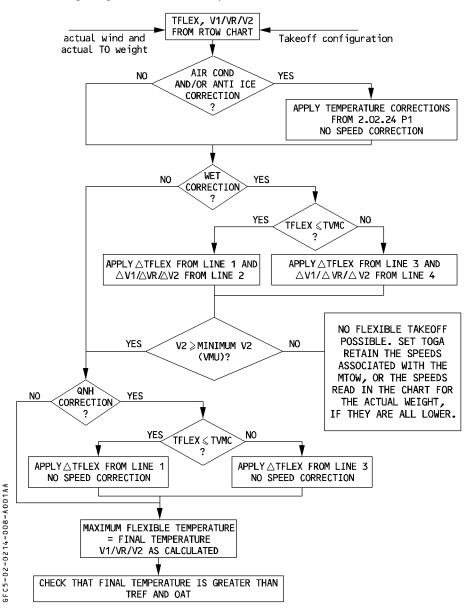
- It is mandatory to use TOGA thrust
- You can retain the speeds that have been calculated for the maximum permissible takeoff weight;

ΩR

 You can retain the speeds associated with the actual takeoff weight provided they are all lower than the speeds calculated for the maximum permissible takeoff weight.

FLEXIBLE TAKEOFF (TEMP. ENTRY)

2.02.14

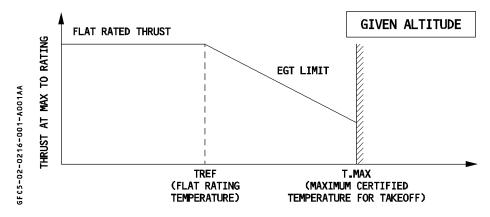

P 8 REV 18

SEQ 001

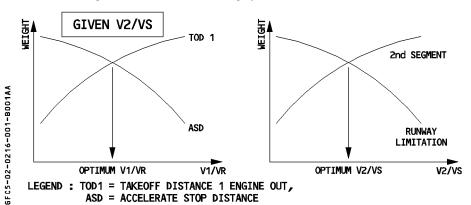
SUMMARY

R

The flow diagram gives the different steps to follow.


TAKEOFF GENERAL (WEIGHT ENTRY)

2.02.16 P 1 SEQ 001 REV 07


TAKEOFF PERFORMANCE

Takeoff optimization is calculated for a given runway and its obstacles and for given conditions of flap setting, temperature, wind and QNH. The calculation produces a maximum permissible takeoff weight (or a maximum takeoff temperature for an actual weight).

The takeoff thrust produced by the engine varies as follows:

The optimization process calculates the speeds which will produce the maximum takeoff weight. To do so, it takes into account the different takeoff limitations, such as TOD, ASD, TOR, second segment..., as shown on the graphs below.

On a typical runway, the performance of a twin engine aircraft is generally limited by the one engine out operation at takeoff. The optimum V2/VS and optimum V1/VR are consequently unique.

2.02.16

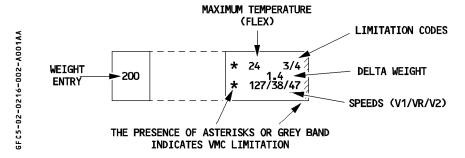
P 2

GENERAL (WEIGHT ENTRY)

TAKEOFF

SEQ 001 | REV 07

TAKEOFF CHART DESCRIPTION


The takeoff chart (RTOW: Regulatory Takeoff Weight) is calculated for a specific aircraft version and for a particular runway specified at the top of the chart. The top of the chart also gives some information about the runway and lists the calculation assumptions.

The chart is given for 2 different configurations and 5 wind values per configuration. This allows the crew to select the configuration that gives either:

- the highest permissible takeoff weight, or, for a given weight,
- the highest flexible temperature.

If different configurations give equivalent performance the crew should select the configuration associated with the lowest takeoff speeds.

The left column of the chart contains weight entry: For each weight entry (and for a given configuration and wind), the chart provides the following information:

<u>Note</u>: The takeoff weight is the sum of the weight entry and the delta weight.

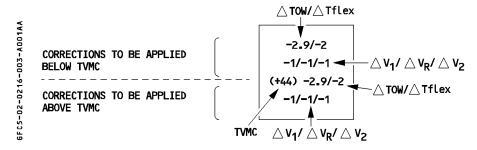
The available limitation codes are: - First segment 1 - Second seament : 2 - Runway length 3 Obstacles : 4 Tire speed : 5 Brake energy : 6 - Maximum computation weight : 7 - Final takeoff : 8 – VMU : 9

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

Each takeoff chart is computed for a given set of conditions (air conditioning, QNH, anti ice...) specified at the top of the chart. If the actual takeoff conditions are different, the crew must apply corrections. Two types of corrections are available :

- Conservative corrections on 2.02.24 p 1 (to be used when not provided on the chart).
- Corrections (less restrictive) listed on the chart, to be applied as explained below.

GENERAL (WEIGHT ENTRY)


2.02.16 P 3

REV 10

SEQ 001

DESCRIPTION OF THE CORRECTIONS ON TAKEOFF CHART

The corrections are presented on 4 lines:

TVMC is a temperature value given per column. This is a fictitious value that indicates the temperature above which the speeds are close to a VMC limitation or are VMC limited.

Note: The lower two lines may be shaded on certain chart formats.

R MINIMUM SPEED

- R Minimum V1/VR/V2 due to VMC are provided on the bottom right side of the takeoff chart.
- R They are only applicable in case of speed corrections.
- R These speeds are conservative. They may be slightly higher than V1/VR/V2 displayed on
- R the takeoff chart.

GENERAL (WEIGHT ENTRY)

2.02.16

P 4

SEQ 001

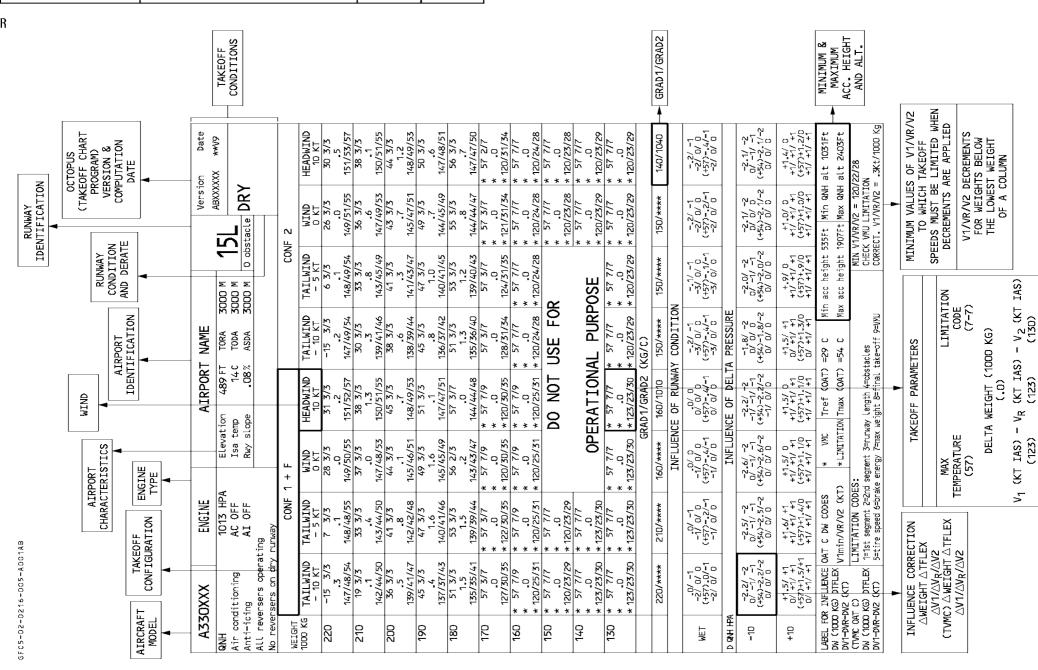
REV 10

ADDITIONAL INFORMATION

ONE ENGINE OUT CLIMB PROCEDURE

The performance given in the chart is consistent with the flight path specified for the aircraft with one engine failure and takes into account significant obstacles.

When the procedure to be followed is not the standard instrument departure, the chart describes a specific procedure (EOSID).


When the specified procedure requires a turn, except if otherwise stated on the RTOW chart, the turn should be performed with a maximum bank of 15° until the aircraft reaches 1500 feet or green dot.

The acceleration height (or altitude) ensures that the net flight path clears the highest obstacle by at least 35 feet when accelerating in level flight to green dot speed after an engine failure, in the most adverse conditions.

TAKEOFF ON A WET RUNWAY

Takeoff charts computed for wet runway with a 15 feet screen height and/or use of reverse thrust may produce, in some conditions, a maximum takeoff weight (or flexible temperature) higher than that obtained for a dry runway. It is thus mandatory to compare both charts (dry and wet) and retain the lower of the two weights (or flexible temperature) and the associated speeds determined for a wet runway.

Note: The crew need not compare the charts if the top of the WET runway chart specifies "DRY CHECK". (The comparison has already been inserted in the WET runway calculation).

TAKEOFFGENERAL (WEIGHT ENTRY)

2.02.16 P 6 SEQ 001 REV 10

N22	BOXXX	ENGINE		VIDDUD	T NAME			Version Date
QNH		00 HPA	Elevation	489 FT	TORA 300	0 M	151	ABXXXXXXX**V9
	AC 0				TODA 300		15L	ADAAAAA V9
Air cond.			lsa temp					-
Anti-icing	AI OF	F	rwy slope	.08 %	ASDA 300	0 M	0 obstacle	DRY
All reversers	, ,							DIII
	s on dry runw							
WEIGHT		CONF	1+F			CON	IF 2	
1000 KG	TAILWIND	TAILWIND	WIND	HEADWIND	TAILWIND	TAILWIND	WIND	HEADWIND
	-10 KT	-5 KT	0 KT	10 KT	-10 KT	-5 KT	0 KT	10 KT
220	-15 3/3	7 3/3	28 3/3	31 3/3	-15 3/3	6 3/3	26 3/3	30 3/3
	.3	.1	.0	.2	.2	.1	.0	.5
	147/48/54	148/48/55	149/50/55	151/52/57	147/49/54	148/49/54	149/51/55	151/53/57
210	19 3/3	33 3/3	37 3/3	38 3/3	30 3/3	33 3/3	36 3/3	38 3/3
	.1	.4	.0	1.3	.3	.8	.6	.1
000	142/44/50 36 3/3	143/44/50 41 3/3	147/48/53 44 3/3	150/51/55 45 3/3	139/41/46 38 3/3	143/45/49 41 3/3	147/49/53 43 3/3	150/51/55 44 3/3
200	.5	.8	.1	.7	.6	.3	43 3/3	1.2
	139/41/47	142/42/48	145/46/51	148/49/53	138/39/44	141/43/47	145/47/51	148/49/53
190	45 3/3	47 3/3	49 3/3	51 3/3	45 3/3	47 3/3	49 3/3	50 3/3
1 130	.4	1.6	1.6	.1	.8	1.0	.7	.6
	137/37/43	140/41/46	145/45/49	147/47/51	136/37/42	140/41/45	144/45/49	147/48/51
180	51 3/3	53 3/3	56 2/3	57 3/7	51 3/3	53 3/3	55 3/3	56 3/3
	1.5	1.5	.2	.0	1.3	1.2	.8	.7
470	135/35/41	139/39/44	143/43/47	144/44/48	135/36/40	139/40/43	144/44/47	147/47/50
170	57 3/7 .0	* 57 3/7 * .0	* 57 7/9 * .0	* 57 7/9 * .0	57 3/7 .0	57 3/7 .0	* 57 3/7 * .0	* 57 2/7 * .0
	127/30/35	* 122/30/35	* 120/30/35	* 120/30/35	128/31/34	124/31/35	* 121/31/34	* 120/31/34
160	* 57 7/9	* 57 7/9	* 57 7/9	* 57 7/9	* 57 7/7	* 57 7/7	* 57 7/7	* 57 7/7
100	* .0	* .0	* .0	* .0	* .0	* .0	* .0	* .0
	* 120/25/31	* 120/25/31	* 120/25/31	* 120/25/31	* 120/24/28	* 120/24/28	* 120/24/28	* 120/24/28
150	* 57 7/7	* 57 7/7					* 57 7/7	* 57 7/7
	* .0 * .0 * .0 * .0							
	* 120/23/29	* 120/23/29					* 120/23/28	* 120/23/28
140	* 57 7/7	* 57 7/7	OPE	ERATION	AL PURPO	OSE	* 57 7/7	* 57 7/7
	* .0 * 123/23/30	* .0 * 123/23/30					* .0 * 120/23/29	* .0 * 120/23/29
130	* 57 <i>7/7</i>	* 57 7/7	* 57 7/7	* 57 7/7	* 57 7/7	* 57 7/7	* 57 7/7	* 57 7/7
130	* .0	* .0	* .0	* .0	* .0	* .0	* .0	* .0
	* 123/23/30	* 123/23/30	* 123/23/30	* 123/23/30	* 120/23/29	* 120/23/29	* 120/23/29	* 120/23/29
				GRAD1/GRA	AD2 (KG/C)			
	220/****	210/****	160/****	160/1010	150/****	150/****	150/****	140/1040
			INFLUENC	E OF RUNWA	CONDITION		I.	
WET	.0/ -1	.0/ -1	.0/ 0	.0/ 0	2/ -1	1/ -1	2/ -1	2/ -1
	-2/ 0/ 0	-1/ 0/ 0	-1/ 0/ 0	0/ 0/ 0	-3/ 0/ 0	-3/ 0/ 0	-2/ 0/ 0	-2/ 0/ 0
	(+57).0/-1	(+57)2/ -1	(+57)4/ -1	(+57)4/ -1	(+57)4/ -1	(+57)1/ -1	(+57)2/ -1	(+57)4/ -1
	-2/ 0/ 0	-1/ 0/ 0	-1/ 0/ 0	0/ 0/ 0	-3/ 0/ 0	-3/ 0/ 0	-2/ 0/ 0	-2/ 0/ 0
D QNH HPA					ELTA PRESSU			
-10	-2.2/ -2	-2.5/ -2	-2.6/ -2	-2.2/ -2	-1.8/ -2	-2.0/ -2	-2.1/ -2	-2.1/ -2
	0/ -1/ -1	0/ -1/ -1	0/ -1/ -1	-1/ -1/ -1	0/ 0/ 0	0/ -1/ -1	0/ 0/ 0	0/ -1/ -1
l !			(+54) -2.6/ -2					
+10	0/ 0/ 0 +1.5/ +1	0/ 0/ 0 +1.6/ +1	0/ 0/ 0 +1.5/ 0	-1/ 0/ 0 +1.5/ 0	0/ 0/ 0 +1.5/ +1	0/ 0/ 0 +.9/ 0	0/ 0/ 0 +1.0/ 0	0/ 0/ 0 +1.4/ 0
+10	0/ +1/ +1	+1/ +1/ +1	+1/ +1/ +1	+1/+1/+1	0/ +1/ +1	+1/+1/+1	+1/+1/+1	+1/+1/+1
	(+57) +1.5/ +1	(+57) +1.4/0	(+57) +1.1/0	(+57) +1.1/0	(+57) +1.3/0	(+57) +.9/0	(+57) +1.0/0	(+57) +1.2/0
[0/ +1/ +1	+1/ +1/ +1	+1/ +1/ +1	+1/+1/+1	0/ +1/ +1	+1/+1/+1	+1/+1/+1/	+1/+1/+1
LABEL FOR INF	LUENCE	OAT C DW CODES	* VIVIC	Tref (OAT) = 29 C	-, ,	Min acc height 535	FT Min QA	JH alt 1031 FT
DW (1000 KG)		V1min/VR/V2 (kt)	*LIMITATION	Tmax (OAT) = 54 (3	Max acc height 190	07 FT Max Q	NH alt 2403 FT
DV1-DVR-DV2 (I	KT)	LIMITATION CODES				Min V1/VR/V2 = 1:		
(TVMC OAT C)	DTELEV		2nd segment 3=ru			CHECK VMU LIMITA		
DW (1000 KG) DV1-DVR-DV2 (I		s=ure speed b=br	ake energy 7=max	weight 8=Tinal take	-on a=AMO	Correct, V1/VR/V2	= .3 KI/1000 KG	
	*	1						

DETERMINATION OF MAXIMUM TAKEOFF WEIGHT AND SPEEDS

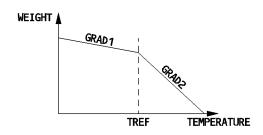
GENERAL

The takeoff chart is computed for a given runway under a set of conditions, which are:

- OAT
- Wind
- Configuration
- QNH, air conditioning, anti ice...

Two configurations are produced on the chart. This enables the crew to select that giving the highest permissible takeoff weight. In case of equivalent performance, retain the configuration giving the lower takeoff speeds.

MTOW DETERMINATION


Enter the chart with the first configuration and actual wind column reading the temperature value. This temperature value stands for the OAT. Read the maximum takeoff weight corresponding to the actual OAT. Note that it is allowed to interpolate between two consecutive lines to obtain the maximum takeoff weight.

It is reminded that the takeoff weight is the sum of the weight entry and the delta weight. Similarly determine the takeoff speeds associated with the maximum takeoff weight. In somes cases, it may happen that the first temperature value (displayed for the highest weight entry) is higher than OAT. In this case, it is allowed to extrapolate the weight value to avoid unnecessary penalty. Use the Grad 1/Grad 2 gradients provided at the bottom of the corresponding column.

Correction to weight

Grad 1/Grad 2 are gradients provided for both sides of the flat rating temperature (TREF). Grad 1 applies to temperatures below TREF and Grad 2 applies above TREF. Read the lowest temperature of the column (corresponding to the highest weight entry).

If the lowest temperature and OAT are above TREF.
 Obtain weight increment by multiplying Grad 2 by the difference in temperature between OAT and lowest temperature. Add this weight increment to the maximum takeoff weight calculated for the lowest temperature.

MTOW CALCULATION (WEIGHT ENTRY)

2.02.18

P 2

SEQ 001

REV 10

· If the lowest temperature and OAT are below TREF. Obtain weight increment by multiplying Grad 1 by the difference in temperature between OAT and lowest temperature. Add this weight increment to the maximum takeoff weight calculated for the lowest temperature.

If OAT is below TREF and lowest temperature is above TREF. The weight increment is calculated in two steps. Step one is multiplying Grad 2 by temperature difference between lowest temperature and TREF. Step two is multiplying Grad 1 by temperature difference between TREF and OAT. Add results from step one and two to maximum takeoff weight calculated for lowest temperature.

Note: Use the weight gradients only to extrapolate above the maximum weight shown in the RTOW chart. They are not valid for interpolation between two boxes, between filled boxes or between one filled and one blank box.

- Repeat the above process for the other available configuration and retain the configuration giving the highest takeoff weight.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

Retain the maximum takeoff weight, associated configuration and speeds from above. For conditions different from those of the chart, apply relevant corrections.

CONSERVATIVE CORRECTIONS FOR QNH AND BLEEDS FROM FCOM 2.02.24 p 1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

- 1. For the given wind and temperature conditions, determine the maximum takeoff weight (choose the configuration giving the highest weight).
- 2. Apply the published weight correction(s) to the maximum takeoff weight (for each correction) to determine the maximum permissible takeoff weight.
- 3. Read the speeds associated with the maximum permissible takeoff weight by entering the chart with the retained configuration and weight value.

Example A

DATA: OAT $= 25^{\circ}C$ = 10 ktHead Wind

Air conditioning ON

QNH = 1013 hPa

R Use the chart from 2.02.16 p 6.

Enter the 10 kt head wind column, CONF 1+F, to read for 25°C.

The lowest temperature of the column is 31°C, use Grad 1/Grad 2 to extrapolate the maximum takeoff weight.

Max TO weight (1000 kg) air conditioning OFF = $220.2+1.010\times2+0.160\times4=222.9$ Enter the 10 kt head wind column, CONF 2, to read for 25°C.

The lowest temperature of the column is 30°C, use Grad 1/Grad 2 to extrapolate the maximum takeoff weight.

Max TO weight (1000 kg) air conditioning $0FF = 220.5 + 1.040 \times 1 + 0.140 \times 4 = 222.1$

AIRBUS TRAINING A330	TAKEOFF	2.02.18	P 3
A330 SIMULATOR FLIGHT CREW OPERATING MANUAL	MTOW CALCULATION (WEIGHT ENTRY)	SEQ 115	REV 10

R V1 = 150 kt. VR = 152 kt. V2 = 156 kt.

CORRECTIONS FOR WET OR CONTAMINATED RUNWAYS FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

R CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.16 P 6)

A description of this correction is given on 2.02.16 p3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti ice. A maximum of three corrections can be produced on one chart.

To apply the corrections, proceed as follows:

- Determine the maximum takeoff weight before correction for the given OAT and wind condition.
- 2. Apply the first correction:
 - If OAT is less than or equal to TVMC (line 3), apply $\triangle W$ correction from line 1 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 2.
 - Else, (for OAT greater than TVMC), apply $\triangle W$ correction from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4.
- 3. To combine a second (and third, as applicable) correction :
 - If OAT is less than or equal to TVMC (line 3), apply $\triangle W$ correction from line 1 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 2.
 - Check that the resulting speeds are higher than the minimum speeds displayed on the RTOW chart and that V2 is higher than the VMU limited speed (FCOM 2.02.25).
 - If OAT is higher than TVMC (line3) or if the above speed check is not fulfilled, apply $\triangle W$ correction from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4. No speed check is required.
- $\underline{\underline{Note}}$: QNH correction is given for \pm 10 hPa. It is allowed to extrapolate linearly for greater QNH deviation.
 - When using a takeoff chart with failure cases, it is not allowed to combine two failure cases.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.16 p6, apply the wet correction first.
 - If asterisk or dotted lines appear in the correction boxes, refer to more conservative corrections provided in the FCOM.
 - No speed check is required for the first correction. However, if the first influence correction follows a conservative FCOM correction, a speed check is required.

MTOW CALCULATION (WEIGHT ENTRY)

2.02.18

P 4

SEQ 001

REV 10

Example B

DATA: OAT = 35°C Head wind = 10 kt QNH = 998 hPa WET runway

R Use the chart from 2.02.16 p 6.

- · Retain CONF 1+F for takeoff.
- \cdot Read associated speeds as V1 = 150 kt, VR = 151 kt, V2 = 156 kt
- · Apply WET correction

V1 = 150 kt - 0 = 150 kt VR = 151 kt - 0 = 151 kt V2 = 156 kt - 0 = 156 kt

(No speed check required for first correction)

· Apply QNH correction

V1 = 150 kt - 1 × 15/10 = 148 kt VR = 151 kt - 1 × 15/10 = 150 kt V2 = 156 kt - 1 × 15/10 = 155 kt

· Check that the speeds are higher than minimum speeds from the chart and from VMU table.

	Takeoff Configuration : 1+F								
	TOW	TOW V1 VR V2							
TOW (RTOW)	215.1	150	151	156					
FCOM correction(s)									
Intermediate value	215.1	150	151	156					
WET Correction	0.0	0	0	0					
Intermediate value	215.1	150	151	156					
QNH Correction	- 3.3	– 2	– 1	– 1					
Final value	211.8	148	150	155					

A330	TAKEOFF	2.02.18	P 5	
SIMULATOR FLIGHT CREW OPERATING MANUAL	MTOW CALCULATION (WEIGHT ENTRY)	SEQ 115	REV 10	

COMBINING CORRECTIONS FROM FCOM AND CHART

Proceed as follows:

- 1. Determine the maximum takeoff weight by entering the chart with selected configuration, OAT and wind.
- 2. Apply corrections from FCOM to determine an intermediate weight. Interpolate associated speeds for intermediate weight in the same column (same wind and configuration).
- 3. Apply corrections from RTOW chart as explained above.

	Example C
	$\overline{DATA}: \overline{OAT} = 25^{\circ}C$
	Head wind $= 10 \text{ kt}$
	Air conditioning ON
	QNH = 998 hPa
	WET runway
R	1. Use the chart from 2.02.16 p 6.
	Enter the 10 kt head wind column, CONF 1+F, to read for 25°C
	Max TO weight (1000 kg) air conditioning OFF $=$ 220.2 $+$ 1.010 \times 2 $+$ 0.160 \times 4 $=$
	222.9
	Enter the 10 kt head wind column, CONF 2, to read for 25°C
	Max TO weight (1000 kg) air conditioning OFF= $220.5 + 1.040 \times 1 + 0.140 \times 4 = 0.000$
	222.1
	Retain CONF 1+F for takeoff configuration.
	2. First, apply the correction from FCOM page 2.02.24 p 1.
	Max TO weight (1000 kg) air conditioning OFF
	Air conditioning correction
	Intermediate weight
R	V1 = 150 kt, $VR = 152 kt$, $V2 = 156 kt$
n	3. Apply WET correction
	For OAT $<$ TVMC (57°), \triangle W $=$
	Intermediate weight
	Associated speeds,
R	V1 = 150 kt - 0 = 150 kt
••	VR = 152 kt - 0 = 152 kt
	V2 = 156 kt - 0 = 156 kt
	Check that the speeds are higher than minimum speeds from the chart and from
	VMU table.
	Apply QNH correction
	For OAT < TVMC (54°), $\triangle W = -2.2 \times 15/10 = \dots $
	Maximum permissible takeoff weight
	Associated speed,
R	$V1 = 150 \text{ kt} - 1 \times 15/10 = 148 \text{ kt}$
	$VR = 152 \text{ kt} - 1 \times 15/10 = 151 \text{ kt}$
	$V2 = 156 \text{ kt} - 1 \times 15/10 = 155 \text{ kt}$

MTOW CALCULATION (WEIGHT ENTRY)

2.02.18

P 6

SEQ 115

REV 10

Check that the speeds are higher than minimum speeds from the chart and from VMU table. (It is reminded that if the speed checks are not fulfilled, the corrections must be recalculated using those provided on lines 3 and 4).

Since the speed check is fulfilled:

Maximum permissible takeoff weight = 212.5 (1000 kg)

V1 = 148 kt, VR = 151 kt, V2 = 155 kt.

R R

	Takeoff Configuration: 1+F							
	TOW V1 VR							
TOW (RTOW)	222.9							
FCOM correction(s)	- 7.1							
Intermediate value	215.8	150	152	156				
WET Correction	0.0	0	0	0				
Intermediate value	215.8	150	152	156				
QNH Correction	- 3.3	– 2	– 1	- 1				
Final value	212.5	148	151	155				

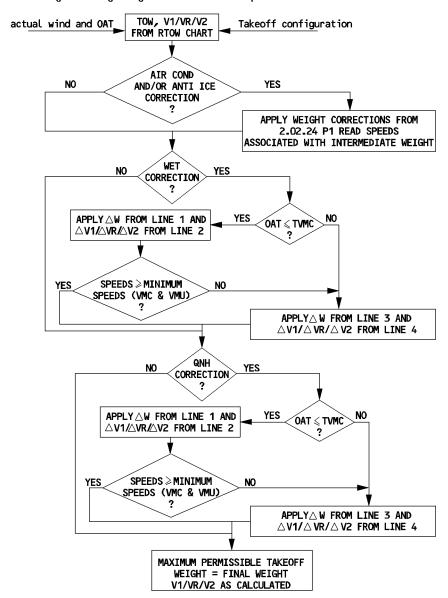
EXTRAPOLATION

For OAT lower than the lowest temperature value at a wind column, it is possible to obtain a higher maximum permissible takeoff weight by using Grad 1/Grad 2 values. See page 1 for more details.

MAXIMUM STRUCTURAL TAKEOFF WEIGHT

The maximum structural takeoff weight is a weight limitation depending on the aircraft. This limitation is provided in the Flight Manual and in the chapter Limitation of the FCOM3. Compare the maximum structural takeoff weight to the maximum permissible takeoff weight computed for given conditions and retain the lower of the two values.

MTOW CALCULATION (WEIGHT ENTRY)


2.02.18

SEQ 001

P 7 REV 07

SUMMARY

The following flow diagram gives the different steps to follow.

AIRBUS TRAINING
A 330
SIMULATOR
FLIGHT CREW OPERATING MANUAL

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20

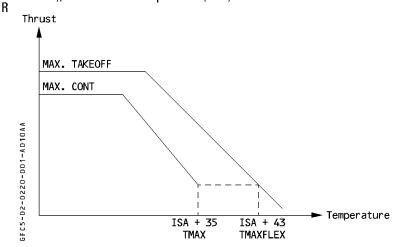
REV 12

P 1

SEQ 010

DEFINITION OF FLEXIBLE TAKEOFF

In many cases the aircraft takes off with a weight lower than the maximum permissible takeoff weight. When this happens, it can meet the required performance (runway, second segment, obstacle,...) with a decreased thrust that is adapted to the weight: this is called FLEXIBLE TAKEOFF and the thrust is called FLEXIBLE TAKEOFF THRUST.


The use of flexible takeoff thrust saves engine life.

USE OF FLEXIBLE TAKEOFF

The pilot can use flexible takeoff when the actual takeoff weight is lower than the maximum permissible takeoff weight for the actual temperature. The maximum permissible takeoff weight decreases when temperature increases, so it is possible to assume a temperature at which the actual takeoff weight would be the limiting one. This temperature is called FLEXIBLE TEMPERATURE or assumed temperature and is entered in the FADEC via the MCDU PERF TO page in order to get the adapted thrust.

REQUIREMENTS

- Thrust must not be reduced by more than 25 % of the full rated takeoff thrust.
- The flexible takeoff N1 cannot be lower than the Max Climb N1 at the same flight conditions.
 - The FADEC takes the above two constraints into account to determine the flexible N1.
- The flexible takeoff thrust cannot be lower than the Max Continuous thrust used for the final takeoff flight path computation (at ISA + 35 at 16600 ft and above).
 - This constraint limits the maximum flexible temperature at ISA \pm 43 (58° C at sea level)
- The flexible temperature cannot be lower than the flat rating temperature, TREF (ISA + 15), or the actual temperature (OAT).

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20

P 2

SEQ 001 REV 24

- Flexible takeoff is not permitted on contaminated runways.
- The operator should check the maximum thrust (TOGA) at regular intervals in order to detect any engine deterioration, or maintain an adequate engine performance monitoring program to follow up the engine parameters.

RECOMMENDATION

· In order to extend engine life and save maintenance costs, it is recommended to use flexible thrust reduction.

· However, to improve the takeoff performance the thrust can be increased by selecting a lower flex temperature.

Using the same takeoff chart, for a given weight, it is possible to :

- Select a temperature lower than the maximum determined one and keep the speeds defined at maximum temperature or.
- Move towards the left side of the takeoff chart (tailwind) while remaining with the same configuration and looking for the same actual takeoff weight. This produces a lower flexible temperature and, in general, lower takeoff speeds

(V1/VR/V2).

Using one of the two above possibilities, check that the selected temperature is greater than the actual temperature (OAT) and greater than the flat rating temperature (TREF).

TAKEOFF PROCEDURE

Depending on environmental takeoff conditions, the following procedure is recommended.

R

R

CONDITIONS	PROCEDURE	REASON		
Dry or wet, well paved runway	 Use the flap setting giving the highest flexible temperature. When flexible temperature difference between two flap settings is low, use the highest flap setting. 	Extend engine life and save maintenance costs.		
High altitude takeoff	— Use CONF2/CONF3	Improve comfort.		
Badly paved runway or Accelerate stop distance limited runway	Use CONF2/CONF3 or Move towards left side of the takeoff chart.	Improve comfort. Improve stopping distance.		
Windshear expected along takeoff path	— Use maximum thrust.	Maintain acceleration capability.		
Contaminated runway	 Use maximum thrust. (flex forbidden). 	Improve stopping distance Decrease time on runway. Required by regulations.		

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20

P 3

SEQ 001

REV 10

DETERMINATION OF FLEXIBLE TAKEOFF TEMPERATURE AND SPEEDS

Before determining the flexible temperature, calculate the maximum permissible takeoff weight (see previous section) and ensure that the actual takeoff weight is lower than the determined maximum takeoff weight.

- · For a given configuration and wind value, enter the RTOW chart with the actual takeoff weight to read the flexible temperature and associated speeds. It is reminded that the takeoff weight is the sum of the weight entry and the delta weight displayed in each box. It is allowed to interpolate between two consecutive rows and/or columns for weight and for wind values not displayed on the chart.
- · Repeat this process for the other configuration available. Select that configuration giving the highest flexible temperature.

CORRECTIONS DUE TO DIFFERENT TAKEOFF CONDITIONS

When the takeoff conditions are different from those provided on the chart, apply the associated corrections.

CONSERVATIVE CORRECTIONS FOR QNH AND BLEEDS FROM FCOM 2.02.24 P1

Corrections are given for QNH \neq 1013 hPa, air conditioning ON, anti ice ON.

= 1013 hPa

- 1. For a given takeoff weight, wind condition and selected configuration, read the flexible temperature. Retain the takeoff speeds associated with the actual weight.
- 2. Apply the published temperature correction. To combine two or more corrections, add the different corrections and apply to temperature value. (No speed corrections required).

Example D

ONH

DATA : Actual takeoff weight = 170 000 kg

Head wind = 10 kt

Air conditioning ON

Use the chart from 2.02.16 p6. Determine the maximum permissible takeoff weight (see example A). The actual weight being lower than the maximum one, flexible takeoff is possible.

R R

TAKEOFF

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20 SEQ 115 P 4

REV 23

Equivalent performance is obtained from the two different configurations.

Retain CONF 1 + F as the speeds are lower.

Takeoff speeds are V1 = 120 kt, VR = 130 kt, V2 = 135 kt

CORRECTIONS FOR WET RUNWAY FROM FCOM 2.04.10

(Refer to FCOM 2.04.10)

CORRECTIONS PRODUCED ON THE RTOW CHART (SEE EXAMPLE ON 2.02.16 P6)

A description of this correction is given on 2.02.16 p3. The list of corrections is not exhaustive, however the most commonly used corrections are wet runway, QNH, air conditioning and/or anti ice. A maximum of three corrections can be produced on one chart.

To apply the correction, proceed as follows:

- 1. Enter the chart with selected configuration, wind and actual takeoff weight to read the flexible temperature associated with this weight.
- 2. Apply the first correction:

If the flexible temperature is less than or equal to TVMC (line 3), apply \triangle Tflex correction from line 1 and apply speed corrections (\triangle V1/ \triangle VR/ \triangle V2) from line 2.

Else, (flexible temperature greater than TVMC), apply $\triangle Tflex$ from line 3 and $\triangle V1/\triangle VR/\triangle V2$ corrections from line 4.

Check V2 against VMU limitation (FCOM 2.02.25). If V2 is lower than V2 limited by VMU, flexible takeoff is not possible. Set TOGA thrust and retain the speeds associated with maximum permissible takeoff weight or the speeds read in the chart for the actual weight if they are all lower.

<u>No speed correction is required for QNH and bleeds influence</u> (Not applicable to maximum takeoff weight determination).

- 3. To combine a second and/or a third correction, proceed as per point 2.
- 4. Check that the final flexible temperature is :
 - higher than OAT and TREF
 - limited to TMAXFLEX

If the check is fulfilled, retain final flexible temperature as the one to be inserted in the MCDU.

If the check is not fulfilled, (final flexible temperature lower than OAT or TREF), no flexible takeoff is possible.

Use TOGA thrust and retain speeds that have been calculated for the maximum permissible takeoff weight. (See 2.02.20 p7)

- Note: $-\Omega NH$ correction is given for \pm 10 hPa. It is allowed to extrapolate linearly for areater ΩNH deviation.
 - Corrections from the chart must be applied from top to bottom, i.e. in the RTOW on 2.02.16 p6, apply the wet influence first.

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20 P 5 SEQ 001 REV 10

<u>Note</u>: — When the flexible temperature is higher than TVMC, it is allowed to limit the flexible temperature to TVMC and apply only corrections from lines 1 and 2.

 If asterisk or dotted lines appear in the correction boxes, refer to more conservative corrections provided in the FCOM.

Example E

DATA: Actual takeoff weight = 190 000 kg

Head wind = 10 ktQNH = 1028 hPa

WET runway

Air conditioning OFF

R Use the chart from 2.02.16 p6. Determine the maximum permissible takeoff weight (see example B). The actual weight being lower than the maximum one, flexible takeoff is possible.

Enter the 10 kt head wind column and interpolate for 190 000 kg, CONF 2,

Retain CONF 1 + F for take off as the flexible temperature is higher.

Takeoff speeds are V1 = 147 kt, VR = 147 kt, V2 = 151 kt

Apply WET correction

Associated speeds,

V1 = 147 kt - 0 = 147 kt

 $VR = 147 \ kt - 0 = 147 \ kt$

V2 = 151 kt - 0 = 151 kt

R Since the correction on V2 is 0, no V2 check against VMU limitation is necessary.

Apply QNH correction

Check that OAT/TREF < flex temperature ≤ TMAXFLEX

No speed correction.

Takeoff speeds are V1 = 147 kt, VR = 147 kt, V2 = 151 kt

	Takeoff Configuration : 1 + F						
	Tflex	V2					
Chart temperature	51	147	147	151			
FCOM correction(s)							
Intermediate value	51	147	147	151			
WET Correction	0	0	0	0			
Intermediate value	51	147	147	151			
QNH Correction	0	0	0	0			
Final value	51	147	147	151			

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20

P 6

SEQ 115

REV 23

C

COMBINING CORRECTIONS FROM FCOM AND CHART

- 1. Apply corrections from FCOM (see 2.02.24 p1).
- 2. Apply corrections from the RTOW chart.

Apply speed corrections except for QNH and bleed influences.

Example F

DATA: Actual takeoff weight = 190 000 kg

Head wind = 10 kt

Air conditioning ON

QNH = 1028 hPa

WET runway

Use the chart from 2.02.16 p6. Determine the maximum permissible takeoff weight (see example C). The actual weight being lower than the maximum one, flexible takeoff is possible.

\cdot Enter the 10 kt head wind column and interpolate for 190 000 kg, CONF 1+F,	
Flexible temperature	51°

 \cdot Retain CONF 1 + F for takeoff as the flexible temperature is higher. Takeoff speeds are V1 = 147 kt, VR = 147 kt, V2 = 151 kt

First, apply the correction from FCOM page 2.02.24 p1.

	Flexible temperature with air conditioning OFF
R	Air conditioning correction
R	Intermediate flexible temperature

No speed correction.

· Apply WET correction

R Intermediate flex ten Associated speeds.

V1 = 147 kt - 0 = 147 kt

VR = 147 kt - 0 = 147 ktV2 = 151 kt - 0 = 151 kt

Since the correction on V2 is 0, no V2 check against VMU limitation is necessary.

· Apply QNH correction

Check that OAT/TREF < flex temperature ≤ TMAXFLEX

No speed correction.

Takeoff speeds are V1 = 147 kt, VR = 147 kt, V2 = 151 kt

FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20 P 7

SEQ 115 | REV 23

R

	Takeoff Configuration : 1 + F						
	Tflex	V2					
Chart temperature	51	147	147	151			
FCOM correction(s)	- 6	0	0	0			
Intermediate value	45	147	147	151			
WET Correction	0	0	0	0			
Intermediate value	45	147	147	151			
QNH Correction	0	0	0	0			
Final value	45	147	147	151			

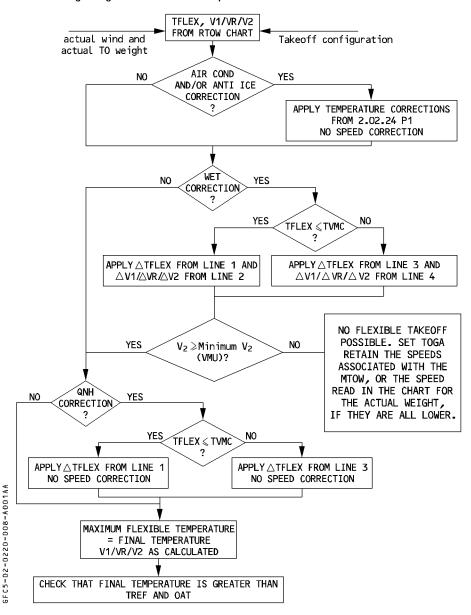
FLEXIBLE TAKEOFF NOT POSSIBLE

In some cases when the actual takeoff weight is lower than the maximum permissible one but no flexible takeoff possible (that is flexible temperature lower than TREF or OAT) :

- It is mandatory to use TOGA thrust
- You can retain the speeds that have been calculated for the maximum permissible takeoff weight;

ΩR

 You can retain the speeds associated with the actual takeoff weight provided they are all lower than the speeds calculated for the maximum permissible takeoff weight.


FLEXIBLE TAKEOFF (WEIGHT ENTRY)

2.02.20 SEQ 001 P 8 REV 19

SUMMARY

R

The flow diagram gives the different steps to follow.

R

TAKEOFF

QNH/BLEEDS CORRECTION

2.02.24

P 1

SEQ 115 REV 23

EFFECT OF QNH AND BLEEDS

To take into account QNH deviation and/or bleeds ON apply

	•					
	CORRECTIONS ON TEMPERATURE IF FLEX T/O IS PERFORMED		CORRECTIONS ON WEIGHT IF T/O WITH FULL THRUST PERFORMED			
	Add 1°C/20 hPa until pressure altitude equals zero. No correction for pressure altitude below 0 ft.	QNH above 1013 hPa	Add 150 kg (350 lb)/hPa until pressure altitude equals zero. Add 30 kg (70 lb)/hPa for pressure altitude below 0 ft.			
	Subtract 1°C/2 hPa	QNH below 1013 hPa	Subtract 300 kg (700 lb)/hPa			
	Subtract 3°C	Engine A/ICE ON *	OAT ≤ ISA + 13°C Subtract 450 kg (1000 lb) OAT > ISA + 13°C Subtract 2200 kg (4900 lb)			
	For pressure altitude below 6000 ft: subtract 6°C For pressure altitude above 6000 ft: subtract 7°C	Total A/ICE ON *	OAT ≤ ISA + 11°C Subtract 2200 kg (4900 lb) OAT > ISA + 11°C Subtract 6500 kg (14300 lb)			
`	Subtract 6°C	Air Conditioning ON	Subtract 7100 kg (15700 lb)			
	,					
2	Compare corrected temp (CT), flat rating temp (T REF) and OAT	o ar	than OAT as flex. temp nd than T REF Take CT as flex. temp limited to ISA + 43°C			
200			dition above No flexible takeoff possible determine MAX TOW			

Note: * Corrections valid only for $OAT < 10^{\circ}C$

Example: Airfield elevation = 450 ft

= 1040 hPa ОИН

Pressure altitude = $450 - (1040 - 1013) \times 28 = -306$ ft

R Correction = 150 kg (350 lb) \times (450/28) + 30 kg (70 lb) \times (306/28) = R

2740 kg (6390 lb)

GFC5-02-0224-001-A115AA

TAKEOFF MINIMUM SPEEDS

2.02.25

P 1

SEQ 225

REV 20

SPEEDS LIMITED BY VMC

Takeoff speeds all have a minimum value limited by control. These minimum control speeds are usually provided on each RTOW chart. If these are not available, use the following conservative values.

Pressure altitude (f		-2000	0	1000	2000	3000	4000	5000	6000	10000	14600	V1 min
CONF 1 +	F	116	115	114	113	111	110	109	107	101	96	=
CONF 2		116	115	114	113	112	110	109	107	101	96	VR min
CONF 3		116	116	114	113	112	111	109	107	102	96	

Pressure altitude (ft)	-2000	0	1000	2000	3000	4000	5000	6000	10000	14600	
CONF 1 + F	119	118	116	115	114	112	111	109	102	96	V2 min
CONF 2	119	118	116	115	114	112	110	109	102	96	
CONF 3	119	118	117	116	114	113	111	109	102	96	

V2 LIMITED BY VMU/VMCA

The following tables, one per configuration, provide the V2 limited by minimum unstick speed and minimum control speed in the air.

TAKEOFFMINIMUM SPEEDS

2.02.25 P 2 SEQ 225 REV 20

MINIMUM V2 LIMITED BY VMU/VMCA (KT IAS)													
CONFIGURATION 1+F													
PRESSURE ALTITUDE (FT)	TAKEOFF WEIGHT (1000 KG)												
	130	140	150	160	170	180	190	200	210	220	230	240	
-2000	119	122	126	130	134	138	142	146	149	153	156	159	
0	118	122	126	130	134	138	142	146	149	153	156	159	
1000	118	122	126	130	134	138	142	146	149	153	156	159	
2000	118	122	126	130	134	138	142	146	149	153	156	159	
3000	118	122	126	130	134	138	142	146	149	153	156	159	
4000	118	122	126	130	134	138	142	146	150	153	156	159	
5000	118	122	126	130	134	138	142	146	150	153	156	159	
6000	118	122	126	130	134	138	142	146	150	153	156	159	
7000	118	122	126	130	134	138	142	146	150	153	156	160	
8000	118	122	126	130	134	138	142	146	150	153	156	160	
9000	118	122	126	130	134	138	142	146	150	153	156	160	
10000	118	122	126	130	134	138	142	146	150	153	156	160	
11000	118	122	126	130	134	138	142	146	150	153	157	160	
12000	118	122	126	130	134	138	142	146	150	153	157	161	
13000	118	122	126	130	134	138	142	146	150	154	157	161	
14000	118	122	126	130	134	138	142	146	150	154	157	161	
14600	118	122	126	130	134	138	142	147	151	154	158	161	

TAKEOFFMINIMUM SPEEDS

2.02.25

P 3

SEQ 225

REV 20

MINIMUM V2 LIMITED BY VMU/VMCA (KT IAS)													
CONFIGURATION 2													
PRESSURE ALTITUDE (FT)	TAKEOFF WEIGHT (1000 KG)												
	130	140	150	160	170	180	190	200	210	220	230	240	
-2000	119	119	120	123	127	130	134	137	141	144	147	150	
0	118	118	120	123	127	130	134	137	141	144	147	150	
1000	116	116	120	123	127	130	134	137	141	144	147	150	
2000	115	116	120	123	127	130	134	138	141	144	147	150	
3000	114	116	120	123	127	130	134	138	141	144	147	151	
4000	112	116	119	123	127	130	134	138	141	144	147	151	
5000	112	116	119	123	127	130	134	138	141	144	147	151	
6000	112	116	119	123	127	130	134	138	141	144	147	151	
7000	112	115	119	123	127	130	134	138	141	144	147	151	
8000	112	115	119	123	127	130	134	138	141	144	147	151	
9000	111	115	119	123	127	130	134	138	141	144	148	151	
10000	111	115	119	123	127	130	134	138	141	145	148	151	
11000	111	115	119	123	127	130	134	138	141	145	148	152	
12000	111	115	119	123	127	130	134	138	142	145	149	152	
13000	111	115	119	123	127	131	134	138	142	145	149	152	
14000	111	116	119	123	127	131	134	138	142	146	149	153	
14600	111	116	119	123	127	131	135	139	142	146	149	153	

TAKEOFFMINIMUM SPEEDS

2.02.25 P 4 SEQ 225 REV 20

	MINIMUM V2 LIMITED BY VMU/VMCA (KT IAS)												
CONFIGURAT	CONFIGURATION 3												
PRESSURE	TAKEOFF WEIGHT (1000 KG)												
ALTITUDE (FT)	130	140	150	160	170	180	190	200	210	220	230	240	
-2000	119	119	119	121	124	127	131	134	138	141	144	147	
0	118	118	118	121	124	127	131	134	138	141	144	147	
1000	117	117	117	121	124	127	131	134	138	141	144	147	
2000	116	116	117	120	124	127	131	134	138	141	144	147	
3000	114	114	117	120	123	127	131	134	138	141	144	147	
4000	113	113	117	120	123	127	131	134	138	141	144	147	
5000	111	113	117	120	123	127	131	134	138	141	144	147	
6000	110	113	116	120	123	127	131	134	138	141	144	147	
7000	109	113	116	120	123	127	131	134	138	141	144	147	
8000	109	113	116	120	123	127	131	134	138	141	144	147	
9000	109	112	116	120	123	127	131	135	138	141	144	147	
10000	109	112	116	120	123	127	131	135	138	141	144	147	
11000	108	112	116	120	123	127	131	135	138	141	144	147	
12000	108	112	116	120	123	127	131	135	138	141	144	148	
13000	108	112	116	120	124	127	131	135	138	142	145	148	
14000	108	112	116	120	124	127	131	135	139	142	145	148	
14600	108	112	116	120	124	127	131	135	139	142	145	149	

DERATED TAKEOFF

2.02.27 SEQ 100

REV 15

P 1

DEFINITION OF DERATED TAKEOFF

A derated takeoff is defined as a takeoff at a thrust setting less than the maximum takeoff thrust, where the AFM provides a set of takeoff limitations and performance data corresponding to a derated thrust setting which complies with all the takeoff requirements of JAR 25.

The N1/EPR values corresponding to each derated takeoff thrust setting are given in the AFM and are considered as a normal takeoff limit.

Six derate levels are defined:

D04, D08, D12, D16, D20 and D24, corresponding to 4, 8, 12, 16, 20 and 24 % decrease from the maximum takeoff thrust.

USE OF DERATED TAKEOFF

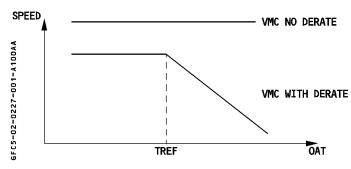
Derated takeoff may be used when the takeoff weight is limited by VMCG, enabling benefit to be taken from the reduction in VMCG associated with the new rating.

The use of flexible thrust is not permitted when derated thrust is used. Moreover the level of derate is entered on the MCDU PERF TO page in the DRT TO/FLX TO field.

- When a derated takeoff is performed, selection of full takeoff thrust by setting thrust levers at TOGA is not permitted below the speeds specified in engine failure procedure
- (FCOM 3.02.10 page 4).

R

R


R

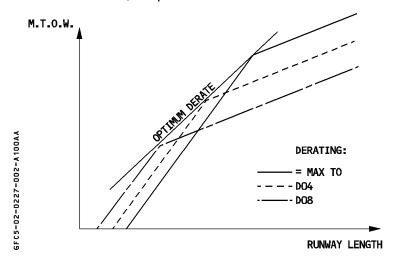
The use of derated takeoff is allowed on dry, wet and contaminated runway.

TAKEOFF PERFORMANCE IMPROVEMENT BY DERATING THE ENGINES

The minimum control speeds VMCG and VMCA are reduced for two reasons :

- The derated thrust is lower than the maximum takeoff thrust
- The effect of temperature on VMCG and VMCA is taken into account (which is not the case for the takeoff without derate, due to the flexible takeoff concept)

2.02.27 SEO 100 P 2


OFF

REV 15

The effect of the derate on the maximum takeoff weight is different depending on whether VMCG or VMCA is limiting. Indeed the effect on maximum takeoff weight is the result of a thrust decrease (downgrading the takeoff performance) and of a VMC decrease (improving the takeoff performance). As VMCG only concerns the accelerate stop distance, the VMCG decrease compensates amply the thrust loss, the VMCG limited weight is then improved by derating.

But as VMCA mainly concerns the airborne phase of the takeoff, the effect of the thrust loss is more important and not compensated by the effect of the VMCA decrease. Therefore derated takeoff would not improve TOW if VMCA limited.

When VMCG limited, an optimum derate can be determined as shown below.

DETERMINATION OF THE MAXIMUM TAKEOFF WEIGHT AND ASSOCIATED SPEEDS

A specific RTOW chart must be computed for each runway on which the derated takeoff is considered. MTOW and associated takeoff speeds will be determined in the RTOW chart.

DETERMINATION OF DERATED TAKEOFF N1/EPR

The following pages give the derated takeoff N1/EPR tables for each derate level. For each concerned runway, it is recommended to determine the optimum derate(s) depending on ambient and runway conditions and to issue the corresponding RTOW chart (example below).

In the following RTOW chart, at 30°C, using a derate of 4 % will give the best takeoff performance.

2.02.27

P 3

SEQ 100 | REV 07

A330XXX	ENGINES		AIRPORT NAME			Version Date
Wind	0 KT	Elevation 489	FT TORA	2300 M	15L	ABXXXXXX
ΩNH	1013.25 HPA	Isa temp 14	C TODA	2300 M	IJL	
Air cond.	AC OFF	rwy slope .06	% ASDA	2300 M	0 obstacle	WATER 1/4"
Anti-icing	AI OFF					CONF 2
All reverse	ers operating					
OAT	NO DERATE	D04	D08	D12	D16	D20
С	NO DENAIE	D04	D00	DIZ	סוט	DZU
0	205.3 3/9	201.9 3/9	199.0 3/9	195.1 3/9	191.0 3/9	186.8 3/9
U	126/37/42	126/36/41	126/36/40	126/35/39	125/33/37	124/32/35
10	* 201.7 3/9	198.4 3/9	194.9 3/9	191.8 3/9	187.9 3/9	183.6 3/9
10	* 125/36/41	124/35/40	124/34/39	124/33/37	123/32/36	123/31/34
	* 198.1 3/9	* 195.0 3/9	191.6 3/9	187.9 3/9	184.7 3/9	180.6 3/9
20	* 123/35/40	* 123/34/39	122/33/38	122/32/36	122/31/35	121/30/33
	* 182.7 3/9	* 191.1 3/9	* 187.8 3/9	184.2 3/9	180.7 3/9	177.2 3/9
30	* 123/29/35	* 121/32/37	* 120/31/36	120/30/35	120/29/33	120/28/32
	* 178.4 3/9	* 189.3 3/9	* 185.9 3/9	182.3 3/9	179.0 3/9	175.4 3/9
32	* 123/27/33	* 120/32/37	* 120/31/35	120/30/34	119/29/33	119/27/31
	* 173.9 3/9	* 187.3 3/9	* 183.9 3/9	180.4 3/9	177.2 3/9	173.5 3/9
34	* 123/26/32	* 120/31/36	* 119/30/35	119/29/33	119/28/32	119/27/31
	* 170.9 3/3	* 185.3 3/9	* 181.9 3/9	178.4 3/9	175.3 3/9	171.5 3/9
36	* 123/26/32	* 119/30/35	* 119/29/34	-, -		118/26/30
				119/28/33	119/27/31	
38	* 167.3 3/3	* 183.3 3/9	* 179.9 3/9	176.6 3/9	173.4 3/9	169.6 3/9
	* 123/26/32	* 119/30/35	* 119/29/33	118/28/32	118/27/31	118/26/29
40	* 163.6 3/3	* 181.3 3/9	* 178.0 3/9	174.8 3/9	171.5 3/9	167.7 3/9
	* 123/26/32	* 118/29/34	* 118/28/32	118/27/31	118/26/30	117/25/28
42	* 160.0 3/3	* 179.4 3/9	* 176.0 3/9	173.2 3/9	169.7 3/9	165.8 3/9
	* 123/26/32	* 118/28/33	* 118/27/32	118/27/31	117/25/29	117/24/28
44	* 156.5 3/3					164.0 3/9
77	* 123/26/32		DO NOT	USE FOR		116/24/27
46	* 152.9 3/3] (OPERATION A	AL PURPOSI	E	162.2 3/9
40	* 123/26/32					116/23/26
10	* 149.4 3/3	* 173.5 3/9	* 170.5 3/9	167.5 3/9	163.9 3/9	160.3 3/9
48	* 123/26/32	* 117/26/31	* 117/26/29	116/25/28	116/24/27	115/22/25
	* 146.3 3/3	* 171.4 3/9	* 168.8 3/9	165.5 3/9	161.9 3/9	158.4 3/9
50	* 123/26/32	* 116/26/30	* 116/25/29	116/24/27	115/23/26	115/22/25
	* 143.0 3/3	* 169.5 3/9	* 166.8 3/9	163.5 3/9	160.0 3/9	156.5 3/9
52	* 123/26/32	* 116/25/29	* 116/24/28	115/23/27	115/22/25	114/21/24
	* 139.7 3/3	* 167.7 3/9	* 164.9 3/9	161.5 3/9	158.1 3/9	* 154.6 3/9
54	* 123/26/32	* 116/25/28	* 115/24/27	115/23/26	115/22/24	* 114/20/23
LABEL FOR IN		MTOW(1000 KG) codes			height 425 FT	Min QNH alt 914 FT
DW (1000 KG	•	V1min/VR/V2 (kt)	*LIMITATION Tmax (0	AT) = 54 C Max acc	height 1966 FT	Max QNH alt 2455 FT
DV1-DVR-DV2 (TVMC OAT C		LIMITATION CODES	nd coamont ? vimi	lanath 4—abatasla-	Min V1/VR/V2 = 123, CHECK VMU LIMITATI	
DW (1000 KG			nd segment 3=runway ike energy 7=max we			
DV1-DVR-DV2	(KT)	9=VMU	Shorgy / max sec			,1000 110
OCTO FCOM-F	0-02-02-27-003-140					

2.02.27 P 4 SEQ 120 REV 08

250.00							OA'	Γ <	OA1	Γ≥	
CF6-80	E1A4	N1 (CORRECT	IONS FO	R AIR BI	LEED	ISA	+ 15	ISA -	+ 15	
D0	4										
DERATED	TO N1	AIR CO	NDITIONIN	IG ON			-,	8	8		
NO AIR E		ENGINE	ANTI-ICE	ON			0.0			6	
MACH=	=.000	ENGINE	ANTI-ICE	AND WI	NG ANTI-	CE ON	0.0 -1.0				
0AT				PRES	SURE A	LTITUDE	(FT)				
(°C)	-2000.	-1000.	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	
-54.0	90.0	91.6	93.2	94.0	94.7	95.5	96.3	97.1	98.0	98.5	
-50.0	90.8	92.4	94.0	94.8	95.5	96.3	97.1	97.9	98.7	99.3	
-46.0	91.6	93.2	94.8	95.6	96.3	97.1	97.9	98.7	99.5	100.1	
-42.0	92.4	94.0	95.6	96.4	97.1	97.9	98.6	99.5	100.3	100.9	
-38.0	93.1	94.8	96.4	97.1	97.8	98.6	99.4	100.2	101.0	101.6	
-34.0	93.9	95.5	97.1	97.9	98.6	99.4	100.1	101.0	101.8	102.3	
-30.0	94.6	96.3	97.9	98.6	99.4	100.1	100.9	101.7	102.5	103.1	
-26.0	95.4	97.0	98.6	99.4	100.1	100.9	101.6	102.4	103.2	103.8	
-22.0	96.1	97.8	99.4	100.1	100.8	101.6	102.3	103.1	103.9	104.5	
-18.0	96.8	98.5	100.1	100.8	101.6	102.3	103.0	103.9	104.7	105.2	
-14.0	97.5	99.2	100.9	101.6	102.3	103.0	103.8	104.6	105.4	105.9	
-10.0	98.2	99.9	101.6	102.3	103.0	103.7	104.5	105.3	106.1	106.7	
-6.0	99.0	100.6	102.3	103.0	103.7	104.4	105.2	106.0	106.8	107.4	
-2.0	99.7	101.4	103.0	103.7	104.4	105.2	105.9	106.7	107.5	108.1	
2.0	100.4	102.1	103.7	104.4	105.1	105.9	106.6	107.4	108.2	108.8	
6.0	101.0	102.7	104.4	105.1	105.8	106.6	107.3	108.1	108.9	109.5	
10.0	101.7	103.4	105.1	105.8	106.5	107.3	108.0	108.8	109.7	110.2	
14.0	102.4	104.1	105.8	106.5	107.2	108.0	108.7	109.5	110.4	110.9	
18.0	103.1	104.8	106.5	107.2	107.9	108.7	109.4	110.2	111.0	110.8	
22.0	103.7	105.5	107.2	107.9	108.6	109.3	110.1	110.0	109.8	109.8	
26.0	104.4	106.1	107.8	108.6	109.3	109.1	108.9	108.9	108.9	108.9	
30.0	105.1	106.8	108.5	108.4	108.2	108.1	108.1	108.1	107.9	107.8	
34.0	105.7	107.0	107.7	107.5	107.3	107.3	107.2	107.1	106.9	106.6	
38.0	105.9	106.7	106.9	106.7	106.5	106.4	106.2	106.1	105.8	105.5	
42.0	106.1	106.4	106.0	105.8	105.6	105.4	105.3	105.3	105.0		
46.0	105.5	105.2	105.0	104.8	104.5						
50.0	104.3	104.1	103.9	103.7	103.4		OA	T < ISA +	15		
54.0	103.4	103.1	102.8					OAT ≥ IS	A + 15	-	

DERATED TAKEOFF

2.02.27 P 5 SEQ 120 REV 08

CF6-80	F1 //						OA'	Γ <	OA1	Γ≥
D0:		N1 (CORRECT	IONS FO	R AIR B	LEED	ISA	+ 15	ISA -	+ 15
DERATED		AIR CO	NDITIONIN	NG ON			-,	.8	8	
NO AIR B			ANTI-ICE				0.0			6
MACH=	= .000		ANTI-ICE		NG ANTI-	ICE ON	0	.0	-1.	.0
OAT	1000			PRES	SURE A	LTITUDE	(FT)			
(°C)	-2000.	-1000.	0.	1000.	2000.	4000.	5000.	6000.	7000.	
-54.0	88.7	90.3	91.9	92.6	93.3	94.1	94.9	95.7	96.6	97.1
-50.0	89.5	91.1	92.6	93.4	94.1	94.9	95.7	96.5	97.3	97.9
-46.0	90.2	91.9	93.4	94.2	94.9	95.7	96.5	97.3	98.1	98.7
-42.0	91.0	92.6	94.2	95.0	95.7	96.5	97.2	98.1	98.9	99.4
-38.0	91.8	93.4	95.0	95.7	96.4	97.2	98.0	98.8	99.6	100.2
-34.0	92.5	94.1	95.7	96.5	97.2	98.0	98.7	99.5	100.4	100.9
-30.0	93.2	94.9	96.5	97.2	97.9	98.7	99.5	100.3	101.1	101.7
-26.0	94.0	95.6	97.2	98.0	98.7	99.4	100.2	101.0	101.8	102.4
-22.0	94.7	96.4	98.0	98.7	99.4	100.2	100.9	101.7	102.5	103.1
-18.0	95.4	97.1	98.7	99.4	100.1	100.9	101.6	102.4	103.2	103.8
-14.0	96.1	97.8	99.4	100.2	100.9	101.6	102.3	103.1	103.9	104.5
-10.0	96.8	98.5	100.2	100.9	101.6	102.3	103.0	103.8	104.6	105.2
-6.0	97.5	99.2	100.9	101.6	102.3	103.0	103.7	104.6	105.4	105.9
-2.0	98.2	99.9	101.6	102.3	103.0	103.7	104.5	105.3	106.1	106.7
2.0	98.9	100.6	102.3	103.0	103.7	104.4	105.2	106.0	106.8	107.4
6.0	99.6	101.3	103.0	103.7	104.4	105.1	105.9	106.7	107.5	108.1
10.0	100.3	102.0	103.7	104.4	105.1	105.8	106.6	107.4	108.2	108.8
14.0	101.0	102.7	104.4	105.1	105.8	106.5	107.3	108.1	108.9	109.5
18.0	101.6	103.4	105.0	105.8	106.5	107.2	107.9	108.8	109.6	109.4
22.0	102.3	104.0	105.7	106.4	107.1	107.9	108.6	108.5	108.4	108.4
26.0	103.0	104.7	106.4	107.1	107.8	107.7	107.5	107.4	107.4	107.4
30.0	103.6	105.4	107.0	107.0	106.7	106.6	106.6	106.7	106.5	106.3
34.0	104.3	105.5	106.2	106.0	105.8	105.8	105.7	105.6	105.4	105.1
38.0	104.4	105.2	105.4	105.2	105.0	104.9	104.7	104.6	104.3	104.0
42.0	104.6	104.9	104.6	104.3	104.1	103.9	103.8	103.9	103.5	
46.0	104.0	103.7	103.5	103.3	103.0					
50.0	102.8	102.6	102.4	102.2	101.9		OA'	T < ISA +		J
54.0	101.8	101.6	101.3				J	OAT ≥ IS	SA + 15	

2.02.27 P 6 SEQ 120 REV 08

050.00	F4 A 4						OA'	Γ <	0A1	⊺ ≥	
CF6-80		N1 (CORRECT	IONS FO	R AIR B	LEED	ISA	+ 15	ISA -	⊦ 15	
D1:	2										
DERATED	TO N1	AIR CO	NDITIONIN	IG ON			8		8		
NO AIR E	ILEED	ENGINE	ANTI-ICE	ON			0.0		1	6	
MACH=	000	ENGINE	ANTI-ICE	AND WI	NG ANTI-	ICE ON	0.0 -1.0				
OAT				PRES	SURE A	LTITUDE	E (FT)				
(°C)	-2000.	-1000.	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	
-54.0	87.3	88.9	90.5	91.2	92.0	92.8	93.5	94.4	95.2	95.7	
-50.0	88.1	89.7	91.3	92.0	92.8	93.5	94.3	95.1	95.9	96.5	
-46.0	88.9	90.5	92.1	92.8	93.5	94.3	95.1	95.9	96.7	97.3	
-42.0	89.7	91.3	92.9	93.6	94.3	95.1	95.8	96.7	97.5	98.0	
-38.0	90.4	92.0	93.6	94.3	95.1	95.8	96.6	97.4	98.2	98.8	
-34.0	91.1	92.8	94.4	95.1	95.8	96.6	97.3	98.1	98.9	99.5	
-30.0	91.9	93.5	95.1	95.8	96.6	97.3	98.1	98.9	99.7	100.2	
-26.0	92.6	94.2	95.8	96.6	97.3	98.0	98.8	99.6	100.4	101.0	
-22.0	93.3	95.0	96.6	97.3	98.0	98.8	99.5	100.3	101.1	101.7	
-18.0	94.0	95.7	97.3	98.0	98.7	99.5	100.2	101.0	101.8	102.4	
-14.0	94.7	96.4	98.0	98.7	99.4	100.2	100.9	101.7	102.5	103.1	
-10.0	95.4	97.1	98.7	99.5	100.1	100.9	101.6	102.4	103.2	103.8	
-6.0	96.1	97.8	99.4	100.2	100.8	101.6	102.3	103.1	103.9	104.5	
-2.0	96.8	98.5	100.1	100.9	101.5	102.3	103.0	103.8	104.7	105.2	
2.0	97.5	99.2	100.8	101.6	102.3	103.0	103.7	104.6	105.4	105.9	
6.0	98.2	99.9	101.5	102.2	102.9	103.7	104.4	105.3	106.1	106.6	
10.0	98.8	100.6	102.2	102.9	103.6	104.4	105.1	106.0	106.8	107.3	
14.0	99.5	101.2	102.9	103.6	104.3	105.1	105.8	106.7	107.5	108.0	
18.0	100.2	101.9	103.6	104.3	105.0	105.8	106.5	107.3	108.2	107.9	
22.0	100.8	102.6	104.2	105.0	105.7	106.4	107.2	107.1	106.9	106.9	
26.0	101.5	103.2	104.9	105.6	106.4	106.2	106.0	106.0	106.0	106.0	
30.0	102.2	103.9	105.6	105.5	105.3	105.2	105.2	105.2	105.0	104.8	
34.0	102.8	104.0	104.7	104.6	104.3	104.4	104.3	104.1	103.9	103.6	
38.0	103.0	103.7	104.0	103.8	103.5	103.5	103.3	103.2	102.8	102.6	
42.0	103.1	103.4	103.1	102.9	102.7	102.4	102.3	102.4	102.1		
46.0	102.5	102.2	102.0	101.8	101.5						
50.0	101.3	101.1	100.9	100.7	100.4		OA.	T < ISA +]	
54.0	100.3	100.1	99.8					OAT ≥ IS	A + 15		

DERATED TAKEOFF

2.02.27 P 7 SEQ 120 REV 08

C FC 00	F4 A A						OA'	Γ <	OA1	_ ≥	
CF6-80		N1 (CORRECT	IONS FO	R AIR B	LEED	ISA	+ 15	ISA -	⊦ 15	
D1											
DERATED	TO N1	AIR CO	NDITIONI	IG ON				.8	8		
NO AIR E	BLEED	ENGINE	ANTI-ICE	ON			0.0		1	ò	
MACH=	=.000	ENGINE	ANTI-ICE	AND WI	NG ANTI-	ICE ON	0	0			
0AT				PRES	SURE A	LTITUDE	E (FT)				
(°C)	-2000.	-1000.	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	
-54.0	86.0	87.6	89.1	89.9	90.6	91.4	92.2	93.0	93.8	94.3	
-50.0	86.8	88.4	89.9	90.7	91.4	92.2	92.9	93.7	94.5	95.1	
-46.0	87.5	89.1	90.7	91.5	92.2	92.9	93.7	94.5	95.3	95.9	
-42.0	88.3	89.9	91.5	92.2	92.9	93.7	94.5	95.3	96.1	96.6	
-38.0	89.0	90.6	92.2	93.0	93.7	94.5	95.2	96.0	96.8	97.4	
-34.0	89.8	91.4	93.0	93.7	94.4	95.2	95.9	96.7	97.5	98.1	
-30.0	90.5	92.1	93.7	94.5	95.2	95.9	96.7	97.5	98.3	98.8	
-26.0	91.2	92.8	94.5	95.2	95.9	96.6	97.4	98.2	99.0	99.5	
-22.0	91.9	93.6	95.2	95.9	96.6	97.4	98.1	98.9	99.7	100.2	
-18.0	92.6	94.3	95.9	96.6	97.3	98.1	98.8	99.6	100.4	100.9	
-14.0	93.3	95.0	96.6	97.3	98.0	98.8	99.5	100.3	101.1	101.7	
-10.0	94.0	95.7	97.3	98.0	98.7	99.5	100.2	101.0	101.8	102.4	
-6.0	94.7	96.4	98.0	98.7	99.4	100.2	100.9	101.7	102.5	103.1	
-2.0	95.4	97.1	98.7	99.4	100.1	100.9	101.6	102.4	103.2	103.8	
2.0	96.1	97.8	99.4	100.1	100.8	101.6	102.3	103.1	103.9	104.5	
6.0	96.7	98.4	100.1	100.8	101.5	102.3	103.0	103.8	104.6	105.2	
10.0	97.4	99.1	100.8	101.5	102.2	102.9	103.7	104.5	105.3	105.9	
14.0	98.1	99.8	101.5	102.2	102.9	103.6	104.4	105.2	106.0	106.6	
18.0	98.7	100.5	102.1	102.9	103.6	104.3	105.0	105.9	106.7	106.5	
22.0	99.4	101.1	102.8	103.5	104.2	105.0	105.7	105.6	105.5	105.5	
26.0	100.0	101.8	103.5	104.2	104.9	104.8	104.6	104.5	104.5	104.5	
30.0	100.7	102.4	104.1	104.0	103.8	103.7	103.7	103.7	103.6	103.4	
34.0	101.3	102.6	103.3	103.1	102.9	102.9	102.8	102.6	102.5	102.2	
38.0	101.5	102.2	102.5	102.3	102.1	102.0	101.8	101.7	101.4	101.1	
42.0	101.6	101.9	101.6	101.4	101.2	101.0	100.8	100.9	100.6		
46.0	101.0	100.7	100.5	100.3	100.0						
50.0	99.8	99.6	99.4	99.2	98.9		OA'	T < ISA +		l	
54.0	98.8	98.6	98.3				l	OAT ≥ IS	SA + 15		

2.02.27 P 8 SEQ 120 REV 08

050.00							OA.	Γ <	OAT	Γ≥	
CF6-80		N1 C	CORRECT	IONS FO	R AIR B	LEED	ISA	+ 15	ISA -	+ 15	
D2	0										
DERATED	TO N1		NDITIONIN					8	8		
NO AIR E	ILEED	ENGINE	ANTI-ICE	ON			0.0			6	
MACH=	000	ENGINE	ANTI-ICE	AND WI	NG ANTI-	ICE ON	0.0 -1.0				
OAT				PRES	SURE A	LTITUDE	E (FT)				
(°C)	-2000.	-1000.	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	
-54.0	84.7	86.3	87.8	88.5	89.3	90.0	90.8	91.6	92.4	93.0	
-50.0	85.4	87.0	88.6	89.3	90.0	90.8	91.6	92.4	93.2	93.7	
-46.0	86.2	87.8	89.4	90.1	90.8	91.6	92.3	93.1	93.9	94.5	
-42.0	86.9	88.5	90.1	90.9	91.6	92.3	93.1	93.9	94.7	95.3	
-38.0	87.7	89.3	90.9	91.6	92.3	93.1	93.8	94.6	95.4	96.0	
-34.0	88.4	90.0	91.6	92.3	93.0	93.8	94.5	95.4	96.1	96.7	
-30.0	89.1	90.7	92.3	93.1	93.8	94.5	95.3	96.1	96.9	97.4	
-26.0	89.8	91.5	93.1	93.8	94.5	95.2	96.0	96.8	97.6	98.1	
-22.0	90.5	92.2	93.8	94.5	95.2	96.0	96.7	97.5	98.3	98.8	
-18.0	91.2	92.9	94.5	95.2	95.9	96.7	97.4	98.2	99.0	99.5	
-14.0	91.9	93.6	95.2	95.9	96.6	97.4	98.1	98.9	99.7	100.2	
-10.0	92.6	94.3	95.9	96.6	97.3	98.1	98.8	99.6	100.4	100.9	
-6.0	93.3	95.0	96.6	97.3	98.0	98.7	99.5	100.3	101.1	101.6	
-2.0	94.0	95.7	97.3	98.0	98.7	99.4	100.2	101.0	101.8	102.4	
2.0	94.6	96.3	98.0	98.7	99.4	100.1	100.9	101.7	102.5	103.1	
6.0	95.3	97.0	98.7	99.4	100.1	100.8	101.6	102.4	103.2	103.7	
10.0	96.0	97.7	99.3	100.1	100.8	101.5	102.2	103.1	103.9	104.4	
14.0	96.6	98.4	100.0	100.7	101.4	102.2	102.9	103.8	104.6	105.1	
18.0	97.3	99.0	100.7	101.4	102.1	102.9	103.6	104.4	105.3	105.0	
22.0	97.9	99.7	101.3	102.1	102.8	103.5	104.3	104.2	104.0	104.0	
26.0	98.6	100.3	102.0	102.7	103.4	103.3	103.1	103.0	103.1	103.0	
30.0	99.2	101.0	102.7	102.6	102.3	102.2	102.2	102.3	102.1	101.9	
34.0	99.8	101.1	101.8	101.6	101.4	101.4	101.3	101.2	101.0	100.7	
38.0	100.0	100.8	101.0	100.8	100.6	100.5	100.3	100.2	99.9	99.6	
42.0	100.2	100.4	100.1	99.9	99.7	99.5	99.3	99.4	99.1		
46.0	99.5	99.2	99.0	98.8	98.5						
50.0	98.3	98.1	97.9	97.6	97.4		OA.	T < ISA +		J	
54.0	97.3	97.1	96.8				J	OAT ≥ IS	A + 15		

DERATED TAKEOFF

2.02.27 P 9 SEQ 120

REV 08

050.00	F4 A 4						OA'	Γ <	OA1	Г≥	
CF6-80		N1 C	CORRECT	IONS FO	R AIR B	LEED	ISA	+ 15	ISA -	+ 15	
D2	4										
DERATED	TO N1		NDITIONIN				-,	8	8		
NO AIR E	BLEED	ENGINE	ANTI-ICE	ON			0.0		1	6	
MACH=	000	ENGINE	ANTI-ICE	AND WI	NG ANTI-	ICE ON	0	.0	-1.	.0	
0AT				PRES	SURE A	LTITUDE	DE (FT)				
(°C)	-2000.	-1000.	0.	1000.	2000.	3000.	4000.	5000.	6000.	7000.	
-54.0	83.4	84.9	86.5	87.2	87.9	88.7	89.4	90.3	91.0	91.6	
-50.0	84.1	85.7	87.2	88.0	88.7	89.5	90.2	91.0	91.8	92.4	
-46.0	84.9	86.4	88.0	88.7	89.5	90.2	91.0	91.8	92.6	93.1	
-42.0	85.6	87.2	88.8	89.5	90.2	91.0	91.7	92.5	93.3	93.9	
-38.0	86.3	87.9	89.5	90.2	90.9	91.7	92.4	93.2	94.0	94.6	
-34.0	87.0	88.6	90.2	91.0	91.7	92.4	93.2	94.0	94.8	95.3	
-30.0	87.7	89.4	91.0	91.7	92.4	93.1	93.9	94.7	95.5	96.0	
-26.0	88.5	90.1	91.7	92.4	93.1	93.9	94.6	95.4	96.2	96.7	
-22.0	89.1	90.8	92.4	93.1	93.8	94.6	95.3	96.1	96.9	97.4	
-18.0	89.8	91.5	93.1	93.8	94.5	95.3	96.0	96.8	97.6	98.1	
-14.0	90.5	92.2	93.8	94.5	95.2	96.0	96.7	97.5	98.3	98.8	
-10.0	91.2	92.9	94.5	95.2	95.9	96.6	97.4	98.2	99.0	99.5	
-6.0	91.9	93.6	95.2	95.9	96.6	97.3	98.0	98.9	99.7	100.2	
-2.0	92.6	94.2	95.9	96.6	97.3	98.0	98.7	99.6	100.4	100.9	
2.0	93.2	94.9	96.6	97.3	98.0	98.7	99.4	100.3	101.1	101.6	
6.0	93.9	95.6	97.2	97.9	98.6	99.4	100.1	100.9	101.8	102.3	
10.0	94.5	96.2	97.9	98.6	99.3	100.1	100.8	101.6	102.4	103.0	
14.0	95.2	96.9	98.6	99.3	100.0	100.7	101.5	102.3	103.1	103.7	
18.0	95.8	97.6	99.2	100.0	100.7	101.4	102.2	103.0	103.8	103.6	
22.0	96.5	98.2	99.9	100.6	101.3	102.1	102.8	102.7	102.6	102.6	
26.0	97.1	98.9	100.5	101.3	102.0	101.9	101.6	101.6	101.6	101.6	
30.0	97.7	99.5	101.2	101.1	100.9	100.8	100.8	100.8	100.6	100.4	
34.0	98.4	99.6	100.3	100.2	99.9	99.9	99.9	99.7	99.5	99.2	
38.0	98.5	99.3	99.5	99.3	99.1	99.0	98.8	98.7	98.4	98.1	
42.0	98.7	98.9	98.6	98.4	98.2	98.0	97.8	97.9	97.6		
46.0	98.0	97.7	97.5	97.3	97.0						
50.0	96.7	96.6	96.4	96.1	95.9		OA	T < ISA +	15		
54.0	95.8	95.5	<i>95.2</i>					OAT ≥ IS	A + 15		

QUICK REFERENCE TABLES

2.02.30

P 1 REV 15

SEQ 001

INTRODUCTION

These tables enable the crew to quickly determine the takeoff performance at an airport for which no takeoff chart has been established. They are conservative.

USE OF TABLES

A first table gives the corrections to be applied to the runway length for wind and runway slope. Nine other tables give, for three different pressure altitudes (0, 1000 and 2000 feet) and three configurations, the maximum takeoff weight, limitation codes and associated speeds as a function of temperature and corrected runway length. TREF and TMAX are given at the top of each table. For pressure altitudes above 2000 feet, use a specific RTOW chart.

- R <u>Note</u>: 1. Quick reference tables are established at V1 min (minimum V1 in the V1 range) with air conditioning OFF and anti ice OFF
 - 2. Do not use quick reference tables in case of tailwind.

HOW TO PROCEED

- 1. Enter the first table with runway length, slope and wind data. Determine the corrected runway length by applying the corrections due to slope and wind.
- 2. Select the configuration as a function of this corrected runway length
- 3. Enter the table(s) corresponding to the configuration and airport pressure altitude. As far as airport pressure altitude is concerned, two methods may be applied:
 - interpolate the takeoff performance by using the two tables enclosing the airport pressure altitude,
 - for a more conservative figure, use the table corresponding to the pressure altitude immediately above the airport pressure altitude.
- 4. Enter the appropriate column of the table(s) with the corrected runway length.

 Once again, two methods may be applied:
 - interpolate the takeoff performance between the two columns enclosing the corrected runway length,
 - for a more conservative figure, use the column corresponding to the shorter corrected runway length.
- 5. Determination of maximum takeoff weight.
 - Enter the table(s) and column(s) as explained above with the actual OAT and read maximum takeoff weight, limitation codes, V1, VR and V2. If necessary interpolate weight and speeds.
- 6. Determination of flexible temperature.
 - The determination of flexible temperature is possible only when there is no obstacle on the flight path. Enter the table(s) and column(s) with the actual takeoff weight and read the corresponding temperature as flexible temperature.
- 7. In case of obstacles, use the graphs from 2.02.40 to determine the corresponding weight penalty.

TAKEOFF QUICK REFERENCE TABLES

2.02.30

1

SEQ 001

REV 06

P 2

LIMITATION CODES

- 1 : first segment

- 2 : second segment

- 3 : runway

5 : tire speed6 : brake energy

- 7 : maximum computation weight

- 8 : final takeoff

- 9: VMU

R

R

R

Note: 1. Limitation code 4 (obstacles) does not appear in quick reference tables.

2. VMC limitation appears with a asterisk (*) in the chart.

CORRECTIONS FOR WIND AND RUNWAY SLOPE

Runw	Runway length (m)		2250	2500	2750	3000	3250	3500	3750	4000
Effect of wind	per knot of head wind add (meters)	9	10	11	12	12	13	13	14	14
Effect of	per percent uphill slope subtract (meters)	130	160	200	250	300	350	420	480	520
runway slope	per percent downhill slope add (meters)	50	58	66	75	83	92	100	108	120

QUICK REFERENCE TABLES

2.02.30

P 3 REV 13

SEQ 116

EXAMPLE

Pressure altitude : 1400 ft
Temperature : 30°C
Runway length : 3750 m
Wind : 10 kt head
Slope : 1 % up
Takeoff configuration : 1 + F

Determination of corrected runway length

(Refer to 2.02.30 p2.)

Determination of a conservative maximum takeoff weight :

(Refer to 2.02.30 p6.)

- Pressure altitude: 1400 ft Use the table for 2000 ft.
- Enter the column corresponding to 3250 m.
- Read the maximum takeoff weight on the line corresponding to the temperature of 30°C: 224 000 kg

R V1 = 143 kt, VR = 147 kt, V2 = 155 kt

Determination of a precise flexible temperature for the actual takeoff weight of 200 000 kg:

(Refer to 2.02.30 p5 and 6.)

 Interpolate the temperature corresponding to 200 000 kg for the runway length of 3410 m at 1000 ft and 2000 ft pressure altitude.
 Results:

R 1000 ft: 53°C, V1 = 149 kt, VR = 150 kt, V2 = 156 kt R 2000 ft: 49°C, V1 = 147 kt, VR = 149 kt, V2 = 154 kt

- Interpolate between these two values to get the flexible temperature.

R 1400 ft: 51° C, V1 = 148 kt, VR = 150 kt, V2 = 155 kt

QUICK REFERENCE TABLES

2.02.30

P 4

SEQ 115 | REV 16

CONFIG	URATION 1+F		PRESSI	URE ALTITUDE	= 0 FT
TREF =	30 °C		DRY RUNWAY	MAX TO WEIGHT	(1000KG) CODES
TMAX =	: 55 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2
TEMP.		CORRECT	ed runway leng	GTH (M)	
(°C)	3000	3250	3500	3750	4000
-20	248.6 3/6	251.2 3/6	253.4 3/6	255.5 3/6	257.5 3/6
	154/58/66	153/61/69	152/63/71	152/66/73	151/68/75
l –10 l	246.2 3/6	248.8 3/6	251.1 3/6	253.4 3/6	255.4 3/6
	152/56/64	151/58/66	150/61/69	149/63/71	149/66/73
0	243.7 3/6	246.4 3/6	248.9 3/6	251.2 3/6	253.3 3/6
	149/53/62	149/56/64	148/59/67	147/61/69	146/64/71
10	241.2 3/6	243.9 3/6	246.4 3/6	248.8 3/6	251.0 3/6
	147/51/60	147/54/62	146/57/65	145/59/67	144/62/69
20	238.0 3/6	241.3 3/6	243.9 3/6	246.3 3/6	248.5 3/6
	146/50/58	145/52/60	144/55/63	143/57/65	142/60/67
30	234.6 3/6	238.7 3/6	241.4 3/6	243.9 3/6	246.1 3/6
	144/49/57	143/50/58	142/53/61	141/55/63	140/58/65
32	232.7 3/6	236.3 3/6	238.9 3/6	241.3 3/6	243.5 3/6
	144/48/56	143/50/58	142/53/60	142/55/63	141/57/65
34	230.7 3/6	233.9 3/6	236.3 3/6	238.6 3/6	240.7 3/6
	145/48/56	144/50/58	143/52/60	142/55/62	141/57/65
36	228.8 3/6	231.5 3/6	233.9 3/6	236.1 3/6	238.1 3/6
	145/47/55	144/50/57	143/52/60	143/55/62	142/57/64
38	226.6 3/6	229.1 3/6	231.4 3/6	233.5 3/6	235.4 3/6
	145/47/55	144/50/57	144/52/60	143/55/62	142/57/64
40	224.1 3/6	226.6 3/6	228.8 3/6	230.8 3/6	232.8 3/6
	146/47/55	145/50/57	144/52/59	144/54/61	143/57/64
42	221.2 2/3	224.0 3/6	226.1 3/6	228.1 3/6	229.9 3/6
	145/47/54	146/50/57	145/52/59	144/54/61	144/56/63
44	217.9 2/3	221.2 3/6	223.1 3/6	225.0 3/6	226.7 3/6
	145/46/53	146/50/57	146/52/59	145/54/61	144/56/63
46	214.5 2/3	218.2 3/6	220.0 3/6	221.7 3/6	223.3 3/6
	145/46/53	147/50/57	146/52/59	146/54/61	145/56/63
48	211.0 2/3	215.1 3/6	216.8 3/6	218.4 3/6	219.9 3/6
	145/45/52	148/50/57	147/52/59	147/54/61	146/56/63
50	207.6 2/3	211.9 3/6	213.6 3/6	215.1 3/6	216.6 3/6
	144/45/52	149/50/56	148/52/59	148/54/61	147/56/62
52	203.7 2/3	207.8 2/3	209.9 3/6	211.3 3/6	212.6 3/6
	144/44/51	148/50/56	149/53/59	149/55/61	148/56/62
54	199.8 2/3	203.7 2/3	206.3 3/6	207.5 3/6	208.6 3/6
	144/44/50	148/49/55	151/53/59	150/55/61	150/57/62
56	196.6 2/3	200.3 2/3	203.3 3/6	204.4 3/6	205.3 3/6
	144/44/50	148/49/55	152/53/59	151/55/61	151/57/62
58	194.0 2/3	197.7 2/3	200.8 3/6	201.9 3/6	202.8 3/6
	143/43/49	148/48/54	152/53/59	152/55/61	152/57/62

QUICK REFERENCE TABLES

2.02.30 SEQ 115 P 5 REV 13

CONFIG	URATION 1+F		PRESSURE ALTITUDE = 1000 FT						
TREF =	28 °C		DRY RUNWAY	MAX TO WEIGHT	1000KG) CODES				
TMAX =	: 53 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2				
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)					
(°C)	3000	3250	3500	3750	4000				
-20	243.0 3/6	245.4 3/6	247.6 3/6	249.6 3/6	251.6 3/6				
	153/56/64	152/59/67	152/61/69	151/64/71	150/66/73				
-10	240.5 3/6	243.1 3/6	245.4 3/6	247.5 3/6	249.5 3/6				
	151/54/62	150/57/65	149/59/67	148/62/69	148/64/71				
0	238.1 3/6	240.7 3/6	243.1 3/6	245.3 3/6	247.4 3/6				
	149/52/60	148/54/62	147/57/65	146/59/67	146/62/69				
10	235.6 3/6	238.2 3/6	240.7 3/6	243.0 3/6	245.1 3/6				
	146/50/58	146/52/60	145/55/63	144/57/65	143/60/67				
20	232.4 3/6	235.6 3/6	238.2 3/6	240.5 3/6	242.7 3/6				
	145/48/56	144/50/58	143/53/61	142/55/63	141/58/65				
28	229.7 3/6	233.7 3/6	236.3 3/6	238.6 3/6	240.9 3/6				
	143/47/55	142/49/57	141/51/59	141/54/61	140/56/64				
30	227.9 3/6	231.4 3/6	233.9 3/6	236.2 3/6	238.4 3/6				
	144/47/55	143/49/56	142/51/59	141/54/61	140/56/63				
32	226.0 3/6	229.0 3/6	231.4 3/6	233.6 3/6	235.7 3/6				
	144/47/54	143/49/56	142/51/58	142/53/61	141/56/63				
34	224.0 3/6	226.5 3/6	228.8 3/6	231.0 3/6	232.9 3/6				
	144/46/54	143/49/56	143/51/58	142/53/60	141/56/63				
	221.5 3/6	224.1 3/6	226.3 3/6	228.3 3/6	230.3 3/6				
36	221.5 3/6	224.1 3/6	226.3 3/6	228.3 3/6	230.3 3/6				
	144/46/53	144/49/56	143/51/58	143/53/60	142/55/62				
	218.6 2/3	221.6 3/6	223.7 3/6	225.6 3/6	227.5 3/6				
38	144/45/53	145/49/56	144/51/58	143/53/60	143/55/62				
	216.0 2/3	219.3 3/6	221.3 3/6	223.2 3/6	225.0 3/6				
40	144/45/52	145/48/55	144/51/58	144/53/60	143/55/62				
	213.3 2/3	216.9 3/6	218.8 3/6	220.7 3/6	222.3 3/6				
42	144/45/51	146/48/55	145/51/57	144/53/59	144/55/61				
	210.1 2/3	214.1 3/6	215.9 3/6	217.7 3/6	219.2 3/6				
44	143/44/51	146/49/55	146/51/57	145/53/59	144/55/61				
	206.7 2/3	211.0 3/6	212.8 3/6	214.3 3/6	215.8 3/6				
46	143/44/50	147/49/55	147/51/57	146/53/59	145/55/61				
	203.3 2/3	207.5 2/3	209.6 3/6	211.0 3/6	212.4 3/6				
48	143/43/50	147/48/54	147/51/57	147/53/59	146/55/61				
	199.5 2/3	203.6 2/3	206.1 3/6	207.4 3/6	208.6 3/6				
50	143/43/49	147/48/54	149/51/57	148/53/59	148/55/61				
	195.8 2/3	199.7 2/3	202.6 3/6	203.8 3/6	204.9 3/6				
52	142/42/48	147/47/53	150/52/57	149/53/59	149/55/61				
	192.6 2/3	196.5 2/3	199.6 3/6	200.9 3/6	201.8 3/6				
54	142/42/48	146/47/53	150/52/57	150/54/59	150/55/61				
	190.2 2/3	194.0 2/3	197.1 2/3	198.5 3/6	199.4 3/6				
56	141/41/47	146/47/52	150/51/57	151/54/59	150/55/61				

QUICK REFERENCE TABLES

2.02.30 SEQ 115 P 6

REV 13

CONFIG	URATION 1+F		PRESSURE ALTITUDE = 2000 FT						
TREF =	26 °C		DRY RUNWAY	MAX TO WEIGHT	(1000KG) CODES				
TMAX =	: 51 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2				
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)					
(°C)	3000	3250	3500	3750	4000				
-20	237.3 3/6	239.7 3/6	241.8 3/6	243.8 3/6	245.6 3/6				
	152/55/63	151/57/65	151/60/67	150/62/69	150/64/71				
-10	234.9 3/6	237.3 3/6	239.6 3/6	241.7 3/6	243.6 3/6				
	150/52/60	149/55/63	148/57/65	148/60/67	147/62/69				
0	232.5 3/6	235.0 3/6	237.3 3/6	239.5 3/6	241.5 3/6				
	148/50/58	147/53/60	146/55/63	145/58/65	145/60/67				
10	230.0 3/6	232.5 3/6	234.9 3/6	237.1 3/6	239.2 3/6				
	146/48/56	145/51/58	144/53/61	143/56/63	143/58/65				
20	226.8 3/6	230.0 3/6	232.5 3/6	234.8 3/6	236.8 3/6				
	144/47/54	143/49/56	142/51/59	141/54/61	141/56/63				
26	224.8 3/6	228.6 3/6	231.1 3/6	233.4 3/6	235.5 3/6				
	143/46/54	142/48/55	141/50/58	140/52/60	139/55/62				
28	223.0 3/6	226.3 3/6	228.7 3/6	230.9 3/6	233.0 3/6				
	143/46/53	142/47/55	141/50/57	141/52/59	140/54/62				
30	221.2 3/6	224.0 3/6	226.3 3/6	228.5 3/6	230.5 3/6				
	143/45/53	143/47/55	142/50/57	141/52/59	140/54/61				
32	218.7 3/6	221.6 3/6	223.8 3/6	225.9 3/6	227.8 3/6				
	143/44/52	143/47/54	142/50/57	142/52/59	141/54/61				
34	216.0 2/3	219.1 3/6	221.2 3/6	223.2 3/6	225.0 3/6				
	143/44/51	144/47/54	143/50/57	142/52/59	142/54/61				
36	213.1 2/3 143/44/51	216.6 3/6 144/47/54	218.6 3/6 143/50/56	220.4 3/6 143/52/58 218.3 3/6	222.2 3/6 142/54/60				
38	210.8 2/3	214.6 3/6	216.5 3/6	218.3 3/6	220.0 3/6				
	142/43/50	144/47/54	144/49/56	143/52/58	143/54/60				
	208.5 2/3	212.5 3/6	214.3 3/6	216.1 3/6	217.7 3/6				
40	142/43/50	145/47/54	144/49/56	144/51/58	143/53/60				
	205.7 2/3	210.0 3/6	211.7 3/6	213.4 3/6	215.0 3/6				
42	142/42/49	146/47/54	145/49/56	144/51/58	144/53/60				
	202.4 2/3	206.7 3/6	208.7 3/6	210.2 3/6	211.6 3/6				
44	142/42/48	146/47/53	146/49/56	145/51/58	145/53/59				
	199.0 2/3	203.2 2/3	205.6 3/6	207.0 3/6	208.3 3/6				
46	141/41/48	145/46/53	147/50/56	146/52/57	146/53/59				
	195.3 2/3	199.4 2/3	202.2 3/6	203.5 3/6	204.7 3/6				
48	141/41/47	145/46/52	148/50/56	147/52/57	147/54/59				
	191.6 2/3	195.7 2/3	198.9 3/6	200.1 3/6	201.2 3/6				
50	140/40/46	145/46/51	149/50/56	148/52/57	148/54/59				
	188.5 2/3	192.6 2/3	195.8 2/3	197.3 3/6	198.2 3/6				
52	140/40/45	145/45/51	149/50/55	149/52/58	149/54/59				
54	186.2 2/3	190.2 2/3	193.3 2/3	195.0 3/6	195.9 3/6				
	139/39/45	144/45/50	148/49/55	150/52/58	149/54/59				

QUICK REFERENCE TABLES

2.02.30

P 7

SEQ 115 | REV 13

CONFIG	URATION 2		PRESSURE ALTITUDE = 0 FT						
TREF =	30 °C		DRY RUNWAY	MAX TO WEIGHT	(1000KG) CODES				
TMAX =	: 55 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2				
TEMP.		CORRECT	ed runway len	GTH (M)					
(°C)	2500	2750	3000	3250	3500				
-20	238.5 2/3	244.8 2/3	249.4 3/6	251.5 3/6	253.3 3/6				
	146/48/56	151/54/62	155/59/66	154/62/69	154/64/71				
-10	236.1 2/3	242.5 2/3	247.2 3/6	249.3 3/6	251.3 3/6				
	144/46/54	149/52/59	153/57/64	152/59/66	151/62/69				
0	233.6 2/3	240.1 2/3	245.0 3/6	247.1 3/6	249.1 3/6				
10	142/44/52	147/50/57	150/55/62	150/57/64	149/60/66				
	231.0 2/3	237.7 2/3	242.5 3/6	244.9 3/6	246.9 3/6				
	141/42/50	145/48/56	148/53/60	147/55/62	147/58/64				
	228.3 2/3	235.1 2/3	239.9 3/6	242.3 3/6	244.5 3/6				
20	139/40/48	143/46/54	146/51/58	145/53/60	145/55/62				
	225.7 2/3	232.5 2/3	237.4 3/6	239.9 3/6	242.2 3/6				
30	137/38/46	142/44/52	144/49/56	143/51/58	143/54/60				
	223.2 2/3	229.9 2/3	235.0 3/6	237.4 3/6	239.6 3/6				
32	137/38/46	141/44/51	145/49/56	144/51/58	143/53/60				
34	220.6 2/3 137/37/45	141/43/51	145/49/56	144/51/58	144/53/60				
36	218.0 2/3	224.6 2/3	230.1 3/6	232.4 3/6	234.4 3/6				
	137/37/45	141/43/50	145/49/55	145/51/58	144/53/60				
38	215.5 2/3	222.0 2/3	227.3 2/3	229.9 3/6	231.8 3/6				
	136/37/44	141/43/50	145/48/55	145/51/58	145/53/60				
40	212.8 2/3	219.2 2/3	224.5 2/3	227.3 3/6	229.1 3/6				
	136/36/44	141/42/49	145/48/54	146/51/57	145/53/59				
42	210.1 2/3	216.3 2/3	221.6 2/3	224.6 3/6	226.3 3/6				
	136/36/43	140/42/49	145/47/54	147/51/57	146/53/59				
44	207.1 2/3	213.1 2/3	218.2 2/3	221.6 3/6	223.2 3/6				
46	136/36/42	140/41/48	144/47/53	147/51/57	147/53/59				
	203.8 2/3	209.8 2/3	214.7 2/3	218.5 3/6	220.0 3/6				
	135/35/42	140/41/48	144/46/53	148/51/57	148/53/59				
48	200.5 2/3	206.5 2/3	211.1 2/3	214.9 3/6	216.6 3/6				
	135/35/41	140/41/47	144/46/52	148/51/57	149/54/59				
50	197.2 2/3 134/34/40	203.2 2/3 139/40/46	207.5 2/3 144/46/52	211.2 2/3 148/51/56	213.1 3/6 150/54/59				
52	193.5 2/3	199.4 2/3	203.5 2/3	207.0 2/3	209.1 3/6				
	133/33/39	139/40/46	144/45/51	148/50/56	151/54/60				
54	189.9 2/3	195.7 2/3	199.6 2/3	202.6 2/3	204.9 3/6				
	133/33/39	139/39/45	143/45/50	148/50/55	152/55/60				
56	186.9 2/3	192.5 2/3	196.3 2/3	199.1 2/3	201.3 2/3				
	132/32/38	139/39/45	143/44/50	148/50/55	152/54/59				
	184.6 2/3	190.1 2/3	193.8 2/3	196.4 2/3	198.3 2/3				
50	132/32/37	138/39/44	143/44/49	147/49/54	152/54/59				

TAKEOFFQUICK REFERENCE TABLES

2.02.30

P 8

SEQ 115

REV 13

CONFIG	URATION 2		PRESSURE ALTITUDE = 1000 FT					
TREF =	28 °C		DRY RUNWAY	MAX TO WEIGHT	1000KG) CODES			
TMAX =	: 53 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2			
TEMP.		CORRECT	ED RUNWAY LEN	STH (M)				
(°C)	2500	2750	3000	3250	3500			
-20	232.5 2/3 144/46/54	238.7 2/3 149/52/59	243.7 3/6 154/58/65	245.7 3/6 153/60/67	247.5 3/6 153/63/69			
-10	230.1 2/3	236.4 2/3	241.5 3/6 152/55/62	243.6 3/6 151/58/65	245.5 3/6 150/60/67			
	143/44/52 227.6 2/3	147/50/57 234.1 2/3	239.3 3/6	241.4 3/6	243.4 3/6			
0	141/42/50	145/48/55	149/53/60	149/56/62	148/58/65			
10	225.1 2/3 139/40/48	231.7 2/3 143/46/53	236.9 3/6 147/51/58	239.1 3/6 146/53/60	241.1 3/6 146/56/63			
20	222.4 2/3 137/38/46	229.2 2/3 142/44/52	234.3 3/6 145/49/56	236.7 3/6 144/51/58	238.8 3/6 144/54/61			
	220.5 2/3	227.2 2/3	232.4 3/6	234.8 3/6	237.0 3/6			
28	136/37/44	140/43/50	144/48/55	143/50/57	142/52/59			
30	218.0 2/3 136/36/44	224.7 2/3 140/42/49	230.1 3/6 144/47/54	232.5 3/6 143/50/57	234.6 3/6 143/52/59			
32	215.5 2/3 135/36/43	222.1 2/3 140/42/49	227.5 3/6 144/47/54	229.9 3/6 144/50/56	232.0 3/6 143/52/59			
34	212.8 2/3	219.4 2/3	224.7 2/3	227.4 3/6	229.3 3/6			
	135/35/43 210.2 2/3	140/41/48 216.7 2/3	144/47/54 221.9 2/3	144/50/56 224.9 3/6	144/52/58 226.7 3/6			
36	135/35/42	139/41/48	144/46/53	145/50/56	144/52/58			
38	207.6 2/3 135/35/42	213.8 2/3 139/41/47	219.0 2/3 143/46/53	222.2 3/6 145/50/56	223.9 3/6 145/52/58			
	205.1 2/3	211.2 2/3	216.4 2/3	219.8 3/6	221.5 3/6			
40	134/34/41	139/40/47	143/46/52	146/50/56	145/52/58			
42	202.5 2/3 134/34/41	208.7 2/3 139/40/46	213.6 2/3 143/45/52	217.4 3/6 147/50/56	218.9 3/6 146/52/58			
	199.4 2/3	205.6 2/3	210.4 2/3	214.2 3/6	215.9 3/6			
44	133/33/40	138/39/46	143/45/51	147/50/56	147/52/58			
46	196.1 2/3 133/33/39	202.3 2/3 138/39/45	206.8 2/3 142/44/50	210.5 2/3 147/49/55	212.6 3/6 148/52/58			
48	192.8 2/3	198.9 2/3	203.3 2/3	206.9 2/3	209.1 3/6			
	132/32/38 189.3 2/3	138/38/45 195.3 2/3	142/44/50 199.4 2/3	146/49/54 202.9 2/3	149/52/58 205.2 3/6			
50	131/31/37	138/38/44	142/43/49	146/48/54	150/53/58			
52	185.8 2/3 131/31/37	191.7 2/3 137/38/43	195.6 2/3 142/43/48	198.8 2/3 146/48/53	201.1 2/3 150/53/58			
54	183.0 2/3	188.8 2/3	192.5 2/3	195.4 2/3	197.6 2/3			
	130/30/36	137/37/43	141/43/48 190.1 2/3	146/48/53	150/52/57 194.9 2/3			
56	180.8 2/3 130/30/35	186.4 2/3 137/37/42	190.1 2/3 141/42/47	192.9 2/3 146/47/52	194.9 2/3 150/52/57			

QUICK REFERENCE TABLES

2.02.30

P 9

SEQ 115 | REV 13

CONFIG	URATION 2		PRESSURE ALTITUDE = 2000 FT						
TREF =	26 °C		DRY RUNWAY	MAX TO WEIGHT	(1000KG) CODES				
TMAX =	: 51 ℃		SLOPE = 0 %	IAS(KT): V1 / VR / V2					
TEMP.		CORRECT	ED RUNWAY LEN	GTH (M)					
(°C)	2500	2750	2750 3000		3500				
-20	226.5 2/3	232.6 2/3	237.5 2/3	239.9 3/6	241.6 3/6				
	143/44/52	148/50/57	152/56/62	153/59/65	152/61/67				
-10	224.1 2/3	230.3 2/3	235.5 3/6	237.8 3/6	239.7 3/6				
	141/42/49	146/48/55	150/54/60	150/56/63	150/58/65				
0	221.6 2/3	228.0 2/3	233.4 3/6	235.7 3/6	237.6 3/6				
	139/40/47	144/46/53	148/51/58	148/54/61	147/56/63				
10	219.1 2/3	225.7 2/3	231.1 3/6	233.4 3/6	235.3 3/6				
	137/38/45	142/44/51	146/49/56	146/52/59	145/54/61				
20	216.6 2/3	223.2 2/3	228.7 3/6	231.0 3/6	233.1 3/6				
	136/36/44	140/42/49	144/47/54	144/50/57	143/52/59				
26	215.2 2/3	221.8 2/3	227.3 3/6	229.6 3/6	231.8 3/6				
	135/35/43	139/41/48	143/46/53	142/49/56	142/51/58				
28	212.7 2/3	219.2 2/3	224.8 3/6	227.3 3/6	229.4 3/6				
	134/35/42	139/41/48	143/46/53	143/49/55	142/51/57				
30	210.2 2/3	216.7 2/3	222.1 2/3	224.9 3/6	226.9 3/6				
	134/34/41	138/40/47	143/46/52	143/49/55	143/51/57				
32	207.6 2/3	214.0 2/3	219.3 2/3	222.4 3/6	224.2 3/6				
	134/34/41	138/40/47	142/45/52	144/48/55	143/51/57				
34	204.9 3/3	211.2 2/3	216.4 2/3	219.8 3/6	221.5 3/6				
	134/34/41	138/39/46	142/45/51	144/49/55	144/51/57				
36	202.1 3/3	208.4 2/3	213.5 2/3	217.2 3/6	218.8 3/6				
	133/33/40	138/39/45	142/44/51	145/49/55	144/51/57				
38	199.9 2/3	206.2 2/3	211.2 2/3	215.1 3/6	216.6 3/6				
	132/32/39	137/39/45	142/44/50	145/49/55	145/51/56				
40	197.7 2/3	204.0 2/3	208.8 2/3	212.7 3/6	214.4 3/6				
	132/32/39	137/38/44	141/43/50	146/48/54	145/51/56				
42	195.0 3/3	201.3 2/3	206.0 2/3	209.7 2/3	211.7 3/6				
	132/32/38	137/38/44	141/43/49	145/48/54	146/51/56				
44	191.7 2/3	198.0 2/3	202.6 2/3	206.2 2/3	208.5 3/6				
	131/31/37	137/37/43	141/43/48	145/47/53	147/51/56				
46	188.5 2/3	194.7 2/3	199.1 2/3	202.6 2/3	205.2 3/6				
	130/30/36	136/37/43	141/42/48	145/47/52	148/51/56				
48	185.1 2/3	191.2 2/3	195.4 2/3	198.8 2/3	201.3 3/6				
	130/30/35	136/36/42	140/42/47	145/47/52	149/51/56				
50	181.7 2/3	187.8 2/3	191.7 2/3	194.9 2/3	197.2 2/3				
	129/29/35	136/36/41	140/41/47	144/46/51	149/51/56				
52	179.0 2/3	184.9 2/3	188.7 2/3	191.7 2/3	193.9 2/3				
	128/28/34	136/36/41	140/41/46	144/46/51	148/51/55				
54	176.8 2/3	182.7 2/3	186.4 2/3	189.2 2/3	191.3 2/3				
	128/28/33	135/35/40	140/41/45	144/46/50	148/50/55				

A330
A330
QUICK REFERENCE TABLES

A300
SEQ. 001
REV 06

INTENTIONALLY LEFT BLANK

QUICK REFERENCE TABLES

2.02.30

P 11

SEQ 115 | REV 13

В

CONFIG	URATION 3		PRESSURE ALTITUDE = 0 FT						
TREF =	30 °C		DRY RUNWAY	MAX TO WEIGHT	(1000KG) CODES				
TMAX =	: 55 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2				
TEMP.		CORRECT	ED RUNWAY LEN	TH (M)					
(°C)	2000	2250	2500	2750	3000				
-20	221.6 3/3 137/37/46	230.5 2/3 142/44/52	236.3 2/3 148/51/59	240.7 2/3 153/58/65	244.1 3/6 159/64/70				
-10	218.8 3/3 135/35/44	228.3 2/3 140/42/50	234.4 2/3 145/49/56	239.1 2/3 151/55/62	242.7 3/6 156/61/68				
0	216.1 3/3	226.1 2/3	232.5 2/3	237.4 2/3	241.2 3/6				
	133/33/42 213.2 3/3	138/39/48 223.6 2/3	143/47/54 230.3 2/3	149/53/60 235.3 2/3	154/59/66 239.4 3/6				
10	132/32/41	136/37/46	141/45/52	147/51/58	151/57/64				
20	210.3 3/3 130/30/39	221.1 2/3 135/35/44	227.9 2/3 140/43/50	233.2 2/3 145/49/56	237.3 3/6 149/55/61				
	207.6 3/3	218.6 2/3	225.6 2/3	231.1 2/3	235.2 3/6				
30	129/29/38	133/33/42	138/41/48	143/47/54	147/52/59				
32	205.3 3/3 128/28/37	216.2 2/3 133/33/41	223.1 2/3 138/40/48	228.4 2/3 143/47/54	232.6 3/6 147/52/59				
34	202.9 3/3 128/28/37	213.5 2/3	220.3 2/3	225.4 2/3	229.7 3/6				
	200.6 3/3	133/33/41 211.1 2/3	138/40/48 217.7 2/3	142/46/53 222.7 2/3	147/52/59 226.8 2/3				
36	128/28/37	132/32/41	137/40/47	142/46/53	147/52/58				
38	198.2 3/3 126/26/35	208.5 2/3 132/32/40	215.0 2/3 137/39/47	219.9 2/3 142/46/52	223.8 2/3 147/51/58				
40	195.8 3/3	206.0 2/3	212.2 2/3	217.0 2/3	220.8 2/3				
	126/26/35 193.3 3/3	132/32/40 203.4 2/3	137/39/46 209.4 2/3	142/45/52 214.0 2/3	147/51/57 217.6 2/3				
42	126/26/34	132/32/39	137/39/46	142/45/52	146/51/57				
44	190.4 3/3 125/25/33	200.3 2/3 131/31/39	206.3 2/3 136/38/45	210.6 2/3 141/44/51	214.1 2/3 146/50/56				
46	187.5 3/3	197.2 2/3	203.0 2/3	207.2 2/3	210.3 2/3				
	124/24/32 184.6 3/3	131/31/38 194.0 2/3	136/38/45 199.7 2/3	141/44/50 203.7 2/3	146/50/56 206.7 2/3				
48	124/24/32	130/30/38	136/37/44	141/44/50	146/49/55				
50	181.6 3/3 123/23/31	190.9 2/3 130/30/37	196.3 2/3 136/37/44	200.2 2/3 141/43/49	203.0 2/3 146/49/55				
	178.4 3/3	187.4 2/3	192.5 2/3	196.1 2/3	198.7 2/3				
52	123/23/30	130/30/37	135/37/43	141/43/49	145/48/54				
54	175.3 3/3 122/22/29	183.9 2/3 129/29/36	188.7 2/3 135/37/43	192.0 2/3 140/43/48	194.3 2/3 145/48/54				
56	172.7 3/3 121/21/28	180.9 2/3	185.7 2/3 135/36/42	188.7 2/3	190.8 2/3				
	170.6 3/3	129/29/35 178.7 2/3	135/36/42	140/42/48 186.2 2/3	145/48/53 188.1 2/3				
58	120/20/27	129/29/35	135/36/42	140/42/48	145/48/53				

TAKEOFF QUICK REFERENCE TABLES

2.02.30

P 12

SEQ 115

REV 13

CONFIG	URATION 3		PRESSURE ALTITUDE = 1000 FT					
TREF =	28 °C		DRY RUNWAY	MAX TO WEIGHT	(1000KG) CODES			
TMAX =	= 53 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2			
TEMP.		CORRECT	ED RUNWAY LEN	STH (M)				
(°C)	2000	2250	2500	2750	3000			
-20	215.5 3/3	224.7 2/3	230.4 2/3	234.8 2/3	238.2 2/3			
	135/35/44	140/42/50	146/49/56	151/56/62	157/62/68			
-10	212.8 3/3	222.5 2/3	228.6 2/3	233.2 2/3	236.8 2/3			
	133/33/42	138/40/48	144/47/54	149/53/60	154/59/66			
0	210.1 3/3	220.3 2/3	226.6 2/3	231.4 2/3	235.2 2/3			
	131/31/41	136/37/46	142/45/52	147/51/58	152/57/64			
	207.4 3/3	217.8 2/3	224.4 2/3	229.5 2/3	233.5 3/6			
10	130/30/39	135/35/44	140/43/50	145/49/56	150/55/61			
	204.7 3/3	215.4 2/3	222.1 2/3	227.4 2/3	231.6 3/6			
20	129/29/38	133/33/42	138/41/48	143/47/54	231.6 3/6 148/53/59			
28	202.6 3/3	213.3 2/3	220.4 2/3	225.8 2/3	230.1 3/6			
	127/27/36	132/32/40	137/39/47	141/45/53	146/51/58			
30	200.4 3/3	211.0 2/3	217.9 2/3	223.2 2/3	227.4 2/3			
	127/27/36	132/32/40	136/39/46	141/45/52	146/51/57			
32	198.0 3/3	208.5 3/3	215.2 2/3	220.4 2/3	224.5 2/3			
34	126/26/35	131/31/40	136/38/46	141/44/52	146/50/57			
	195.6 3/3	205.9 3/3	212.4 2/3	217.4 2/3	221.4 2/3			
	126/26/34	131/31/39	136/38/45	141/44/51	146/50/56			
	193.2 3/3	203.4 3/3	209.8 2/3	214.6 2/3	218.5 2/3			
36	125/25/34	131/31/39	136/38/45	141/44/51	145/49/56			
38	190.7 3/3	200.8 3/3	207.0 2/3	211.6 2/3	215.3 2/3			
	125/25/33	131/31/38	135/37/45	140/43/50	145/49/55			
40	188.5 3/3	198.4 3/3	204.6 2/3	209.0 2/3	212.6 2/3			
	124/24/32	130/30/38	135/37/44	140/43/50	145/49/55			
42	186.1 3/3	195.9 2/3	202.0 2/3	206.3 2/3	209.7 2/3			
	124/24/32	129/29/37	135/37/44	140/43/49	145/48/54			
44	183.4 3/3	192.9 3/3	199.0 2/3	203.1 2/3	206.3 2/3			
46	123/23/31	129/29/37	135/36/43	140/42/49	144/48/54			
	180.5 3/3	189.8 2/3	195.7 2/3	199.6 2/3	202.7 2/3			
	122/22/30	129/29/36	134/36/43	139/42/48	144/47/53			
	177.5 3/3	186.6 2/3	192.3 2/3	196.1 2/3	199.0 2/3			
48	122/22/29	128/28/35	134/35/42	139/42/48	144/47/53			
50	174.4 3/3	183.3 2/3	188.6 2/3	192.2 2/3	194.9 2/3			
	121/21/28	128/28/34	134/35/42	139/41/47	144/47/52			
52	171.4 3/3	179.9 2/3	185.0 2/3	188.3 2/3	190.7 2/3			
	120/20/27	127/27/34	134/35/41	139/41/47	144/46/52			
54	168.9 3/3 120/20/26	177.2 2/3 127/27/33	182.0 2/3 133/35/41	185.2 2/3	187.3 2/3			
56	166.9 3/3	175.0 2/3	179.8 2/3	138/41/46 182.8 2/3	143/46/51 184.8 2/3			
30	119/19/25	127/27/33	133/34/40	138/40/46	143/46/51			

QUICK REFERENCE TABLES

2.02.30

P 13

SEQ 115 | REV 13

CONFIG	URATION 3		PRESSURE ALTITUDE = 2000 FT						
TREF =	26 °C		DRY RUNWAY	MAX TO WEIGHT	1000KG) CODES				
TMAX =	: 51 °C		SLOPE = 0 %	IAS(KT) : V	1 / VR / V2				
TEMP.		CORRECT	ED RUNWAY LEN	:TH (M)					
(°C)	2000	2250	2500	2750	3000				
-20	209.4 3/3	218.8 2/3	224.5 2/3	228.8 2/3	232.2 2/3				
	133/33/42	139/40/48	144/47/54	149/53/60	155/59/66				
-10	206.9 3/3	216.7 2/3	222.7 2/3	227.3 2/3	230.8 2/3				
	131/31/40	137/38/46	142/45/52	147/51/58	152/57/63				
0	204.3 3/3	214.4 2/3	220.7 2/3	225.5 2/3	229.3 2/3				
	130/30/39	135/35/44	140/43/50	145/49/56	150/55/61				
10	201.7 3/3	212.0 2/3	218.6 2/3	223.5 2/3	227.5 2/3				
	128/28/37	133/33/42	138/41/48	143/47/54	148/53/59				
20	199.1 3/3	209.5 2/3	216.4 2/3	221.6 2/3	225.7 2/3				
	127/27/36	131/31/40	136/38/46	141/45/52	146/51/57				
26	197.5 3/3	208.1 3/3	215.0 2/3	220.4 2/3	224.6 2/3				
	126/26/35	131/31/39	135/37/45	140/44/51	145/49/56				
28	195.3 3/3	205.7 3/3	212.6 2/3	217.8 2/3	221.9 2/3				
	125/25/34	130/30/38	135/37/45	140/43/50	145/49/56				
30	193.0 3/3	203.3 3/3	210.0 2/3	215.1 2/3	219.1 2/3				
	125/25/33	130/30/38	135/37/44	140/43/50	144/48/55				
32	190.6 3/3	200.7 3/3	207.3 2/3	212.2 2/3	216.1 2/3				
	124/24/33	130/30/38	134/36/44	139/42/49	144/48/54				
34	188.1 3/3	198.1 3/3	204.7 2/3	209.3 2/3	213.1 2/3				
	124/24/32	129/29/37	134/36/43	139/42/49	144/48/54				
36	185.6 3/3	195.5 3/3	201.9 2/3	206.4 2/3	209.9 2/3				
	123/23/31	129/29/37	134/36/43	139/42/48	144/47/54				
38	183.7 3/3	193.4 3/3	199.7 2/3	204.1 2/3	207.6 2/3				
	123/23/31	128/28/36	134/35/42	139/41/48	143/47/53				
40	181.6 3/3	191.2 3/3	197.5 2/3	201.8 2/3	205.1 2/3				
	122/22/30	128/28/35	133/35/42	138/41/47	143/47/53				
42	179.2 3/3	188.6 3/3	194.8 2/3	199.0 2/3	202.2 2/3				
	122/22/29	128/28/35	133/34/41	138/41/47	143/46/52				
44	176.3 3/3	185.5 3/3	191.6 2/3	195.5 2/3	198.6 2/3				
	121/21/28	127/27/34	133/34/41	138/40/46	143/46/51				
46	173.4 3/3	182.4 2/3	188.2 2/3	192.1 2/3	194.9 2/3				
	120/20/27	126/26/33	133/34/40	137/40/46	142/45/51				
48	170.4 3/3	179.1 2/3	184.8 2/3	188.4 2/3	191.0 2/3				
	119/19/26	126/26/32	132/33/40	137/39/45	142/45/50				
50	167.5 3/3	175.9 2/3	181.3 2/3	184.6 2/3	187.1 2/3				
	119/19/26	125/25/32	132/33/39	137/39/45	142/44/50				
52	165.1 3/3	173.3 2/3	178.4 2/3	181.6 2/3	183.9 2/3				
	118/18/25	125/25/31	132/33/39	137/39/44	142/44/49				
54	163.2 3/3	171.2 2/3	176.2 2/3	179.3 2/3	181.4 2/3				
	117/17/24	125/25/31	132/32/38	137/38/44	141/44/49				

NET TAKEOFF FLIGHT PATH

2.02.40

REV 10

P 1

SEQ 001

INTRODUCTION

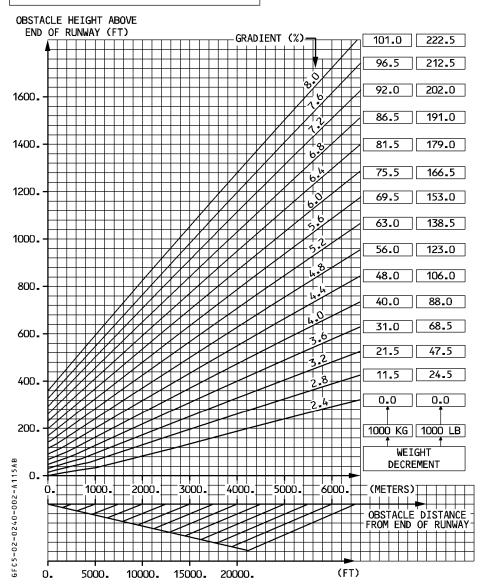
The following graphs enable the crew to quickly determine the takeoff performance out of an airport by positioning obstacles.

They must be used with the corresponding quick reference table so as to determine weight decrement and required gradient.

The net takeoff flight path and the associated weight decrement are conservative.

HOW TO PROCEED

- Position the obstacle by entering its distance from end of runway and its height above the end of runway (No 35 feet margin is required as this is already included).
 In case of an ascending runway, increase the obstacle height by an additional value as indicated below each graph.
- 2. Read the associated weight correction. Interpolate if necessary. The second segment gradient is given for information only.
- 3. Decrease the takeoff speeds by 0.1 knot per 1000 kg (0.05 kt/1000 lb) weight decrement.
- R Limit the final speeds to the minimum values as given on 2.02.25 p1.


Note: In case of tailwind, do not use the obstacle clearance graphs.

TAKEOFFNET TAKEOFF FLIGHT PATH

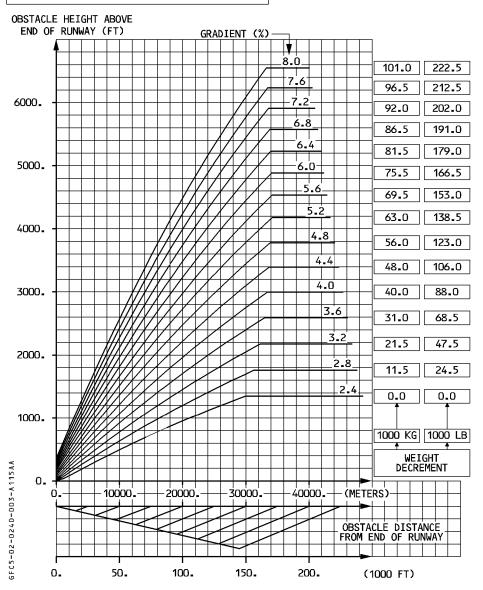
2.02.40 SEQ 115 P 2

REV 09

CLOSE OBSTACLE CLEARANCE CONF 1 + F

<u>Note</u>: In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.

NET TAKEOFF FLIGHT PATH


2.02.40

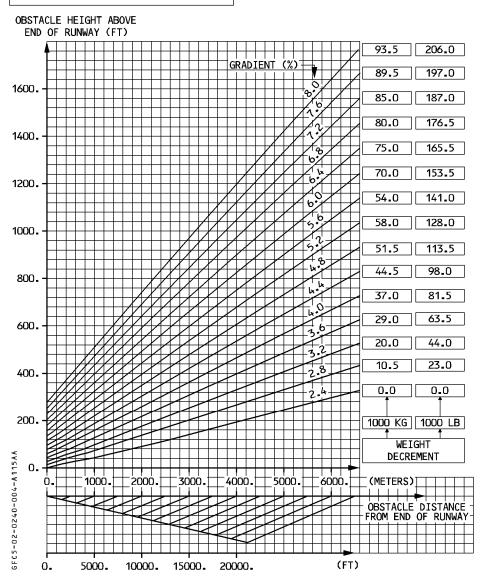
SEQ 115

REV 09

P 3

REMOTE OBSTACLE CLEARANCE CONF 1 + F

Note: In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.


NET TAKEOFF FLIGHT PATH

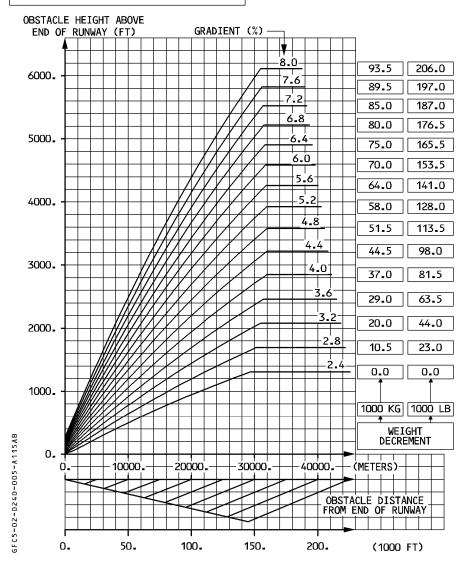
2.02.40 SEQ 115

REV 09

P 4

CLOSE OBSTACLE CLEARANCE CONF 2

Note: In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.


NET TAKEOFF FLIGHT PATH

2.02.40

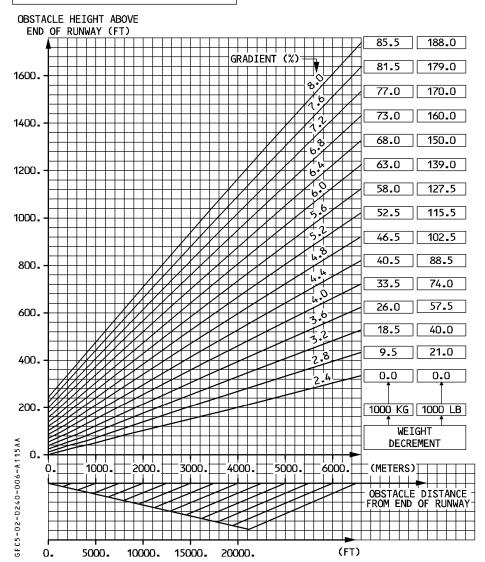
P 5 REV 09

SEQ 115 | REV 09

REMOTE OBSTACLE CLEARANCE CONF 2

<u>Note</u>: In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.

TAKEOFFNET TAKEOFF FLIGHT PATH


P 6

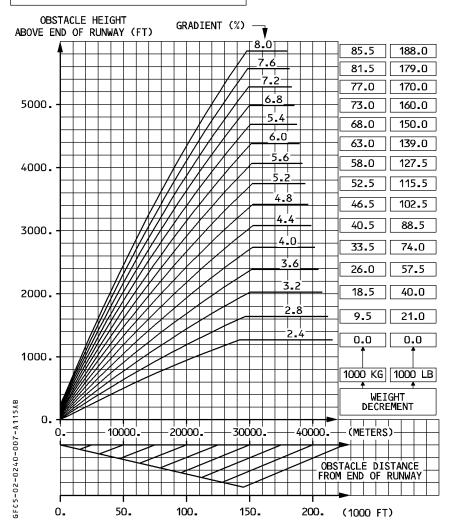
2.02.40

SEQ 115

REV 09

CLOSE OBSTACLE CLEARANCE CONF 3

<u>Note</u>: In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.


NET TAKEOFF FLIGHT PATH

2.02.40 SEQ 115

REV 09

P 7

REMOTE OBSTACLE CLEARANCE CONF 3

<u>Note</u>: In case of ascending runway, increase obstacle height by 50 feet per percent runway slope.

CONTENTS

2.03.00 P 1 SEQ 001 REV 16

03.00	CONTENTS
03.10	LANDING - GENERAL
03.20 R	USE OF THE AUTOBRAKE SYSTEM — GENERAL

LANDING

2.03.10

P 1 REV 11

SEQ 001 | I

GENERAL

ACTUAL LANDING DISTANCE

The actual landing distance is the distance measured between a point 50 feet above the runway threshold and the point where the complete stop of the aircraft is achieved.

It assumes that:

- the approach speed is:
 - · VLS (1.23 VS of the configuration) for manual landing
 - · VLS + 5 kt for CAT II/CAT III automatic landing.
- the pilot applies maximum braking and the antiskid system is operating.
- the ground spoilers are operating.

It does not consider the use of reverse thrust.

REQUIRED LANDING DISTANCE

MANUAL LANDING

Regulation defines the required landing distance as the actual landing distance divided by 0.6, assuming the surface is dry.

If the surface is wet, the required landing distance must be at least 115 % of that for a dry surface.

- R For JAR-OPS operators, if the surface is contaminated, the required landing distance must
- R be at least the greater of the required landing distance on wet runway (see previous
- R paragraph) and 115 % of the landing distance determined in accordance with approved
- R contaminated landing distance data.

R AUTOMATIC LANDING

R Regulation defines the required landing distance for automatic landing as the actual landing distance in automatic landing multiplied by 1.15. This distance must be retained for automatic landing whenever it is greater than the required landing distance in manual mode.

DISPATCH

The pilot must check before departure that the available runway length at destination is at least equal to the required landing distance for the forecasted landing weight.

In case of aircraft system failure affecting landing distance known before the dispatch, the available runway length must be at least equal to the required landing distance with failure, i.e. the required landing distance without failure multiplied by the coefficient given in the Flight Manual or the MMEL.

LANDING

2.03.10

P 2

REV 11

SEQ 001

FAILURE IN FLIGHT

In case of an aircraft system failure occurring in flight and affecting the landing performance, the runway length to be considered for landing is the actual landing distance without failure multiplied by the landing distance coefficient associated with the failure. The coefficients are given in FCOM 3.02.80 and in the QRH.

The concept of required landing distance no longer applies.

RECOMMENDATIONS

R

For most cases of abnormal landing configuration, the increased actual landing distance does not exceed the required runway length for landing in normal configuration.

However, the addition of several of these factors can very quickly lead to an overrun. Special notice should be taken of the runway condition. A slippery runway is the most common reason for overrun at landing. The combination of a slippery runway and a factor such as tailwind or an increase in approach speed should be avoided.

As far as possible, avoid the combination of any failure affecting the braking capability of the aircraft (spoilers, reversers) with landing on a contaminated runway, or prepare for it carefully by checking the available runway length against the forecasted landing distance. During a visual approach, use all means of monitoring the flight path; use the ILS together with available visual aids such as VASI or PAPI. Monitor the approach speed along with the wind and ground speed, especially during final approach.

LANDING

2.03.10 SEQ 120

REV 16

P 3

ACTUAL LANDING DISTANCES

CONFIGURATION FULL

R

ACTUAL LANDING DISTANCE (METERS)									
	WEIGHT (10	000 KG)	130	150	170	190	210	230	
	DRY		880	930	1010	1080	1220	1390	
		WET	1070	1160	1290	1430	1580	1730	
	COVERED	6.3 MM (1/4 INCH) WATER	1420	1560	1780	1990	2230	2420	
RUNWAY		12.7 MM (1/2 INCH) WATER	1350	1480	1670	1870	2060	2240	
CONDITION		6.3 MM (1/4 INCH) SLUSH	1390	1500	1670	1880	2080	2280	
	WITH	12.7 MM (1/2 INCH) SLUSH	1330	1440	1600	1790	1970	2150	
		COMPACTED SNOW	1340	1430	1570	1710	1840	1960	
		ICE	2580	2770	3040	3320	3590	3840	

CORRECTIONS

	CORRECTION ON ACTUAL LANDING DISTANCE								
	dry	wet		runway covered with					
	runway	runway	1/4 inch water	1/2 inch water	1/4 inch slush	1/2 inch slush	compacted snow	ice	
per 1000 ft above SL	+ 3 %	+ 4 %	+ 4 %	+ 4 %	+ 5 %	+ 4 %	+ 3 %	+ 4 %	
per 10 kt headwind	No	correction	for headw	ind due to	wind correc	ction on ap	proach spe	ed	
per 10 kt tailwind	+ 18 %	+ 22 %	+ 24 %	+ 22 %	+ 23 %	+ 21 %	+ 17 %	+ 29 %	
2 reversers operative	- 1 %	- 4 %	-7%	-7%	-7%	- 6 %	- 6 %	– 19 %	
	Per 5 kt sp	eed increm	ent (and no	failure) ad	d 8 % (all r	unways)			

LANDING PERFORMANCE LANDING

2.03.10

P 4

SEQ 120

REV 16

CONFIGURATION 3

R

	ACTUAL LANDING DISTANCE (METERS)									
	WEIGHT (1	000 KG)	130	150	170	190	210	230		
	DRY			970	1050	1130	1290	1480		
		1090	1240	1390	1550	1710	1880			
	COVERED WITH	6.3 MM (1/4 INCH) WATER	1450	1680	1920	2160	2410	2630		
RUNWAY		12.7 MM (1/2 INCH) WATER	1380	1580	1790	1990	2220	2420		
CONDITION		6.3 MM (1/4 INCH) SLUSH	1420	1610	1810	2030	2260	2460		
		12.7 MM (1/2 INCH) SLUSH	1350	1530	1710	1920	2130	2310		
		COMPACTED SNOW	1370	1520	1660	1810	1950	2070		
		ICE	2720	3020	3320	3610	3920	4180		

CORRECTIONS

	CORRECTION ON ACTUAL LANDING DISTANCE								
	dry	wet	runway covered with						
	runway	runway	1/4 inch water	1/2 inch water	1/4 inch slush	1/2 inch slush	compacted snow	ice	
per 1000 ft above SL	+ 3 %	+ 4 %	+ 4 %	+ 4 %	+ 5 %	+ 5 %	+ 3 %	+ 4 %	
per 10 kt headwind	No	correction	for headw	ind due to	wind correc	ction on ap	proach spe	ed	
per 10 kt tailwind	+ 17 %	+ 22 %	+ 25 %	+ 22 %	+ 23 %	+ 21 %	+ 17 %	+ 29 %	
2 reversers operative	- 1 %	- 4 %	- 8 %	-7%	- 8 %	-7%	- 7 %	– 21 %	
	Per 5 kt speed increment (and no failure) add 8 % (all runways)								

LANDING

2.03.10

P 5

SEQ 120 | R

REV 16

REQUIRED LANDING DISTANCE

MANUAL LANDING

F

R

REQUIRED LANDING DISTANCE (METERS)								
WEIGHT (1000 KG)	130	140	150	160	170	180	190	
CONF 3	1490	1550	1610	1680	1750	1810	1880	
CONF FULL	1470	1480	1550	1610	1670	1740	1800	

Corrections on landing distances

Wind : per 10 kt tailwind add 18 %

No correction for headwind due to wind correction on approach

speed.

Airport elevation: per 1000 ft above sea level add 3 %.

AUTOMATIC LANDING

For automatic landing, use the same required landing distances and corrections as for manual landing.

LANDING PERFORMANCE

2.03.10 SEQ 001 P 6

LANDING

REV 06

INTENTIONALLY LEFT BLANK

LANDING PERFORMANCE

USE OF THE AUTOBRAKE SYSTEM

2.03.20

P 1

SEQ 001 | REV 18

GENERAL

The autobrake system is designed to help the pilot in case of:

- · aborted takeoff or
- · landing on short runways or
- · operation with low visibility weather conditions

Furthermore, it ensures a straight roll-out and optimizes the landing distance on contaminated runways provided the contamination is evenly distributed.

The following tables cover:

- · dry runway
- · wet runway
- · runway covered with water, slush or compacted snow
- · icy runway

At landing, select the braking mode according to:

- · runway length
- · configuration
- · runway condition

A correction is necessary:

- · if landing is not performed at sea level
- · if reverse thrust is used
- · in windy conditions

LANDING PERFORMANCE

USE OF THE AUTOBRAKE SYSTEM

2.03.20

P 2

SEQ 120

REV 16

MANUAL LANDING WITH AUTOBRAKE

CONFIGURATION 3

R

		ACTUAL	LANDING	DISTANC	E (METER	RS)				RECTIONS	
	WEIGHT (1000 K	3)	130	150	170	190	210	230	PER 1000FT	2 REV	PER 10KT TAIL
RI	JNWAY CONDITION	MODE							ABOVE SL	OP	WIND
	DRY	MED	1220	1350	1470	1590	1700	1820	+ 3	0	+16
	J.I.I	LOW	1670	1850	2040	2220	2400	2560	+ 3	0	+17
	WET	MED	1260	1420	1570	1730	1890	2030	+ 4	-2	+20
L	AAFI	LOW	1670	1850	2040	2220	2400	2560	+ 3	0	+17
	6.3 MM (1/4 INCH)	MED	1560	1750	1980	2220	2470	2710	+ 4	-9	+23
C	WATER	LOW	1650	1840	2040	2290	2540	2780	+ 4	-2	+22
0 v	12.7 MM (1/2 INCH)	MED	1470	1640	1840	2050	2280	2480	+ 4	-7	+21
Ě	WATER	LOW	1570	1750	1940	2130	2350	2560	+ 4	0	+19
R	6.3 MM (1/4 INCH)	MED	1530	1710	1900	2090	2330	2530	+ 5	-9	+22
b	SLUSH	LOW	1620	1810	2000	2180	2390	2600	+ 5	-2	+21
	12.7 MM (1/2 INCH)	MED	1450	1620	1800	1970	2170	2370	+ 5	-8	+20
	SLUSH	LOW	1550	1730	1910	2080	2260	2440	+ 5	0	+18
w	COMPACTED SNOW	MED	1510	1670	1830	1980	2130	2260	+ 4	-8	+17
۱ŧ	COMPACIED SMOW	LOW	1660	1850	2030	2200	2380	2540	+ 4	0	+17
Ĥ	ICE	MED	2780	3080	3380	3690	3990	4250	+ 5	-20	+29
	ICE	LOW	2820	3130	3420	3730	4040	4310	+ 4	-21	+28

CONFIGURATION FULL

R

		ACTUAL	LANDING	DISTANC	E (METER	RS)				RECTIONS	
Ę.	WEIGHT (1000 KG	_	130	150	170	190	210	230	PER 1000FT	2 REV	PER 10KT Tail
K	UNWAY CONDITION	MODE							ABOVE SL	OP	WIND
	DRY	MED LOW	1200 1630	1290 1760	1400 1930	1520 2100	1630 2270	1730 2430	+ 3 + 3	0	+16 +17
	WET	MED LOW	1220 1630	1320 1760	1460 1930	1600 2100	1750 2270	1880 2430	+ 4 + 3	–1 0	+19 +17
C	6.3 MM (1/4 INCH) WATER	MED LOW	1500 1600	1640 1740	1830 1920	2050 2120	2280 2350	2480 2550	+ 4 + 4	–7 0	+22 +21
0 V E	12.7 MM (1/2 INCH) WATER	MED LOW	1420 1540	1550 1670	1710 1840	1910 2010	2120 2210	2300 2390	+ 4 + 4	-6 0	+22 +18
R E D	6.3 MM (1/4 INCH) SLUSH	MED LOW	1470 1570	1600 1700	1770 1880	1950 2050	2150 2230	2330 2410	+ 5 + 5	-8 0	+22 +20
	12.7 MM (1/2 INCH) SLUSH	MED LOW	1400 1520	1530 1650	1690 1810	1850 1980	2020 2140	2200 2290	+ 5 + 5	-7 0	+20 +18
W I T	COMPACTED SNOW	MED LOW	1460 1630	1570 1760	1720 1930	1860 2100	2000 2270	2120 2420	+ 4 + 4	-6 0	+17 +17
H	ICE	MED LOW	2600 2650	2820 2870	3100 3150	3380 3420	3660 3700	3900 3950	+ 4 + 4	–19 –19	+29 +29

Note: - Max mode is not recommended at landing

- Per 5 knot speed increment (and no failure) add 6 % (all runways)
- No correction for headwind due to wind correction on approach speed

CONTENTS

2.04.00 SEQ 001

P 1 REV 24

04.00 CONTENTS

04.10	FLUID CONTAMINATED RUNWAY 1 GENERAL 1 DEFINITIONS 1 OPERATIONAL CONDITIONS 2 TAKEOFF PERFORMANCE 2 TAKEOFF FROM A: 3 WET RUNWAY 3 6.3 MM (1/4 INCH) WATER COVERED RUNWAY 6 12.7 MM (1/2 INCH) WATER COVERED RUNWAY 7 6.3 MM (1/4 INCH) SLUSH COVERED RUNWAY 8 12.7 MM (1/2 INCH) SLUSH COVERED RUNWAY 9 COMPACTED SNOW COVERED RUNWAY 10 SPRAY PATTERN 11 CROSSWIND 11 TAXIING 12 TAKEOFF 12 LANDING 13 EXAMPLES 14
04.20	FLIGHT WITHOUT CABIN PRESSURIZATION - GENERAL
04.25	FLIGHT WITH GEAR DOWN GENERAL
04.30	HIGH ALTITUDE OPERATION
04.35	FLIGHT OVER MOUNTAINOUS AREA - INTRODUCTION

R R

2.04.00

P 2

CONTENTS

SEQ 001 | REV 23

04.40 R	EXTENDED RANGE OPERATIONS - GENERAL
04.45	REDUCED VERTICAL SEPARATION MINIMUM (RVSM) - GENERAL
04.46	RNP - GENERAL

FLUID CONTAMINATED RUNWAY

2.04.10

P 1

SEQ 001

REV 17

GENERAL

This section presents the recommendations of Airbus Industrie for operations from wet runways or from runways which are covered with contaminants such as standing water, slush or snow.

The following conservative penalties may be used instead of a specific RTOW.

CAUTION -

Takeoff from icy runway is not recommended.

DEFINITIONS

DAMP : A runway is damp when the surface is not dry, but when the

water on it does not give it a shiny appearance.

WET : A runway is considered as wet when the surface has a shiny

appearance due to a thin layer of water. When this layer does not exceed 3 mm depth, there is no substantial risk of

hvdroplaning.

STANDING WATER : Is caused by heavy rainfall and/or insufficient runway drainage

with a depth of more than 3 mm.

SLUSH : Is water saturated with snow which spatters when stepping

firmly on it. It is encountered at temperatures around 5°C and its density is approximately 0.85 kg/liter (7.1 lb/US GAL).

WET SNOW : Is a condition where, if compacted by hand, snow will stick

together and tend to form a snowball. Its density is

approximately 0.4 kg/liter (3.35 lb/US GAL).

DRY SNOW : Is a condition where snow can be blown if loose, or if

compacted by hand, will fall apart again upon release. Its density is approximately 0.2 kg/liter (1.7 lb/US GAL).

COMPACTED SNOW: Is a condition where snow has been compressed (a typical

friction coefficient is 0.2).

ICY : Is a condition where the friction coefficient is 0.05 or below.

The performance given in this chapter has been divided into two categories which are determined by the depth of the contaminant. For each of these categories an equivalent depth of contaminant has been defined for which the performance deterioration is the same.

1. WET RUNWAY and EQUIVALENT

Equivalent of a wet runway is a runway covered with or less than:

- 2 mm (0.08 inch) slush
- 3 mm (0.12 inch) water
- 4 mm (0.16 inch) wet snow
- 15 mm (0.59 inch) dry snow

ALL

R

ARBUS TRAINING A330 SIMULATOR FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS

FLUID CONTAMINATED RUNWAY

2.04.10

P 2

SEQ 001

REV 22

2. CONTAMINATED RUNWAY

- R An equivalence between depth of slush and snow has been defined:
 - 12.7 mm (1/2 inch) wet snow is equivalent to 6.3 mm (1/4 inch) slush
- R -25.4 mm (1 inch) wet snow is equivalent to 12.7 mm (1/2 inch) slush
 - 50.8 mm (2 inches) dry snow is equivalent to 6.3 mm (1/4 inch) slush
- R 101.6 mm (4 inches) dry snow is equivalent to 12.7 mm (1/2 inch) slush

Note: 1. On a damp runway no performance degradation should be considered.

2. It is not recommended to take off from a runway covered with more than 4 inches of dry snow or 1 inch of wet snow.

OPERATIONAL CONDITIONS

Performance penalties for takeoff as published in this section are computed with the following assumptions:

- The contaminant is in a layer of uniform depth and density over the entire length of the runway
- Antiskid and spoilers are operative
- The friction coefficient is based on studies and checked by actual tests
- The screen height at the end of the takeoff segment is 15 feet, not 35 feet.

In addition, for contaminated runways only:

- There is drag due to rolling resistance of the wheels
- There is drag due to spray on the airframe and gears
- Reverse thrust is used for the deceleration phase
- Maximum thrust is used for takeoff.

Note: The net flight path clears obstacles by 15 feet instead of 35 feet.

TAKEOFF PERFORMANCE

- CAUTION

The method is based on the use of the RTOW charts established at optimum V2/VS and optimum V1/VR. In addition, when applying corrections for a wet runway, the RTOW charts should also have been established with V1 min (minimum V1 of the V1 range). The method should not be used with takeoff charts computed for other conditions. All tables have been established for TOGA (and Flexible Takeoff for wet runways). Do not use them for Derated thrust.

Correct the determined maximum takeoff weight on dry runway to take into account QNH and bleed effects, then apply the corrections given on the following pages.

FLUID CONTAMINATED RUNWAY

2.04.10 P 3
SEQ 001 REV 22

R R R R

- Note: 1. The results obtained with this method may be different from the influence given at the bottom of the RTOW chart.
 - 2. On contaminated runway, in some cases, no MTOW can be determined with this method (box dashed below a given weight). A specific RTOW chart must then be computed.

TAKEOFF FROM A WET RUNWAY

- 1. Determine the maximum takeoff weight or flexible temperature and associated speeds on dry runway.
- 2. Two sets of tables are given depending on the use of thrust reversers and the presence of clearway. Select the table to use as applicable to your case.
 - The runway length in the table corresponds to the available takeoff run (TORA).
- 3. Apply the corrections shown in the table to the maximum takeoff weight or flexible temperature and associated speeds determined on dry runway.
- 4. Check that takeoff speeds are above the minimum values shown on the RTOW chart. If one or more speeds are below these values apply the following procedure : Actual TOW = maximum TOW
 - if V1 is lower than the minimum V1 (V1 limited by VMCG), take this last value as V1 and further decrease weight by 4000 kg (8800 lb) per knot difference between both values.
 - Check that VR and V2 are higher or equal to the minimum values.
 - if VR or/and V2 fall below the minimum value, takeoff is not possible.

Actual TOW lower than maximum TOW

- If V1 corresponding to the actual TOW is lower than the minimum V1 (V1 limited by VMCG) :
 - · If maximum TOW has a V1 equal or above minimum V1, retain minimum V1 as V1 and decrease flexible temperature by 3°C per knot difference between them.
 - In the rare case when the V1 corresponding to the maximum TOW falls below the minimum V1, decrease maximum TOW by 4000 kg (8800 lb) per knot difference between them. Limit the actual TOW to the value found after this decrement. Take V1 equal to minimum V1 and decrease flexible temperature by 3°C per knot difference between this value and the V1 corresponding to the actual TOW.
- If VR or V2 corresponding to actual TOW falls below minimum values, and if VR and V2 corresponding to maximum TOW are above the minimum values, retain the minimum speed value for VR and V2.
- 5. Check that V2 is above the minimum V2 value due to VMU (Refer to 2.02.25).
- 6. Check that the corrected flexible temperature is higher than OAT and Tref.

Note: · Do not extrapolate below the shortest runway length provided in the table.

 If no minimum speed value is available, use the conservative values provided on 2.02.25.

FLUID CONTAMINATED RUNWAY

2.04.10 SEQ 115

REV 23

NO THRUST REVERSERS OPERATIVE (NO CLEARWAY)

R

TAKEOFF CONFIGURATION		1 + F			2			3	
RUNWAY LENGTH (M) (FT)	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above
FLEX TO TEMPERATURE DECREMENT (°C)	5	5	5	6	4	4	3	5	4
MAX TO WEIGHT DECREMENT (1000 KG) (1000 LB)	5.2 11.5	5.0 11.0	5.2 11.5	5.0 11.1	4.3 9.5	4.7 10.4	2.0 4.4	4.5 9.9	3.8 8.4
V1 DECREMENT (KT)	13	14	15	12	13	13	12	13	13
VR AND V2 DECREMENT (KT)	2	4	5	2	3	5	2	4	5

ALL THRUST REVERSERS OPERATIVE (NO CLEARWAY)

R

TAKEOFF CONFIGURATION		1 + F			2		3				
RUNWAY LENGTH (M) (FT)	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above		
FLEX TO TEMPERATURE DECREMENT (°C)	2	3	5	1	2	3	0	3	2		
MAX TO WEIGHT DECREMENT (1000 KG) (1000 LB)	1.3 2.9	2.3 5.1	5.0 11.1	0.4 0.9	2.1 4.7	2.9 6.4	0.0 0.0	2.3 5.1	2.0 4.5		
V1 DECREMENT (KT)	8	9	10	6	8	8	8	8	8		
VR AND V2 DECREMENT (KT)	1	2	3	0	2	3	1	2	3		

FLUID CONTAMINATED RUNWAY

2.04.10

P 5

SEQ 115 | REV 23

NO THRUST REVERSERS OPERATIVE (WITH CLEARWAY)

R

TAKEOFF CONFIGURATION		1 + F			2		3				
RUNWAY LENGTH (M) (FT)	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above		
FLEX TO TEMPERATURE DECREMENT (°C)	9	7	6	9	7	6	11	6	5		
MAX TO WEIGHT DECREMENT (1000 KG) (1000 LB)	9.4 20.8	7.3 16.1	6.5 14.3	8.4 18.6	6.8 15.0	6.5 14.3	10.0 22.0	6.1 13.5	5.4 12.0		
V1 DECREMENT (KT)	13	14	15	12	13	13	12	12	13		
VR AND V2 DECREMENT (KT)	5	7	7	5	6	7	5	6	7		

ALL THRUST REVERSERS OPERATIVE (WITH CLEARWAY)

R

TAKEOFF CONFIGURATION		1 + F			2			3	
RUNWAY LENGTH (M) (FT)	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2000 6500	2500 8000	3000 10000 and above
FLEX TO TEMPERATURE DECREMENT (°C)	6	5	7	5	4	4	9	4	4
MAX TO WEIGHT DECREMENT (1000 KG) (1000 LB)	6.3 13.9	5.2 11.5	7.6 16.8	4.8 10.6	4.0 8.9	4.5 10.0	7.5 16.6	3.6 8.0	3.7 8.2
V1 DECREMENT (KT)	8	9	9	7	8	8	6	7	8
VR AND V2 DECREMENT (KT)	4	5	6	4	4	5	2	4	5

FLUID CONTAMINATED RUNWAY

2.04.10 P 6 SEQ 225 REV 20

TAKEOFF FROM A 6.3 MM (1/4 INCH) WATER COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

TAKEOFF CONFIGURATION		CON	IF 1 + I	F		CONF	: 2		CONF	3
RUNWAY LENGTH (m) (ft)	2500 8000	8000 10000 11500		4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2500 8000	3000 10000	3500 11500 and above
△WEIGHT (1000 kg) With clearway Without clearway	33.4 28.6	31.1 28.5	26.1 24.5	20.3 19.3	30.6 27.1	21.9 20.3	22.2 21.7	20.1 18.5	18.4 17.8	21.8 21.8

— Enter the following tables with the corrected weight to determine MTOW. If the MTOW on dry runway is obstacle limited, check that MTOW is at least 24400 kg below the MTOW on dry runway. If not, the MTOW on contaminated runway is MTOW on dry runway minus 24400 kg. Then determine takeoff speeds associated with actual TOW.

	CORRECTED WEIGHT (1000 kg)	<159	159	160	170	172.5				172	.5 to	240			
C MTOW (1000 kg) - 137.5 140 166 172.5 EQUAL TO CORRECTED WEIGHT								•							
N															
F	ACTUAL WEIGHT (1000 kg)	<137.5	137.5	140	150	160	170	172.5	180	190	200	210	220	230	240
11	V2 (kt IAS)	123	123	124	129	133	137	138	141	145	149	153	156	160	163
F	VR (kt IAS)	116	116	117	122	126	130	131	134	138	142	146	149	153	156
	V1 (kt IAS)	116	116	116	116	116	116	116	119	123	127	131	134	138	141

	CORRECTED WEIGHT (1000 kg)	<170	170	180	182.5	.5 180 to 240								
٦	MTOW (1000 kg)	-	150	176	182.5	5 EQUAL TO CORRECTED WEIGHT								
١٥														
Ň	ACTUAL WEIGHT (1000 kg)	<150	150	160	170	180	182.5	190	200	210	220	230	240	
F	V2 (kt IAS)	122	122	126	129	133	134	137	141	144	148	151	154	
ľ	VR (kt IAS)	116	116	120	123	127	128	131	135	138	142	145	148	
	V1 (kt IAS)	116	116	116	116	116	116	119	123	126	130	133	136	

	CORRECTED WEIGHT (1000 kg)	<178.5	178.5	180	190			190 t	o 240		
٦	MTOW (1000 kg)	-	160	164	190		EQUAL	TO CORF	RECTED \	VEIGHT	
6											
N	ACTUAL WEIGHT (1000 kg)	<160	160	170	180	190	200	210	220	230	240
F	V2 (kt IAS)	122	122	126	130	134	138	141	144	147	150
1	VR (kt IAS)	116	116	120	124	128	132	135	138	141	144
	V1 (kt IAS)	116	116	116	116	116	120	123	126	129	132

FLUID CONTAMINATED RUNWAY

2.04.10 P 7 SEQ 225 REV 20

TAKEOFF FROM A 12.7 MM (1/2 INCH) WATER COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

TAKEOFF CONFIGURATION		CON	IF 1 + I	F		CONF	: 2		CONF	3
RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2500 8000	3000 10000	3500 11500 and above
△WEIGHT (1000 kg) With clearway Without clearway	49.6 44.8	50.7 48.1	51.7 50.1	48.3 47.3	42.6 39.1	42.0 40.4	42.8 42.3	34.1 32.5	28.3 27.7	26.6 26.6

Enter the following tables with the corrected weight to determine MTOW. Then
determine takeoff speeds associated with actual TOW.

Г	CORRECTED WEIGHT (1000 kg)	<145.5	145.5	150	152.5				1	52.5	to 240)			
C	MTOW (1000 kg)	-	132.5	146	152.5			EQU	AL TO	CORF	RECTE) WEI	GHT		
١Ň															
F	ACTUAL WEIGHT (1000 kg)	<132.5	132.5	140	150	152.5	160	170	180	190	200	210	220	230	240
11	V2 (kt IAS)	121	121	124	129	130	133	137	141	145	149	153	156	160	163
F	VR (kt IAS)	116	116	119	124	125	128	132	136	140	144	148	151	155	158
L	V1 (kt IAS)	116	116	116	116	116	119	123	127	131	135	139	142	146	149

	CORRECTED WEIGHT (1000 kg)	<154.2	154.2	160				16	i0 to 2	40			
٦,	MTOW (1000 kg)	-	145	160			EQUA	L TO C	ORREC	ted We	IGHT		
o													
Ň	ACTUAL WEIGHT (1000 kg)	<145	145	150	160	170	180	190	200	210	220	230	240
F	V2 (kt IAS)	120	120	122	126	129	133	137	141	144	148	151	154
'	VR (kt IAS)	116	116	118	122	125	129	133	137	140	144	147	150
	V1 (kt IAS)	116	116	116	116	119	123	127	131	134	138	141	144

Г	CORRECTED WEIGHT (1000 kg)	<164.2	164.2	170				170 t	o 240			
٦	MTOW (1000 kg)	-	155	170			EQUAL :	TO CORF	RECTED	WEIGHT	•	
١٥												
N	ACTUAL WEIGHT (1000 kg)	<155	155	160	170	180	190	200	210	220	230	240
F	V2 (kt IAS)	120	120	122	126	130	134	138	141	144	147	150
1	VR (kt IAS)	116	116	118	122	126	130	134	137	140	143	146
L	V1 (kt IAS)	116	116	116	116	120	124	128	131	134	137	140

FLUID CONTAMINATED RUNWAY

2.04.10 P 8 SEQ 225 REV 20

TAKEOFF FROM A 6.3 MM (1/4 INCH) SLUSH COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

TAKEOFF CONFIGURATION		CON	IF 1 + I	F		CONF	: 2		CONF	3
RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2500 8000	3000 10000	3500 11500 and above
△WEIGHT (1000 kg) With clearway Without clearway	34.7 29.9	30.7 28.1	26.1 24.5	21.2 20.2	28.0 24.5	21.8 20.2	22.2 21.7	20.9 19.3	18.4 17.8	21.4 21.4

Enter the following tables with the corrected weight to determine MTOW. If the MTOW on dry runway is obstacle limited, check that MTOW is at least 24400 kg below the MTOW on dry runway. If not, the MTOW on contaminated runway is MTOW on dry runway minus 24400 kg. Then determine takeoff speeds associated with actual TOW.

	CORRECTED WEIGHT (1000 kg)	<153.5	15	3.5	160	165				16	5 to 2	40			
C	MTOW (1000 kg)	-	13	35	152	165		I	QUAL	TO CO	ORREC	TED W	/EIGHT	•	
N			<135 135 140 1												
F	ACTUAL WEIGHT (1000 kg)	<135	135	140	150	160	165	170	180	190	200	210	220	230	240
1	V2 (kt IAS)	122	122	124	129	133	135	137	141	145	149	153	156	160	163
F	VR (kt IAS)	116	116	118	123	127	129	131	135	139	143	147	150	154	157
L	V1 (kt IAS)	116	116	116	116	116	116	118	122	126	130	134	137	141	144

	CORRECTED WEIGHT (1000 kg)	<165.2	165.2	170	177.5				177	7.5 to 2	240			
٦	MTOW (1000 kg)	_	147.5	158	177.5			EQUAL	. TO C	ORREC	TED W	EIGHT		
ا														
N	ACTUAL WEIGHT (1000 kg)	<147.5	147.5	150	160	170	177.5	180	190	200	210	220	230	240
F	V2 (kt IAS)	121	121	122	126	129	132	133	137	141	144	148	151	154
	VR (kt IAS)	116	116	117	121	124	127	128	132	136	139	143	146	149
	V1 (kt IAS)	116	116	116	116	116	116	117	121	125	128	132	135	138

	CORRECTED WEIGHT (1000 kg)	<176.9	176.9	180	187.5			18	7.5 to 2	40		
	MTOW (1000 kg)	-	160	168	187.5		EŒU	AL TO C	ORRECT	ED WEI	GHT	
١٥												
N	ACTUAL WEIGHT (1000 kg)	<160	160	170	180	187.5	190	200	210	220	230	240
F	V2 (kt IAS)	122	122	126	130	133	134	138	141	144	147	150
"	VR (kt IAS)	116	116	120	124	127	128	132	135	138	141	144
	V1 (kt IAS)	116	116	116	116	116	117	121	124	127	130	133

FLUID CONTAMINATED RUNWAY

2.04.10 P 9 SEQ 225 REV 20

TAKEOFF FROM A 12.7 MM (1/2 INCH) SLUSH COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

TAKEOFF CONFIGURATION		CON	F 1 +	F		CONF	2		CONF	3
RUNWAY LENGTH (m) (ft)	2500 3000 3500 8000 10000 11500			4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2500 8000	3000 10000	3500 11500 and above
△WEIGHT (1000 kg) With clearway Without clearway	48.4 43.6	46.5 43.9	45.3 43.7	50.1 49.1	45.5 42.0	45.8 44.2	53.3 52.8	38.8 37.2	46.0 45.4	49.1 49.1

Enter the following tables with the corrected weight to determine MTOW. Then
determine takeoff speeds associated with actual TOW.

	CORRECTED WEIGHT (1000 kg)	<139.2	13	9.2	140	144				14	4 to 2	40			
C	MTOW (1000 kg)	-	13	30	132	144		-	QUAL	TO CO	ORREC	TED W	/EIGHT		
١Ň			<130 130 140 1												
F	ACTUAL WEIGHT (1000 kg)	<130	130	140	144	150	160	170	180	190	200	210	220	230	240
	V2 (kt IAS)	120	120	124	126	129	133	137	141	145	149	153	156	160	163
F	VR (kt IAS)	116	116	120	122	125	129	133	137	141	145	149	152	156	159
L	V1 (kt IAS)	116	116	116	116	119	123	127	131	135	139	143	146	150	153

	CORRECTED WEIGHT (1000 kg)	<153.3	153.3	160				16	i0 to 24	40			
,	MTOW (1000 kg)	-	142.5	160			EQUA	L TO C	ORREC [*]	ted We	IGHT		
ő													
N	ACTUAL WEIGHT (1000 kg)	<142.5	142.5	150	160	170	180	190	200	210	220	230	240
F	V2 (kt IAS)	119	119	122	126	129	133	137	141	144	148	151	154
'	VR (kt IAS)	116	116	119	123	126	130	134	138	141	145	148	151
	V1 (kt IAS)	116	116	116	116	119	123	127	131	134	138	141	144

Г	CORRECTED WEIGHT (1000 kg)	<163.3	163.3	170				170 t	o 240			
٦	MTOW (1000 kg)	-	152.5	170			EQUAL 1	TO CORF	RECTED	WEIGHT	•	
١٥												
N	ACTUAL WEIGHT (1000 kg)	<152.5	152.5	160	170	180	190	200	210	220	230	240
F	V2 (kt IAS)	119	119	122	126	130	134	138	141	144	147	150
ľ	VR (kt IAS)	116	116	119	123	127	131	135	138	141	144	147
L	V1 (kt IAS)	116	116	116	116	120	124	128	131	134	137	140

FLUID CONTAMINATED RUNWAY

2.04.10 P 10 SEQ 225 REV 20

TAKEOFF FROM A COMPACTED SNOW COVERED RUNWAY

- Determine maximum takeoff weight on dry runway.
- Apply the following weight decrement versus takeoff configuration, runway length and clearway availability to determine a corrected weight.

TAKEOFF CONFIGURATION		CON	IF 1 + I	F		CONF	: 2	CONF 3				
RUNWAY LENGTH (m) (ft)	2500 3000 3500 4000 8000 10000 11500 13000 and abov			2500 8000	3000 10000	3500 11500 and above	2500 8000	3000 10000	3500 11500 and above			
△WEIGHT (1000 kg) With clearway Without clearway	15.5 10.7	12.7 10.1	8.6 7.0	13.8 12.8	9.0 5.5	13.3 11.7	22.2 21.7	12.2 10.6	18.4 17.8	22.5 22.5		

Enter the following tables with the corrected weight to determine MTOW. If the MTOW on dry runway is obstacle limited, check that MTOW is at least 24400 kg below the MTOW on dry runway. If not, the MTOW on contaminated runway is MTOW on dry runway minus 24400 kg. Then determine takeoff speeds associated with actual TOW.

	CORRECTED WEIGHT (1000 kg)	<158.5	158.5	160	170				170 to	o 240			
ľ	MTOW (1000 kg)	_	140	144	4 170 EQUAL TO CORRECTED WEIGHT							IT	
ľŇ													
F	ACTUAL WEIGHT (1000 kg)	<140	140	150	160	170	180	190	200	210	220	230	240
1	V2 (kt IAS)	124	124	129	133	137	141	145	149	153	156	160	163
F	VR (kt IAS)	116	116	121	125	129	133	137	141	145	148	152	155
ľ	V1 (kt IAS)	116	116	116	116	116	120	124	128	132	135	139	142

	CORRECTED WEIGHT (1000 kg)	<173.5	173.5	180	185				185 t	o 240			
٦	MTOW (1000 kg)	-	155	172	185		EC	QUAL T	o corf	RECTED	WEIGH	IT	
lő													
N	ACTUAL WEIGHT (1000 kg)	<155	155	160	170	180	185	190	200	210	220	230	240
F	V2 (kt IAS)	124	124	126	129	133	135	137	141	144	148	151	154
ľ	VR (kt IAS)	116	116	118	121	125	127	129	133	136	140	143	146
	V1 (kt IAS)	116	116	116	116	116	116	118	122	125	129	132	135

	CORRECTED WEIGHT (1000 kg)	<181.9	181.9	190	192.5			19	2.5 to 2	40		
٦	MTOW (1000 kg)	-	165	186	192.5	92.5 EQUAL TO CORRECTED WEIGHT						
0												
N	ACTUAL WEIGHT (1000 kg)	<165	165	170	180	190	192.5	200	210	220	230	240
F	V2 (kt IAS)	124	124	126	130	134	135	138	141	144	147	150
3	VR (kt IAS)	116	116	118	122	126	127	130	133	136	139	142
	V1 (kt IAS)	116	116	116	116	116	116	119	122	125	128	131

FLUID CONTAMINATED RUNWAY

2.04.10 P 11

SEQ 001

REV 06

SPRAY PATTERN

R There is a little chance of the engines ingesting fluid, which in any case should not peopardize safety. The risk of ingestion is independent of the depth of the contaminant.

CROSSWIND

R R

R

To optimize directional control during the low speed phase of the takeoff and landing roll and according to the reported braking action given by the control tower, it is not recommended to takeoff and to land with a crosswind component higher than :

Reported braking action	Reported runway friction coefficient	Maximum crosswind (kt)	Equivalent runway condition**
Good	≥ 0.4	32*	1
Good/medium	0.39 to 0.36	27	1
Medium	0.35 to 0.3	20	2/3
Medium/poor	0.29 to 0.26	20	2/3
Poor	≤ 0.25	15	3/4
Unreliable		Not defined	4/5

- * This is the maximum crosswind demonstrated for dry and wet runway.
- ** Equivalent runway condition (only valid for maximum cross wind determination)
- 1. Dry, damp or wet runway (less than 3 mm water depth)
- 2. Runway covered with slush
- 3. Runway covered with dry snow
- 4. Runway covered with standing water with risk of hydroplaning or wet snow
- 5. Icy runway or high risk of hydroplaning

FLUID CONTAMINATED RUNWAY

2.04.10 SEQ 001 P 12

REV 06

TAXIING

R

R

R

R

R

- FOLLOWING TAXIING PROCEDURES CONSIDER

Avoid high thrust settings.

- When taxiing on slippery surfaces, stay well behind preceding aircraft.
- Taxi at low taxi speed. Note that antiskid does not operate at low speeds.
- On slippery taxiways during turns with large nose wheel steering angles, noise and vibration may result from the wheels slipping sideways. Keep speed as low as possible to make a smooth turn with minimum radius. Differential power may be needed.
- If taxiing in icing conditions with precipitation on runways and taxiways contaminated with slush or snow:
 - · Before takeoff keep flaps/slats retracted until reaching the holding point on the takeoff runway to avoid contaminating of the mechanism. Hold the BEFORE TO checklist at FLAP SETTING and finish it after extending flaps/slats.
 - · When taxiing in after landing, do not retract the flaps/slats to avoid damage of the structure.
 - After engine shutdown make a visual inspection to determine that the flap/slat mechanism is free of contamination.
 - · When the mechanism is clean, use the following procedure to retract the flaps/slats before the aircraft electric network is de-energized:
 - Select ON the GREEN and YELLOW ELEC PUMP.
 - Retract the FLAPS, and monitor retraction on ECAM page.
 - Select OFF the GREEN and YELLOW ELEC PUMP and resume with normal procedure.

TAKEOFF

- FOLLOWING TAKEOFF RECOMMENDATIONS CONSIDER

- For contaminated runways, select MAX TO.
- Do not abort takeoff for minor deficiencies even at low speeds.
 - If you have to abort takeoff, maintain directional control with the rudder and small inputs to the nose wheel. If necessary, use differential braking to regain the center line when stopping distance permits.
- Do not lift the nose wheel before VR in an attempt to avoid splashing slush on the aircraft because this produces additional aerodynamic drag.
- Rotate, lift off and retract gear and high lift devices in the normal manner.

FLUID CONTAMINATED RUNWAY

2.04.10 P 13

SEQ 001 | REV 06

LANDING

 FOLLOWING LANDING PROCEDURI 	S CONSIDER
---	------------

- Avoid landing on contaminated runways if the antiskid is not functioning. The use of autobrake LOW or MED is recommended provided that the contamination is evenly distributed.
- Approach at the normal speed.
- R Make a positive touchdown after a brief flare.
 - As soon as the aircraft has touched down, lower the nose wheel onto the runway and select maximum reverse thrust.
 - Do not hold the nose wheel off the ground.
 - $-% \frac{1}{2}\left(-\frac{1}{2}\right) =-\frac{1}{2}\left(-\frac{1}{2$
 - If the runway length is limiting, apply the brakes before lowering the nose gear onto the runway, but be prepared to apply back stick to counter the nose down pitch produced by the brakes application. (The strength of this pitching moment will depend on the brake torque attainable on the slippery runway).
 - Maintain directional control with the rudder as long as possible, use nose wheel steering with care.
- R When the aircraft is at taxi speed, follow the recommendations for taxiing.

<u>Note</u>: If there is snow, visibility may be reduced by snow blowing forward at low speeds if reversers are not cancelled.

FLUID CONTAMINATED RUNWAY

2.04.10

P 14

SEQ 115

REV 23

EXAMPLES

TAKEOFF PERFORMANCE ON DRY RUNWAY

Data

R

Runway length: 3000 m, $OAT = 34^{\circ}C$, no wind, CONF 2

 Determine maximum takeoff weight on dry runway from RTOW chart (Refer to FCOM 2.02.10 p 6)

A A	OAT					CONF	2				
-A115	°C	TAILW	IND	TAILW	IND	WIN	ID	HEADW	IND	HEADW	IND
¥ I	C	-10	KT	- 5 k	(T	0 K	T	10 k	(T	20 k	(T
-0410-014	32.0	204.8			3/4	215.4	3/4	218.9	3/4	221.7	3/4
<u>-</u>	32.0	139/42	2/47	143/46/51		148/50/54		151/52	2/57	154/56	5/60
04,	34.0	202.8	202.8 3/4		3/4	213.2 3/4		216.6 3/4		219.4	3/4
-05-	34.0	139/41/47		143/45	5/50	147/49	9/54	150/52	2/56	153/56	5/60
7	36.0	200.7	3/4	205.8	3/4	210.9	3/4	214.3	3/4	217.0	3/4
GF C5	30.0	138/4	1/46	143/45	5/50	147/49	9/53	150/51	1/56	153/55	5/59

Maximum TOW = 213200 kg, V1 = 147 kt, VR = 149 kt, V2 = 154 kt.

TAKEOFF PERFORMANCE ON WET RUNWAY

With thrust reversers operating and assuming that no clearway was used to compute the dry RTOW chart, use the lower table from 2.04.10 p 4.

440	
40	
ľ	
_	
_	
20	
- 7	
~	
ò	
1	
0	
_	
4	
0	
N	
0	
7	
- 10	

R

TAKEOFF CONFIGURATION		1+F	-		2			3	-
RUNWAY LENGTH									
(M)	3000	3500	4000	2500	3000	3500	2000	2500	3000
(FT)	9842	11483	13123	8202	9842	11483	6562	8202	9842
FLEX TO TEMPERATURE DECREMENT (°C)	2	3	5	1	2	3	0	3	2
MAX TO WEIGHT									
DECREMENT (1000 KG)	1.3	2.3	5.0	0.4	2.1	2.9	0.0	2.3	2.0
(1000 LB)	2.9	5.1	11.1	0.9	4.7	6.4	0.0	5.1	4.5
V1 DECREMENT (KT)	8	9	10	6	8	8	8	8	8
VR AND V2 DECREMENT (KT)	1	2	3	0	2	3	1	2	3

· Maximum takeoff weight correction :

MTOW = 213200 - 2100 = 211100 kg, V1 = 147 - 8 = 139 kt,

VR = 149 - 2 = 147 kt, V2 = 154 - 2 = 151 kt.

· Flex temperature correction :

Assuming an actual takeoff weight of 200000 kg and an initial flex temperature of 44°C TOW = 200000 kg \Rightarrow Flex temperature = 44 - 2 = 42°C

V1 = 146 - 8 = 136 kt, VR = 148 - 2 = 146 kt, V2 = 152 - 2 = 150 kt.

ARBUS TRAINING A330 SIMULATOR FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS

FLUID CONTAMINATED RUNWAY

2.04.10 P 15

REV 20

SEQ 225

TAKEOFF PERFORMANCE ON RUNWAY COVERED WITH 1/2 INCH SLUSH

Data

GFC5-02-0410-015-A225AA

Runway length: 3000 m (no clearway), OAT = 5°C, no wind, CONF 2

- Determine maximum takeoff weight on dry runway (Refer to FCOM 2.02.10 p 6).

OAT					CONF 2													
°C	TAILW	IND	TAILW	IIND	WIN	D	HEADW	IND	HEADW	IND								
C	-10 KT		−5 KT		0 KT		10 KT		20 k	<t< td=""></t<>								
0.0	212.3 3/4		3/4 217.7 3/4		223.0 3/4		226.5	3/4	228.8	3/4								
0.0	145/47/53		149/51/57		154/56/61		157/59/63		161/63	3/67								
10.0	210.7	3/4	216.1	3/4	221.4	3/4	225.0	3/4	227.6	3/4								
10.0	143/45/51 147/50/			0/55	55 152/54/59 155/57/61 15													

Maximum takeoff weight on dry runway = 222200 kg

 Determine a corrected weight (Refer to FCOM 2.04.10 p 9). As no clearway, use the correction displayed on the second line (without clearway).

B225AA	TAKEOFF CONFIGURATION		CON	F 1 +	F		CONF	2	CONF 3			
410-015-	RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	1 11500		3000 10000	3500 11500 and above	
3FC5-02-D	ΔWEIGHT (1000 kg) With clearway Without clearway	48.4 43.6		45.3 43.7	50.1 49.1	45.5 42.0	45.8 44.2	53 . 3 52 . 8	38.8 37.2	46.0 45.4	49.1 49.1	

Corrected weight = 222200 - 44200 = 178000 kg

Determine maximum takeoff weight and associated speeds :

5 A A		CORRECTED WEIGHT (1000 kg)	<153.3	153.3	160	160 to 240									
-022	۲	MTOW (1000 kg)	-	142.5	160			EQU.	AL TO	CORRI	ECTED	WEIG	:GHT		
015	0														
10-	N	ACTUAL WEIGHT (1000 kg)	<142.5	142.5	150	160	170	180	190	200	210	220	230	240	
-04	F	V2 (kt IAS)	119	119	122	126	129	133	137	141	144	148	151	154	
5-02	2	VR (kt IAS)	116	116	119	123	126	130	134	138	141	145	148	151	
GF C5		V1 (kt IAS)	116	116	116	116	119	123	127	131	134	138	141	144	

MTOW = 178000 kgV1 = 122 kt, VR = 130 kt, V2 = 133 kt

ATRICS TRAINING A330 SIMILATOR FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS

FLUID CONTAMINATED RUNWAY

2.04.10 SEQ 225 P 16

REV 20

TAKEOFF PERFORMANCE ON RUNWAY COVERED WITH 1/4 INCH WATER

Data

Runway length: 3000 m (no clearway), OAT = 50°C, 10 kt tailwind, CONF 2 — Determine maximum takeoff weight on dry runway (Refer to FCOM 2.02.10 p 6).

3FC5-02-0410-016-A225AA CONF 2 OAT TAILWIND TAILWIND WIND HEADWIND HEADWIND °C -10 KT -5 KT 0 KT 10 KT 20 KT 183.4 3/4 187.7 3/4 191.9 3/4 194.8 3/4 197.4 3/4 48.0 146/46/50 137/39/43 141/43/47 148/49/53 151/52/55 179.4 3/4 183.5 3/4 187.6 3/4 190.4 3/4 192.8 3/4 50.0 137/38/43 141/42/46 145/46/49 148/48/52 151/51/54 175.3 179.3 3/4 183.2 3/4 185.8 3/4 188.1 3/4 52.0 136/38/42 141/41/45 145/45/49 148/48/51 150/50/53

Maximum takeoff weight on dry runway = 179400 kg

 Determine a corrected weight (Refer to FCOM 2.04.10 p 6). As no clearway, use the correction displayed on the second line (without clearway).

B225AA	TAKEOFF CONFIGURATION		CON	F 1 +	F		CONF	ONF 2 CONF 3			
10-016-	RUNWAY LENGTH (m) (ft)	2500 8000	3000 10000	3500 11500	4000 13000 and above	2500 8000	3000 10000	3500 11500 and above	2500 8000	3000 10000	3500 11500 and above
GFC5-02-04	ΔWEIGHT (1000 kg) With clearway Without clearway	33.4 28.6	31.1 28.5	26.1 24.5	20.3 19.3	30.6 27.1	21 . 9 20 . 3	22.2 21.7	20.1 18.5	18.4 17.8	21 . 8 21 . 8

Corrected weight = 179400 - 20300 = 159100 kg

Determine maximum takeoff weight :

5 A A		CORRECTED WEIGHT (1000 kg)	<170	170	180	182.5				182.5	to 2	40		
-C22	٠	MTOW (1000 kg)	-	150	176	182.5		EQ	UAL T	O COF	RECT	ED WE	IGHT	
016	0													
10-	N	ACTUAL WEIGHT (1000 kg)	<150	150	160	170	180	182.5	190	200	210	220	230	240
-04	F	V2 (kt IAS)	122	122	126	129	133	134	137	141	144	148	151	154
5-02		VR (kt IAS)	116	116	120	123	127	128	131	135	138	142	145	148
GFC5		V1 (kt IAS)	116	116	116	116	116	116	119	123	126	130	133	136

For corrected weight 159100 kg < 170000 kg no takeoff weight can be determined with this method.

AIRBUS TRAINING A330	SPECIAL OPERATIONS	2.04.20	P 1
SIMULATOR FLIGHT CREW OPERATING MANUAL	FLIGHT WITHOUT CAB PRESSURIZATION	SEQ 001	REV 06

GENERAL

R

R The aircraft may fly without cabin pressurization because of an aircraft system deficiency

R (see MEL) or after a decompression in flight. The pilot's choice of flight level and airspeed

depends on the cause of the depressurization, the distance to fly, the topographic

R conditions and the meteorological conditions.

OXYGEN REQUIREMENTS

CREW MEMBERS

R See FAR 121.329 or JAR-OPS 1.770

PASSENGERS

- R For flight at cabin pressure altitudes above 10000 feet, up to and including 14000 feet,
- R there must be enough oxygen to supply 10 % of the passengers for the flight at those
- R altitudes that lasts more than 30 minutes.
- R For flight at cabin pressure altitudes above 14000 feet, up to and including 15000 feet,
- R there must be enough oxygen for 30 % of the passengers.
- R For flight at cabin pressure altitudes above 15000 feet, there must be enough oxygen for
- R all passengers.

FLIGHT WITHOUT CAB PRESSURIZATION

2.04.20

P 2

SEQ 001

REV 12

FLIGHT PLANNING AND EXECUTION

ALTITUDE

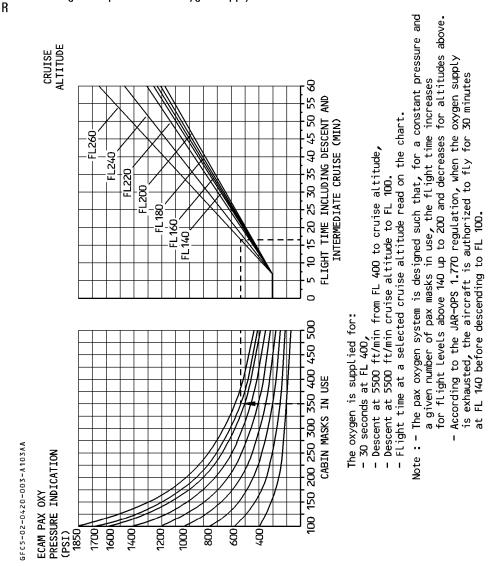
Flight route planning should consider the above-stated restriction in cabin altitude. If cabin altitude exceeds 9950 (\pm 350) feet, the EXCESS CAB ALT warning on the ECAM will be activated. When above 14000 feet, the passenger oxygen masks will be automatically provided. Therefore, the recommended maximum altitude for prolonged flight is FL100. The minimum altitude should be selected by respecting:

- The Minimum Safe Altitude (MSA),
- Turbulence, which is uncomfortable for passengers and,
- Low Outside Air Temperature (OAT), which can be uncomfortable for passengers when the cabin is ventilated by ram air only.

AIRSPEED

If decompression is due to structural damage, consider airspeed reduction. Use slats and flaps, as necessary, to establish low speed conditions. In addition, turbulent conditions are uncomfortable for passengers, and gust response should be minimized by reducing airspeed.

CLIMB AND DESCENT RATE


Takeoff must be performed normally, and the rate of climb must be limited to about 500 feet/minute, to ease the pressure change felt by passengers and crew.

R Likewise, the rate of descent must be limited to about 1000 feet/minute, except for the final approach which must be performed normally. Notify the ATC of any performance deficiency by a remark in the flight plan.

EMERGENCY DESCENT IN CASE OF RAPID DEPRESSURIZATION

In case of depressurization, the cabin's fixed oxygen system supplies oxygen, stored in interconnected cylinders. The flow rate is controlled by an altimetric flow regulation device within each mask container.

Depending on the number of masks used, and on the altitude flown during the descent, the following chart provides the oxygen supply time.

AIRBUS TRAINING A330	SPECIAL OPERATIONS	2.04.20	P 4
	FLIGHT WITHOUT CAB PRESSURIZATION	SEQ 001	REV 06

INTENTIONALLY LEFT BLANK

2.04.20

P 5

FLIGHT WITHOUT CAB PRESSURIZATION

SEQ 001

. 100 or MSA

REV 14

SYSTEMS

FAILURE OCCURRING IN FLIGHT

Apply the abnormal and emergency procedures required by the ECAM.

FAILURE PRESENT AT DISPATCH

- MAX FL

lf flight,	with	both	packs	ino	perative	:

— PACK 1 and 2 OFF
$-$ RAM AIR $\dots\dots\dots\dots$ ON If both CAB PRESS systems are inoperative, or if there is structural damage :
— PACK 1 and 2 ON
- MODE SEL MAN
- MAN VALVE SEL BOTH
- MAN V/S CTL AS RQRD Use MAN V/S CTL to set the outflow valve opening to 50 %.
 OUTFLOW VALVE HALF OPEN

TAKEOFF

R R

Limit the aircraft's rate of climb to about 500 feet/minute.

CLIMB

Note: The EXCESS CAB ALT warning may occur.

Use the ECAM CLR pushbutton to clear the warning.

DESCENT

Limit the aircraft's rate of descent to about 1000 feet/minute. Perform the final approach normally.

FLIGHT WITHOUT CAB PRESSURIZATION

2.04.20

P 6

SEQ 001

REV 06

PERFORMANCE DATA

The following table enables the fuel consumption and the time needed from takeoff to landing to be determined in case of flight without cabin pressurization.

The table is established for

- Takeoff
- Climb from 1500 ft at 250 kt
- Long range cruise speed at FL100
- Descent to 1500 ft at 250 kt
- Approach and landing: IMC procedure 240 kg or 530 lb (6 min)
- ISA temperature
- CG = 30 %
- Normal air conditioning
- Anti ice OFF

The table on page 8 gives the conversion from ground distance to air distance.

Note: For each degree Celsius above ISA temperature apply a correction of 0.010 $kg/^{\circ}C/NM$ or 0.022 $lb/^{\circ}C/NM$.

2.04.20

P 7

FLIGHT WITHOUT CAB PRESSURIZATION

SEQ 115 | REV 15

R

	.IMB : 250 F	(T - CRUISE : IMC PROCEDU	BRAKE RELE <i>A</i> LONG RANGE IRE : 240 KG ((- DESCENT : 2	250KT	FL 100		
	R CONDITION	IING		SA .	FUEL CONSUMED (KG)			
ANTI-ICING	<u>OFF</u>		CG =	30.0%	TIME (H.MIN)			
AIR DIST.			INITIAL WEI	GHT (1000KG)				
(NM)	140	160	180	200	220	240		
300	5068	5377	5710	6058	6423	6786		
	1.11	1.09	1.08	1.07	1.05	1.04		
400	6490	6889	7311	7749	8209	8656		
	1.33	1.29	1.27	1.25	1.22	1.21		
500	7905	8393	8905	9433	9987	10518		
	1.54	1.49	1.46	1.44	1.40	1.38		
600	9314	9890	10493	11109	11758	12373		
700	2.15	2.10	2.05	2.02	1.58	1.54		
	1 <u>071</u> 7	11381	12072	12776	13521	14221		
800	2.37	2.30	2.25	2.21	2.15	2.11		
	12114	12864	13645	14437	15274	16061		
	2.58 13504	2.50 14341	2.44 15211	2.40 16090	2.33	2.28 17894		
900	3.20	3.11 15812	3.04	2.58 17735	2.51	2.45 19720		
1000	3.41	3.32	3.23	3.17	3.09	3.03		
1100	16268	17274	18322	19373	20477	21539		
	4.03	3.53	3.43	3.36	3.27	3.20		
1200	17642	18729	19868	21003	22195	23351		
	4.25	4.13	4.02	3.55	3.46	3.37		
1300	19009	20177	21407	22624	23905	25153		
	4.46	4.35	4.22	4.14	4.04	3.54		
1400	20371	21618	22940	24239	25606	26945		
	5.08	4.56	4.42	4.33	4.23	4.12		
1500	21727	23053	24466	25846	27300	28730		
	5.30	5.17	5.01	4.52	4.41	4.29		
1600	23073	24482	25986	27446	28986	30508		
1700	5.53	5.38	5.21	5.12	5.00	4.47		
	24411	25904	27496	29038	30664	32278		
1800	6.16	6.00	5.41	5.31	5.19	5.04		
	25743	27320	28999	30624	32335	34041		
	6.39	6.22	6.01	5.50	5.38	5.22		
	27069	28729	30496	32203	33999	35797		
1900	7.02	6.43	6.21	6.10	5.56	5.40		
	28389	30133	31987	33775	35655	37546		
2000	7.25 29703	7.05 31530	6.41	6.29 35340	6.15	5.58 39287		
2100	7.48	7.27	7.02	6.49	6.34	6.16		
2200	31012	32925	34949	36901	38946	41019		
	8.12	7.49	7.22	7.08	6.53	6.34		
2300	32314	34315	36421	38455	40581	42744		
	8.36	8.10	7.42	7.28	7.12	6.52		
2400	33611	35699	37887	40002	42209	44462		
	9.00	8.32	8.03	7.47	7.31	7.10		
2500	34902	37078	39346	41543	43830	46173		
	9.24	8.53	8.23	8.07	7.50	7.28		
2600	36188	38451	40800	43079	45443	47877		
	9.48	9.15	8.44	8.27	8.10	7.46		
2700	37467	39819	42243	44608	47048	49574		
	10.13	9.37	9.05	8.46	8.29	8.04		
AIR COND	DITIONING	ENG	GINE	0.40	TOTAL	0.07		
_	FF = - 2 %		ICE ON = + 3 %		ANTI ICE ON △FUEL = + 4 %			

...

2.04.20

P 8

FLIGHT WITHOUT CAB PRESSURIZATION SEQ 001

ጋ 001 | REV 11

GROUND			AIR D	DISTANCE (NM)		
DIST.	TAIL WIN	D	WIND (COMPONEN	TS (KT)	HEA	D WIND
(NM)	+ 90	+ 60	+ 30	0	-30	-60	-90
300	241	258	277	300	327	359	398
400	321	343	370	400	436	479	531
500	401	429	462	500	545	599	664
600	481	515	554	600	654	718	797
700	561	601	647	700	763	838	930
800	641	687	739	800	872	958	1063
900	722	773	831	900	981	1078	1195
1000	802	859	924	1000	1090	1197	1328
1100	882	944	1016	1100	1199	1317	1461
1200	962	1030	1109	1200	1308	1437	1594
1300	1042	1116	1201	1300	1417	1556	1727
1400	1123	1202	1293	1400	1526	1676	1860
1500	1203	1288	1386	1500	1635	1796	1992
1600	1283	1374	1478	1600	1744	1916	2125
1700	1363	1460	1571	1700	1853	2035	2258
1800	1443	1545	1663	1800	1962	2155	2391
1900	1523	1631	1755	1900	2071	2275	2524
2000	1604	1717	1848	2000	2180	2395	2657
2100	1684	1803	1940	2100	2289	2514	2789
2200	1764	1889	2033	2200	2398	2634	2922
2300	1844	1975	2125	2300	2507	2754	3055
2400	1924	2060	2217	2400	2615	2873	3188
2500	2500 2005 2146		2310	2500	2724	2993	3321
2600	2085	2232	2402	2600	2833	3113	3454
2700	2165	2318	2494	2700	2942	3233	3586

FLIGHT WITH GEAR DOWN

2.04.25 P 1

SEQ 001

REV 18

GENERAL

R

This Chapter applies to dispatch with landing gear down. However, the limitations and inflight performance also apply in case of an inflight L/G retraction failure. Revenue flight is permitted with the L/G down, and the gear doors closed in the conditions stated below.

LIMITATIONS

- The maximum altitude is 35,000 feet.
- Do not fly into expected icing conditions.
- Ditching with landing gear down has not been demonstrated.
- Disregard FM fuel predictions. Other predictions should also be disregarded (altitude, speed and time), except time predictions at waypoints when in cruise.
- Do not use managed speed (except in approach) and CLB and DES autopilot modes.

Note: Automatic fuel aft transfer is lost.

PROCEDURES

PREFLIGHT

VMO/MMO with landing gear down is 255 knots/M.60. In the avionics compartment, on 808VU, the VMO-MMO switch must be set to the "L/G DOWN" position.

PERFORMANCE

Consider the increase in drag to determine the takeoff weight and fuel consumption. CONF 1 + F is the recommended takeoff configuration.

Note: Takeoff with tailwind is not recommended.

Penalties on takeoff performance affect second segment gradient, final takeoff, and enroute conditions. The takeoff weight to be retained is the most limiting of these three conditions.

SECOND SEGMENT GRADIENT CONDITION

The RTOW charts, or the quick reference tables, give the basic information for normal takeoff. To simplify, a constant weight reduction is applied, whatever the limitation. This weight reduction covers the most critical case presented, for flying over an obstacle.

R

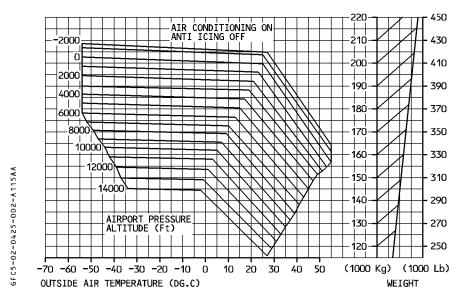
Takeoff configuration	1 + F	2	3
Weight reduction	21 %	16 %	15 %

FLIGHT WITH GEAR DOWN

2.04.25 SEQ 115 P 2

REV 18

_{IAL} | FLIGHT WITH GEAR DOWN


METHOD

Use the RTOW chart or the quick reference tables to define the maximum takeoff weight for the conditions on the airport (temperature, pressure, wind, runway...), then apply the above weight reduction.

FINAL TAKEOFF CONDITION

The final takeoff speed is VLS + 11

Use the graph below to determine the maximum takeoff weight associated with the final takeoff condition.

R EN-ROUTE CONDITION

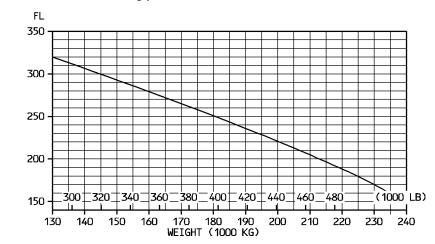
Retain the lowest weight according to the most limiting condition (second segment or final takeoff). Use the en-route net flight path on page 8 to check that, in case of engine failure, the aircraft can clear the terrain on the route by 1000 feet (climbing) or 2000 feet (descending). If necessary, reduce the takeoff weight. Read the speeds corresponding to this weight in the RTOW chart or in the quick reference tables.

R GO AROUND PERFORMANCE

- R See 3.05.35 for go around requirements.
- R Further decrease the basic limiting weight by 12 %.

FLIGHT WITH GEAR DOWN

2.04.25 SEQ 040


REV 18

P 3

FLIGHT PLANNING

MAXIMUM ALTITUDE

In order to ensure that there is at any moment of the flight a minimum range of 20 kts between VLS and the maximum speed (limited by thrust or VMO/MMO), the aircraft must remain below the following profile.

CLIMB

GFC5-02-0425-003-A040AA

Climb at 240 kt/M.52 with all engines at maximum climb thrust. The tables on page 4 give the time, distance and fuel consumption according to takeoff weight.

CRUISE/DESCENT

The recommended cruise/descent speed is 240 kt/M.52.

The ceiling with an engine inoperative may be a limiting factor, and the choice of the route should reflect this concern.

ENGINE FAILURE

In case of engine failure, the airplane will drift down to the ceiling shown on page 9. The thrust for drift down will be Maximum Continuous.

The drift down speed is equal to VLS + 5.

HOLDING

Page 7 gives the holding parameters with slats out, this configuration being the least penalizing for holding.

FLIGHT WITH GEAR DOWN

2.04.25 SEQ 115

REV 09

F

			С	LIMI	B - :	240K	(T/N	/1.52	- A	LL E	NG	INES	- L	/G D	ow	/N				
MAX. CL	IMB	THR	UST					ISA FROM BRAKE RELEASE												
NORMAL	. AIF	CON	NDIT	IONI	١G		(CG=:	30.0	%	TIME (MIN) FUEL (K							(KG)		
ANTI-ICII	NG (DFF									DIS	TAN	CE (NM)				Т	AS	(KT)
FL	\\/FI	GHT	ΛТΙ	SBAK	E RI	I E A S	SF (1000	(G)				1	,						1,
''								60	r i	70	1	00	1	90	-	00	210 220			
	130 140 150		- 1	ου	- 1	/0	- 1	80	- 1	90		UU		10	2.	20				
310	19 94	3881 288																		
	17	3557	19	3934																
290	81	286	90	287																
270	15	3266	16	3596	18	3954	20	4349												
2/0	70	283	78	283	86	284	95	285		1015										
250	13	2995	15	3287	16	3601	18	3940	19	4315										
230	61 12	279 2863	68 14	280 3139	75 15	280 3434	82 16	281 3750	90 18	282 4096	20	4480								
240	57	277	63	277	69	278	76	279	84	279	92	280								
	11	2603	12	2849	13	3108	14	3385	16	3683	17	4009	19	4370	20	4774				
220	50	272	55	272	60	273	65	273	71	274	78	275	85	276	94	277				
200	10	2345	11	2562	11	2790	12	3031	14	3289	15	3567	16	3871	17	4206	19	4579		
200	43	265	47	266	51	266	56	267	60	267	66	268	72	269	78	270	86	271		
180	8	2061	9	2248	10	2443	11	2648	11	2866	12	3100	13	3351	15	3625	16	3925	17	4255
100	35	256	39	257	42	257	46	258	50	258	54	259	58	260	63	260	69	261	75	262
160	7	1800	8	1960	8	2127	9	2302	10	2487	10	2684	11	2894	12	3120	13	3365	14	3632
100	29 6	247 1563	32 6	248 1700	34 7	248 1842	37 8	249 1991	40 8	249 2148	44 9	250 2313	47 9	250 2489	51 10	251 2677	55 11	252 2879	60 12	252 3097
140	0 24	238	26	239	28	239	30	240	33	2148	35	2313	38	2489	41	20//	44	2879	48	243
	5	1346	5	1462	6	1582	6	1708	7	1840	7	1979	8	2126	9	2282	9	2449	10	2628
120	19	229	21	229	23	229	24	230	26	230	28	231	31	231	33	232	35	233	38	233
400	4	1142	5	1238	5	1339	5	1444	6	1554	6	1670	7	1791	7	1920	7	2057	8	2202
100	15	218	16	218	18	219	19	219	21	220	22	220	24	221	26	221	28	222	30	223
50	2	669	3	723	3	779	3	838	3	899	3	964	4	1031	4	1101	4	1175	4	1253
50	7	180	7	180	8	180	9	181	9	181	10	182	11	182	12	183	12	184	13	184
15	1 2	358 113	1 2	385 113	1	413 113	1	443 113	2	474 113	2	506 113	2	540 114	2 4	575 115	2 4	612 116	2 4	650 117

11.0-08F0A330-200 CF6-80E1A4 21101000C5KG300 0 018590 0 0 2 1,3 520.0 300.0 1 02240.000 .520 .000 0 FC0M-G0-02-04-25-004-015

FLIGHT WITH GEAR DOWN

2.04.25 P 5 SEQ 115 REV 09

CRUISE - 240KT/M.52 - ALL ENGINES - L/G DOWN														
MAX. CRI NORMAL ANTI-ICIN	AIR CO						IS.					IAS	IACH (KT) (KT)	
WEIGHT (1000KG)	FL1	00	FL1	50	FL200		FL250		FL2	70	FL290		FL3	_
130	85.8 4274 32.4	.434 240 277	90.0 4323 34.6	.477 240 299	93.9 4307 37.1	.520 237 319	93.2 3560 44.0	.520 214 313	93.1 3312 46.9	.520 205 310	93.2 3097 49.7	.520 196 308	93.5 2911 52.4	.520 188 305
140	86.1 4316 32.1	.434 240 277	90.2 4365 34.2	.477 240 299	94.2 4354 36.7	.520 237 319	93.7 3620 43.2	.520 214 313	93.7 3386 45.8	.520 205 310	94.0 3182 48.4	.520 196 308	94.5 3008 50.7	.520 188 305
150	86.3 4360 31.8	.434 240 277	90.5 4410 33.9	.477 240 299	94.6 4402 36.3	.520 237 319	94.3 3693 42.4	.520 214 313	94.5 3470 44.7	.520 205 310	94.9 3276 47.0	.520 196 308	95.8 3123 48.8	.520 188 305
160	86.6 4407 31.5	.434 240 277	90.8 4459 33.5	.477 240 299	94.9 4457 35.8	.520 237 319	94.9 3776 41.5	.520 214 313	95.3 3563 43.6	.520 205 310	96.0 3388 45.4	.520 196 308		
170	87.0 4460 31.1	.434 240 277	91.2 4513 33.1	.477 240 299	95.3 4518 35.4	.520 237 319	95.6 3866 40.5	.520 214 313	96.2 3668 42.3	.520 205 310	97.2 3511 43.8	.520 196 308		
180	87.3 4517 30.7	.434 240 277	91.6 4573 32.7	.477 240 299	95.7 4587 34.8	.520 237 319	96.4 3965 39.5	.520 214 313	97.3 3787 41.0	.520 205 310				
190	87.7 4580 30.3	.434 240 277	92.0 4640 32.2	.477 240 299	96.2 4668 34.2	.520 237 319	97.3 4079 38.4	.520 214 313	98.5 3924 39.5	.520 205 310				
200	88.2 4648 29.8	.434 240 277	92.4 4715 31.7	.477 240 299	96.8 4755 33.6	.520 237 319	98.3 4204 37.2	.520 214 313						
210	88.6 4723 29.4	.434 240 277	92.9 4798 31.2	.477 240 299	97.4 4849 32.9	.520 237 319								
220	89.1 4807 28.8	.434 240 277	93.4 4886 30.6	.477 240 299	98.0 4950 32.3	.520 237 319								

10D -08F0A330-200 CF6-80E1A4 12101000C5KG300 0 018590 0 0 1 1.3 .0 .00 0 02240.000 .520 .000 0 FC0M-G0-02-04-25-005-015

FLIGHT WITH GEAR DOWN

2.04.25 P 6
SEQ 115 REV 09

	DE	SCENT -	M.52/2	40KT - A	LL ENGI	NES - L/C	G DOWN					
IDLE THRUST			IS	A								
NORMAL A	IR CONDI	TIONING	CG=30.0% MAXIMUM CABIN RATE OF DESCENT 350FT/M						FT/MIN			
ANTI-ICING	OFF											
WEIGHT												
(1000KG)		15	50			20	00					
	TIME	FUEL	DIST.	N1	TIME	FUEL	DIST.	N1	IAS			
FL	(MIN)	(KG)	(NM)		(MIN)	(KG)	(NM)		(KT)			
310	9.6	174	46	IDLE	11.6	211	56	IDLE	188			
290	8.8	162	42	IDLE	10.8	198	52	IDLE	196			
270	8.1	151	39	IDLE	10.0	186	48	IDLE	205			
250	7.4	140	35	IDLE	9.2	174	44	IDLE	214			
240	7.1	135	34	IDLE	8.8	168	42	IDLE	218			
220	6.5	125	31	IDLE	8.1	156	38	IDLE	228			
200	6.0	116	28	IDLE	7.5	145	35	IDLE	237			
180	5.4	106	25	IDLE	6.7	132	31	IDLE	240			
160	4.8	95	22	IDLE	6.0	119	27	IDLE	240			
140	4.2	84	18	IDLE	5.2	105	23	IDLE	240			
120	3.5	72	15	IDLE	4.4	90	19	IDLE	240			
100	100 2.9 60 12 IDLE 3.6 75 16 IDLI								240			
50	1.2	26	5	IDLE	1.5	33	6	IDLE	240			
15	.0	0	0	IDLE	.0	0	0	IDLE	240			

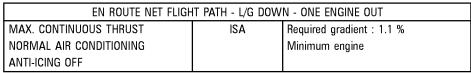
10D -08F0A330-200 CF6-80E1A4 23101000C5KG300 0 018590 0 0-1-350.0 15.0 .00 0 02 .520240.000 .000 0 FC0M-G0-02-04-025-006-015

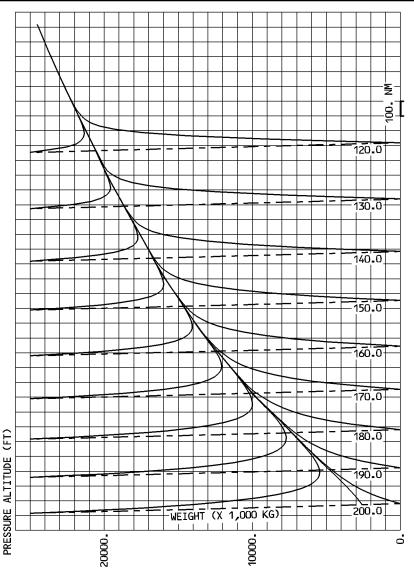
FLIGHT WITH GEAR DOWN

2.04.25

P 7

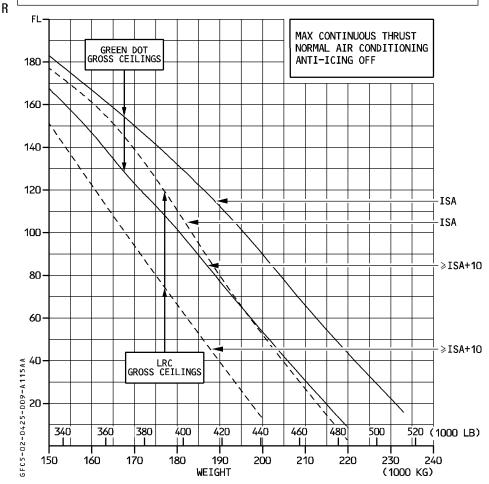
SEQ 115 | REV 15


R


RACE TRACK HOLDING PATTERN - S SPEED - ALL ENGINES - L/G DOWN									
MAX. CRUISE THRUST LIMITS					ISA		N1 (%)		
CONFIGURATION 1					CG=30.0%		FF (KG/H/ENG)		
NORMAL AIR CONDITIONING									
ANTI-ICING OFF									
WEIGHT									
	FL 15	FL 50	FL100	FL120	FL140	FL150	FL160	FL180	FL200
(1000KG)									
130	65.1	68.2	72.4	74.1	75.8	76.7	77.6	79.4	81.3
130	2608	2604	2584	2588	2598	2600	2601	2602	2612
l 140	67.3	70.3	74.5	76.3	78.0	78.9	79.8	81.6	83.4
140	2819	2810	2800	2812	2815	2815	2816	2826	2835
l 150	69.4	72.3	76.6	78.3	80.1	81.0	81.9	83.7	85.4
130	3033	3015	3029	3033	3033	3038	3044	3050	3067
160	71.4	74.3	78.5	80.3	82.1	83.0	83.8	85.6	87.4
100	3245	3231	3253	3255	3264	3264	3268	3285	3303
170	73.2	76.1	80.4	82.2	83.9	84.8	85.6	87.5	89.3
170	3457	3460	3480	3487	3489	3495	3504	3522	3548
180	75.0	77.9	82.2	83.9	85.6	86.5	87.4	89.2	91.2
100	3680	3701	3713	3713	3726	3735	3744	3769	3796
l 190	76.7	79.6	83.9	85.6	87.3	88.2	89.1	91.0	93.0
ושטון	3915	3937	3942	3950	3969	3979	3992	4020	4050
200	78.5	81.4	85.6	87.3	89.1	90.0	90.9	92.8	94.9
	4180	4190	4193	4210	4233	4247	4262	4290	4330
210	80.2	83.1	87.2	89.0	90.7	91.6	92.6	94.6	96.8
<u> </u>	4442	4438	4455	4477	4507	4523	4536	4574	4626
220	81.9 4724	84.7 4710	88.9 4747	90.7 4775	92.5 4806	93.4 4820	94.4 4839	96.5 4889	98.9 4956

FLIGHT WITH GEAR DOWN

2.04.25 P 8 SEQ 115 REV 11



FLIGHT WITH GEAR DOWN

2.04.25 P 9 SEQ 115 REV 16

BLEED CORRECTIONS

R

		ISA	≥ ISA + 10
LONG	ENGINE ANTI ICE ON	– 200	– 1100
RANGE	TOTAL ANTI ICE ON	- 600	– 2400
GREEN	ENGINE ANTI ICE ON	– 100	– 700
DOT	TOTAL ANTI ICE ON	- 500	– 2000

HIGH ALTITUDE OPERATION

2.04.30 P 1

SEQ 001 REV 06

OPERATION ABOVE 8000 FEET

The STANDARD OPERATING PROCEDURES (Refer to FCOM 3.03) and ABNORMAL and EMERGENCY PROCEDURES (Refer to FCOM 3.02) remain applicable for operation at high altitude airfields.

SYSTEM OPERATION

PRFSS

R

R

R

R

R

R

In case the aircraft takes off from an airfield higher than 8000 feet the cabin altitude remains at takeoff altitude until the cruise conditions are fulfilled (i.e. aircraft altitude 5000 feet above takeoff altitude and aircraft climb rate lower than 50 SLFPM for more than 32 seconds). After level off the cabin altitude is controlled to the scheduled cruise cabin altitude. On the ECAM PRESS or CRUISE page it can be observed that the cabin altitude starts changing 32 seconds after level off.

Note: After a takeoff with packs off the Cabin Pressure Controller (CLB mode) will control the cabin altitude to takeoff altitude + 250 feet.

— HYD

If on ground the «RSVR LO AIR PR» ECAM caution is triggered, switch OFF the associated hydraulic pumps (engines and electrical) before engine start to allow reservoir pressurization before hydraulic pump operation.

FLIGHT OVER MOUNTAINOUS AREA

2.04.35

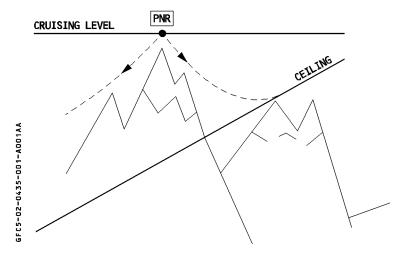
SEQ 001

REV 06

P 1

INTRODUCTION

R


Two failures must be taken into consideration for en route obstacle clearance over mountainous area:

- Engine failure that forces a descent to a lower cruise level
 - Depressurization which, due to the passenger oxygen system, requires a descent to 10000 feet before supplementary oxygen is exhausted.

ENGINE FAILURE

R If the standard strategy does not allow the aircraft to clear obstacles, the pilot must use a drift down procedure. If an engine failure occurs at any point on the route, the net flight path must clear the obstacles on the drift down part by 2000 feet and on the climb part by 1000 feet.

R If the aircraft cannot clear the en route obstacles, a point of no return (PNR) must be determined.

R If an engine failure occurs after the PNR, the aircraft must drift down on course. If the failure occurs before the PNR, the aircraft must turn back.

For en route net flight paths, refer to the Aircraft Flight Manual.

FLIGHT OVER MOUNTAINOUS AREA

2.04.35 SEQ 001 P 2

REV 06

DEPRESSURIZATION

In case of depressurization, the passengers receive oxygen through individual modules. An emergency descent in accordance with a certain profile depending on passenger oxygen equipment installed has to be performed (Refer to 2.04.20) FLIGHT WITHOUT CABIN PRESSURIZATION.

CONCLUSION

- R A detailed study of each route over mountainous area must show that single-engine net flight path and passenger oxygen system performance allow the obstacles to be cleared by R 1000 feet in climb and 2000 feet in cruise or descent. R
- If the aircraft in these circonstances cannot clear obstacles on the route, a PNR must be R determined and diversion procedures must be established. R

EXTENDED RANGE OPERATIONS

2.04.40

SEQ 001

REV 24

P 1

GENERAL

The system design and the reliability of the engine installation of this airplane comply with the criteria for Extended Twin Operations (ETOPS) flights set forth in AMC 20–6 (EASA) or AC 120-42 A (FAA) when the aircraft is configured, maintained and operated in accordance with the provisions of the appropriate Airbus Industrie document "Standard for Extended Range Operations" in the latest approved revision which is the Airbus CMP (Configuration, Maintenance and Procedure) document.

This statement of ability does not constitute an approval to conduct Extended-Range Operations.

The section 6 of the Flight Manual refers to the approved Standard for Extended-Range Operations and the applicable limitations, procedures and performance references.

The operator is responsible for showing that he is complying with the regulation of his nation and for obtaining operational approval from his national authorities. The operator may amend this chapter, as needed.

The airplane must be configured in accordance with the Airbus Industrie Standard for Extended-Range Operations. However, the authorities may under certain conditions allow the operator to conduct ETOPS flights with limited maximum diversion time (for example, 75 minute diversion time in a benign area of operation) without showing full compliance with these standards.

OPERATIONAL LIMITATIONS

DEFINITIONS

R For the purpose of AC 120-42 A and AMC 20-6 Extended-Range Operations are those intended to be conducted over a route that contains a point more than 60 minutes from an adequate airport at the selected one-engine-inoperative speed in still air and ISA (or prevailing delta ISA) conditions.

An adequate airport is an airport which satisfies the aircraft performance requirements applicable at the expected landing weight, and sufficiently equipped to be safely used. In particular, at the anticipated time of use, it should be available and equipped with the necessary services, including ATC, weather information and at least one let down aid for an instrument approach.

A suitable airport is a confirmed adequate airport which satisfies the dispatch weather minima requirements for ceiling and visibility within the required validity period. Airport conditions should also ensure that a safe landing with one engine and/or airframe system inoperative is possible.

EXTENDED RANGE OPERATIONS

2.04.40

SEQ 001 | R

P 2 REV 06

AREA OF OPERATION

The maximum distance from an adequate airport must be determined for ISA (or prevailing delta ISA) and no-wind conditions, taking into account aircraft performance with one engine inoperative and the remaining engine operating at not more than MCT.

To determine the maximum distance from an adequate airport, the operator must define a diversion speed strategy as well as an aircraft reference weight for performance computation.

The same diversion speed strategy (Refer to FCOM 3.06) must be considered for :

- establishing the area of operation;
- calculating the single-engine fuel planning,
- conducting the diversion in case of engine failure (conditions permitting).

The operator establishes the ETOPS reference gross weight for each route or area of operation. This must be a representative but conservative value of the aircraft gross weight at the critical point of the route or at the various critical points of all the routes included in the area of operation.

The-one-engine-inoperative descent and cruise speed law must be chosen so that the associated net flight path clears the enroute obstacles with the regulatory margin.

FCOM section 3.06 gives data for two speed schedules. The associated approved net flight paths are published in the section 6 of the Flight Manual.

When the diversion strategy is chosen, the maximum distance from a diversion airport, can be directly determined for different maximum diversion times, with the help of the tables provided in this section. The area of possible ETOPS operation can then be drawn on plotting charts.

Another way to determine the maximum distance to a diversion airport is to read the one-engine-inoperative cruise TAS (for the reference gross weight and at the FL for best TAS) in the cruise tables in section 3.06 taking into consideration the appropriate speed strategy and the minimum altitude for clearing possible obstacles. The maximum distance the aircraft can travel to a diversion airport is this one-engine-inoperative-TAS multiplied by the maximum allowed diversion time granted to the operator.

Operators whose authorities require that an approved one-engine-inoperative speed be published in the Flight Manual must use this approved speed.

EXTENDED RANGE OPERATIONS

2.04.40

SEQ 001

P 3

REV 06

DISPATCH CONSIDERATION

MMEL

The MMEL has been approved taking into consideration the duration of the average ETOPS flight and the maximum diversion time granted to the airframe/engine combination. The MMEL published by Airbus Industrie and approved by the French DGAC can be used to establish the airline MEL, which must be approved by the operator's national authorities. This MEL will probably be adapted to the airline network, environment and organization. Other determining parameters will be:

- · The maximum and the average diversion times on the route.
- · The equipment of the enroute alternates.
- · The navigation and communication facilities.
- · The average meteorological conditions.

COMMUNICATION AND NAVIGATION FACILITIES

The aircraft communication system has provision to install three VHF transceivers and two HF radios ensuring full compliance with ETOPS requirements on any kind of route.

The aircraft navigation system meets the ETOPS requirements for en route navigation.

The aircraft has three inertial reference systems which, in conjunction with 2 FMS comply with MNPS criteria and this combination of systems is approved as the sole means of navigation for flight up to the maximum aircraft range.

See the MEL for a definition of the authorized dispatch configuration.

<u>Note</u>: For operation within the MNPS area, airlines must obtain approval from their national authorities.

FUEL AND OIL SUPPLY

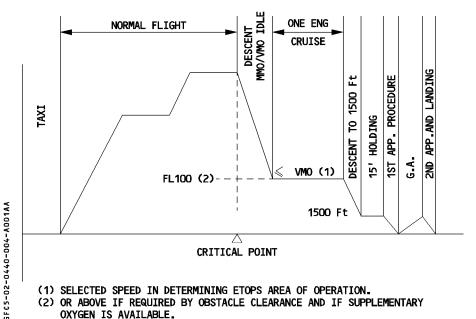
The aircraft fuel and oil supply must be adequate to allow the aircraft to reach its destination or a planned alternate after the combined failures of an engine and pressurization or the failure of pressurization alone at the critical point on the route. Planners must consider forecast wind and temperature conditions, as well as forecast icing conditions.

The operator must etablish a routine for ETOPS critical fuel planning and compare it with the standard (non-ETOPS) fuel planning.

R ELECTRICAL GENERATORS

R Refer to MEL for a definition of the authorized dispatch configuration.

SPECIAL OPERATIONS EXTENDED RANGE OPERATIONS


2.04.40 P 4 SEQ 001

REV 06

ETOPS FUEL SCENARIOS

For establishing the ETOPS critical fuel reserves, the planner must consider two diversion scenarios.

Pressurization failure + engine failure

- SELECTED SPEED IN DETERMINING ETOPS AREA OF OPERATION.
- (2) OR ABOVE IF REQUIRED BY OBSTACLE CLEARANCE AND IF SUPPLEMENTARY OXYGEN IS AVAILABLE.

Pressurization failure

Same flight profile, but with 2 engines operating and diversion cruise set at LRC.

Fuel requirements

For each scenario, the required block fuel must be computed in accordance with the operator's ETOPS fuel policy and using the regulatory ETOPS critical fuel reserves described below.

Depending on the strategy and the one-engine-inoperative speed selected for the single-engine diversion scenario, either of these two scenarios may result in the higher fuel requirement.

The scenario resulting in the higher fuel requirement is the ETOPS critical fuel scenario, and the associated minimum block fuel requirement is the ETOPS critical fuel plan.

EXTENDED RANGE OPERATIONS

2.04.40 SEQ 001

REV 06

P 5

ETOPS CRITICAL FUEL RESERVES

For the computation of the ETOPS critical fuel reserves and of the complete ETOPS critical fuel planning, the diversion fuel must include the following fuel provisions:

- · fuel burn-off from the critical point to the end of descent (for example 1500 feet) at the diversion airport,
- · 5 % of the above fuel burn-off as contingency fuel,
- · fuel for 15 minutes of holding at 1500 feet and green dot speed.
- · fuel for first (IFR) approach, a go-around and second (VFR) approach,
- · 5 % fuel mileage penalty or a demonstrated performance factor.
- · effect of any Configuration Deviation List (CDL) or MEL item.
- · if icing conditions are forecast:
 - * effect of Nacelle Anti Icing (NAI) and Wing Anti Icing (WAI) systems.
 - * effect of ice accretion on the unheated surfaces of the aircraft:
 - The fuel provisions associated with the effects of NAI and WAI systems and of ice accretion on the unheated surfaces are adjusted to take into account the horizontal extent of the forecast icing areas (exposure time).
 - The fuel provision factor for ice accretion on the unheated surfaces is a percentage equal to three times the forecast exposure time in hours. For example, assuming a one-hour exposure en route to and (e.g. the 15 minute holding) at the diversion airport, the fuel provision is 3 % of the fuel burned during the considered exposure time. If moderate icing is forecast, the above fuel provision is divided by two.
- · for operations above 138 minutes diversion time, if the above effect of ice accretion is less than 5 %, this effect should be rounded—up to 5 % to provide a provision for weather avoidance.
- · if the APU is needed as a power source (MEL), its fuel consumption must be considered: 130 kg/h or 286 lb/h (APU GEN ON, APU BLEED OFF).
- In view of our experience, Airbus Industrie recommends that the operator considers the following non mandatory fuel practices:
- · Include the effect of a demonstrated performance factor, in all standard and ETOPS fuel requirement computations,
- Include a contingency fuel provision from departure to the Critical Point (CP), when computing the ETOPS critical fuel planning.

R

EXTENDED RANGE OPERATIONS

2.04.40 SEO 001 P 6

REV 24

The complete ETOPS critical fuel planning for the ETOPS critical fuel scenario (from the departure to the Critical Point and then from the Critical Point to the diversion airport) must be compared with the standard fuel planning (for example, from the departure to the destination and alternate) computed in accordance with the company fuel policy and applicable operational requirements. The higher of the two fuel requirements must be considered as the minimum required block fuel for the flight.

DISPATCH FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING

ETOPS diversion fuel requirements for dispatch are provided at the end of this section. Data for the engine failure case alone is not provided as this scenario is never critical.

WEATHER MINIMA

R

Weather forecasts for en route alternates must meet the operator's applicable weather minimun requirements. If this applicable requirement is AC 120-42A or AMC 20-6 following applies:

An airplane cannot be dispatched unless the meteorological forecasts at en route alternate airports meet the weather minimums listed here for a period starting one hour before the earliest expected time of landing and ending o04ne hour after the latest expected time of landing.

A. AC 120-42A dispatch weather minima (FAA)

AIRPORT EQUIPMENT	Ceiling (ft)	Visibility (m)	
1 ILS/MLS	DH + 400	Greater of (3200, published minima + 1600)	
2 ILS/MLS on separate runways *	DH + 200	Greater of (1600, published minima + 800)	
Non precision approach	Greater of (800, MDH + 400)	Greater of (3200, published minima + 1600)	
CAT II/CAT III capability with engine failure	Lower than above minima, approved on a case-by-case bas considering aircraft performance under failure conditions		

^{*} separate runways are runways which do not touch each other.

DH: decision height

MDH: minimum descent height

EXTENDED RANGE OPERATIONS

2.04.40 P 7
SEQ 001 REV 24

R B. AMC 20–6 dispatch weather minima (EASA)
 The operator must use either table 1 or table 2, but not a combination of both.
 Table 1

Approach Facility Configuration	Alternate Airfield Ceiling	Weather Minima Visibility
For aerodromes with at least one operational navigation facility, providing a precision or non-precision runway approach procedure or a circling manoeuvre from an instrument approach procedure	A ceiling derived by adding 400 feet to the authorised DH, MDH (DA/MDA) or circling minima	A visibility derived by adding 1500 meters to the authorised landing minima
The weather minima below apply at at least two separate runways (two	airports which are equipped with pred separate landing surfaces)	sision or non-precision approaches on
For airports with at least two operational navigation facilities providing a precision or non-precision runway approach procedure to separate suitable runways	A ceiling derived by adding 200 feet to the higher of the two authorised DH/MDH (DA/MDA) for the approaches	A visibility derived by adding 800 meters to the higher of the two authorised landing minima

Table 2

Type of Approach	Planning Minima (RVR visibility required and ceiling if applicable)					
''	·	Aerodrome with				
	at least 2 separate approach procedures based on 2 separate aids serving 2 separate runways	at least 2 separate approach procedures based on 2 separate aids serving 1 runway	or	at least 1 approach procedure based on 1 aid serving 1 runway		
Precision Approach Cat II, III (ILS, MLS)	Precision Approach Cat I Minima	Non-Precision Approach M	inim	a		
Precision Approach Cat I (ILS, MLS)	Non-Precision Approach Minima	Circling minima or, if not a non-precision approach mi 200 ft/1000 m				
Non-Precision Approach	The lower of non-precision approach minima plus 200 ft/1000 m or circling minima	The higher of circling mini minima plus 200 ft/1000 n		or non-precision approach		
Circling Approach		Circling minima				

EXTENDED RANGE OPERATIONS

2.04.40 SEQ 001 P 8

REV 24

DIVERSION DURING EXTENDED RANGE OPERATIONS

DIVERSION DECISION MAKING

The technical criteria governing a re-routing or diversion decision can be classified into four categories, as follows:

- Loss of MNPS capability, before entering the MNPS area (as applicable).
- Weather minima at diversion airport(s) going below the company/crew en-route minima, before reaching the ETOPS Entry Point, or diversion airport(s) becoming unsuitable for any reason.
- Failure cases requiring a diversion to the nearest airport (cases leading to a LAND ASAP message on the ECAM and/or in the QRH).
- Failure cases resulting in increased fuel consumption, exceeding the available fuel reserves.

Comments and recommendations

· Electrical generation

Diversion is required in case of:

- only one generator (either one IDG, APU GEN or EMER GEN) remaining available following a multiple failure, or
- only one main generator (either one IDG or APU GEN) remaining available, and low level, low pressure or overheat on the green hydraulic circuit.
- · Fuel system

R

R

Some failure cases may lead to fuel gravity feeding which implies flight at lower altitude or to some fuel being unusable. The flight crew's evaluation of the actual situation and the fuel remaining may lead to the decision that a diversion is required.

DIVERSION PERFORMANCE DATA

FCOM section 3.06 gives three single engine descent and cruise procedures:

- 1. The standard strategy.
- 2. The obstacle strategy.
- 3. Fixed speed strategies (ETOPS).

For ETOPS operations, any one of the above diversion strategies can be used provided that the selected strategy and speed schedule are used in :

- · establishing the area of operation (maximum diversion distance),
- · calculating the diversion fuel requirements for the single-engine ETOPS fuel scenario.
- · demonstrating the applicable obstacle clearance requirements (net flight path and net ceiling).

During the diversion, the flight crew is expected to use the planned speed schedule. However, based on the evaluation of the actual situation, the pilot in command has the authority to deviate from this planned one-engine-inoperative speed.

EXTENDED RANGE OPERATIONS

2.04.40 SEQ 001 P 9 REV 14

GUIDELINES FOR DIVERSION PROCEDURE

- Complete the related failure procedure.
- Inform ATC.
- Initiate the descent.
- Determine which en route alternate is the most suitable one (per company procedure).
- Divert to the chosen en route alternate.
- Comply with the pre-planned diversion strategy and speed schedule, or adjust the speed schedule, as dictated by the evaluation of the actual situation.

<u>Note</u>: For detailed guidelines and procedures for conducting the diversion (lateral and vertical navigation), see FCOM Vol 4, the FMGS Pilot's Guide.

PROCEDURES

R

The SOP (Refer to FCOM 3.03) and the ABNORMAL and EMERGENCY procedures (Refer to FCOM 3.02) apply. For ETOPS flights, the flight crew must complete them using the procedures given below:

EXTENDED RANGE OPERATIONS

2.04.40 SEQ 001 P 10

REV 16

ABNORMAL AND EMERGENCY PROCEDURES

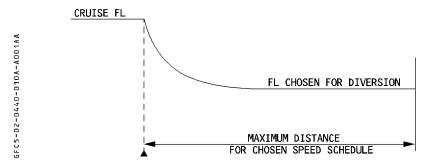
GFI	VI 1	l۸	r 2	FΔ	Ш	Т

When in ETOPS segment	:
---	---

- APU GEN (if available) USE

2.04.40

P 10a REV 10


EXTENDED RANGE OPERATIONS

SEQ 001

PERFORMANCE

In electrical emergency configuration, the engine anti ice valves are permanently open, it results in a fuel consumption increase.

MAXIMUM DISTANCE (Still air) TO DIVERSION AIRPORT IN NAUTICAL MILES

SPECIAL OPERATIONS EXTENDED RANGE OPERATIONS

2.04.40 P 10b SEQ 001 REV 23

Determination of 60 minutes maximum diversion distance (JAR-OPS 1.245)

Use the distance given within the table below to decide if a route is an ETOPS one according to JAR-OPS 1.245.

The following computation conditions have been used in accordance with the interpretation of the JAR-OPS 1.245:

- Reference weight: the aircraft gross weight after one hour of flight having taken off at sea level at the maximum structural takeoff weight given by the flight manual
- ISA conditions
- No wind
- Diversion level after engine failure : FL170
- Single engine diversion speed schedule : VMO/MMO

Note: using the JAR-OPS 1.245 method, obstacles have not to be considered to determine if a route is or is not an ETOPS route.

R

Aircraft	MT	Distance (NM)	
	(kg)	(lb)	Distance (MM)
A330-201 (GE 80E1A2)	Up to 202 000	Up to 445333	423
A330-202/-203 (GE 80E1A4/A3)	Up to 233 000	Up to 513671	422
A330-301 (GE 80E1A2)	Up to 218 000	Up to 480603	415
A330-302/-303 (GE 80E1A3/A4)	Up to 233 000	Up to 513671	419
A330-223 (PW 4168A)	Up to 233 000	Up to 513671	430
A330-321 (PW 4164)	Up to 218 000	Up to 480603	423
A330-322 (PW 4168)	Up to 218 000	Up to 480603	433
A330-323 (PW 4168A)	Up to 233 000	Up to 513671	428
A330-243 (RR TRENT 772B)	Up to 233 000	Up to 513671	429
A330-243 (RR TRENT 772C)	Up to 233 000	Up to 513671	430
A330-341 (RR TRENT 768)	Up to 218 000	Up to 480603	418
A330-342 (RR TRENT 772)	Up to 218 000	Up to 480603	431
A330-343 (RR TRENT 772B)	Up to 233 000	Up to 513671	426

EXTENDED RANGE OPERATIONS

2.04.40 P 11 SEQ 115 REV 09

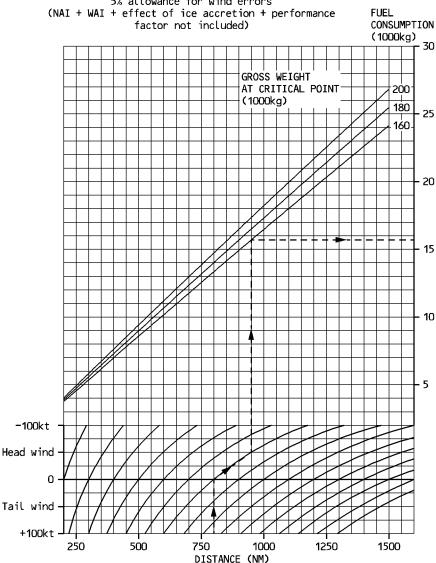
			SA				
SPEED SCHEDULE	A/C WEIGHT AT CRITICAL	FL FOR DIVERSION		DIVERS	ION TIME	(MIN)	
	POINT (KG)		60	90	120	150	180
MCT/330KT	150000	190	440	653	867	1081	1296
	160000	190	438	650	863	1076	1289
	170000	180	438	650	862	1075	1287
	180000	170	436	646	857	1068	1280
	190000	170	436	645	855	1064	1274
	200000	170	433	641	850	1059	1269
	210000	170	433	637	844	1051	1259
	220000	160	430	636	842	1049	1255
	230000	150	428	632	836	1039	1243
MCT/310 KT	150000	220	434	645	857	1070	1282
	160000	210	432	641	851	1060	1270
	170000	210	430	638	847	1056	1266
	180000	200	428	634	840	1047	1253
	190000	200	428	630	835	1041	1248
	200000	190	424	627	831	1034	1237
	210000	190	421	622	825	1029	1232
	220000	180	420	620	820	1021	1221
	230000	170	416	614	811	1008	1206

Note: For temperatures higher than ISA + 10, use ISA values

ISA + 10							
SPEED	A/C WEIGHT	FL FOR		DIVERS	ION TIME	(MIN)	
SCHEDULE	AT CRITICAL	DIVERSION					
	POINT (KG)		60	90	120	150	180
MCT/330KT	150000	180	449	666	883	1099	1316
	160000	180	448	665	882	1098	1315
	170000	180	446	662	878	1094	1311
	180000	180	445	659	873	1086	1300
	190000	170	444	657	871	1085	1298
	200000	170	442	653	866	1078	1292
	210000	170	442	649	859	1070	1282
	220000	160	439	648	857	1068	1279
	230000	150	437	644	852	1059	1267
MCT/310 KT	150000	220	442	657	873	1090	1307
	160000	210	440	654	868	1082	1295
	170000	210	438	650	863	1076	1290
	180000	200	436	646	857	1067	1278
	190000	200	433	641	851	1060	1271
	200000	200	432	635	842	1049	1258
	210000	180	429	633	838	1042	1246
	220000	180	428	632	836	1041	1245
	230000	170	425	626	827	1029	1230

ATRICS TRAINING A330 SIMILATOR FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS


EXTENDED RANGE OPERATIONS

2.04.40 SEQ 115 P 12

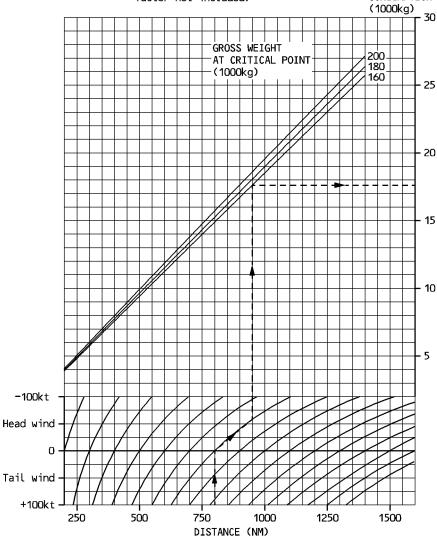
REV 09

ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING ALL ENGINES-LONG RANGE CRUISE

Including: emergency descent-long range cruise at FL100 final descent 250kt-holding 15 min at FL15
IFR procedure-Go Around-2nd VFR procedure
5% allowance for wind errors

GFC5-02-0440-012-A115AA

EXTENDED RANGE OPERATIONS


2.04.40

SEQ 115

P 13 REV 09

ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING ONE ENGINE OUT-CRUISE AT 310KT

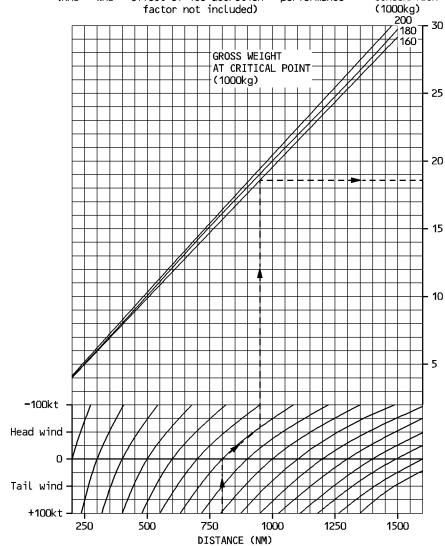
GFC5-02-0440-013-A115AA

ARBUS TRAINING A330 SIMULATOR FLIGHT CREW OPERATING MANUAL

SPECIAL OPERATIONS

EXTENDED RANGE OPERATIONS

2.04.40 SEQ 115


P 14

REV 09

ETOPS FUEL REQUIREMENT FROM CRITICAL POINT TO LANDING ONE ENGINE OUT-CRUISE AT 330KT

Including: emergency descent-cruise 330kt at FL100
 final descent 250kt-holding 15 min at FL15
 IFR procedure-Go Around-2nd VFR procedure
 5% allowance for wind errors-APU fuel burn
(NAI + WAI + effect of ice accretion + performance)

FUEL CONSUMPTION (1000kg)

3FC5-02-0440-014-A115AA

RVSM

2.04.45

SEQ 100

REV 23

P 1

GENERAL

Reduced Vertical Separation Minimum (RVSM) airspace is any airspace or route between FL290 and FL410 (inclusive), where aircraft are vertically separated by 1000 feet, instead of 2000 feet. The A330 system design complies with the design criteria of the JAA Information Leaflet N° 6, and the FAA 91-RVSM Interim Guidance Material for RVSM operations. The statement of RVSM capability is also indicated in the AFM.

OPERATIONAL APPROVAL

The above capability statement does not constitute an approval to fly RVSM. Operational approval is to be granted by the Operator's national authorities, after assessment of the airline's capability to meet RVSM requirements. The above-mentioned JAA and FAA documents also cover requirements to obtain operational approval.

REQUIRED EQUIPMENT/FUNCTIONS FOR RVSM

RVSM regulations require the following equipment/functions to be operative:

- 2 ADRs + 2 DMCs
- 1 transponder
- 1 Autopilot function
- R - 2 PFD functions (for altitude indication)
 - 1 FCU channel (for altitude target selection and OP CLB/OP DES mode engagement)
 - 1 FWC (for altitude alert function)

SPECIAL OPERATIONS RVSM

ATIONS 2.04.45

SEQ. 001 | 1

P 2 REV 22

PROCEDURES

The SOPs (FCOM 3.03) and the ABN and EMER (FCOM 3.02) procedures apply. In addition, flights in RVSM airspace must be completed by the following :

FLIGHT PREPARATION

The crew must pay particular attention to conditions that may affect operation in RVSM airspace. These include, but may not be limited to :

- Verifying that the airframe is approved for RVSM operations.
- Reported and forecast weather on the flight route.
- Review of maintenance logs and forms to determine the condition of equipment required for flight in RVSM airspace. Ensure that maintenance action has been taken to correct defects to required equipment.
- Check that each PFD altitude indication (QNH reference) does not differ from the airport elevation by more than 75 feet.
- Check, on ground, that the difference between the two primary altitude indications on the PFD is less than the tolerance specified in paragraph 3.04.34 "Maximum Differences Between Altitude Indications"

IN FLIGHT PROCEDURES

R R

R

R R

PRIOR TO RVSM AIRSPACE ENTRY

The required equipment for RVSM listed above must be operating normally.

Should any of this equipment fail prior entering the RVSM airspace, the crew must request a new clearance so as to avoid flight in this airspace.

The two primary altitude indications (PFD indication from onside ADR or ADR 3) should be checked to be in accordance with the instrument tolerances (3.04.34).

If only two ADR are operative, the altimeter indications on PFD and standby altimeters should be recorded. This information may be useful in case of subsequent PFD altitude discrepancy or loss of both remaining ADR.

WITHIN RVSM AIRSPACE

- Autopilot should be engaged within RVSM airspace for cruise and flight level changes.
- During cleared transitions between flight levels, the aircraft should not overshoot or undershoot the cleared flight levels by more than 150 feet.
- At intervals of approximately one hour, check that PFD altimeter indications agree in accordance with the instruments tolerances (3.04.34). The usual scan of flight deck instruments should be sufficient.
- Use the transponder and the autopilot, associated with one of the ADRs which is within tolerance.

RVSM

2.04.45

SEQ 001

REV 23

P 3

POST FLIGHT

R

R

R

The crew must report any malfunction in the height-keeping systems including :

- the malfunction or the loss of any required equipment
- altimeter readings outside the tolerances of 3.04.34,
 and provide sufficient details to enable maintenance to troubleshoot and repair the system.

ABN AND EMER PROCEDURES

When in RVSM airspace, the following contingencies which affect the ability to maintain the cleared flight level will be notified to ATC.

- failure of both autopilots,
- loss of altimeter system redundancy (only one PFD indication remaining),
- failure of any other equipment affecting the ability to maintain the cleared flight level, or
- encountering greater than moderate turbulence.

Note: The flight crew can obtain the contingency procedures for flying in Minimum Navigation Performance Specification (MNPS) airspace by referring to specific manuals, such as, for example, the North Atlantic (NAT) MNPS Manual.

If unable to notify ATC and obtain ATC clearance prior to deviating from the assigned cleared flight level, the crew should follow the established contingency procedure and obtain ATC clearance as soon as possible.

RNP

2.04.46

SEQ 107

REV 23

P 1

GENERAL

The aircraft navigation system, required by regulation to fly within a Required Navigation Performance (RNP) airspace, shall comply with RNAV functionality criteria and with navigation position accuracy and integrity criteria.

When referring to RNP-X, the value of X is the navigation accuracy expressed in NM, which has to be met with a probability of 95 %.

An RNP value can be associated with an airspace, a route, a SID, a STAR, a RNAV approach or an RNAV missed approach procedure.

Depending on the RNP value, and on the airspace environment (ground radio navaid), different navigation equipment may be necessary.

An operational approval from the airline's national authorities may be necessary.

NAVIGATION SYSTEM CAPABILITY (for reference only)

European BRNAV (RNP-5) and P-RNAV (RNP-1) capability meets the certification requirements of JAA TGL 2 and TGL 10. Terminal and en-route RNAV operations comply with the certification requirements of the FAA Advisory Circular 90-100.

RNP-10 capability in oceanic or remote areas complies with paragraph 12.b.(1) of FAA Notice 8400.12A, or with paragraph 12.a. or 12.b.(5), if GPS is installed and is operative. Navigation system with the GPS PRIMARY function (if GPS installed) meets certification requirements of FAA AC 20-130A and TSO C 129A in class C1 (for navigation system with multiple sensor inputs including GPS).

RNP CAPABILITY

R

R

In order to match a given RNP value, the FMS-estimated position accuracy (also called Estimated Position Error) must be better than the RNP value, Obviously, this dependent on the FMS navigation-updating mode (GPS, DME/DME, VORDME, or IRS).

On the MCDU PROG page, the required and the estimated position accuracy are displayed, and determine the HIGH/LOW accuracy indication (refer to FCOM 1.22.20).

The required accuracy can be a default value, which is either a function of the flight phase. or a navigation database procedure value, or a value manually-entered by the crew.

When flying in an RNP environment, the crew can insert the appropriate RNP value in the REQUIRED ACCUR field of the PROG page.

- When HIGH is displayed, the RNP requirement is estimated to be fulfilled.
- When LOW is displayed, the RNP requirement is estimated not to fulfilled. In this case:
 - · The crew crosschecks navigation with raw data, if available.
- · If the crosscheck is negative, or if raw data is unavailable, the crew informs the ATC. When leaving the RNP environment, the crew will clear the manually-entered required accuracy.

ALL

2.0

2.04.46 P 2

REV 23

SEQ 001 | 1

Without GPS PRIMARY function

RNP accuracy criteria are met, provided radio navaid coverage supports it for :

- RNP-1 en route, and in terminal area, provided a required accuracy of 1 NM(1) is checked or manually entered in the MCDU.
- RNP-0.3 in approach, provided a required accuracy of 0.3 NM(1) is checked, or manually entered in the MCDU.

Note: (1) It is possible to enter the radial equivalent to the specified Crosstrack (XTK) accuracy, that is the RNP multiplied by 1.2, the EPE being an estimated radial position error.

With the GPS PRIMARY function

RNP requirements are met, provided GPS PRIMARY is available, for :

- RNP-1 en route
- RNP-0.5 in the terminal area, provided the AP or FD in NAV mode is used
- RNP-0.3 in approach, provided the AP or FD in NAV mode is used

BRNAV IN EUROPEAN AIRSPACE

In this airspace, radio navaid coverage is assumed to support RNP-5 accuracy. The minimum required equipment to enter BRNAV airspace is :

- One RNAV system, which means :
 - · One FMGC
 - · One MCDU
 - · One VOR or one GPS receiver for FM navigation update
 - · One DME or one GPS receiver for FM navigation update
 - · One IRS
- Flight Plan Data on two NDs

PROCEDURES

R R

When GPS PRIMARY is not available, periodically crosscheck the FM position with the navaid raw data.

Manual selection of a required accuracy on the MCDU is optional.

 If manual entry of a required accuracy is desired, enter 5 NM, or use the radial equivalent to 5NM XTK accuracy that is 6.1NM.

When leaving RNP-5 airspace, or when entering the terminal area, revert to the default required accuracy, or enter the appropriate value on the MCDU.

RNP

ATIONS 2.04.46

SEQ 105

REV 12

P 3

 If one of the following MCDU or ECAM messages is displayed, check the navigation accuracy with navaid raw data or GPS MONITOR page (if GPS installed):

- NAV ACCUR DOWNGRAD
- · FMS1/FMS2 POS DIFF
- · CHECK IRS 1(2)(3)/FM POSITION
- · ECAM: FM/GPS POS DISAGREE (if GPS installed)
- · FCAM: FM/IR POS DISAGREE
- If accuracy check confirms that RNP-5 capability is lost or if both FMGC are failed: inform ATC and revert to conventional navigation.
- If accuracy check confirms that only one FMGC position is incorrect, resume navigation with the other FMGC.

In inertial navigation, the BRNAV capability is kept during 2 hours independently of the estimated accuracy displayed on MCDU.

RNP-10 IN OCEANIC OR REMOTE AREAS

In this kind of airspace the aircraft is expected to fly for a long period of time outside radio navaid coverage.

For aircraft without GPS the flight time outside radio navaid coverage is limited. According to FAA Notice 8400.12A this limitation is :

- 6.2 hours since IRS ground alignment, or
- 5.7 hours since last FM radio update.

There is no limitation for aircraft fitted with GPS.

Minimum required equipment to enter a RNP-10 airspace is :

- Two long range navigation systems, which means :
 - · Two FMGC (or 1 FMGC + 1 BACK UP NAV)
 - · Two MCDU
 - · One GPS if required by flight time outside radio navaid coverage
 - · Two IRS

Refer also to Regional Supplementary Procedures of ICAO Doc 7030 for specific requirements in a particular airspace.

PROCEDURES

R

The manual selection of a required accuracy on MCDU is optional.

 If manual entry of a required accuracy is desired, enter 10 NM or use the radial equivalent to 10NM XTK accuracy that is 12.2NM.

RNP

2.04.46

P 4

SEQ 001

REV 22

When leaving RNP-10 airspace, revert to the default required accuracy or enter the appropriate value.

- If one of the following MCDU or ECAM messages is displayed, check navigation with POSITION MONITOR page, IRS MONITOR pages and GPS MONITOR page (if GPS installed):
 - FMS1/FMS2 POS DIFF
 - · CHECK IRS 1(2)(3)/FM POSITION
 - · ECAM: FM/GPS POS DISAGREE (if GPS installed)
 - · ECAM: FM/IR POS DISAGREE
- Use the AP, with the navigation system checked correct.
- If unable to determine which system is correct, inform the ATC, and look for navaid raw data confirmation as soon as possible.

In inertial navigation, the RNP-10 capability is maintained for 5.7 hours, since the last radio update (according to FAA Notice 8400.12A), independently of the estimated accuracy displayed on the MCDU.

R P-RNAV/RNP-1 TERMINAL PROCEDURES

For terminal procedures requiring P-RNAV or RNP-1 capability, the flight crew can assume that the radio navaid coverage supports the RNP-1 accuracy. Otherwise, the procedure may specify that GPS equipment is required (refer to the published procedure chart). The minimum equipment required to fly a P-RNAV or RNP-1 procedure is :

- One RNAV system, which includes :
- · One FMGC

R

R

R

R

R

R R

R

R

R

R

R

- · One MCDU
- · One GPS receiver, or one VOR and one DME, for FM navigation update*
- One IRS, and
 - · One FD in NAV mode.
- Flight Plan data displayed on both NDs.
- * GPS may be required for RNP-1 terminal procedures.
- R For terminal procedures with legs below the MSA, or with legs that may not have sufficient radar coverage, two RNAV systems may be mandated by the procedure chart.

R PROCEDURES

- R The terminal procedure (RNAV SID, RNAV STAR, RNAV TRANSITION, ...) must be loaded
- R from the FM navigation database and checked for reasonableness, by comparing the
- R waypoints, tracks, distances and altitude constraints (displayed on the F-PLN page), with
- R the procedure chart.
- R The flight crew must not modify the procedure, that is loaded from the navigation database,
- R unless instructed to do so by the ATC (DIR TO, radar vectoring, insertion of waypoints
- R loaded from the navigation database).

AIRBUS TRAINING A330	SPECIAL OPERATIONS	2.04.46	P 5
SIMULATOR FLIGHT CREW OPERATING MANUAL	RNP	SEQ 001	REV 22

• If GPS is required for the P-RNAV/RNP-1 procedure :

- Before starting the departure/approach procedure, check that GPS PRIMARY is available (GPS PRIMARY displayed on the MCDU PROG page).
- If GPS PRIMARY is not available before starting the procedure, inform the ATC, and request another departure/arrival procedure that does not require GPS.
- If GPS PRIMARY is lost while flying the procedure, inform the ATC of this loss, and follow ATC instructions.

• If GPS is NOT required for the P-RNAV/RNP-1 procedure :

 Check that GPS PRIMARY is available (GPS PRIMARY displayed on the MCDU PROG page).

If GPS PRIMARY is not available:

- Crosscheck the FM position with the navaid raw data, before starting the procedure.
- Check or enter RNP-1 in the REQUIRED field of the MCDU PROG page, and check that HIGH accuracy is available. When completing the terminal procedure, revert to the default value or enter the appropriate value on the MCDU PROG page.

If one of the following messages appears, while flying the procedure:

- "NAV ACCUR DOWNGRAD" (on MCDU and ND) on both sides, or
- "FMS1/FMS2 POS DIFF" (on MCDU and ND), or
- "NAV FM/GPS POS DISAGREE" (on ECAM)

Then:

R

R

R

R

R

R

R R

R R

R

R

R R

R

R

R

R

R R

R

R

R

- Inform the ATC of the loss of P-RNAV/RNP-1 capability, and follow ATC instructions.
- <u>Note</u>: If the "NAV ACCUR DOWNGRAD" message is displayed on one side only, navigation may be continued using the other FMGC.

FLIGHT PLANNING

CONTENTS

2.05.00

P 1 REV 07

SEQ 001 REV

05.00	CONTENTS
05.10	GENERAL - INTRODUCTION
05.15	CALCULATION TABLES
05.20	CRUISE LEVEL - OPTIMUM AND MAXIMUM ALTITUDES
05.30	INTEGRATED CRUISE - GENERAL
05.40	QUICK DETERMINATION OF FLIGHT PLANNING - INTRODUCTION
05.50	ALTERNATE - GENERAL
05.60	GROUND DISTANCE/AIR DISTANCE CONVERSION
05.70	FUEL TANKERING

FLIGHT PLANNING

GENERAL

2.05.10 SEQ 001

REV 06

P 1

INTRODUCTION

Use this flight planning chapter when no precalculated flight plan is available.

It contains the following general graphs and tables:

- Maximum and optimum cruise altitudes for M.80, M.82, M.84 and long range speed
- Optimum altitude on short stage
- Ground distance to air distance conversion for M.80, M.82, M.84 and long range speed R The integrated range method includes the following tables:
 - Integrated cruise tables for M.80, M.82, M.84, long range speed at optimum flight level
 - Integrated cruise tables at long range speed for FL100 up to FL410
 - Climb, step climb and descent correction tables

These tables allow the flight planning to be done segment by segment.

Chapter 2.05.15 contains calculation tables and a comprehensive example to show how to use them.

- R The quick determination method is shown in chapter 2.05.40 for M.80, M.82, M.84 and
- R long range speed.

FLIGHT PLANNING GENERAL

2.05.10

SEO 010 R

P 2 REV 06

MINIMUM RECOMMENDED FUEL REQUIREMENTS

The total fuel quantity required to fly a given sector is the sum of the following quantities:

TAXI FUEL

Quantity required for startup and taxi. Fuel calculation is based on a consumption of 25 kg/min or 55 lb/min

Average quantity (12 minutes) \rightarrow 300 kg or 660 lb

TRIP FUEL

Fuel required from departure to destination includes the following quantities:

- Takeoff and climb at selected speed.
- Cruise at selected speed.
- Descent from cruising level to 1500 feet above destination airport.
- Approach and landing. Fuel calculation is based on a consumption of
 40 kg/min
 or
 90 lb/min

Average quantity (6 minute IFR) \rightarrow 240 kg or 540 lb

RESERVE FUEL

This quantity includes:

"En Route" reserve fuel (contingency fuel)

· According to national regulations and company policy (generally based on a percentage of trip fuel).

Alternate fuel

· Fuel required to fly from destination to alternate airport.

It includes go-around $\boxed{500 \text{ kg}}$ or $\boxed{1100 \text{ lb}}$, climb to cruising level, cruise at long range speed, descent and approach procedure.

160 kg or 360 lb for 4 minutes VFR

Holding Fuel

Calculation of holding fuel should take into account the altitude of the alternate and the landing weight at the alternate, using holding charts of chapter 3.05.25.

A conservative quantity corresponding to 30 minute holding at 1500 feet above alternate airport elevation at green dot speed in the clean configuration is

2400 kg or **5300 lb**

AIRBUS TRAINING
(C) A330
SIMULATOR
FLIGHT CREW OPERATING MANUAL

FLIGHT PLANNING

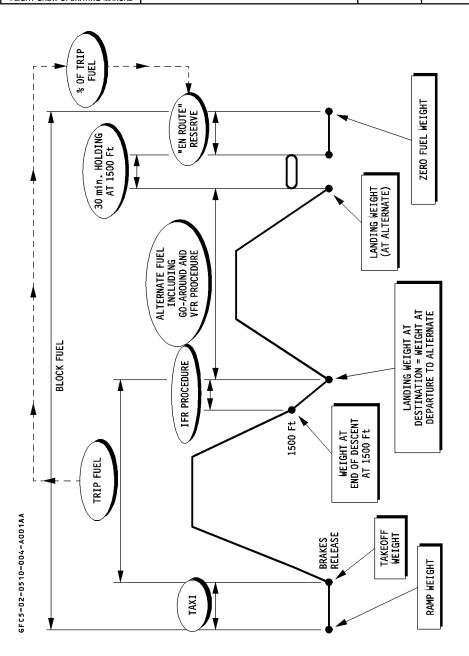
GENERAL

2.05.10

P 3 REV 06

SEQ 001 | I

APU FUEL


- During ground operation, the APU fuel consumption is about : 200 kg/h (440 lb/h) Packs ON and APU GEN ON 140 kg/h (310 lb/h) APU GEN only
- In flight APU fuel consumption is about:
 130 kg/h (290 lb/h) at FL200 Pack ON and APU GEN ON
 65 kg/h (140 lb/h) at FL300 APU GEN only
 55 kg/h (120 lb/h) at FL410 APU GEN only

R FLIGHT PLAN

- R When no precalculated flight plan is available, flight planning can be determined by using
- R the tables given in this chapter.
- R Fuel policy will be the same as for precalculated flight plan.
- R The graph on the following page defines the different terms used in this chapter.

FLIGHT PLANNING GENERAL

2.05.10 P 4 SEQ 001 REV 06

FLIGHT PLANNING CALCULATION TABLES

2.05.15

P 1

S

SEQ 001 | REV 06

GENERAL R Max TO weight at BRAKE RELEASE(1) CRUISE - Integrated cruise tables - Wind correction tables - Temperature correction - Low air conditioning correction CLIMB corrections of fuel and time values STEP CLIMB corrections of fuel and time values **DESCENT** corrections Weight at END OF DESCENT of fuel and time values (including IFR procedure) Max landing weight Final landing weight(2) Trip fuel =(1)-(2)ALTERNATE 3FC5-02-0515-001-A001AA HOLDING Max zero fuel weight Zero fuel weight(3)Ramp fuel = (1)-(3)+TAXI Max allowable payload Dry operating weight

FLIGHT PLANNING

CALCULATION TABLES

2.05.15

SEQ 001

REV 06

P 2

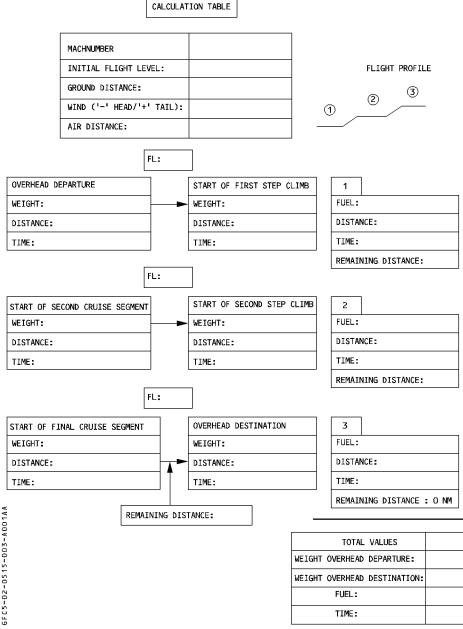
The following tables can be used for the flight planning.

The first table allows the planner to calculate fuel and time during cruise, including up to two step climbs (see p3).

The second table shows the fuel and time planning for the whole flight plan (see p4). At the end of the section an example shows how to use both tables for a given mission.

- $\underline{\underline{Note}}$: Differences in fuel consumption during step climb sections will be taken into account in the calculation table of page 4.
 - To find optimum aircraft weight to proceed to next flight level (4000 feet step) (Refer to 2.05.20 p 1).
 - Integrated cruise tables are established for ISA conditions only. Corrections due to differences from ISA temperature are included in the calculation table of page 4.
 - Overhead departure weight is assumed to be equal to weight at brake release.
 - Overhead destination weight must be entered in the calculation table of page 4.

R R


FLIGHT PLANNING CALCULATION TABLES

2.05.15

P 3

SEQ 001

REV 20

FLIGHT PLANNING CALCULATION TABLES

2.05.15 P 4 SEQ 001 REV 06

1	(1) Max TO Weight at BRAKE RELEASE	▶				•	
2	WEIGHT Overhead Destination	•				•	
3	 Temperature Correction for CRUISE 	_				•	
4	+ Correction for Air Conditioning (+ for LO, - for HI)	+				•	
5	- CLIMB correction	_				•	
6	+ TO Altitude correction	+				•	
7	 STEP CLIMB correction 	_				•	
8	= Corrected Weight Overhead Destination	T =				•	
9	+ DESCENT correction (including 6 min IFR)	+				•	
10	(2) Landing Weight at Destination	Τ=				•	
11	– ALTERNATE Fuel	T -				•	
12	= ALTERNATE Landing Weight	T =				•	
13	– HOLDING	T -				•	
14	= Weight at END OF HOLDING	=				•	
15	TRIP FUEL (1) — (2)	//	///	///	///	//	//
16	– "En Route" Reserve	_				•	
17	(3) ZERO FUEL WEIGHT	 =				•	
18	 OPERATING WEIGHT EMPTY 	T -				•	
19	= Max Allowable Payload	=				•	

	BLOCK FUEL CALCULATION				
20	Required Fuel (1) – (3)	•		•	
21	+ Taxi	+		•	
22	= Block Fuel	=		•	

	FLIGHT TIME CALCULATION (H. MIN)				
23	Time from integrated Cruise Tables	•		٠	
24	+ CLIMB Correction	+		•	
25	+ DESCENT Correction (including 6 min IFR)	+		•	
26	= Flight Time	=		•	

Note: Line 3 : temperature correction:

0.010 (kg/°C/NM) \times \triangle ISA (°C) \times air distance (NM) or 0.022 (lb/°C/NM) \times \triangle ISA (°C) \times air distance (NM)

Line 4 : in case of low air conditioning refer to cruise table correction box.

Line 6 : TO altitude correction :

0.9 (kg/1000 kg/1000 ft) \times TOW (1000 kg) \times airport elevation (1000 ft) or

0.9 (lb/1000 lb/1000 ft) \times TOW (1000 lb) \times airport elevation (1000 ft) Line 10 : Check that landing weight at destination is lower than maximum

landing weight.

Line 17: Check that the zero fuel weight is lower than maximum zero fuel

weight.
Line 22 : Check that the block fuel value is lower than maximum tank capacity.

R

R

R R

R R

R

CALCULATION TABLES

2.05.15

REV 20

P 5

SEQ 115

Example

<u>DATA</u>

- T/O weight: 200 000 kg

- Ground distance to destination: 4000 NM

Wind: - 40 kt (head wind)
Selected initial FL: 330
Long range speed

Temperature : ISA + 10Airport elevation : 1500 ft

Normal air conditioning

DETERMINATION OF CRUISE FUEL AND TIME

: Enter the chosen flight Mach number, flight level, ground distance to be covered and forecast windspeed in the calculation table of page 7.

Calculate the air distance (see 2.05.60 p 6).

here : long range speed, 40 kt head wind, 4000 NM ground distance \rightarrow air

distance: 4380 NM

CRUISE TABLE FL330

B : Read from integrated cruise table (long range speed, FL330) the values for time and distance for the weight of 200 000 kg (see 2.05.30 p 33)

 \rightarrow distance : 6896 NM \rightarrow time : 961 min.

C : After 250 NM a step climb to FL370 is performed.

Calculate the new value of the distance in the integrated cruise table

 \rightarrow 6896 - 250 = 6646 NM

D : Enter integrated cruise table and interpolate the values for the distance of 6646 NM (start of first step climb)

 \rightarrow weight : 196905 kg \rightarrow time : 930 min.

E : Calculate the values for the first cruise segment

Fuel : $200\ 000 - 196\ 905 = 3095\ kg$

Distance : 250 NM

Time : 961 - 930 = 31 minRemaining distance : 4380 - 250 = 4130 NM

CRUISE TABLE FL370

F : Read from integrated cruise table (long range speed, FL370) the values for time and distance for the weight of 196 905 kg (see 2.05.30 p 39)

 \rightarrow distance : 6992 NM \rightarrow time : 932 min.

G : The optimum aircraft weight to proceed to FL410 is 175 000 kg. (see 2.05.20 p 1) Read from integrated cruise table the values for time and distance for the weight of 175 000 kg

 \rightarrow distance : 5061 NM \rightarrow time : 682 min.

H : Calculate the values for the second cruise segment

Fuel : 196 905 - 175 000 = 21 905 kg

Distance : 6992 - 5061 = 1931 NM Time : 932 - 682 = 250 min Remaining distance : 4130 - 1931 = 2199 NM

CALCULATION TABLES

2.05.15

P 6

SEQ 115

REV 14

CRUISE TABLE FL410

: Proceed to final table : enter distance and time values corresponding to an aircraft weight of 175 000 kg at FL410 and long range speed. (see 2.05.30 R R

p 45)

R R

Ν

→ distance : 5261 NM → time : 681 min

: Subtract remaining distance : 5261 - 2199 = 3062 NMJ

Κ : Interpolate in integrated cruise table weight and time values corresponding to a

distance of 3062 NM (see 2.05.30 p 44) \rightarrow weight : 152 885 kg \rightarrow time : 399 min

L : Calculate values for last cruise seament :

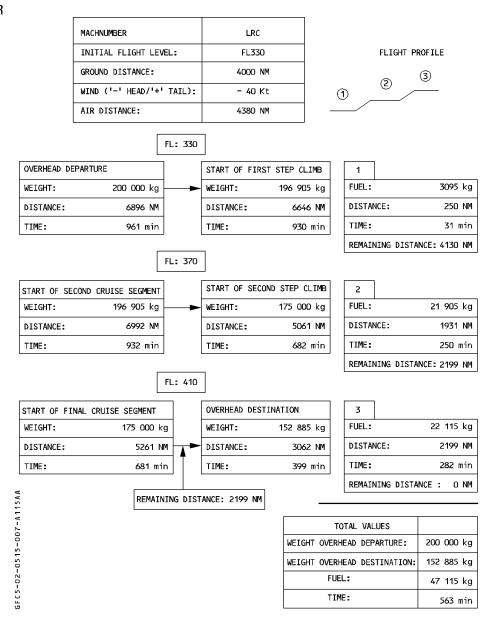
R Fuel : $175\ 000 - 152\ 885 = 22\ 115\ kg$

Distance : 5261 - 3062 = 2199 NMR R Time : 681 - 399 = 282 min

: Fill in the final table with weight overhead departure (200 000 kg) and overhead М

destination (152 885 kg). : Calculate total values

Fuel : $200\ 000 - 152\ 885 = 47\ 115\ kg$


Time : 31 + 250 + 282 = 563 min = 9 h 23 minR

Cross-check that remaining air distance equals zero

FLIGHT PLANNING CALCULATION TABLES

2.05.15 P 7 SEQ 115 REV 20

2.05.15

CALCULATION TABLES

SEQ 115

REV 14

P 8

DATA : - TO weight : 200 000 kg

Ground distance to destination 4000 NM

Wind: – 40 kt (headwind) - Selected first flight level: FL330

Long range speed

- Temperature : ISA + 10 along the whole flight profile

- Airport elevation : 1500 ft Normal air conditioning

STEPS

1 : Fill in Max TO weight → 200 000 kg

2 : Enter the integrated cruise table corresponding to chosen FL with TO weight at brake release point and calculate weight overhead destination (see 2.05.15 p7)

Fill in \rightarrow 152 885 kg

3 : Apply temperature correction for given air distance 4380 NM \times 10°C \times 0.010 kg/°C/NM = 438 kg

: Correction for air conditioning \rightarrow here = 0 4

5 : Subtract climb correction for chosen FL (see 2.05.30 p47) → 2700 kg

: Add TO altitude correction $0.9 \times 200 \times 1.5 = 270 \text{ kg}$

: Subtract value for step climb correction (see 2.05.30 p47) $2 \times 160 = 320 \text{ kg}$ 7

: Calculate corrected weight overhead destination \rightarrow 149 500 kg 8 R

: Enter weight overhead destination and find descent correction (including 6 min 9

IFR) (see 2.05.30 p48) \rightarrow 400 kg R

: Calculate landing weight at destination \rightarrow 149 900 kg R 10

11 : Alternate fuel e.g. 200 NM at FL310

 $(see 2.05.50 p3) \rightarrow 3484 kg$

Landing weight at alternate $149\ 900 - 3484 = 146\ 416\ kg$

Correction due to deviation from reference landing weight at alternate (see

2.05.50 p3) $(146.5 - 140) \times 11 = 72 \text{ kg}$

Corrected alternate fuel 3484 + 72 = 3556 kgR R

: Calculate alternate landing weight → 146 300 kg 12

: Subtract holding fuel: (Refer to 2.05.10 p2) \rightarrow 2400 kg 13 : Calculate weight at end of holding \rightarrow 143 900 kg 14

: Calculate trip fuel \rightarrow 50 100 kg R 15

: Subtract "en route" reserve (standard amount is 5 % of trip fuel) \rightarrow 2505 kg R 16

: Calculate zero fuel weight → 141 400 kg R

18-19: Subtract dry operating weight to obtain maximum allowable payload

20-22 : Calculate block fuel 23-26: Calculate flight time

R

R

FLIGHT PLANNING CALCULATION TABLES

2.05.15

P 9

SEQ 115

REV 14

F

1	(1) Max TO Weight at BRAKE RELEASE	▲	2	0	0	•	0
2	WEIGHT Overhead Destination	•	1	5	2	•	9
3	- Temperature Correction for CRUISE	-			0	•	5
4	+ Correction for Air Conditioning (+ for LO, - for HI)	+			0	•	0
5	- CLIMB correction	_			2	•	7
6	+ TO Altitude correction	+			0	•	2
7	 STEP CLIMB correction 	_			0	•	4
8	= Corrected Weight Overhead Destination	=	1	4	9	•	5
9	+ DESCENT correction (including 6 min IFR)	+			0	•	4
10	(2) Landing Weight at Destination	=	1	4	9	•	9
11	– ALTERNATE Fuel	-			3	•	6
12	= ALTERNATE Landing Weight	=	1	4	6	•	3
13	– HOLDING	-			2	•	4
14	= Weight at END OF HOLDING	=	1	4	3	•	9
15	TRIP FUEL (1) — (2) 5 0 • 1	//	///	///	///	//	//
16	- "En Route" Reserve	_			2	•	5
17	(3) ZERO FUEL WEIGHT	=	1	4	1	•	4
18	– OPERATING WEIGHT EMPTY	_	1	1	8	•	0
19	= Max Allowable Payload	=		2	3	•	4

	BLOCK FUEL CALCULATION					
20	Required Fuel (1) – (3)	•	5	8	•	6
21	+ Taxi	+		0	•	3
22	= Block Fuel	=	5	8	•	9

R

	FLIGHT TIME CALCULATION (H. MIN)					
23	Time from integrated Cruise Tables	•	9	•	2	3
24	+ CLIMB Correction	+	0	•	0	5
25	+ DESCENT Correction (including 6 min IFR)	+	0	•	1	1
26	= Flight Time	=	9	•	3	9

Note: Line 3: temperature correction:

0.010 (kg/°C/NM) \times \triangle ISA (°C) \times air distance (NM) or 0.022 (lb/°C/NM) \times \triangle ISA (°C) \times air distance (NM)

Line 4 : in case of low air conditioning refer to cruise table correction box.

Line 6 : TO altitude correction :

0.9 (kg/1000 kg/1000 ft) \times TOW (1000 kg) \times airport elevation (1000 ft) or

0.9 (lb/1000 lb/1000 ft) \times TOW (1000 lb) \times airport elevation (1000 ft)

Line 10: Check that landing weight at destination is lower than maximum landing weight.

Line 17: Check that the zero fuel weight is lower than maximum zero fuel weight.

Line 22 : Check that the block fuel value is lower than maximum tank capacity.

AIRBUS TRAINING
A330
SIMULATOR
FLIGHT CREW OPERATING MANUAL

CRUISE LEVEL

2.05.20 SEQ 010

P 1

REV 14

OPTIMUM AND MAXIMUM ALTITUDES

DEFINITIONS

- · Optimum altitude: The altitude at which the airplane covers the maximum distance per kilogram of fuel (best specific range). It depends on the actual weight and deviation from ISA.
- · Maximum altitude is defined as the lower of :
 - maximum altitude at maximum cruise thrust in level flight and
 - maximum altitude at maximum climb thrust with 300 feet/minute vertical speed.

Note: Definition of the maximum altitude in the FMGC is different (Refer to FCOM 4).

CRUISE LEVEL CHARTS

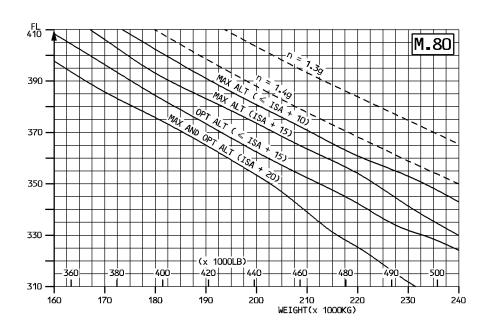
These charts have been established for a center of gravity at 37 % MAC. Maximum and optimum altitudes are given for different temperatures at long range speed and M.80, M.82, M.84

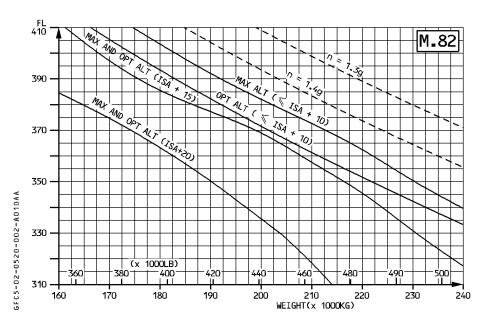
Note: 1. Optimum and maximum altitude curves do not cover for M.80, M.82 and M.84 the whole weight range because above a given weight these Mach numbers cannot be maintained, whatever the altitude.

2. The n = 1.3 g (1.4 g) curve indicates the buffet margin.

OPTIMUM WEIGHT FOR 4000 FEET STEP CLIMB

STEP					W	'EIGHT	(1000 k	g)				
CLIMB		≤ ISA	+ 10			ISA	+ 15			ISA -	+ 20	
FROM/TO	LR	M.80	M.82	M.84	LR	M.80	M.82	M.84	LR	M.80	M.82	M.84
310/350	236	235	232	212	228	224	217	194	216	203	190	162
330/370	215	213	213	194	208	205	199	178	196	186	175	148
350/390	191	193	192	175	187	183	175	157	176	166	155	129
370/410	176	176	175	159	170	167	161	144	161	151	141	126

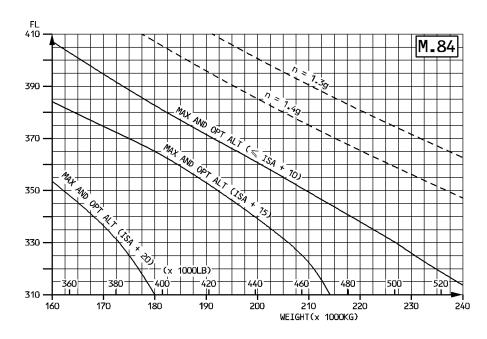

BLEED CORRECTIONS

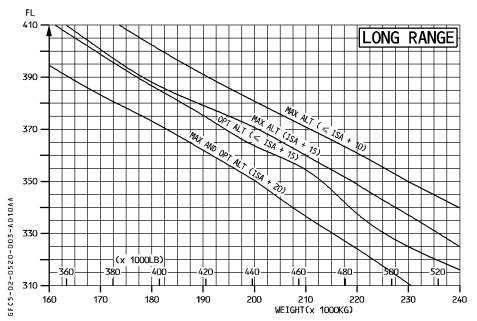

	ENG ANTI ICE ON	TOTAL ANTI ICE ON	PACK FLOW HI AND/OR CARGO COOL ON
≤ ISA + 9	– 100 ft	– 300 ft	– 400 ft
ISA + 15	– 1100 ft	– 1300 ft	– 600 ft
ISA + 20	– 1300 ft	– 1700 ft	– 1200 ft

FLIGHT PLANNING CRUISE LEVEL

2.05.20 SEQ 010 P 2

REV 23



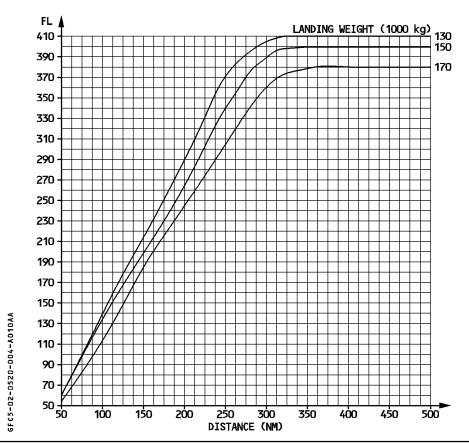

FLIGHT PLANNING CRUISE LEVEL

2.05.20 SEQ 010

REV 23

P 3

FLIGHT PLANNING CRUISE LEVEL


2.05.20 P 4 SEQ 010 REV 07

OPTIMUM ALTITUDE ON SHORT STAGE

According to the air distance (from brake release point to landing), the cruise flight level is limited by the distance required to perform climb and descent. The graph determines the optimum altitude.

It includes the following profiles:

- Takeoff
- Climb: 250kt/300kt/M.80
- Long range cruise (during at least 5 minutes)
- Descent : M.80/300kt/250kt
- Approach and landing and it is established for :
- ISA
- CG = 37 %
- Normal air conditioning
- Anti ice OFF

FLIGHT PLANNING INTEGRATED CRUISE

2.05.30

P 1

SEQ 001

REV 06

GENERAL

Integrated cruise tables allow the planner to calculate the cruise fuel consumption and the cruise time required to cover a given air distance.

In the tables, the difference between two gross weights represents the fuel consumption. The difference between the corresponding distances and times respectively represents the cruise distance covered and the cruise time for this fuel consumption.

Integrated cruise tables are established for M.80, M.82, M.84 (and long range speed) at optimum level (with 4000 feet step climb) and for long range speed at fixed levels from FL100 to FL410 (with 4000 feet step climb).

Corrections are given on separate tables to allow for step climbs and to take into account the climb and the descent phases.

INTEGRATED CRUISE

2.05.30

SEQ 115 | REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CR	UISE THE	RUST LIN	ЛITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	37.0%	(NI	M)	RЛ	00		
ANTI-ICIN	G OFF					TIME	(MIN)	IVI	.80	0P1	FL
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	Ů	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
126	0	24 3	48 6	72 9	96 13	120 16	144 19	168 22	192 25	216 28	459
128	240	264	288	312	336	360	384	408	431	455	459
	31 479	35 503	38 526	41 550	44 574	47 598	50 621	53 645	56 669	60 692	459
130	63	66	69 763	72 786	75 810	78 833	81 857	84 880	87 904	91 927	459
132	716 94	739 97	100	103	106	109	112	115	118	121	
134	951	974	997	1021	1044	1067	1090	1114	1137	1160	459
	124 1183	127 1207	130 1230	133 1253	136 1276	140 1299	143 1322	146 1345	149 1368	152 1391	459
136	155	158	161	164	167	170	173	176	179	182	459
138	1414 185	1437 188	1460 191	1483 194	1506 197	1529 200	1552 203	1575 206	1597 209	1620 212	459
140	1643	1666	1688	1711	1734	1757	1779	1802	1825	1847	459
	215 1870	218 1892	221 1915	224 1937	227 1960	230 1982	233 2005	236 2027	239 2050	242 2072	459
142	244	247	250	253	256	259	262	265	268	271	450
144	2095 274	2117 277	2139 280	2162 283	2184 286	2206 288	2228 291	2251 294	2273 297	2295 300	459
146	2317	2339	2362	2384	2406	2428	2450	2472	2494	2516	459
	303 2538	306 2560	309 2582	312 2604	315 2626	317 2648	320 2669	323 2691	326 2713	329 2735	459
148	332	335	338	340	343	346	349	352	355	358	
150	2757 360	2778 363	2800 366	2822 369	2844 372	2865 375	2887 377	2909 380	2930 383	2952 386	459
152	2973	2995	3016	3038	3059	3081	3102	3124	3145	3166	459
	389 3188	392 3209	394 3230	397 3252	400 3273	403 3294	406 3315	408 3337	411 3358	414 3379	459
154	417	420	422	425	428	431	434	436	439	442	
156	3400 445	3421 447	3442 450	3463 453	3484 456	3505 458	3526 461	3547 464	3568 467	3589 469	459
158	3610	3631	3652	3672	3693	3714	3735	3755	3776	3797	459
	472 3818	475 3838	477 3859	480 3879	483 3900	486 3920	488 3941	491 3961	494 3982	496 4002	459
160	499	502	505	507	510	513	515	518	521	523	
162	4023 526	4043 529	4063 531	4084 534	4104 537	4124 539	4144 542	4165 545	4185 547	4205 550	459
	4225	4245	4265	4285	4306	4326	4346	4365	4385	4405	459
164	552 4425	555 4445	558 4465	560 4485	563 4504	566 4524	568 4544	571 4564	573 4583	576 4599	459
166	579	581	584	586	589	592	594	597	599	601	
168	4615	4635	4654	4674	4693	4713	4732	4752	4771	4791	459
	603 4810	606 4830	609 4849	611 4869	614 4888	616 4907	619 4927	621 4946	624 4965	626 4984	459
170	629	632	634	637	639	642	644	647	649	652	
172	5004 654	5023 657	5042 659	5061 662	5080 664	5100 667	5119 669	5138 672	5157 674	5176 677	459
	PACK FLOW LO PACK				OR/		IE ANTI IC			L ANTI IC	E ON
۸ ۵۱ ۱۵	\triangle FUEL = -0.5% \triangle FU					۸ ۵۱۱	EL = + 1.	5 %	\	JEL = + (2 0/_
			OOC5KG370	JEL = + '							0/ ر

INTEGRATED CRUISE

2.05.30

P 3

SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE					
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	A	DIST	ANCE					
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(NI	M)	R/A	00			
ANTI-ICIN				•	571070	TIME	-	IVI	.80	OPT	· FL	
WEIGHT						111112	(101114)				TAS	
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)	
	5195	5214	5233	5252	5271	5290	5309	5328	5347	5365	459	
174 l	679	682	684	687	689	692	694	697	699	702	459	
	5384	5403	5422	5441	5460	5478	5497	5516	5534	5553	459	
176	704	707	709	711	714	716	719	721	724	726		
178	5572	5590 731	5609 733	5627	5646 738	5665 741	5683 743	5702 746	5720 748	5738 750	459	
	729 5757	5775	5794	736 5812	5830	5849	5867	5885	5903	5922	459	
180	753	755	758	760	762	765	767	770	772	774	433	
	5940	5958	5976	5994	6012	6030	6049	6067	6085	6103	459	
182	777	779	781	784	786	789	791	793	796	798		
184	6121	6134	6149	6167	6185	6203	6221	6239	6256	6274	459	
	800 6292	802 6310	804 6328	806 6345	809 6363	811 6381	813 6399	816 6416	818 6434	820 6452	459	
186	823	825	827	830	832	834	837	839	841	844	733	
	6470	6487	6505	6522	6540	6558	6575	6593	6610	6628	459	
188	846	848	851	853	855	857	860	862	864	867		
190	6645	6663	6680	6698	6715	6732	6750	6767	6785	6802	459	
	869 6819	871 6836	873 6854	876 6871	878 6888	880 6906	883 6923	885 6940	887 6957	889 6974	459	
192	892	894	896	898	901	903	905	907	910	912	409	
	6992	7009	7026	7043	7060	7077	7094	7111	7128	7145	459	
194	914	916	919	921	923	925	928	930	932	934		
196	7162	7179	7196	7213	7230	7247	7264	7280	7297	7314	459	
	937 7331	939 7348	941 7364	943 7381	945 7398	948 7415	950 7431	952 7448	954 7465	956 7481	459	
198	959	961	963	965	967	970	972	974	976	978	409	
	7498	7515	7531	7548	7564	7581	7597	7614	7630	7647	459	
200	980	983	985	987	989	991	993	996	998	1000		
202	7663	7679	7696	7712	7729	7744	7757	7771	7787	7803	459	
	1002	1004	1006 7852	1008	1011 7884	1013	1014 7917	1016	1018 7949	1020 7965	461	
204	7819 1022	7836 1025	1027	7868 1029	1031	7901 1033	1035	7933 1037	1039	1041	401	
	7981	7998	8014	8030	8046	8062	8078	8094	8110	8126	461	
206	1044	1046	1048	1050	1052	1054	1056	1058	1060	1062		
208	8142	8158	8174	8190	8206	8222	8238	8254	8269	8285	461	
	1064	1066	1069	1071	1073	1075	1077	1079	1081	1083	461	
210	8301 1085	8317 1087	8333 1089	8349 1091	8364 1093	8380 1095	8396 1097	8412 1100	8427 1102	8443 1104	401	
	8459	8475	8490	8506	8522	8537	8553	8568	8584	8600	461	
212	1106	1108	1110	1112	1114	1116	1118	1120	1122	1124		
214	8615	8631	8646	8662	8677	8693	8708	8724	8739	8755	461	
	1126 8770	1128 8786	1130 8801	1132 8816	1134 8832	1136 8847	1138 8862	1140 8878	1142 8893	1144 8908	461	
216	1146	1148	1150	1152	1154	1156	1158	1160	1162	1164	401	
	8924	8939	8954	8969	8984	9000	9015	9030	9045	9060	461	
218	1166	1168	1170	1172	1174	1176	1178	1180	1182	1184		
PACI	PACK FLOW LO PACK					ENGIN	IE ANTI IC	E ON	TOTA	L ANTI IC	E ON	
				ARGO CO				- ~				
∆⊦UEI	L = -0.5	%	∆Fl	JEL = +	1 %	L ∆FU	EL = + 1.		∆Fl	JEL = +3	3 %	

11.1-08F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 0 01 .800 .000 .000 0 FC0M-G0-02-05-30-003-115

INTEGRATED CRUISE

2.05.30 P 4 SEQ 115 REV 09

				INITE	ODATE	D OBIII	05				
				INTE	GKAIE	D CRUI					
MAX. CRI	UISE THI	rust lin	VIITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	NDITION	NG	CG=	37.0%	(N	M)	NЛ	00		
ANTI-ICIN	G OFF					TIME	(MIN)	IVI	.80	0P1	FL
WEIGHT							1.0		4.0	4.0	TAS
(1000KG)	,		.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
9075 9090		9105	9121	9136	9151	9166	9181	9196	9211	461	
220 9075 9090 1188			1190	1192	1194	1196	1198	1200	1202	1203	
222	9226	9241	9255	9270	9285	9300	9315	9329	9340	9353	461
222	1205	1207	1209	1211	1213	1215	1217	1219	1220	1222	
224	9367	9382	9397	9412	9427	9441	9456	9471	9485	9500	465
224	1224	1226	1228	1230	1231	1233	1235	1237	1239	1241	
226	9515	9530	9544	9559	9574	9588	9603	9617	9632	9647	465
226	1243	1245	1247	1249	1250	1252	1254	1256	1258	1260	
228	9661	9676	9690	9705	9719	9734	9748	9763	9777	9792	465
220	1262	1264	1265	1267	1269	1271	1273	1275	1277	1279	
230	9806	9821	9835	9850	9864	9879	9893	9907	9922	9936	465
230	1280	1282	1284	1286	1288	1290	1292	1293	1295	1297	
232	9950	9965	9979	9993	10008	10022	10036	10050	10065	10079	465
232	1299	1301	1303	1305	1306	1308	1310	1312	1314	1316	
234	10093	10107	10121	10136	10150	10164	10178	10192	10206	10220	465
234	1317	1319	1321	1323	1325	1327	1328	1330	1332	1334	405
236	10235	10249	10263	10277	10291	10305	10319	10333	10347	10361	465
230	1336	1337	1339	1341	1343	1345	1347	1348	1350	1352	405
238	238 10375 10389 10		10403	10417	10431	10445	10458	10472	10486	10500	465
				1359	1361	1363	1364	1366	1368	1370	
PAC				(FLOW H		ENGI	NE ANTI I	CE ON	TOTA	L ANTI IC	E ON
				ARGO CO							
∆FUE	L = -0.5	%	△FI	JEL = +	1 %	△FU	EL = + 1	.5 %	∆Fl	JEL = + 3	3 %

^{11.1-08}F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 0 01 .800 .000 .000 0 FC0M-G0-02-05-30-004-115

INTEGRATED CRUISE

2.05.30

P 5

SEQ 115 | REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(NI	M)	RЛ	02		
ANTI-ICIN	G OFF					TIME	-	IVI	.82	OPI	FL
WEIGHT	0	2			0	1.0	1.2	4.4	4.0	4.0	TAS
(1000KG)	U	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
126	0	23 3	47 6	70 9	94 12	117 15	141 18	164 21	188 24	211 27	470
128	234 30	258 33	281 36	304 39	328 42	351 45	374 48	398 51	421 54	444 57	470
130	467	490	513	537	560	583	606	629	652	675	470
	60 698	63 721	66 744	68 767	71 790	74 813	77 836	80 859	83 881	86 904	470
132	89	92	95	98	101	104	107	110	112	115	
134	927 118	950 121	973 124	995 127	1018 130	1041 133	1064 136	1086 139	1109 141	1132 144	470
136	1154	1177	1199	1222	1245	1267	1290	1312	1335	1357	470
	147 1380	150 1402	153 1424	156 1447	159 1469	162 1492	165 1514	167 1536	170 1559	173 1581	470
138	176	179	182	185	187	190	193	196	199	202	470
140	1603 205	1625 207	1648 210	1670 213	1692 216	1714 219	1736 221	1758 224	1780 227	1803 230	
142	1825 233	1847 236	1869 238	1891 241	1913 244	1935 247	1957 250	1979 252	2001 255	2022 258	470
144	2044	2066	2088	2110	2132	2154	2175	2197	2219	2240	470
	261 2262	264 2284	266 2305	269 2327	272 2349	275 2370	277 2392	280 2413	283 2435	286 2457	470
146	289	291	294	297	300	302	305	308	311	313	
148	2478 316	2500 319	2521 322	2542 324	2564 327	2585 330	2607 333	2628 335	2649 338	2671 341	470
150	2692	2713	2735	2756	2777	2798	2819	2841	2862	2883	470
	343 2904	346 2925	349 2946	352 2967	354 2988	357 3009	360 3030	362 3051	365 3072	368 3093	470
152	370	373	376	379	381	384	387	389	392	395	
154	3114 397	3135 400	3156 403	3176 405	3197 408	3218 411	3239 413	3259 416	3280 418	3301 421	470
156	3322	3342	3363	3383	3404	3425	3445	3466	3486	3507	470
	424 3527	426 3548	429 3568	432 3589	434 3609	437 3629	440 3650	442 3670	445 3690	447 3711	470
158	450	453	455	458	460	463	466	468	471	473	
160	3731 476	3751 479	3771 481	3792 484	3812 486	3832 489	3852 491	3872 494	3892 497	3912 499	470
162	3933	3953	3973	3993	4013	4033 514	4052 517	4072	4092	4112	470
	502 4132	504 4152	507 4172	509 4191	512 4211	4231	4251	520 4270	522 4290	525 4310	470
164	527 4329	530 4349	532 4369	535 4388	537 4408	540 4427	542 4447	545 4466	547 4486	550 4505	470
166	552	555	557	560	562	565	567	570	572	575	
168	4525 577	4544 580	4563 582	4583 585	4602 587	4621 590	4641 592	4660 594	4679 597	4698 599	470
170	4718 602	4737 604	4756 607	4775 609	4794 612	4813 614	4832 616	4851 619	4870 621	4889 624	470
172	4908	4927	4946	4965	4984	5003	5021	5040	5059	5078	470
	626 K FLOW LO	629 1	631 PACK	633 (FLOW H	636 OB/	638 FNGIN	641 IE ANTI IO	643	645 TOTA	648 L anti ic	F ON
	. I LOVE L	•		ARGO CO		LIVOIN	- AITH IC	, L 011	IOIA	- AIII 10	_ 014
∆FUE	L = -0.5	%	∆Fl	JEL = +	1 %	∆FU	EL = + 1	.5 %	∆Fl	JEL = + :	3 %

11.1-08F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 0 01 .820 .000 .000 0 FC0M-G0-02-05-30-005-115

INTEGRATED CRUISE

2.05.30 P 6 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS			ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	37.0%	(N	M)	RЛ	02		
ANTI-ICIN	G OFF					TIME		IVI	.82	0P1	「 FL
WEIGHT	0	.2	.4	c	0			1.4	1.6	1.8	TAS
(1000KG)	U	.2	.4	.6	.8	1.0	1.2	1.4	1.0	1.8	(KT)
174	5097	5115	5134	5152	5171	5190	5208	5227	5245	5264	470
	650 5280	653 5295	655 5312	657 5330	660 5349	662 5367	664 5386	667 5404	669 5422	672 5441	470
176	674	675	678	680	682	685	687	689	692	694	
178	5459	5477	5495	5514	5532	5550	5568	5587	5605	5623	470
	696 5641	699 5659	701 5677	703 5695	706 5713	708 5732	710 5750	713 5768	715 5786	717 5804	470
180	720	722	724	727	729	731	733	736	738	740	
182	5822	5839	5857	5875	5893	5911	5929	5947 759	5964 761	5982	470
	743 6000	745 6018	747 6036	750 6053	752 6071	754 6089	756 6106	6124	761 6142	763 6159	470
184	765	768	770	772	774	777	779	781	783	786	
186	6177 788	6194 790	6212 792	6229 795	6247 797	6264 799	6282 801	6299 804	6317 806	6334 808	470
	6352	6369	6386	6404	6421	6438	6455	6473	6490	6507	470
188	810	812	815	817	819	821	824	826	828	830	
190	6524 832	6542 835	6559 837	6576 839	6593 841	6610 843	6627 845	6644 848	6661 850	6678 852	470
	6695	6712	6729	6746	6763	6780	6797	6813	6827	6841	470
192	854	856	858	861	863	865	867	869	871	873	470
194	6857 875	6873 877	6890 879	6907 881	6924 883	6941 885	6957 888	6974 890	6991 892	7007 894	470
	7024	7041	7057	7074	7091	7107	7124	7140	7157	7174	470
196	896	898	900	902	905	907	909	911	913	915	470
198	7190 917	7207 919	7223 921	7240 924	7256 926	7273 928	7289 930	7305 932	7322 934	7338 936	470
	7355	7371	7387	7404	7420	7436	7453	7469	7485	7501	470
200	938	940 7534	942 7550	944	947 7582	949 7599	951	953	955	957	470
202	7518 959	7534 961	963	7566 965	967	969	7615 971	7631 973	7647 976	7663 978	470
204	7679	7695	7711	7727	7743	7759	7775	7791	7807	7823	470
	980 7839	982 7855	984 7871	986 7886	988 7902	990 7918	992 7934	994 7950	996 7965	998 7981	470
206	1000	1002	1004	1006	1008	1010	1012	1014	1016	1018	
208	7997	8013	8028	8044	8060	8075	8091	8107	8122	8138	470
	1020 8154	1022 8169	1024 8185	1026 8200	1028 8216	1030 8231	1032 8247	1034 8262	1036 8277	1038 8293	470
210	1040	1042	1044	1046	1048	1050	1052	1054	1056	1058	
212	8308 1060	8323 1062	8336 1063	8349 1065	8363 1067	8378 1069	8393 1071	8409 1073	8424 1075	8439	470
	8455	8470	8485	8500	8515	8531	8546	8561	8576	1077 8591	473
214	1078	1080	1082	1084	1086	1088	1090	1092	1094	1096	
216	8607 1098	8622 1100	8637 1102	8652 1104	8667 1105	8682 1107	8697 1109	8712 1111	8727 1113	8742 1115	473
	8757	8772	8787	8802	8817	8832	8847	8862	8877	8892	473
218	1117	1119	1121	1123	1125	1126	1128	1130	1132	1134	
PACI	K FLOW L	ן		FLOW HI		ENGI	IE ANTI IC	E ON	TOTA	L ANTI IC	E ON
∧FUF	L = -0.5	_%		JEL = +		∆FU	EL = + 1.	5 %	∆FI	JEL = + :	3 %
				0.010500.0							- /•

11.1-08F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 0 01 .800 .000 .000 0 FC0M-G0-02-05-30-006-115

INTEGRATED CRUISE

2.05.30

SEQ 115

REV 09

P 7

				INTE	GRATE	D CRUI	SE				
MAX. CRI	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(N	M)	RЛ	.82	0.07	
ANTI-ICIN	G OFF					TIME	(MIN)	IVI	.02	0P1	FL
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	U	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
220	8907	8922	8936	8951	8966	8981	8996	9010	9025	9040	473
220	1136	1138	1140	1142	1143	1145	1147	1149	1151	1153	
222	9055	9069	9084	9099	9114	9128	9143	9158	9172	9187	473
	1155	1157	1158	1160	1162	1164	1166	1168	1170 1171 9318 9333		170
224	9202	9216	9231	9245	9260	9274	9289	9303		9333	473
224	1173	1175	1177	1179	1181	1183	1184	1186	1188	1190	170
226	9347	9361	9376	9390	9405	9419	9434	9448	9462	9477	473
220	1192	1194	1195	1197	1199	1201	1203	1205	1206	1208	470
228	9491	9505	9520	9534	9548	9563	9577	9591	9605	9620	473
220	1210	1212	1214	1216	1217	1219	1221	1223	1225	1226	470
230	9634	9648	9662	9676	9691	9705	9719	9733	9747	9761	473
230	1228	1230	1232	1234	1235	1237	1239	1241	1243	1244	470
232	9775	9789	9803	9817	9831	9845	9859	9873	9885	9897	473
232	1246	1248	1250	1251	1253	1255	1257	1259	1260	1262	470
234	9909	9922 1265	9936 1266	9950	9964 1270	9978 1272	9992 1273	10005 1275	10019 1277	10033	473
	1263 10047	10061	10074	1268 10088	10102	10116		10143	10157	1279 10171	477
236	1280	1282	1284	1286	1287	1289	10130 1291	1293	1294	1296	4//
	10184	10198	10212	10226	10239	10253	10267	10280	10294	10307	477
238	1298	1299	1301	1303	1305	1306	1308	1310	1312 1313		4//
				(FLOW H			VE ANTI I			L ANTI IC	E ON
			AND C	ND CARGO COOL ON							
∆FUE	L = -0.5	%	∆FU	JEL = +	1 %	∆FU	EL = + 1	.5 %	∆FU	JEL = + :	3 %

^{11.1-08}F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 0 01 .800 .000 .000 0 FC0M-G0-02-05-30-007-115

2.05.30 SEQ 115

REV 09

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	37.0%	(NI	M)	RЛ	.84	^	
ANTI-ICIN	G OFF					TIME	(MIN)	IVI	.04	OPT	FL
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	"	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
126	0 0	22 3	44 5	66 8	88 11	110 14	132 16	154 19	176 22	198 25	482
128	220 27	242 30	264 33	286 36	308 38	330 41	352 44	374 47	396 49	418 52	482
	440	461	483	505	527	549	570	592	614	635	482
130	55	57	60	63	66	68	71	74	76	79	400
132	657 82	679 85	701 87	722 90	744 93	766 95	787 98	809 101	830 103	852 106	482
134	873	895	916	938	959	981	1002	1024	1045	1067	482
	109 1088	111	114 1131	117 1152	119 1173	122 1195	125 1216	127 1237	130 1258	133 1280	482
136	135	1109 138	141	143	11/3	1195	151	154	1258	159	402
	1301	1322	1343	1364	1385	1407	1428	1449	1470	1491	482
138	162	165	167	170	173	175	178	180	183	186	400
140	1512 188	1533 191	1554 194	1575 196	1596 199	1617 201	1638 204	1658 207	1679 209	1700 212	482
142	1721	1742	1763	1783	1804	1825	1846	1866	1887	1908	482
	214 1928	217 1949	220 1969	222 1990	225 2011	227 2031	230 2052	232 2072	235 2092	238 2113	482
144	240	243	245	248	250	253	255	258	261	263	402
146	2133	2154	2174	2195	2215	2235	2256	2276	2296	2316	482
	266 2337	268 2357	271 2377	273 2397	276 2417	278 2437	281 2458	283 2478	286 2498	288 2518	482
148	2337	293	296	299	301	304	306	309	311	314	402
150	2538	2558	2578	2598	2618	2638	2657	2677	2697	2717	482
	316 2737	319 2757	321 2776	323 2796	326 2816	328 2836	331 2855	333 2875	336 2895	338 2914	482
152	341	343	346	348	351	353	356	358	360	363	402
154	2934	2953	2973	2992	3012	3031	3051	3070	3090	3109	482
	365 3128	368 3148	370 3167	373 3186	375 3206	378 3225	380 3244	382 3263	385 3282	387 3302	482
156	390	392	394	397	399	402	404	406	409	411	402
158	3321	3340	3359	3378	3397	3416	3435	3454	3473	3491	482
	414 3510	416 3528	418 3544	421 3560	423 3578	425 3597	428 3616	430 3634	432 3653	435 3671	482
160	437	439	441	443	446	448	450	453	455	457	
162	3690	3708	3727	3745	3764	3782	3801	3819	3837	3856	482
	460 3874	462 3893	464 3911	466 3929	469 3947	471 3966	473 3984	476 4002	478 4020	480 4039	482
164	482	485	487	489	492	494	496	498	501	503	
166	4057	4075	4093	4111	4129	4148	4166	4184	4202	4220	482
	505 4238	507 4256	510 4274	512 4292	514 4310	517 4328	519 4345	521 4363	523 4381	525 4399	482
168	528	530	532	534	537	539	541	543	546	548	
170	4417 550	4435 552	4452 554	4470 557	4488 559	4506 561	4523 563	4541 565	4559 568	4576 570	482
	4594	4611	4629	4647	4664	4682	4699	4717	4734	4752	482
172	572	574	576	579	581	583	585	587	590	592	
PACI	K FLOW LO)		(FLOW HI ARGO CO		ENGIN	IE ANTI IO	E ON	TOTAL ANTI ICE		E ON

 $\triangle FUEL = -0.5 \%$

INTEGRATED CRUISE

2.05.30

P 9

SEQ 115 | REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(NI	M)	RЛ	0.7		
ANTI-ICIN						TIME	-	IVI	.84	OPT	FL
WEIGHT	0	.2	.4	c	.8		` '	1.4	1.6	1.8	TAS
(1000KG)	"	.2	.4	.6	.0	1.0	1.2	1.4	1.0	1.0	(KT)
174	4769	4786	4804	4821	4838	4855	4873	4890	4907	4924	482
	594 4942	596 4956	598 4970	600 4986	602 5003	605 5020	607 5037	609 5054	611 5071	613 5088	482
176	615	617	619	621	623	625	627	629	632	634	
178	5105 636	5122 638	5139 640	5156 642	5173 644	5189 646	5206 648	5223 650	5240 653	5257 655	482
	5273	5290	5307	5324	5340	5357	5374	5391	5407	5424	482
180	657	659	661	663	665	667	669	671	673	675	402
182	5441 678	5457 680	5474 682	5490 684	5507 686	5524 688	5540 690	5557 692	5573 694	5590 696	482
184	5606	5623	5639	5655	5672	5688	5705	5721	5737	5754	482
	698 5770	700 5786	702 5803	704 5819	706 5835	708 5852	710 5868	712 5884	715 5900	717 5916	482
186	719	721	723	725	727	729	731	733	735	737	402
188	5933	5949	5965	5981	5997	6013	6029	6045	6061	6077	482
	739 6093	741 6109	743 6125	745 6141	747 6157	749 6173	751 6189	753 6205	755 6221	757 6236	482
190	759	761	763	765	767	769	771	773	775	777	
192	6252	6268	6284	6300	6315	6331	6347	6362	6378	6393	482
	779 6409	781 6425	783 6440	785 6456	786 6469	788 6482	790 6496	792 6511	794 6527	796 6542	482
194	798	800	802	804	806	807	809	811	813	815	
196	6558 817	6573 819	6588 820	6604 822	6619 824	6634 826	6650 828	6665 830	6680 832	6696 834	484
	6711	6726	6741	6757	6772	6787	6802	6818	6833	6848	484
198	836	837	839	841	843	845	847	849	851	853	404
200	6863 854	6878 856	6893 858	6908 860	6924 862	6939 864	6954 866	6969 868	6984 869	6999 871	484
	7014	7029	7044	7059	7074	7089	7104	7119	7134	7149	484
202	873 7163	875 7178	877	879	881 7223	882 7238	884 7252	886 7267	888 7282	890 7297	484
204	892	894	7193 895	7208 897	899	901	903	905	906	908	404
206	7312	7326	7341	7356	7370	7385	7400	7414	7429	7444	484
	910 7458	912 7473	914 7488	915 7502	917 7517	919 7531	921 7546	923 7560	925 7575	926 7589	484
208	928	930	932	934	935	937	939	941	943	944	
210	7604	7618	7633	7647	7661	7676	7690	7705	7719	7733	484
	946 7748	948 7762	950 7776	952 7790	953 7805	955 7819	957 7832	959 7843	961 7855	962 7869	484
212	964	966	968	969	971	973	974	976	977	979	
214	7883 981	7897 983	7911 984	7925 986	7939 988	7954 989	7968 991	7982 993	7996 995	8010 996	489
	8024	8037	8051	8065	8079	8093	8107	8121	8135	8149	489
216	998	1000	1001	1003	1005	1007	1008	1010	1012	1013	
218	8163 1015	8176 1017	8190 1019	8204 1020	8218 1022	8232 1024	8246 1025	8259 1027	8273 1029	8287 1030	489
	K FLOW LO			FLOW H			IE ANTI IC			L ANTI IC	E ON
				ARGO CO							
△FUE	L = -0.5	%	∆Fl	JEL = +	1 %	∆FU	EL = + 1.	5 %	∆FL	JEL = +3	3 %

11.1-08F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 0 01 .840 .000 .000 0 FC0M-G0-02-05-30-009-115

INTEGRATED CRUISE

2.05.30 P 10 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	VIITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITION	NG	CG=3	37.0%	(N	M)	RЛ	0.7		
ANTI-ICIN	G OFF						(MIN)	IVI	.84	0P1	FL
WEIGHT	_		_		_						TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
220	8301	8314	8328	8342	8356	8369	8383	8397	8410	8424	489
220	1032	1034	1035	1037	1039	1041	1042	1044	1046	1047	
222	8438	8451	8465	8479	8492	8506	8519	8533	8547	8560	489
222	1049	1051	1052	1054	1056	1057	1059	1061	1062 1064		
224	8574	8587	8601	8614	8628	8641	8655	8668	8682	8695	489
224	1066	1067	1069	1071	1072	1074	1076	1077	1079	1081	
226	8709	8722	8735	8749	8762	8775	8789	8802	8815	8829	489
226	1082	1084	1085	1087	1089	1090	1092	1094	1095	1097	
220	8842	8855	8869	8882	8895	8908	8922	8935	8948	8961	489
228	1099	1100	1102	1103	1105	1107	1108	1110	1112	1113	
220	8975	8988	9001	9014	9027	9040	9051	9062	9073	9086	489
230	1115	1116	1118	1120	1121	1123	1124	1126	1127	1129	
222	9099	9112	9125	9138	9151	9164	9177	9189	9202	9215	493
232	1130	1132	1133	1135	1136	1138	1140	1141	1143	1144	
224	9228	9241	9254	9266	9279	9292	9305	9318	9330	9343	493
234	1146	1147	1149	1150	1152	1154	1155	1157	1158	1160	
226	9356	9369	9381	9394	9407	9420	9432	9445	9458	9470	493
236	1161	1163	1164	1166	1168	1169	1171	1172	1174	1175	
220	9483	9496	9508	9521	9534	9546	9559	9571	9584	9597	493
238	1177	1178	1180	1181	1183	1185	1186	1188	1189	1191	
PAC	K FLOW L	0	PACI	(FLOW H	OR/	ENGI	NE ANTI IO	E ON	TOTA	L ANTI IC	E ON
			AND C	ARGO CO	OL ON						
∆FUE	L = -0.5	%	l ∆Fl	JEL = +	1 %	∆FU	EL = +1	.5 %	△FUEL = + 3 %		3 %

^{11.1-08}F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 0 01 .840 .000 .000 0 FC0M-G0-02-05-30-010-115

INTEGRATED CRUISE

2.05.30 SEQ 115

REV 09

P 11

INTEGRATED CRUISE

2.05.30 SEQ 115 F

P 12 REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL .	AIR CON	IDITIONI	NG	CG=3	37.0%	(NI	M) I		I D		
ANTI-ICING						TIME			LR	0PT	· FL
WEIGHT		•		c	_			4.4	4.6	4.0	TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
474	5164	5182	5201	5220	5239	5257	5276	5295	5313	5332	468
174	669	672	674	676	679	681	684	686	689	691	
176	5351 693	5369 696	5388 698	5406 700	5425 703	5444 705	5462 708	5480 710	5499 712	5517 715	468
	5536	5554	5573	5591	5609	5628	5646	5664	5682	5701	468
178	717	719	722	724	726	729	731	733	736	738	100
180	5719	5737	5755	5773	5792	5810	5828	5846	5864	5882	468
	741	743	745	747	750	752	754	757	759	761	460
182	5900 764	5918 766	5936 768	5954 771	5968 772	5982 774	5999 776	6017 779	6035 781	6053 783	468
	6070	6088	6106	6124	6142	6159	6177	6195	6212	6230	468
184	786	788	790	792	795	797	799	802	804	806	
186	6248	6265	6283	6300	6318	6336	6353	6371	6388 6406 827 829		468
	808 6423	811 6441	813 6458	815 6475	818 6493	820 6510	822 6528	824 6545	6562 6580		468
188	831	833	836	838	840	842	845	847	849 851		400
	6597	6614	6631	6649	6666	6683	6700	6717	6735	6752	468
190	853	856	858	860	862	865	867	869	871	873	
192	6769	6786	6803	6820	6837	6854	6871	6888	6905	6922	468
	876 6939	878 6956	880 6973	882 6990	884 7007	887 7024	889 7041	891 7057	893 7074	895 7091	468
194	897	900	902	904	906	908	910	913	915	917	400
	7108	7125	7141	7158	7175	7192	7208	7225	7242	7258	468
196	919	921	923	926	928	930	932	934	936	938	
198	7275	7291	7308 945	7325 947	7341 949	7358	7374 953	7391	7407 957	7423	468
	940 7440	943 7456	7473	7489	7505	951 7522	7535	955 7548	7563	960 7579	468
200	962	964	966	968	970	972	974	975	977	979	400
	7595	7612	7628	7644	7660	7677	7693	7709	7725	7741	470
202	982	984	986	988	990	992	994	996	998	1000	.70
204	7757 1002	7773 1004	7789 1006	7805 1009	7822 1011	7838 1013	7854 1015	7870 1017	7886 1019	7902 1021	470
	7918	7934	7950	7965	7981	7997	8013	8029	8045	8061	470
206	1023	1025	1027	1029	1031	1033	1035	1037	1039	1041	170
208	8077	8092	8108	8124	8140	8156	8171	8187	8203	8218	470
200	1043	1045	1047	1049	1051	1053	1055	1057	1059	1061	470
210	8234 1063	8250 1065	8265 1067	8281 1069	8297 1071	8312 1073	8328 1075	8343 1077	8359 1079	8374 1081	470
	8390	8406	8421	8437	8452	8467	8483	8498	8514	8529	470
212	1083	1085	1087	1089	1091	1093	1095	1097	1099	1101	
214	8545	8560	8575	8591	8606	8621	8637	8652	8667	8682	470
	1103 8698	1105 8713	1107 8728	1109 8743	1111 8758	1113 8774	1115 8789	1117 8804	1119 8819	1121 8834	470
216	1123	1125	1127	1129	1131	1132	1134	1136	1138	8834 1140	4/0
	8849	8864	8879	8894	8909	8925	8939	8954	8969	8984	470
218	1142	1144	1146	1148	1150	1152	1154	1156	1157	1159	
PACI	(FLOW LO)		FLOW H		ENGIN	IE ANTI IC	E ON	TOTA	L ANTI IC	E ON
	0	<u>,</u>		ARGO CO			IEI .	١.,			- 0/
∆FUEI	$_{-} = -0.5$			EL = + 1			JEL = +3	FCOM CO.		JEL = + !	o %

INTEGRATED CRUISE

2.05.30 P 13

SEQ 115 | REV 09

				INTE	GRATE	D CRIII	SF					
MAX. CRU	JISE THI	RUST LIN	VITS		A	DIST						
NORMAL	AIR CON	IDITION	NG	CG=	37.0%	(N	M)		LR	^ D=		
ANTI-ICIN	G OFF					TIME	(MIN)		LN	0P1	FL	
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS (KT)	
220	8999 1161	9014 1163	9029 1165	9044 1167	9059 1169	9071 1170	9082 1172	9096 1174	9111 1175	9125 1177	470	
222	9140 1179	9155 1181	9170 1183	9185 1185	9199 1187	9214 1189	9229 1190	9244 1192	9258 1194			
224	9288 1198	9302 1200	9317 1202 9463	9332 1204	9346 1205	9361 1207	9375 1209 9521	9390 1211 9535	1213	9419 1215 9564	474	
226	9434 1217	9448 1218	1220	9477 1222	9492 1224	9506 1226	1228	1230	9550 1231	1233	474	
228	9579 1235	9593 1237	9608 1239	9622 1241	9636 1242	9651 1244	9665 1246	9679 1248	9694 1250	9708 1251	474	
230	9722 1253	9737 1255	9751 1257	9765 1259	9779 1261	9794 1262	9808 1264	9822 1266	9836 1268	9851 1270	474	
232	9865 1271	9879 1273	9893 1275	9907 1277	9921 1279	9935 1280	9950 1282	9964 1284	9978 1286	9992 1287	474	
234	10006 1289	10020 1291	10034 1293	10048 1295	10062 1296	10076 1298	10090 1300	10104 1302	10118 1303	10132 1305	474	
236	10146 1307	10160 1309	10174 1311	10187 1312	10201 1314	10215 1316	10229 1318	10243 1319	10257 1321	10271 1323	474	
238	10284 1325	10298 1326	10312 1328	10326 1330	10340 1332	10353 1333	10367 1335	10381 1337	10394 1338	10408 1340	474	
PAC	K FLOW L	0		(FLOW H		ENGIN	IE ANTI IO	CE ON	TOTA	L ANTI IC	E ON	
∆FUE	L = -0.5	%		CARGO CO EL = + 1		∆Fl	JEL = + ;	3 %	∆Fl	JEL = + !	5 %	

2.05.30 SEQ 115 P 14 REV 09

INTEGRATED CRUISE

				INTE	GRATEI	D CRUI	SE				
MAX. CRU	JISE THE	rust lin	/IITS	IS	Α	DISTA	ANCE				
NORMAL .	AIR CON	IDITIONI	NG	CG = 3	30.0%	(NI	M)		LR		100
ANTI-ICING	G OFF					TIME	(MIN)		LII	FL	
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)											(KT)
126	0 0	14 3	29 6	43 9	58 12	72 16	87 19	101 22	115 25	130 28	278
128	144 31	158 34	173 37	187 40	201 43	216 46	230 49	244 52	259 55	273 58	280
130	287 62	301 65	316 68	330 71	344 74	358 77	373 80	387 83	401 86	415 89	282
132	429 92	443 95	458 98	472 101	486 104	500 107	514 110	528 113	542 116	557 119	283
134	571 122	585 125	599 128	613 131	627 134	641 137	655 139	669 142	683 145	697 148	284
136	711 151	725 154	739 157	753 160	767 163	781 166	795 169	809 172	823 175	837 178	285
138	851	865	879	892	906	920	934	948	962	976	286
140	181 990	184 1003	187 1017	189 1031	192 1045	195 1059	198 1072	201 1086	204 207 1100 1114 28 233 236		
142	210 1128	213 1141	216 1155	218 1169	221 1183	224 1196	227 1210	230 1224	1237	1251	288
144	239 1265	242 1278	244 1292	247 1306	250 1319	253 1333	256 1347	259 1360	261 1374	264 1387	290
	267 1401	270 1415	273 1428	276 1442	278 1455	281 1469	284 1482	287 1496	290 1509	293 1523	292
146	295 1536	298 1550	301 1563	304 1577	306 1590	309 1604	312 1617	315 1631	318 1644	320 1657	294
148	323	326	329	331	334	337	339	342	345	348	
150	1671 350	1684 353	1698 356	1711 358	1724 361	1738 364	1751 367	1765 369	1778 372	1791 375	296
152	1805 377	1818 380	1831 383	1844 385	1858 388	1871 391	1884 393	1898 396	1911 399	1924 401	299
154	1937 404	1951 407	1964 409	1977 412	1990 414	2003 417	2017 420	2030 422	2043 425	2056 428	301
156	2069	2082	2096	2109	2122	2135	2148	2161	2174	2187	303
	430 2200	433 2213	435 2227	438 2240	441 2253	443 2266	446 2279	448 2292	451 2305	453 2318	305
158	456 2331	459 2344	461 2357	464 2370	466 2383	469 2396	471 2409	474 2421	477 2434	479 2447	306
160	482	484	487	489	492	494	497	499	502	504	
162	2460 507	2473 509	2486 512	2499 515	2512 517	2525 520	2538 522	2550 525	2563 527	2576 530	307
164	2589 532	2602 535	2615 537	2628 540	2640 542	2653 544	2666 547	2679 549	2692 552	2704 554	309
166	2717 557	2730 559	2743 562	2755 564	2768 567	2781 569	2794 572	2806 574	2819 577	2832 579	310
168	2844 581	2857 584	2870 586	2882 589	2895 591	2908 594	2920 596	2933 599	2946 601	2958 603	311
170	2971 606	2984 608	2996 611	3009 613	3021 615	3034 618	3047 620	3059 623	3072 625	3084 628	312
172	3097 630	3109 632	3122 635	3134 637	3147 640	3159 642	3172 644	3184 647	3197 649	3209 651	313
	(FLOW LO			FLOW H			IE ANTI IC			L ANTI IC	E ON
A EL IEI	_ 05	_{0/}		ARGO CO		, [IEI _ , .	, n/	٨٠	101	= 0/
ΔFUEL	$_{-} = -0.5$	%	∆rUi	EL = + 1	.D %	ΔFU	JEL = +3	70	ΔFU	JEL = + !	0 %

INTEGRATED CRUISE

2.05.30

SEQ 115 | REV 09

P 15

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	30.0%	(NI	M)		I D		
ANTI-ICIN						TIME			LR	FL	100
WEIGHT		_		_	_						TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
•	3222	3234	3247	3259	3272	3284	3297	3309	3322	3334	315
174	654	656	659	661	663	666	668	670	673	675	040
176	3346 678	3359 680	3371 682	3384 685	3396 687	3408 689	3421 692	3433 694	3445 696	3458 699	316
	3470	3482	3495	3507	3519	3532	3544	3556	3569	3581	317
178	701	703	706	708	710	713	715	717	720	722	010
180	3593 724	3605 727	3618 729	3630 731	3642 733	3654 736	3667 738	3679 740	3691 743	3703 745	318
	3715	3728	3740	3752	3764	3776	3789	3801	3813	3813 3825	
182	747	750	752	754	756	759	761	763	766	768	
184	3837 770	3849 772	3861 775	3873 777	3886 779	3898 781	3910 784	3922 786	3934 788	3946 790	321
	3958	3970	3982	3994	4006	4018	4030	4042	4054	4066	322
186	793	795	797	799	802	804	806	808	811	813	
188	4078 815	4090 817	4102 819	4114 822	4126 824	4138 826	4150 828	4162 830	4174 833	4186 835	324
	4198	4210	4222	4234	4245	4257	4269	4281	4293	4305	325
190	837	839	841	844	846	848	850	852	855	857	
192	4317	4329	4340	4352	4364	4376	4388	4400	4411	4423	326
	859 4435	861 4447	863 4459	866 4470	868 4482	870 4494	872 4506	874 4517	876 4529	879 4541	327
194	881	883	885	887	889	892	894	896	898	900	
196	4553	4564	4576	4588	4599	4611	4623	4634	4646	4658	328
	902 4670	904 4681	907 4693	909 4704	911 4716	913 4728	915 4739	917 4751	919 4763	921 4774	330
198	924	926	928	930	932	934	936	938	940	943	
200	4786	4797	4809	4821	4832	4844	4855	4867	4878	4890	331
	945 4901	947 4913	949 4924	951 4936	953 4948	955 4959	957 4971	959 4982	961 4994	964 5005	333
202	966	968	970	972	974	976	978	980	982	984	000
204	5016	5028	5039	5051	5062	5074	5085	5097	5108	5119	335
	986 5131	988 5142	990 5154	992 5165	994 5176	996 5188	999 5199	1001 5211	1003 5222	1005 5233	337
206	1007	1009	1011	1013	1015	1017	1019	1021	1023	1025	337
208	5245	5256	5267	5279	5290	5301	5313	5324	5335	5347	339
	1027 5358	1029 5369	1031 5380	1033 5392	1035 5403	1037 5414	1039 5425	1041 5437	1043 5448	1045 5459	341
210	1047	1049	1051	1053	1055	1057	1059	1061	1063	1065	341
212	5470	5482	5493	5504	5515	5526	5538	5549	5560	5571	343
	1067 5582	1069 5593	1070 5605	1072 5616	1074 5627	1076 5638	1078 5649	1080 5660	1082 5671	1084 5683	345
214	1086	1088	1090	1092	1094	1096	1098	1100	1102	1103	J 345
	5694	5705	5716	5727	5738	5749	5760	5771	5782	5793	347
216	1105	1107	1109	1111	1113	1115	1117	1119 5882	1121	1123	348
218	5804 1125	5816 1126	5827 1128	5838 1130	5849 1132	5860 1134	5871 1136	1138	5893 1140	5904 1142	348
	K FLOW LO			FLOW H			IE ANTI IC			L ANTI IC	E ON
				ARGO CO							
∆FUE	L = -0.5	%	∆FU	EL = + 1	.5 %	∆Fl	JEL = +3	3 %	∆FL	JEL = +	5 %

FLIGHT PLANNING INTEGRATED CRUISE

2.05.30 P 16 SEQ 115 REV 09

				INITE	GRATEI	CDIII	ee .				
MAX. CRU	IISE THE	ALL TZLIS	/IITS	INTE			ANCE				
						_			1.0		
NORMAL		ואטוווטו	NG	CG=3	30.0%	(N	'		LR	FL	100
ANTI-ICIN	G OFF					TIME	(MIN)			16	
WEIGHT	0	.2	,		.8	1.0	4.0	1.4	4.0	4.0	TAS
(1000KG)	U	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
220	5915	5926	5937	5948	5959	5970	5981	5992	6003	6014	349
220	1144	1145	1147	1149	1151	1153	1155	1157	1159	1160	
222	6025	6035	6046	6057	6068	6079	6090	6101	6112	6123	351
222	1162	1164	1166	1168	1170	1172	1174	1175	1177 1179 6221 6232		
224	6134	6145	6156	6166	6177	6188	6199	6210			352
224	1181	1183	1185	1187	1188	1190	1192	1194	1196	1198	
226	6242	6253	6264	6275	6286	6297	6307	6318	6329	6340	354
220	1199	1201	1203	1205	1207	1209	1210	1212	1214	1216	050
228	6351	6362	6372	6383	6394	6405	6415	6426	6437	6448	356
220	1218	1220	1221	1223	1225	1227	1229	1230	1232	1234	050
230	6458	6469	6480	6491	6501	6512	6523	6534	6544	6555	358
230	1236	1238	1239	1241	1243	1245	1247	1248	1250	1252	050
232	6566	6576	6587	6598	6608	6619	6630	6640	6651	6662	359
232	1254	1256	1257	1259	1261	1263	1264	1266	1268	1270	004
234	6672	6683	6694	6704	6715	6726	6736	6747	6757	6768	361
234	1272	1273	1275	1277	1279	1280	1282	1284	1286	1287	202
236	6779	6789	6800	6810	6821	6831	6842	6853	6863	6874	363
230	1289	1291	1293	1294	1296	1298	1300	1301	1303	1305	004
238	6884 1307	6895 1308	6905 1310	6916 1312	6926 1314	6937 1315	6947 1317	6958 1319	6969 1321	6979 1322	364
	K FLOW L			(FLOW H			IE ANTI IC			L ANTI IC	E ON
				ND CARGO COOL ON		211011	/ • 11				
∆FUE	L = -0.5	%		EL = + 1		∆Fl	JEL = + 3	3 %	∆Fl	JEL = +	5 %

INTEGRATED CRUISE

2.05.30

SEQ 115 | REV 09

P 17

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	30.0%	(NI	M)		LR		4 = 0
ANTI-ICIN	G OFF					TIME	(MIN)		LN	FL	150
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	U	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
126	0	16 3	32	48 10	64 13	80 16	95 19	111	127	143	294
	159	175	6 190	206	222	238	254	23 269	26 285	29 301	297
128	32	35	39	42	45	48	51	55	58	61	000
130	317 64	332 67	348 70	364 74	379 77	395 80	411 83	426 86	442 89	457 92	298
132	473	489	504	520	535	551	566	582	597	613	300
	95 628	99 644	102 659	105 675	108 690	111 706	114 721	117 736	120 752	123 767	302
134	126	129	133	136	139	142	145	148	151	154	
136	783 157	798 160	813 163	829 166	844 169	859 172	875 175	890 178	905 181	920 184	303
	936	951	966	981	997	1012	1027	1042	1057	1073	305
138	187	190	193	196	199 1148	202	205	208	211	214	206
140	1088 217	1103 220	1118 223	1133 226	229	1163 232	1179 235	1194 238	1209 241	1224 244	306
142	1239	1254	1269	1284	1299	1314	1329	1344	1359	1374	308
	247 1389	250 1404	252 1419	255 1434	258 1449	261 1463	264 1478	267 1493	270 1508	273 1523	309
144	276	279	282	284	287	290	293	296	299	302	011
146	1538 305	1553 307	1567 310	1582 313	1597 316	1612 319	1627 322	1641 325	1656 327	1671 330	311
148	1686	1700	1715	1730	1745	1759	1774	1789	1803	1818	312
	333 1833	336 1847	339 1862	342 1877	344 1891	347 1906	350 1920	353 1935	356 1949	359 1964	314
150	361	364	367	370	372	375	378	381	384	386	
152	1979 389	1993 392	2008 395	2022 397	2037 400	2051 403	2066 406	2080 408	2095 411	2109 414	315
	2123	2138	2152	2167	2181	2196	2210	2224	2239	2253	316
154	417	419	422	425	428	430	433	436	439	441	210
156	2267 444	2282 447	2296 449	2310 452	2325 455	2339 457	2353 460	2368 463	2382 465	2396 468	318
158	2410	2425	2439	2453	2467	2481	2496	2510	2524	2538	319
	471 2552	474 2566	476 2581	479 2595	482 2609	484 2623	487 2637	490 2651	492 2665	495 2679	321
160	497	500	503	505	508	511	513	516	519	521	
162	2693 524	2707 526	2721 529	2735 532	2750 534	2764 537	2778 539	2792 542	2805 545	2819 547	322
	2833	2847	2861	2875	2889	2903	2917	2931	2945	2959	324
164	550 2973	552 2986	555 3000	557 3014	560 3028	563 3042	565 3056	568 3069	570 3083	573 3097	327
166	575	578	580	583	586	588	591	593	596	598	
168	3111	3125	3138	3152	3166	3180	3193	3207	3221	3234	329
	601 3248	603 3262	606 3276	608 3289	611 3303	613 3317	616 3330	618 3344	621 3357	623 3371	332
170	626	628	631	633	635	638	640	643	645	648	
172	3385 650	3398 653	3412 655	3425 657	3439 660	3452 662	3466 665	3480 667	3493 670	3507 672	334
	K FLOW LO			FLOW H			IE ANTI IC			L ANTI IC	E ON
. =: :=:		0/		ARGO CO			IEI	. 0/		IFI	T 0/
∆FUE	L = -0.5	% 1 A 4 222000		EL = + 1			JEL = +3		∆FU	JEL = + !	2 %

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 01501 .990 .000 .000 0 FC0M-G0-02-05-30-017-115

FLIGHT PLANNING INTEGRATED CRUISE

2.05.30 P 18 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL .	AIR CON	IDITIONI	NG	CG=	30.0%	(NM)			I D		
ANTI-ICING				•	30.070	TIME			LR	FL	150
WEIGHT	J 011	1				IIIVIL	(IVIIIV)				TAS
	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	l
(1000KG)	0500	0504	05.47	0504	0574	0500	0004	0011	0000	0044	(KT)
174	3520 674	3534 677	3547 679	3561 682	3574 684	3588 686	3601 689	3614 691	3628 694	3641 696	337
	3655	3668	3682	3695	3708	3722	3735	3749	3762	3775	339
176	698	701	703	705	708	710	713	715	717	720	
178	3789	3802	3815	3829	3842	3855	3869	3882	3895	3908	340
	722 3922	724 3935	727 3948	729 3961	731 3975	734 3988	736 4001	738 4014	741 4028	743 4041	342
180	745	748	750	752	755	757	759	762	764	766	342
	4054	4067	4080	4093	4107	4120	4133	4146	4159	4172	344
182	769	771	773	775	778	780	782	785	787	789	
184	4185	4199	4212	4225	4238	4251	4264	4277	4290	4303	345
	791 4316	794 4329	796 4342	798 4355	801 4368	803 4381	805 4394	807 4407	810 4420	812 4433	347
186	814	816	819	821	823	825	828	830	832	834	347
	4446	4459	4472	4485	4498	4511	4524	4537	4550	4563	349
188	837	839	841	843	845	848	850	852	854	856	
190	4576	4588	4601	4614	4627	4640	4653	4666	4679	4691	351
	859 4704	861 4717	863 4730	865 4743	867 4755	870 4768	872 4781	874 4794	876 4807	878 4819	353
192	881	883	885	887	889	891	894	896	898	900	555
194	4832	4845	4858	4870	4883	4896	4908	4921	4934	4947	355
194	902	904	907	909	911	913	915	917	919	922	057
196	4959 924	4972 926	4985 928	4997 930	5010 932	5023 934	5035 936	5048 939	5060 941	5073 943	357
	5086	5098	5111	5124	5136	5149	5161	5174	5186	5199	359
198	945	947	949	951	953	955	958	960	962	964	
200	5211	5224	5237	5249	5262	5274	5287	5299	5312	5324	360
200	966	968	970	972 5374	974 5386	976 5399	978 5411	980 5424	983 5436	985 5449	361
202	5337 987	5349 989	5362 991	993	995	997	999	1001	1003	1005	301
	5461	5473	5486	5498	5511	5523	5535	5548	5560	5572	363
204	1007	1009	1011	1013	1016	1018	1020	1022	1024	1026	
206	5585	5597	5609	5622	5634	5646	5659	5671	5683	5696	364
	1028 5708	1030 5720	1032 5732	1034 5745	1036 5757	1038 5769	1040 5781	1042 5794	1044 5806	1046 5818	366
208	1048	1050	1052	1054	1056	1058	1060	1062	1064	1066	300
	5830	5842	5855	5867	5879	5891	5903	5916	5928	5940	367
210	1068	1070	1072	1074	1076	1078	1080	1082	1084	1086	
212	5952 1088	5964 1090	5976 1092	5988 1094	6000 1096	6013 1098	6025 1100	6037 1102	6049 1104	6061 1106	369
	6073	6085	6097	6109	6121	6133	6145	6157	6170	6182	370
214	1108	1109	1111	1113	1115	1117	1119	1121	1123	1125	l ","
	6194	6206	6218	6230	6242	6254	6266	6277	6289	6301	372
216	1127	1129	1131	1133	1135	1137	1139	1140	1142	1144	274
218	6313 1146	6325 1148	6337 1150	6349 1152	6361 1154	6373 1156	6385 1158	6397 1160	6409 1161	6421 1163	374
			FLOW H			IE ANTI IC				E ON	
1 701		·		ARGO CO			, 11			_ ,	
∆FUEL	l l			EL = + 1		l ∆Fl	JEL = + 3	3 %	ΔFL	JEL = +	5 %

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 01501 .990 .000 .000 0 FC0M-G0-02-05-30-018-115

INTEGRATED CRUISE

2.05.30

P 19

SEQ 115 | REV 09

	INTEGRATED CRUISE													
MAX. CRU	JISE THE	RUST LIN	/IITS		A	DIST								
NORMAL AIR CONDITIONING			NG	CG=	30.0%	(NM)			LR		4 50			
ANTI-ICIN	ANTI-ICING OFF					TIME (MIN)			LN	FL	150			
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0 1.2		1.4	1.6	1.8	TAS (KT)			
220	6432 1165	6444 1167	6456 1169	6468 1171	6480 1173	6492 1175	6504 1177	6516 1179	6527 1180	6539 1182	376			
222	6551 1184	6563 1186	6575 1188	6586 1190	6598 1192	6610 1194	6622 1195	6634 1197	6645 1199	6657 1201	378			
224	6669 1203 6786	6681 1205 6798	6692 1207 6810	6704 1208 6821	6716 1210 6833	6728 1212 6845	6739 1214 6856	6751 1216 6868	6763 1218 6880	6774 1220 6891	379 381			
226	1221	1223	1225	1227	1229	1231	1232	1234	1236	1238	301			
228	6903 1240	6914 1242	6926 1243	6938 1245	6949 1247	6961 1249	6973 1251	6984 1252	6996 1254	7007 1256	382			
230	7019 1258	7030 1260	7042 1262	7054 1263	7065 1265	7077 1267	7088 1269	7100 1271	7111 1272	7123 1274	384			
232	7134 1276	7146 1278	7157 1279	7169 1281	7180 1283	7192 1285	7203 1287	7215 1288	7226 1290	7238 1292	386			
234	7249 1294	7261 1296	7272 1297	7284 1299	7295 1301	7307 1303	7318 1304	7329 1306	7341 1308	7352 1310	387			
236	7364 1311	7375 1313	7386 1315	7398 1317	7409 1318	7421 1320	7432 1322	7443 1324	7455 1325	7466 1327	389			
238 1329 1331 1332				7511 1334	7523 1336	7534 1338	7545 1339	7557 1341	7568 1343	7579 1345	390			
				FLOW H		ENGINE ANTI ICE ON		E ON	ON TOTAL ANTI ICE ON					
△FUEL = - 0.5 %				AND CARGO COOL ON △FUEL = + 1.5 %			△FUEL = + 3 %			△FUEL = + 5 %				

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 01501 .990 .000 .000 0 FC0M-G0-02-05-30-019-115

FLIGHT PLANNING INTEGRATED CRUISE

2.05.30 P 20

SEQ 115 | REV 09

				INITE	CDATE	D ORIU	<u> </u>				
NAAV ODI	UCE TUE	NICT LI	ALTC			D CRUI					
MAX. CRI				IS		DISTA					
NORMAL		ומטוווטא	NG	CG=	30.0%	(NI			LR	FL :	200
ANTI-ICIN	G OFF					TIME (MIN)					
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	_										(KT)
126	0	17 3	35 7	52 10	70 13	87 17	104 20	122 24	139 27	157 30	310
	174	191	208	226	243	260	277	295	312	329	312
128	34	37	40	44	47	50	53	57	60	63	
130	346 67	363 70	381 73	398 76	415 80	432 83	449 86	466 90	483 93	500 96	314
132	517	534	551	568	585	602	619	636	653	670	316
	99 687	102 704	106 721	109 738	112 754	115 771	119 788	122 805	125 822	128 838	319
134	131	135	138	141	144	147	150	153	157	160	
136	855	872	889	905	922	939	955	972	989	1005	322
	163 1022	166 1039	169 1055	172 1072	175 1088	178 1105	182 1122	185 1138	188 1155	191 1171	325
138	194	197	200	203	206	209	212	215	218	221	
140	1188	1204	1220	1237	1253	1270	1286	1303	1319	1335	328
	224 1352	227 1368	230 1384	233 1401	236 1417	239 1433	242 1450	245 1466	248 1482	251 1499	330
142	254	257	260	263	266	269	272	275	278	281	
144	1515 284	1531 287	1547 290	1563 293	1580 295	1596 298	1612 301	1628 304	1644 307	1660 310	332
	1677	1693	1709	1725	1741	1757	1773	1789	1805	1821	334
146	313	316	319	322	324	327	330	333	336	339	
148	1837 342	1853 345	1869 347	1885 350	1901 353	1917 356	1933 359	1949 362	1965 364	1981 367	336
	1997	2013	2029	2044	2060	2076	2092	2108	2124	2139	338
150	370 2155	373 2171	376 2187	378 2203	381 2218	384 2234	387 2250	390 2265	392 2281	395 2297	341
152	398	401	404	406	409	412	415	417	420	423	341
154	2313	2328	2344	2360	2375	2391	2406	2422	2438	2453	343
	426 2469	428 2484	431 2500	434 2515	437 2531	439 2547	442 2562	445 2578	447 2593	450 2609	345
156	453	456	458	461	464	466	469	472	474	477	
158	2624	2639	2655	2670	2686	2701 493	2717	2732	2747	2763	348
	480 2778	482 2794	485 2809	488 2824	490 2840	2855	496 2870	498 2885	501 2901	504 2916	350
160	506	509	512	514	517	519	522	525	527	530	
162	2931 532	2947 535	2962 538	2977 540	2992 543	3007 545	3023 548	3038 551	3053 553	3068 556	351
	3083	3099	3114	3129	3144	3159	3174	3189	3204	3219	353
164	558	561	564	566	569	571	574	576	579	581	255
166	3235 584	3250 587	3265 589	3280 592	3295 594	3310 597	3325 599	3340 602	3355 604	3370 607	355
168	3385	3400	3414	3429	3444	3459	3474	3489	3504	3519	356
	609 3534	612 3549	614 3563	617 3578	619 3593	622 3608	624 3623	627 3638	629 3652	632 3667	358
170	634	637	639	642	644	647	649	652	654	657	
172	3682	3697	3711	3726	3741	3756 671	3770 674	3785	3800	3814	360
	11 - 100							674 676 Anti ice on		679 681 TOTAL ANTI ICE ON	
'^	AND CARGO CO			OL ON	Livon				_ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_ 0	
∆FUE	L = -0.5	%	∆FU	EL = + 1	.5 %	∆Fl	JEL = +3	= + 3 % △FUEL =		JEL = +	5 %

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 02001 .990 .000 .000 0 FC0M-G0-02-05-30-020-115

INTEGRATED CRUISE

2.05.30 SEQ 115

REV 09

P 21

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	ИITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	30.0%	(NM)			I D		
ANTI-ICINO	G OFF					TIME			LR	FL :	200
WEIGHT		_	_	_	_						TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
	3829	3844	3858	3873	3888	3902	3917	3932	3946	3961	362
174	684	686	688 4004	691 4019	693 4034	696 4048	698 4063	701	703	705	364
176	3975 708	3990 710	713	715	717	720	4063 722	4077 725	4092 727	4106 729	304
178	4121	4135	4149	4164	4178	4193	4207	4222	4236	4250	367
	732 4265	734 4279	736 4294	739 4308	741 4322	743 4337	746 4351	748 4365	750 4380	753 4394	368
180	4205 755	758	760	4306 762	4322 765	4337 767	769	771	774	776	300
	4408	4422	4437	4451	4465	4480	4494	4508	4522	4536	371
182	778 4551	781 4565	783 4579	785 4593	788 4607	790 4622	792 4636	795 4650	797 4664	799 4678	373
184	801	4365 804	4579 806	4593 808	811	813	4030 815	817	820	822	3/3
	4692	4706	4720	4734	4749	4763	4777	4791	4805	4819	375
186	824 4833	826 4847	829 4861	831 4875	833 4889	835 4903	838 4917	840 4931	842 4945	844 4959	377
188	4633 847	4647 849	4861 851	4875 853	4669 856	858	4917 860	4931 862	864	4959 867	311
	4973	4987	5000	5014	5028	5042	5056	5070	5084	5098	378
190	869	871	873	875	878	880	882	884	886	889	200
192	5112 891	5125 893	5139 895	5153 897	5167 900	5181 902	5195 904	5208 906	5222 908	5236 910	380
194	5250	5263	5277	5291	5305	5318	5332	5346	5360	5373	382
	913 5387	915 5401	917 5414	919 5428	921 5442	923 5455	926 5469	928 5483	930 5496	932 5510	384
196	934	936	938	940	943	945	947	949	951	953	304
	5523	5537	5551	5564	5578	5591	5605	5618	5632	5646	386
198	955	957	960	962	964	966	968	970	972	974	387
200	5659 976	5673 979	5686 981	5700 983	5713 985	5727 987	5740 989	5754 991	5767 993	5780 995	387
	5794	5807	5821	5834	5848	5861	5874	5888	5901	5915	389
202	997	999	1001	1003	1006	1008	1010	1012	1014	1016	391
204	5928 1018	5941 1020	5955 1022	5968 1024	5981 1026	5995 1028	6008 1030	6021 1032	6035 1034	6048 1036	391
	6061	6075	6088	6101	6114	6128	6141	6154	6167	6181	392
206	1038 6194	1040 6207	1042 6220	1044 6233	1046 6247	1048 6260	1050 6273	1053 6286	1055 6299	1057 6312	394
208	1059	1061	1063	1065	1067	1069	1071	1073	1075	1077	394
210	6326	6339	6352	6365	6378	6391	6404	6417	6430	6444	396
1	1079	1081 6470	1083	1085 6496	1087 6509	1089 6522	1091 6535	1092 6548	1094 6561	1096 6574	397
212	6457 1098	1100	6483 1102	1104	1106	1108	1110	1112	1114	1116	397
	6587	6600	6613	6626	6639	6652	6665	6678	6691	6703	399
214	1118	1120 6729	1122 6742	1124 6755	1126 6768	1128 6781	1130 6794	1132 6807	1134 6819	1135 6832	403
216	6716 1137	1139	1141	1143	1145	1147	1149	1151	1153	1155	403
	6845	6858	6871	6884	6896	6909	6922	6935	6948	6960	405
218 6845 6858 6871 6858 1160 PACK FLOW LO PACK			1162	1164	1166	1168	1170	1172	1174	E ON	
PACI	K FLOW LO	,		FLOW H		ENGIN	IE ANTI IO	EUN	FOTA	L ANTI IC	E UN
∆FUEI	L = -0.5	%		ND CARGO COOL ON \triangle FUEL = + 3 % \triangle FUEL =			JEL = + !	5 %			
				0.010000							

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 02001 .990 .000 .000 0 FC0M-G0-02-05-30-021-115

FLIGHT PLANNING INTEGRATED CRUISE

2.05.30 P 22 SEQ 115 REV 09

	INTEGRATED CRUISE														
MAX. CRI	JISE THE	RUST LIN	VITS	IS	Α	DISTANCE									
NORMAL	AIR CON	IDITION	NG	CG=30.0%		(NM)			I D						
ANTI-ICIN						TIME			LR	ነ FL 20					
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.6 1.8					
(TOUUNG)	0070	conc	0000	7011	7004	7007	7050	7000	7075	7000	(KT)				
220	6973 1175	6986 1177	6999 1179	7011 1181	7024 1183	7037 1185	7050 1187	7062 1189	7075 1190	7088 1192	408				
	7101	7113	7126	7139	7151	7164	7177	7189	7202	7215	411				
222	1194	1196	1198	1200	1201	1203	1205	1207	1209	1211	711				
	7227	7240	7252	7265	7278	7290	7303	7315	7328	7341	413				
224	1213	1214	1216	1218	1220	1222	1223	1225	1227	1229					
	7353	7366	7378	7391	7403	7416	7428	7441	7453	7466	416				
226	1231	1233	1234	1236	1238	1240	1242	1243	1245	1247					
220	7478	7491	7503	7516	7528	7541	7553	7566	7578	7591	418				
228	1249	1251	1252	1254	1256	1258	1260	1261	1263	1265					
230	7603	7615	7628	7640	7653	7665	7677	7690	7702	7714	420				
230	1267	1268	1270	1272	1274	1275	1277	1279	1281	1283	400				
232	7727	7739	7752	7764	7776	7789	7801	7813	7825	7838	422				
232	1284	1286	1288	1290	1291	1293	1295	1297	1298	1300	404				
234	7850 1302	7862 1303	7875 1305	7887 1307	7899 1309	7911 1310	7924 1312	7936 1314	7948 1316	7960 1317	424				
	7973	7985	7997	8009	8021	8034	8046	8058	8070	8082	426				
236	1319	1321	1323	1324	1326	1328	1329	1331	1333	1334	720				
	8094	8107	8119	8131	8143	8155	8167	8179	8191	8204	427				
238 $\frac{6094}{1336}$ $\frac{6107}{1338}$ $\frac{6119}{1340}$			1341	1343	1345	1346	1348	1350	1351	'-'					
				(FLOW H			IE ANTI IO			L ANTI IC	E ON				
				ARGO CO											
			∆FU	EL = + 1	.5 %	△FUEL = + 3 %		3 %	△FUEL = + 5 %						

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 02001 .990 .000 .000 0 FC0M-G0-02-05-30-022-115

INTEGRATED CRUISE

2.05.30

P 23

SEQ 115 | REV 09

				INITE	CDATE	D CRUI	<u> </u>					
MAX. CRI	IICE TUE	ALL TOLIC	/IITC	INTE		DISTA						
NORMAL				CG=		NI)			I D			
ANTI-ICIN		וווטוווטוו	ING	CG — .	30.0%	TIME			LR	FL :	250	
—	G OFF					TIIVIE	(IVIIIV)				TAS	
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8		
(1000KG)	0	19	38	57	76	95	114	133	152	171	(KT) 337	
126	0	3	7	10	13	17	20	24	27	30	337	
128	190	208	227	246	265	284	303	321	340	359	340	
	34 378	37 396	40 415	44 434	47 452	50 471	53 490	57 508	60 527	63 546	342	
130	67	70	73	76	80	83	86	90	93	96		
132	564 99	583 102	601 106	620 109	638 112	657 115	675 119	694 122	712 125	731 128	344	
	749	768	786	804	823	841	859	878	896	914	346	
134	131	135	138	141	144	147	151	154	157	160	240	
136	933 163	951 166	969 169	987 173	1006 176	1024 179	1042 182	1060 185	1078 188	1097 191	348	
138	1115	1133	1151	1169	1187	1205	1223	1241	1259	1277	350	
	194 1295	198 1313	201 1331	204 1349	207 1367	210 1385	213 1403	216 1421	219 1439	222 1456	353	
140	225	228	231	234	237	240	243	247	250	253	333	
142	1474	1492	1510	1528	1546	1563	1581	1599	1616	1634	356	
	256 1652	259 1670	262 1687	265 1705	268 1722	271 1740	274 1758	276 1775	279 1793	282 1810	359	
144	285	288	291	294	297	300	303	306	309	312		
146	1828	1846	1863	1881	1898	1916	1933	1950	1968	1985	361	
	315 2003	318 2020	321 2038	323 2055	326 2072	329 2090	332 2107	335 2124	338 2142	341 2159	363	
148	344	347	349	352	355	358	361	364	367	369		
150	2176 372	2193 375	2211 378	2228 381	2245 384	2262 386	2280 389	2297 392	2314 395	2331 398	366	
	2348	2365	2382	2400	2417	2434	2451	2468	2485	2502	368	
152	400	403	406	409	411	414	417	420	423	425	074	
154	2519 428	2536 431	2553 434	2570 436	2587 439	2604 442	2621 445	2638 447	2655 450	2672 453	371	
	2688	2705	2722	2739	2756	2773	2790	2806	2823	2840	373	
156	455	458	461	464	466	469	472	474	477	480	275	
158	2857 482	2873 485	2890 488	2907 490	2924 493	2940 496	2957 498	2974 501	2990 504	3007 506	375	
160	3024	3040	3057	3074	3090	3107	3123	3140	3156	3173	377	
	509 3189	512 3206	514 3222	517 3239	520 3255	522 3272	525 3288	527 3305	530 3321	533 3338	380	
162	535	538	541	543	546	548	551	553	556	559		
164	3354	3370	3387	3403	3420	3436	3452	3469	3485	3501	382	
	561 3517	564 3534	566 3550	569 3566	572 3582	574 3599	577 3615	579 3631	582 3647	584 3664	384	
166	587	589	592	594	597	600	602	605	607	610		
168	3680	3696 615	3712 617	3728 620	3744	3760 625	3777 627	3793	3809	3825	386	
	612 3841	615 3857	3873	3889	622 3905	625 3921	3937	630 3953	632 3969	635 3985	388	
170	637	640	642	645	647	650	652	654	657	659		
172	4001 662	4017 664	4033 667	4049 669	4065 672	4080 674	4096 677	4112 679	4128 681	4144 684	390	
	K FLOW LO			(FLOW H			IE ANTI IC		TOTAL ANTI ICE ON			
	AND C			ARGO CO	OL ON							
\triangle FUEL = -0.5%			∆FU	EL = + 1	.5 %	∆FUEL = + 3 %			△FUEL = + 5 %			

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 02501 .990 .000 .000 0 FCOM-G0-02-05-30-023-115

FLIGHT PLANNING INTEGRATED CRUISE

2.05.30 P 24 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE					
MAX. CRI	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE					
NORMAL	AIR CON	IDITIONI	NG	CG=	30.0%	(NI	M)		I D			
ANTI-ICIN						TIME	· .		LR	FL	250	
WEIGHT	0	.2	.4	c	.8	1.0	1.2	1.4	1.6	1.8	TAS	
(1000KG)	ן י	.2	.4	.6	.8	1.0	1.2	1.4	1.0	1.8	(KT)	
174	4160	4176	4191	4207	4223	4239	4255	4270	4286	4302	393	
	686 4318	689 4333	691 4349	693 4365	696 4380	698 4396	701 4412	703 4427	705 4443	708 4459	397	
176	710	713	715	717	720	722	724	727	729	731		
178	4474 734	4490 736	4505 738	4521 741	4537 743	4552 746	4568 748	4583 750	4599 752	4614 755	400	
	4630	4645	4661	4676	4692	4707	4723	4738	4754	4769	403	
180	757	759	762	764	766	769	771	773	775	778	400	
182	4784 780	4800 782	4815 785	4831 787	4846 789	4861 791	4877 794	4892 796	4907 798	4923 800	406	
	4938	4953	4969	4984	4999	5014	5030	5045	5060	5075	408	
184	803	805	807	809	812	814	816	818	821	823	411	
186	5091 825	5106 827	5121 829	5136 832	5151 834	5166 836	5182 838	5197 840	5212 843	5227 845	411	
	5242	5257	5272	5287	5302	5317	5332	5347	5363	5378	413	
188	847 5393	849 5408	851 5423	854 5438	856 5452	858 5467	860 5482	862 5497	865 5512	867 5527	415	
190	869	871	873	875	878	880	882	884	886	888	410	
192	5542	5557	5572	5587	5602	5617	5631	5646	5661	5676	417	
	890	893	895	897	899	901	903	905 5794	908	910	419	
194	5691 912	5706 914	5720 916	5735 918	5750 920	5765 922	5779 924	927	5809 929	5824 931	419	
	5838	5853	5868	5882	5897	5912	5926	5941	5956	5970	420	
196	933 5985	935 6000	937 6014	939 6029	941 6044	943 6058	945 6073	948 6087	950 6102	952 6116	422	
198	954	956	958	960	962	964	966	968	970	972	422	
200	6131	6145	6160	6175	6189	6204	6218	6233	6247	6261	423	
	975 6276	977 6290	979 6305	981 6319	983 6334	985 6348	987 6363	989 6377	991 6391	993 6406	423	
202	995	997	999	1001	1003	1005	1007	1009	1011	1014	423	
204	6420	6434	6449	6463	6477	6492	6506	6520	6535	6549	424	
	1016 6563	1018 6578	1020 6592	1022 6606	1024 6620	1026 6635	1028 6649	1030 6663	1032 6677	1034 6692	426	
206	1036	1038	1040	1042	1044	1046	1048	1050	1052	1054	420	
208	6706	6720	6734	6748	6762	6777	6791	6805	6819	6833	428	
	1056 6847	1058 6861	1060 6875	1062 6889	1064 6903	1066 6918	1068 6932	1070 6946	1072 6960	1074 6974	430	
210	1076	1078	1080	1081	1083	1085	1087	1089	1091	1093	130	
212	6988	7002	7016	7030	7044	7058	7072	7086	7099	7113	432	
	1095 7127	1097 7141	1099 7155	1101 7169	1103 7183	1105 7197	1107 7211	1109 7225	1111 7238	1113 7252	434	
214	1115	1116	1118	1120	1122	1124	1126	1128	1130	1132		
216	7266	7280	7294	7308	7321	7335	7349	7363	7376	7390	436	
	1134 7404	1136 7418	1137 7431	1139 7445	1141 7459	1143 7473	1145 7486	1147 7500	1149 7514	1151 7527	439	
218	1153	1154	1156	1158	1160	1162	1164	1166	1168	1169	100	
PACI	PACK FLOW LO PACE			(FLOW H		ENGIN	IE ANTI IC	E ON	TOTAL ANTI ICE ON			
∧ ELIE	l — . n =	0/		CARGO CO EL = + 1		٨٥١	IEI — ± 1	2 %	٨ΕΙ	IEI — ±	5 %	
		= − 0.5 % △FUE				△FUEL = + 3 %			△FUEL = + 5 %			

 $11.1 - 08F0A330 - 200 \ CF6 - 80E1A4 \ 222000000C5KG300 \ 0 \ 018590 \ 0 \ 0 \ 1 \ 1.0 \ .0 \ .00 \ 02501 \ .990 \ .000 \ .000 \ 0 \ FC0M - G0 - 02 - 05 - 30 - 024 - 115$

INTEGRATED CRUISE

2.05.30 P 25

SEQ 115 | REV 09

	INTEGRATED CRUISE													
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DISTANCE								
NORMAL	NORMAL AIR CONDITIONING			CG=30.0%		(NM)			I D					
ANTI-ICIN							TIME (MIN)		LR	FL :	250			
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS			
(1000KG)	0	.2	.7	.0		1.0	1.2	1.7	1.0	1.0	(KT)			
220	7541	7555	7568	7582	7596	7609	7623	7636	7650	7664	441			
220	1171	1173	1175	1177	1179	1181	1182	1184	1186	1188	440			
222	7677 1190	7691 1192	7704 1193	7718 1195	7731 1197	7745 1199	7759 1201	7772 1203	7786 1204	7799 1206	443			
	7813	7826	7840	7853	7867	7880	7893	7907	7920	7934	445			
224	1208	1210	1212	1214	1215	1217	1219	1221	1223	1224	443			
	7947	7961	7974	7987	8001	8014	8028	8041	8054	8068	447			
226	1226	1228	1230	1232	1233	1235	1237	1239	1241	1242				
	8081	8094	8108	8121	8134	8148	8161	8174	8187	8201	448			
228	1244	1246	1248	1250	1251	1253	1255	1257	1258	1260				
220	8214	8227	8241	8254	8267	8280	8293	8307	8320	8333	450			
230	1262	1264	1265	1267	1269	1271	1273	1274	1276	1278				
222	8346	8359	8373	8386	8399	8412	8425	8438	8452	8465	453			
232	1280	1281	1283	1285	1286	1288	1290	1292	1293	1295				
234	8478	8491	8504	8517	8530	8543	8556	8569	8582	8595	454			
234	1297	1299	1300	1302	1304	1306	1307	1309	1311	1312				
236	8608	8622	8635	8648	8661	8674	8687	8700	8712	8725	456			
230	1314	1316	1318	1319	1321	1323	1324	1326	1328	1329	450			
		8764 1335	8777 1336	8790 1338	8803 1340	8816 1341	8829 1343	8842 1345	8855 1346	458				
			(FLOW H			VE ANTI IC			TOTAL ANTI ICE ON					
				ARGO CO		LINGUIL ANTI ICE ON		TOTAL ANTITICE ON						
				EL = + 1		△FUEL = + 3 %		3 %	△FUEL = + 5 %					

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 02501 .990 .000 .000 0 FC0M-G0-02-05-30-025-115

2.05.30 P 26 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRI	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITION	NG	CG=	37.0%	(NI	M) I		I D		
ANTI-ICIN	G OFF					TIME			LR	FL :	290
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	U	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
126	0	20 3	41 7	61 10	81 13	101 17	122 20	142 24	162 27	182 30	360
	202	222	243	263	283	303	323	343	363	383	363
128	34 403	37 423	40 443	43 463	47 483	50 503	53 522	57 542	60 562	63 582	366
130	67	70	73	76	80	83	86	89	93	96	
132	602 99	622 102	641 105	661 109	681 112	701 115	720 118	740 121	760 125	779 128	369
134	799	819	838	858	877	897	916	936	955	975	371
	131 994	134 1014	137 1033	141 1053	144 1072	147 1092	150 1111	153 1130	156 1150	159 1169	373
136	163	166	169	172	175	178	181	184	187	191	
138	1188 194	1207 197	1227 200	1246 203	1265 206	1285 209	1304 212	1323 215	1342 218	1361 221	376
	1380	1400	1419	1438	1457	1476	1495	1514	1533	1552	378
140	224	227	230	233	236	239	242	245	248	251	
142	1571 254	1590 257	1609 260	1628 263	1647 266	1666 269	1685 272	1703 275	1722 278	1741 281	380
144	1760	1779	1798	1816	1835	1854	1873	1891	1910	1929	383
	284 1948	287 1966	290 1985	293 2003	296 2022	299 2041	302 2059	305 2078	308 2096	310 2115	386
146	313	316	319	322	325	328	331	334	336	339	
148	2133 342	2152 345	2170 348	2189 351	2207 353	2226 356	2244 359	2263 362	2281 365	2300 368	390
	2318	2336	2355	2373	2391	2410	2428	2446	2464	2483	394
150	370 2501	373 2519	376 2537	379 2556	382 2574	384 2592	387 2610	390 2628	393 2646	395 2664	397
152	398	401	404	406	409	412	415	417	420	423	397
154	2683	2701	2719	2737	2755	2773	2791	2809	2827	2845	400
	426 2863	428 2881	431 2899	434 2916	436 2934	439 2952	442 2970	444 2988	447 3006	450 3024	403
156	452	455	458	460	463	466	468	471	474	476	
158	3041 479	3059 482	3077 484	3095 487	3113 489	3130 492	3148 495	3166 497	3183 500	3201 503	406
	3219	3236	3254	3272	3289	3307	3325	3342	3360	3377	408
160	505 3395	508 3412	510 3430	513 3447	516 3465	518 3482	521 3500	523 3517	526 3535	528 3552	410
162	531	534	536	539	541	544 544	546	549	551	554	410
164	3570	3587	3604	3622	3639	3656	3674	3691	3708	3726	412
	556 3743	559 3760	562 3778	564 3795	567 3812	569 3829	572 3846	574 3864	577 3881	579 3898	413
166	582	584	587	589	592	594	597	599	602	604	
168	3915 607	3932 609	3950 612	3967 614	3984 617	4001 619	4018 621	4035 624	4052 626	4069 629	415
170	4086	4103	4120	4137	4154	4171	4188	4205	4222	4239	416
	631 4256	634 4273	636 4290	639 4307	641 4324	644 4340	646 4357	648 4374	651 4391	653 4408	417
172	656	658	661	663	665	668	670	673	675	678	
PAC	K FLOW L	0		FLOW H		ENGIN	IE ANTI IO	E ON	TOTA	L ANTI IC	E ON
∧FUF	L = -0.5	%		ARGO CO EL = + 1		∧FI	JEL = + 3	3 %	∆FI	JEL = + !	5 %
	_ 0.0			' '	/~			- /-		'	- ~

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG300 0 018590 0 0 1 1.0 .0 .00 02901 .990 .000 .000 0 FC0M-G0-02-05-30-026-115

2.05.30 SEQ 115

REV 09

P 27

INTEGRATED CRUISE

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(NI	VI)		LR	·	000
ANTI-ICIN	G OFF					TIME	(MIN)		LN	FL :	290
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)		.2	.7	.0				1.4	1.0	1.0	(KT)
174	4425	4441	4458	4475	4492	4508	4525	4542	4559	4575	419
	680 4592	682 4609	685 4625	687 4642	690 4658	692 4675	694 4692	697 4708	699 4725	701 4741	421
176	704	706	709	711	713	716	718	720	723	725	
178	4758 727	4774 730	4791 732	4807 734	4824 737	4840 739	4857 741	4873 744	4890 746	4906 748	423
	4923	4939	4955	4972	4988	5005	5021	5037	5054	5070	425
180	751	753	755	758	760	762	765	767	769	771	400
182	5086 774	5103 776	5119 778	5135 781	5151 783	5168 785	5184 787	5200 790	5216 792	5232 794	428
	5249	5265	5281	5297	5313	5329	5346	5362	5378	5394	431
184	796	799 5426	801	803 5458	805	808 5490	810	812	814	817 5554	101
186	5410 819	5426 821	5442 823	5458 825	5474 828	830	5506 832	5522 834	5538 836	5554 839	434
	5570	5586	5602	5618	5634	5650	5665	5681	5697	5713	437
188	841 5729	843 5745	845 5760	847 5776	850 5792	852 5808	854 5824	856 5839	858 5855	860 5871	440
190	863	865	867	869	871	873	875	878	880	882	440
	5887	5902	5918	5934	5949	5965	5981	5996	6012	6028	444
192	884 6043	886 6059	888 6074	890 6090	892 6106	895 6121	897 6137	899 6152	901 6168	903 6183	447
194	905	907	909	911	913	916	918	920	922	924	447
196	6199	6214	6230	6245	6261	6276	6292	6307	6323	6338	449
	926 6353	928 6369	930 6384	932 6400	934 6415	936 6430	938 6446	940 6461	942 6476	944 6492	451
198	947	949	951	953	955	957	959	961	963	965	431
200	6507	6522	6538	6553	6568	6583	6599	6614	6629	6644	453
	967 6659	969 6675	971 6690	973 6705	975 6720	977 6735	979 6750	981 6766	983 6781	985 6796	455
202	987	989	991	993	995	997	999	1001	1003	1005	433
204	6811	6826	6841	6856	6871	6886	6901	6916	6931	6946	456
	1007 6961	1009 6976	1011 6991	1013 7006	1015 7021	1017 7036	1019 7051	1021 7066	1023 7081	1025 7096	458
206	1027	1029	1031	1033	1035	1037	1039	1040	1042	1044	
208	7111	7126	7141 1050	7156	7170	7185 1056	7200	7215	7230	7245	459
	1046 7260	1048 7274	7289	1052 7304	1054 7319	7333	1058 7348	1060 7363	1062 7378	1064 7392	460
210	1066	1068	1070	1072	1073	1075	1077	1079	1081	1083	
212	7407 1085	7422 1087	7437 1089	7451 1091	7466 1093	7481 1095	7495 1096	7510 1098	7525	7539 1102	460
	7554	7568	7583	7598	7612	7627	7641	7656	1100 7671	7685	461
214	1104	1106	1108	1110	1112	1114	1115	1117	1119	1121	
216	7700 1123	7714 1125	7729 1127	7743 1129	7758 1131	7772 1132	7787 1134	7801 1136	7816 1138	7830 1140	462
	7845	7859	7873	7888	7902	7917	7931	7945	7960	7974	463
218	1142	1144	1146	1147	1149	1151	1153	1155	1157	1159	
PACI	PACK FLOW LO			FLOW H		ENGIN	IE ANTI IO	EON	TOTA	L ANTI IC	E ON
I			AND C		OL ON				. 51151		

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 02901 .990 .000 .000 0 FC0M-G0-02-05-30-027-115

 \triangle FUEL = + 1.5 %

 \triangle FUEL = -0.5 %

2.05.30 P 28 SEQ 115 REV 09

				INITE	GRATEI	n celli	QE_				
MAX. CRU NORMAL	AIR CON			IS CG=3	A	DIST/	ANCE M)		LR	FL :	200
ANTI-ICIN	G OFF					TIME	(MIN)		<u>LII</u>	FL	TAS
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6		
220	7988 1160	8003 1162	8017 1164	8031 1166	8046 1168	8060 1170	8074 1172	8089 1173	8103 1175	8117 1177	464
222	8131 1179	8146 1181	8160 1183	8174 1184	8188 1186	8203 1188	8217 1190	8231 1192	8245 1194	8259 1195	464
224	8274 1197	8288 1199	8302 1201	8316 1203	8330 1205	8344 1206	8358 1208	8372 1210	8387 1212	8401 1214	465
226	8415 1216 8555	8429 1217 8569	8443 1219 8583	8457 1221 8597	8471 1223 8611	8485 1225 8625	8499 1226 8639	8513 1228 8653	8527 1230 8667	8541 1232 8681	466 466
228	1234 8694	1235 8708	1237 8722	1239 8736	1241 8750	1243 8764	1244 8778	1246 8792	1248 8805	1250 8819	467
230	1252 8833	1253 8847	1255 8861	1257 8874	1259 8888	1260 8902	1262 8916	1264 8929	1266 8943	1268 8957	468
232 234	1269 8971	1271 8984	1273 8998	1275 9012	1276 9025	1278 9039	1280 9053	1282 9066	1283 9080	1285 9094	468
236	1287 9107 1304	1289 9121 1306	1290 9135 1308	1292 9148 1310	1294 9162 1311	1296 9176 1313	1297 9189 1315	1299 9203 1317	1301 9216 1318	1303 9230 1320	469
238	9243 1322	9257 1324	9270 1325	9284 1327	9297 1329	9311 1330	9324 1332	9338 1334	9351 1336	9351 9365	
PACI	PACK FLOW LO PAG			K FLOW HI OR/ Cargo Cool on		ENGINE ANTI IC		E ON	TOTA	L ANTI IC	E ON
∆FUE	\triangle FUEL = -0.5 %		△FUEL = + 1.5 %		△FUEL = + :		3 %	∆Fl	JEL = +	5 %	

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 02901 .990 .000 .000 0 FC0M-G0-02-05-30-028-115

INTEGRATED CRUISE

2.05.30 SEQ 115

REV 09

P 29

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03101 .990 .000 .000 0 FC0M-G0-02-05-30-029-115

2.05.30 P 30 SEQ 115 REV 09

				INTE	GRATEI	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	37.0%	(NI	M)		I D		040
ANTI-ICIN	G OFF					TIME	(MIN)		LR	FL	310
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	'	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
174	4564	4582	4599	4616	4633	4650	4668	4685	4702	4719	436
	678 4736	681 4753	683 4770	686 4787	688 4804	690 4821	693 4838	695 4855	697 4872	700 4889	439
176	702	704	707	709	711	714	716	718	721	723	
178	4906 725	4923 728	4940 730	4957 732	4974 734	4991 737	5008 739	5025 741	5042 743	5059 746	443
	5076	5092	5109	5126	5143	5160	5176	5193	5210	5227	446
180	748	750	753	755	757	759	762	764	766	768	
182	5243 771	5260 773	5277 775	5293 777	5310 779	5327 782	5343 784	5360 786	5377 788	5393 791	449
	5410	5427	5443	5460	5476	5493	5509	5526	5542	5559	451
184	793 5575	795 5592	797 5608	799 5625	802 5641	804	806 5674	808 5690	810 5707	812 5723	453
186	815	817	819	821	823	5658 826	828	830	832	834	453
188	5740	5756	5772	5789	5805	5821	5838	5854	5870	5886	454
	836 5903	839 5919	841 5935	843 5951	845 5968	847 5984	849 6000	851 6016	854 6032	856 6048	456
190	858	860	862	864	866	869	871	873	875	877	430
192	6065	6081	6097	6113	6129	6145	6161	6177	6193	6209	457
	879 6225	881 6241	883 6257	886 6273	888 6289	890 6305	892 6321	894 6337	896 6353	898 6369	458
194	900	902	905	907	909	911	913	915	917	919	
196	6385 921	6401 923	6417 925	6433 927	6449 930	6465 932	6481 934	6496 936	6512 938	6528 940	458
	6544	6560	6575	6591	6607	6623	6639	6654	6670	6686	459
198	942	944	946	948	950	952	954	956	958	961	
200	6702 963	6717 965	6733 967	6749 969	6764 971	6780 973	6796 975	6811 977	6827 979	6842 981	460
	6858	6874	6889	6905	6920	6936	6951	6967	6982	6998	461
202	983	985	987	989	991	993	995	997	999	1001	400
204	7014 1003	7029 1005	7044 1007	7060 1009	7075 1011	7091 1013	7106 1015	7122 1017	7137 1019	7152 1021	462
	7168	7183	7199	7214	7229	7245	7260	7275	7291	7306	462
206	1023 7321	1025 7337	1027 7352	1029 7367	1031 7382	1033 7398	1035 7413	1037 7428	1039 7443	1041 7458	463
208	1043	1045	1047	1049	1051	1053	1055	1057	1059	1061	
210	7474	7489	7504	7519	7534	7549	7564	7580	7595	7610	464
	1063 7625	1065 7640	1067 7655	1069 7670	1071 7685	1073 7700	1075 7715	1077 7730	1078 7745	1080 7760	465
212	1082	1084	1086	1088	1090	1092	1094	1096	1098	1100	
214	7775 1102	7790 1104	7805 1106	7820 1108	7835 1109	7850 1111	7865 1113	7880 1115	7895 1117	7909 1119	466
	7924	7939	7954	7969	7984	7999	8013	8028	8043	8058	466
216	1121	1123	1125	1127	1129	1131	1132	1134	1136	1138	
218	8073 1140	8087 1142	8102 1144	8117 1146	8132 1148	8146 1149	8161 1151	8176 1153	8190 1155	8205 1157	467
	PACK FLOW LO PACK				CK FLOW HI OR/ ENGINE ANTI I				TOTAL ANTI ICE ON		
			AND C	ARGO CO	OL ON						
	L = -0.5			EL = + 1			JEL = + 3		△FUEL = + 5 % M-G0-02-05-30-030-115		

 $11.1 - 08F0A330 - 200 \ CF6 - 80E1A4 \ 222000000C5KG370 \ 0 \ 018590 \ 0 \ 0 \ 1 \ 1.0 \ .0 \ .00 \ 03101 \ .990 \ .000 \ .000 \ 0 \ FC0M - G0 - 02 - 05 - 30 - 030 - 115$

INTEGRATED CRUISE

2.05.30

SEQ 115

REV 09

P 31

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(N	M)		I D		
ANTI-ICINO	G OFF					TIME	(MIN)		LR	FL :	310
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	8220	8234	8249	8264	0270	8293	8308	8322	8337	8351	(KT) 468
220	1159	1161	1163	8264 1165	8278 1166	1168	1170	1172	1174	1176	408
	8366	8381	8395	8410	8424	8439	8453	8468	8482	8497	469
222	1178	1179	1181	1183	1185	1187	1189	1191	1192	1194	100
	8511	8526	8540	8554	8569	8583	8598	8612	8626	8641	470
224	1196	1198	1200	1202	1204	1205	1207	1209	1211	1213	
226	8655	8670	8684	8698	8713	8727	8741	8756	8770	8784	470
220	1215	1216	1218	1220	1222	1224	1226	1227	1229	1231	
228	8798	8813	8827	8841	8855	8870	8884	8898	8912	8926	471
220	1233	1235	1236	1238	1240	1242	1244	1246	1247	1249	471
230	8940	8955 1253	8969	8983	8997	9011	9025	9039	9053	9067	471
	1251 9081	9096	1255 9110	1256 9124	1258 9138	1260 9152	1262 9166	1264 9180	1265 9194	1267 9208	472
232	1269	1271	1272	1274	1276	1278	1280	1281	1283	1285	412
	9222	9236	9249	9263	9277	9291	9305	9319	9333	9347	472
234	1287	1288	1290	1292	1294	1296	1297	1299	1301	1303	
226	9361	9374	9388	9402	9416	9430	9444	9457	9471	9485	473
236	1304	1306	1308	1310	1311	1313	1315	1317	1318	1320	
220	9499	9513	9526	9540	9554	9567	9581	9595	9609	9622	473
238				1327	1329	1331	1332	1334	1336	1338	
PACI				(FLOW H		ENGIN	NE ANTI IC	E ON	TOTA	L ANTI IC	E ON
△FUEI				CARGO COOL ON FUEL = + 1.5 %		∆FUEL = +		- 3 %		JEL = + !	5 %

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03101 .990 .000 .000 0 FC0M-G0-02-05-30-031-115

INTEGRATED CRUISE

2.05.30

P 32 REV 09

SEQ 115

				INTE	GRATEI	D CRUI	SE				
MAX. CRI	JISE THE	RUST LIN	/IITS	IS		DIST					
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(N	M)		LR		
ANTI-ICIN	G OFF					TIME			LN	FL	330
WEIGHT		_	_	_	_						TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
126	0	22 3	43 7	65 10	87 13	108 17	130 20	152 23	173 27	195 30	388
	216	238	259	281	302	324	345	366	388	409	392
128	33	37	40 473	43	46	50	53	56	59	63	395
130	431 66	452 69	473 72	494 76	516 79	537 82	558 85	579 88	601 92	622 95	395
	643	664	685	706	727	748	769	790	811	832	399
132	98	101	104	107	111	114	117	120	123	126	401
134	853 130	874 133	895 136	916 139	937 142	958 145	979 148	1000 151	1020 154	1041 158	401
	1062	1083	1103	1124	1145	1166	1186	1207	1227	1248	403
136	161	164	167	170	173	176	179	182	185	188	405
138	1269 191	1289 194	1310 197	1330 200	1351 204	1371 207	1392 210	1412 213	1433 216	1453 219	405
	1474	1494	1514	1535	1555	1575	1596	1616	1636	1636 1657	
140	222	225	228	231	234	237	240	243	246	246 249	
142	1677	1697	1717	1737	1758	1778	1798	1818	1838	1858	408
	252 1878	255 1898	257 1918	260 1938	263 1958	266 1978	269 1998	272 2018	275 2038	278 2058	411
144	281	284	287	290	293	296	299	301	304	307	111
146	2078	2098	2118	2138	2157	2177	2197	2217	2237	2256	413
	310 2276	313 2296	316 2315	319 2335	322 2355	325 2374	327 2394	330 2413	333 2433	336 2453	416
148	339	342	344	347	350	353	356	359	361	364	410
	2472	2492	2511	2531	2550	2570	2589	2608	2628	2647	418
150	367	370	373	375	378	381	384	387	389	392	401
152	2667 395	2686 398	2705 400	2725 403	2744 406	2763 409	2783 411	2802 414	2821 417	2840 420	421
	2859	2879	2898	2917	2936	2955	2974	2993	3013	3032	424
154	422	425	428	430	433	436	438	441	444	447	
156	3051 449	3070 452	3089 455	3108 457	3127 460	3146 463	3165 465	3183 468	3202 470	3221 473	427
	3240	3259	3278	3297	3316	3334	3353	3372	3391	3409	430
158	476	478	481	484	486	489	492	494	497	499	
160	3428	3447	3466	3484	3503	3522	3540	3559	3577	3596	433
	502 3615	505 3633	507 3652	510 3670	512 3689	515 3707	517 3726	520 3744	523 3763	525 3781	436
162	528	530	533	535	538	540	543	545	548	550	
164	3800	3818	3836	3855	3873	3891	3910	3928	3946	3965	441
	553 3983	555 4001	558 4019	560 4038	563 4056	565 4074	568 4092	570 4110	573 4128	575 4147	444
166	578	580	583	4036 585	588	590	593	595	597	600	444
	4165	4183	4201	4219	4237	4255	4273	4291	4309	4327	447
168	602	605	607	610	612	614	617	619	622	624	440
170	4345 627	4363 629	4381 631	4399 634	4417 636	4435 638	4453 641	4471 643	4488 646	4506 648	449
172	4524	4542	4560	4578	4595	4613	4631	4649	4666	4684	451
	650	653	655	657	660	662	665	667	669	672	<u> </u>
l PAC	K FLOW LO	ן י		(FLOW H CARGO CO		ENGIN	IE ANTI IC	EON	TOTA	L ANTI IC	E ON
AFLIE	L = -0.5	_%		EL = + 1		∧FI	JEL = + 3	3 %	∧FI	JEL = +	5 %
0_	_ 5.0				/0		' '			'	- /-

11.1-08F0A330-200 CF6-80E1A4 22700000C5KG370 0 018590 0 0 1 1.0 .0 .00 03301 .990 .000 .000 0 FC0M-G0-02-05-30-032-115

INTEGRATED CRUISE

2.05.30

P 33

SEQ 115 | REV 09

				INTE	GRATE	D CRUI					
MAX. CRU	JISE THE	RUST LIN	MITS	IS	Α	DIST	ANCE				
NORMAL A	AIR CON	IDITIONI	NG	CG=	37.0%	(NI	M)		I D		
ANTI-ICINO	G OFF					TIME			LR	FL :	330
WEIGHT		_	_	_	_		` '				TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
	4702	4719	4737	4755	4772	4790	4808	4825	4843	4861	452
174	674	676	679	681	683	686	688	690	693	695	
176	4878	4896	4913	4931	4948	4966	4983	5001	5018	5036	453
	697 5053	700 5071	702 5088	704 5105	707 5123	709 5140	711 5158	714 5175	716 5192	718 5210	454
178	720	723	725	727	730	732	734	737	739	741	151
180	5227	5244	5262	5279	5296	5313	5331	5348	5365	5382	455
	743 5399	746 5417	748 5434	750 5451	753 5468	755 5485	757 5502	759 5519	762 5536	764 5554	456
182	766	768	771	773	775	777	780	782	784	786	430
184	5571	5588	5605	5622	5639	5656	5673	5690	5707	5724	457
	789	791	793	795	798	800	802	804	806	809	458
186	5741 811	5758 813	5774 815	5791 818	5808 820	5825 822	5842 824	5859 826	5876 829	5892 831	458
	5909	5926	5943	5960	5976	5993	6010	6027	6043	6060	459
188	833	835	837	840	842	844	846	848	850	853	
190 l	6077 855	6093 857	6110 859	6127 861	6143 864	6160 866	6177 868	6193 870	6210 872	6226 874	460
	6243	6260	6276	6293	6309	6326	6342	6359	6375	6392	461
192	877	879	881	883	885	887	889	892	894	896	101
194	6408	6425	6441	6457	6474	6490	6507	6523	6539	6556	462
	898 6572	900 6588	902 6605	904 6621	907 6637	909 6654	911 6670	913 6686	915 6702	917 6718	463
196 l	919	921	923	926	928	930	932	934	936	938	403
	6735	6751	6767	6783	6799	6816	6832	6848	6864	6880	464
198	940	942	945	947	949	951	953	955	957	959	
200 l	6896 961	6912 963	6928 965	6944 967	6960 970	6976 972	6992 974	7008 976	7024 978	7040 980	464
	7056	7072	7088	7104	7120	7136	7152	7168	7184	7200	465
202	982	984	986	988	990	992	994	996	998	1000	
204	7216	7231	7247	7263	7279	7295	7310	7326	7342	7358	466
	1002 7373	1004 7389	1006 7405	1009 7421	1011 7436	1013 7452	1015 7468	1017 7483	1019 7499	1021 7515	467
206	1023	1025	1027	1029	1031	1033	1035	1037	1039	1041	107
	7530	7546	7561	7577	7592	7608	7624	7639	7655	7670	467
208	1043	1045	1047	1049	1051	1053	1055	1057	1059	1061	400
210 l	7686 1063	7701 1065	7717 1067	7732 1069	7747 1071	7763 1073	7778 1075	7794 1077	7809 1079	7825 1081	468
	7840	7855	7871	7886	7901	7917	7932	7947	7963	7978	468
212	1083	1085	1087	1089	1090	1092	1094	1096	1098	1100	
214	7993 1102	8008 1104	8024 1106	8039 1108	8054 1110	8069 1112	8084 1114	8100 1116	8115 1118	8130 1120	469
	8145	8160	8175	8190	8206	8221	8236	8251	8266	8281	469
216	1122	1124	1126	1127	1129	1131	1133	1135	1137	1139	
218	8296	8311	8326	8341	8356	8371	8386	8401	8416	8431	470
	1141 (FLOW LO	1143	1145	1147 (FLOW H	1149	1151	1152 IE ANTI IC	1154	1156	1158 L anti ic	E ON
FAUN	L LOVE L	,		ARGO CO		ENGIN	IL ANTI IL	LUN	I	LANIII	LON
∆FUEL	= -0.5	%		EL = + 1		∆Fl	JEL = + 3	3 %	$\triangle FUEL = + 5$		5 %

2.05.30 P 34 SEQ 115 REV 09

				INITE	GRATE	ח רפווו	QE .					
MAX. CRI	JISE THE	RUST LIN	/IITS		A		ANCE					
NORMAL	AIR CON	IDITION	NG	CG=	37.0%	(NI	M)		I D			
ANTI-ICIN	G OFF					TIME	(MIN)		LR	FL :	330	
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS (KT)	
220	8446 1160	8461 1162	8475 1164	8490 1166	8505 1168	8520 1170	8535 1171	8550 1173	8565 1175	8579 1177	470	
222	8594 1179	8609 1181	8624 1183	8639 1185	8653 1187	8668 1188	8683 1190	8697 1192	8712 1194	1194 1196		
224	8742 1198	8756 1200	8771 1202	8786 1203	8800 1205	8815 1207	8829 1209	8844 1211	8859 1213	8873 1215	471	
226	8888 1216	8902 1218	8917 1220	8931 1222	8946 1224	8960 1226	8975 1228	8989 1229	9004 1231	9018 1233	471	
228	9033 1235	9047 1237	9062 1239	9076 1240	9090 1242	9105 1244	9119 1246	9133 1248	9148 1249	9162 1251	472 472	
230	9176 1253 9319	9191 1255 9333	9205 1257 9347	9219 1259 9361	9233 1260 9375	9248 1262 9389	9262 1264 9404	9276 1266 9418	9290 1268 9432	9305 1269 9446	472	
232	1271 9460	1273 9474	1275 9488	1277 9502	1278 9516	1280 9530	1282 9544	1284 9558	1286 9572	1287 9586	473	
234	1289 9600	1291 9614	1293 9628	1294 9641	1296 9655	1298 9669	1300 9683	1302 9697	1303 9711	1305 9725	474	
236	1307 9738	1309 9752	1310 9766	1312 9780	1314 9794	1316 9807	1317 9821	1319 9835	1321 9848	1323 9862	474	
238	238 1324 1326 1328			9780 9794 1330 1331 K FLOW HI OR/		1333	1335 IE ANTI IO	1337	1338	1340 L ANTI IC		
PAC						ENGIN	VE ANTI IL	E UN	IUIA	LANIIIU	E UN	
∆FUE	△FUEL = - 0.5 %			AND CARGO COOL ON △FUEL = + 1.5 %			△FUEL = + 3 %		% △FUEL = + 5 %		5 %	

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03301 .990 .000 .000 0 FC0M-G0-02-05-30-034-115

INTEGRATED CRUISE

2.05.30

P 35

SEQ 115 REV 09

				INTE	CBATE	D CRUI	QE .				
MAX. CRI	IISE THE	ALL TOLIS	/ITS	IS		DIST					
NORMAL				CG=		(NI			I D		
ANTI-ICIN		NDITIONI	IVO.	- Cu	37.070	TIME			LR	FL :	350
WEIGHT											TAS
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)
	0	22	45	67	90	112	134	157	179	201	401
126	0	3	7	10	13	17	20	23	27	30	400
128	224 33	246 37	268 40	290 43	312 47	335 50	357 53	379 56	401 60	423 63	402
130	445	467	489	511	533	555	577	599	621	643	405
	66 665	70 686	73 708	76 730	79 752	83 773	86 795	89 817	92 838	95 860	408
132	99	102	105	108	112	115	118	121	124	127	
134	882 131	903 134	925 137	946 140	968 143	990 146	1011 149	1033 153	1054 156	1075 159	410
136	1097	1118	1140	1161	1182	1204	1225	1246	1267	1289	413
	162 1310	165 1331	168 1352	171 1373	174 1395	177 1416	180 1437	184 1458	187 1479	190 1500	416
138	193	196	199	202	205	208	211	214	217	220	
140	1521	1542	1563	1584	1605	1626	1647 241	1668	1688	1709	420
	223 1730	226 1751	229 1772	232 1793	235 1813	238 1834	1855	244 1875	247 1896	250 1917	423
142	253	256	259	262	265	268	270	273	276	279	400
144	1937 282	1958 285	1979 288	1999 291	2020 294	2040 297	2061 299	2081 302	2102 305	2122 308	426
146	2143	2163	2183	2204	2224	2245	2265	2285	2306	2326	430
	311 2346	314 2366	317 2387	319 2407	322 2427	325 2447	328 2467	331 2487	334 2508	336 2528	433
148	339	342	345	348	350	353	356	359	361	364	
150	2548 367	2568 370	2588 372	2608 375	2628 378	2648 381	2668 383	2688 386	2708 389	2728 392	437
	2748	2767	2787	2807	2827	2847	2867	2886	2906	2926	441
152	394	397	400	402	405	408	410	413	416	418	444
154	2946 421	2965 424	2985 426	3005 429	3024 432	3044 434	3064 437	3083 440	3103 442	3122 445	444
156	3142	3162	3181	3201	3220	3240	3259	3278	3298	3317	446
	448 3337	450 3356	453 3375	455 3395	458 3414	461 3433	463 3453	466 3472	468 3491	471 3510	448
158	474	476	479	481	484	487	489	492	494	497	
160	3530 499	3549 502	3568 505	3587 507	3606 510	3626 512	3645 515	3664 517	3683 520	3702 522	450
	3721	3740	3759	3778	3797	3816	3835	3854	3873	3892	451
162	525 3911	528 3930	530 3949	533 3968	535 3987	538 4006	540 4024	543 4043	545 4062	548 4081	452
164	3911 550	3930 553	3949 555	3968 558	3987 560	4006 563	4024 565	4043 568	4062 570	4081 573	45Z
166	4100	4118	4137	4156	4175	4193	4212	4231	4249	4268	453
	575 4287	578 4305	580 4324	583 4342	585 4361	588 4379	590 4398	593 4417	595 4435	597 4454	454
168	600	602	605	607	610	612	615	617	620	622	
170	4472 624	4490 627	4509 629	4527 632	4546 634	4564 637	4583 639	4601 641	4619 644	4638 646	455
	4656	4674	4693	4711	4729	4748	4766	4784	4802	4820	456
172	649	651	653	656	658	661	663	665	668	670	F ON
PAC	K FLOW L	U		FLOW H		ENGIN	IE ANTI IO	E UN	IUTA	L ANTI IC	E UN
∆FUE	L = -0.5	%		EL = + 1		∆Fl	JEL = + 3	3 %	△FUEL = + 5 %		5 %

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03501 .990 .000 .000 0 FC0M-G0-02-05-30-035-115

2.05.30 P 36 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DISTA	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=3	37.0%	(NI	VI)		I D		
ANTI-ICIN	G OFF					TIME	(MIN)		LR	FL:	350
WEIGHT	0	.2	.4	c	0			4.4	1.6	1.8	TAS
(1000KG)	"	.2	.4	.6	.8	1.0	1.2	1.4	1.0	1.8	(KT)
174	4839	4857	4875	4893	4911	4930	4948	4966	4984 692	5002 694	457
	673 5020	675 5038	677 5056	680 5074	682 5092	685 5110	687 5128	689 5146	5164	5182	458
176	696 5200	699 5218	701 5236	704 5253	706 5271	708 5289	711 5307	713 5325	715 5343	718 5360	459
178	720	722	725	727	729	732	734	736	739	741	
180	5378 743	5396 746	5414 748	5431 750	5449 753	5467 755	5485 757	5502 759	5520 762	5538 764	460
	5555	5573	5590	5608	5626	5643	5661	5678	5696	5713	461
182	766	769	771	773	776	778	780	782	785	787	400
184	5731 789	5748 791	5766 794	5783 796	5801 798	5818 801	5836 803	5853 805	5870 807	5888 810	462
186	5905	5922	5940	5957	5974	5992	6009	6026	6043	6061	462
	812 6078	814 6095	816 6112	819 6129	821 6147	823 6164	825 6181	828 6198	830 6215	832 6232	463
188	834	836	839	841	843	845	848	850	852	854	404
190	6249 856	6266 859	6283 861	6300 863	6317 865	6334 867	6351 870	6368 872	6385 874	6402 876	464
192	6419	6436	6453	6470	6487	6504	6521	6537	6554	6571	464
	878 6588	881 6605	883 6621	885 6638	887 6655	889 6672	892 6688	894 6705	896 6722	898 6739	465
194	900	902	905	907	909	911	913	915	918	920	
196	6755 922	6772 924	6789 926	6805 928	6822 930	6838 933	6855 935	6872 937	6888 939	6905 941	465
	6921	6938	6954	6971	6987	7004	7020	7037	7053	7069	466
198	943	945	947	950	952	954	956	958	960	962	466
200	7086 964	7102 967	7118 969	7135 971	7151 973	7168 975	7184 977	7200 979	7216 981	7233 983	400
202	7249	7265	7281	7298	7314	7330	7346	7362	7378	7395	467
	985 7411	987 7427	990 7443	992 7459	994 7475	996 7491	998 7507	1000 7523	1002 7539	1004 7555	467
204	1006	1008	1010	1012	1014	1017	1019	1021	1023	1025	
206	7571 1027	7587 1029	7603 1031	7619 1033	7635 1035	7651 1037	7667 1039	7683 1041	7698 1043	7714 1045	467
	7730	7746	7762	7777	7793	7809	7825	7840	7856	7872	468
208	1047 7888	1049 7903	1051 7919	1053 7935	1055 7950	1057 7966	1059 7981	1061 7997	1063 8012	1065 8028	469
210	1067	1069	1071	1073	1075	1077	1079	1081	1083	1085	
212	8044	8059	8075	8090	8106	8121	8136	8152	8167	8183	469
	1087 8198	1089 8213	1091 8229	1093 8244	1095 8260	1097 8275	1099 8290	1101 8305	1103 8321	1105 8336	470
214	1107	1109	1111	1113	1115	1117	1119	1121	1123	1125	
216	8351 1127	8366 1129	8382 1130	8397 1132	8412 1134	8427 1136	8442 1138	8457 1140	8473 1142	8488 1144	470
218	8503	8518	8533	8548	8563	8578	8593	8608	8623	8638	470
	1146 C	1148	1150 PACK	1152 FLOW H	1154 OR/	54 1156 1157 ENGINE ANTI I		1159 E ON	9 1161 1163 Total Anti Ice on		E ON
1 701			AND C	ARGO CO	OL ON				TOTAL ANTITIOL ON		•
	L = -0.5			EL = + 1			JEL = + 3		△FUEL = + 5 %		5 %

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03501 .990 .000 .000 0 FC0M-G0-02-05-30-036-115

INTEGRATED CRUISE

2.05.30 P 37

SEQ 115

REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	A	DIST	ANCE				
NORMAL	AIR CON	IDITIONI	NG	CG=	37.0%	(N	M)		I D		
ANTI-ICIN	G OFF					TIME	(MIN)		LR	FL :	350
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	٠	.2	. 7		.0	1.0	1.2	1.7	1.0	1.0	(KT)
220	8653 1165	8668 1167	8683 1169	8698 1171	8713 1173	8727 1175	8742 1176	8757 1178	8772 1180	8787 1182	471
222	8802 1184	8816 1186	8831 1188	8846 1190	8861 1192	8875 1193	8890 1195	8905 1197	8919 1199	8934 1201	471
224	8949 1203	8963 1205	8978 1206	8992 1208	9007 1210	9022 1212	9036 1214	9051 1216	9065 1218	9080 1219	472
226	9094 1221	9109 1223	9123 1225	9137 1227	9152 1229	9166 1230	9181 1232	9195 1234	9209 1236	9224 1238	473
228	9238 1240	9252 1241	9267 1243	9281 1245	9295 1247	9310 1249	9324 1250	9338 1252	9352 1254	9366 1256	473
230	9381 1258	9395 1259	9409 1261	9423 1263	9437 1265	9451 1267	9465 1268	9479 1270	9493 1272	9508 1274	473
232	9522 1275	9536 1277	9550 1279	9564 1281	9578 1283	9591 1284	9605 1286				473
234											
236											
238											
PAC			K FLOW HI OR/		ENGINE ANTI IC		ICE ON TOTA		L ANTI IC	E ON	
∆FUE	L = -0.5	%		CARGO CO EL = + 1		∆FU	UEL = + :	3 %	∆Fl	JEL = +	5 %

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03501 .990 .000 .000 0 FC0M-G0-02-05-30-037-115

2.05.30 P 38 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE				
MAX. CRU	JISE THE	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL .	AIR CON	IDITIONI	NG	CG = 3	37.0%	(N	M)		LR	.	070
ANTI-ICING	G OFF					TIME	(MIN)		LN	FL :	3/0
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS
(1000KG)	Ů	.2	.4	.0	.0	1.0	1.2	1.4	1.0	1.0	(KT)
126	0	23 3	46 7	69 10	92 13	115 17	138 20	161 23	184 27	207 30	414
128	230	253	276	299	321	344	367	390	412	435	418
	33 458	36 480	40 503	43 526	46 548	50 571	53 593	56 616	59 638	62 661	422
130	66	69	72	75	79	82	85	88	91	94	
132	683 98	706 101	728 104	750 107	773 110	795 113	817 117	840 120	862 123	884 126	425
134	907	929	951	973	995	1017	1039	1061	1083	1106	429
	129 1128	132 1149	135 1171	138 1193	141 1215	144 1237	148 1259	151 1281	154 1303	157 1325	433
136	160	163	166	169	172	175	178	181	184	187	
138	1346 190	1368 193	1390 196	1412 199	1433 202	1455 205	1477 208	1498 211	1520 214	1542 217	437
	1563	1585	1606	1628	1649	1671	1692	1714	1735	1757	440
140	220 1778	223 1799	225 1821	228 1842	231 1863	234 1885	237 1906	240 1927	243 1948	246 1969	443
142	249	252	255	257	260	263	266	269	272	275	443
144	1991	2012	2033	2054	2075	2096	2117	2138	2159	2180	446
	277 2201	280 2222	283 2243	286 2264	289 2285	292 2306	294 2327	297 2348	300 2369	303 2389	448
146	306	309	311	314	317	320	323	325	328	331	
148	2410 334	2431 336	2452 339	2472 342	2493 345	2514 348	2535 350	2555 353	2576 356	2597 359	449
	2617	2638	2658	2679	2699	2720	2740	2761	2781	2802	451
150	361 2822	364 2843	367 2863	369 2884	372 2904	375 2924	378 2945	380 2965	383 2985	386 3006	452
152	389	391	394	397	399	402	405	407	410	413	432
154	3026	3046	3066	3087	3107	3127	3147	3167	3187	3207	453
	416 3228	418 3248	421 3268	424 3288	426 3308	429 3328	432 3348	434 3368	437 3388	440 3408	454
156	442	445	448	450	453	455	458	461	463	466	
158	3428 469	3448 471	3467 474	3487 476	3507 479	3527 482	3547 484	3567 487	3586 490	3606 492	455
160	3626	3646	3666	3685	3705	3725	3744	3764	3784	3803	457
	495 3823	497 3842	500 3862	503 3881	505 3901	508 3921	510 3940	513 3959	515 3979	518 3998	458
162	521	523	526	528	531	533	536	538	541	544	
164	4018	4037	4057 551	4076 554	4095	4115 559	4134 561	4153	4173	4192	459
	546 4211	549 4231	551 4250	554 4269	556 4288	4307	561 4327	564 4346	566 4365	569 4384	459
166	571	574	576	579	581	584	586	589	591	594	
168	4403 596	4422 599	4441 601	4460 604	4479 606	4498 609	4517 611	4536 614	4555 616	4574 619	460
170	4593 621	4612 624	4631 626	4650 629	4669 631	4688 634	4707 636	4725 638	4744 641	4763 643	461
172	4782	4801	4819	4838	4857	4875	4894	4913	4931	4950	462
	646 C FLOW LO	648	651	653 (FLOW H	655	658	660 IE ANTI IO	663	665	668 L anti ic	E ON
FAU	Y PLOAN FO	,		ARGO CO		ENGIN	VE ANTITIC	,E UN	IUIA	LANIII	E UN
∆FUEI	L = -0.5	%		EL = + 1		∆Fl	JEL = + :	3 %	△FUEL = + 5 %		5 %

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03701 .990 .000 .000 0 FC0M-G0-02-05-30-038-115

INTEGRATED CRUISE

2.05.30

P 39

SEQ 115 | REV 09

				INTE	GRATEI	D CRUI	SE				
MAX. CRU	JISE THR	RUST LIN	/IITS	IS	Α	DIST	ANCE				
NORMAL	AIR CON	IDITIONII	NG	CG=3	37.0%	(NI	M)		I D		
ANTI-ICIN						TIME			LR	FL :	370
WEIGHT		_ [_							TAS
1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT
	4969	4987	5006	5024	5043	5061	5080	5098	5117	5135	462
174	670	672	675	677	680	682	684	687	689	692	400
176	5154 694	5172 696	5191 699	5209 701	5228 704	5246 706	5264 708	5283 711	5301 713	5319 715	463
	5338	5356	5374	5392	5411	5429	5447	5465	5483	5501	463
178	718	720	723	725	727	730	732	734	737	739	40
180	5520 741	5538 744	5556 746	5574 748	5592 751	5610 753	5628 755	5646 758	5664 760	5682 762	46
	5700	5718	5736	5754	5772	5790	5807	5825	5843	5861	46!
182	765	767	769	772	774	776	779	781	783	785	
184	5879 788	5897 790	5914 792	5932 795	5950 797	5968 799	5985 801	6003 804	6021 806	6038 808	46!
	6056	6074	6091	6109	6126	6144	6162	6179	6197	6214	46!
186	811	813	815	817	820	822	824	826	829	831	
188	6232	6249	6266	6284	6301	6319	6336	6353	6371	6388	460
	833 6405	835 6423	838 6440	840 6457	842 6474	844 6492	847 6509	849 6526	851 6543	853 6560	46
190	856	858	860	862	864	867	869	871	873	876	40
	6577	6594	6611	6629	6646	6663	6680	6697	6714	6731	46
192	878	880	882	884	887	889	891	893	895	897	40
194	6748 900	6765 902	6781 904	6798 906	6815 908	6832 910	6849 913	6866 915	6883 917	6899 919	46
	6916	6933	6950	6967	6983	7000	7017	7033	7050	7067	468
196	921	923	926	928	930	932	934	936	938	941	
198	7083 943	7100 945	7116 947	7133 949	7149 951	7166 953	7182 955	7199 957	7215 960	7232 962	468
	7248	7265	7281	7297	7314	7330	7346	7363	7379	7395	469
200	964	966	968	970	972	974	976	978	981	983	
202	7412	7428	7444	7460	7476	7493	7509	7525	7541	7557	46
	985 7573	987 7589	989 7605	991 7621	993 7637	995 7653	997 7669	999 7685	1001 7701	1003 7717	47
204	1005	1007	1009	1011	1013	1016	1018	1020	1022	1024	47
	7733	7749	7765	7780	7796	7812	7828	7843	7859	7875	47
206	1026	1028	1030	1032	1034	1036	1038	1040	1042	1044	
208	7891 1046	7906 1048	7922 1050	7938 1052	7953 1054	7969 1056	7985 1058	8000 1060	8016 1062	8031 1064	47
	8047	8062	8078	8093	8109	8124	8140	8155	8170	8186	47
210	1066	1068	1070	1072	1074	1076	1078	1079	1081	1083	
212	8201	8216	8232	8247	8262	8277	8293	8308	8323		47
	1085	1087	1089	1091	1093	1095	1097	1099	1101		
214											
216											
218											
	K FLOW LO)		FLOW H		ENGIN	IE ANTI IC	E ON	TOTAL	ANTI IC	E ON
	L = - 0.5	.		ARGO CO EL = + 1			JEL = + 3			IEL = + !	

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03701 .990 .000 .000 0 FC0M-G0-02-05-30-039-115

AIRBUS TRAINING A330	FLIGHT PLANNING	2.05.30	P 40
SIMULATOR FLIGHT CREW OPERATING MANUAL	INTEGRATED CRUISE	SEQ 010	REV 07

INTENTIONALLY LEFT BLANK

INTEGRATED CRUISE

2.05.30

SEQ 115 | REV 09

P 41

	INTEGRATED CRUISE													
MAX. CRI	IISE THE	ALL TOLIS	/IITS	IS		DIST								
NORMAL				CG=		(NI			I D					
ANTI-ICIN		IDITION	IVO.	- Cu — .	37.070	TIME	-		LR	FL :	390			
WEIGHT							` '				TAS			
(1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	(KT)			
	0	24	47	71	95	118	142	165	189	212	439			
126	0 236	259	6 283	10 306	13 329	16 353	19 376	23 399	26 423	29 446	442			
128	32	35	38	42	329 45	48	51	54	423 57	61	442			
130	469 64	492 67	516 70	539 73	562 76	585 79	608 82	631 86	654 89	677 92	445			
	700	723	746	769	792	815	838	861	883	906	447			
132	95 929	98 952	101	104	107	110	113	116	119	122	449			
134	125	95Z 128	975 131	997 135	1020 138	1043 141	1065 144	1088 147	1111 150	1133 153				
136	1156	1178	1201	1223	1246	1268	1291	1313	1335	1358	450			
	156 1380	159 1403	162 1425	165 1447	168 1469	171 1492	174 1514	177 1536	180 1558	183 1581	452			
138	186	188	191	194	197	200	203	206	209	212	450			
140	1603 215	1625 218	1647 221	1669 224	1691 227	1713 230	1735 233	1757 235	1779 238	1801 241	453			
142	1823	1845	1867	1889	1911	1933	1954	1976	1998	2020	454			
	244 2042	247 2063	250 2085	253 2107	256 2128	259 2150	261 2172	264 2193	267 2215	270 2236	456			
144	273	276	279	282	284	287	290	293	296	299				
146	2258 301	2280 304	2301 307	2323 310	2344 313	2366 316	2387 318	2408 321	2430 324	2451 327	457			
148	2473	2494	2515	2537	2558	2579	2600	2622	2643	2664	458			
	330 2685	332 2706	335 2727	338 2749	341 2770	344 2791	346 2812	349 2833	352 2854	355 2875	459			
150	357	360	363	366	368	371	374	377	379	382				
152	2896 385	2917 388	2938 390	2959 393	2979 396	3000 399	3021 401	3042 404	3063 407	3084 409	460			
154	3104	3125	3146	3167	3187	3208	3229	3249	3270	3291	461			
	412 3311	415 3332	417 3352	420 3373	423 3393	426 3414	428 3434	431 3455	434 3475	436 3496	462			
156	439	442	444	447	450	452	455	458	460	463				
158	3516 466	3536 468	3557 471	3577 473	3597 476	3618 479	3638 481	3658 484	3678 487	3699 489	462			
	3719	3739	3759	3779	3799	3820	3840	3860	3880	3900	463			
160	492 3920	494 3940	497 3960	500 3980	502 4000	505 4020	508 4039	510 4059	513 4079	515 4099	464			
162	518	520	523	526	528	531	533	536	539	541				
164	4119 544	4139 546	4158 549	4178 551	4198 554	4218 556	4237 559	4257 561	4277 564	4296 567	464			
	4316	4336	4355	4375	4394	4414	4433	4453	4472	4492	465			
166	569 4511	572 4531	574 4550	577 4569	579 4589	582 4608	584 4627	587 4647	589 4666	592 4685	465			
168	594	597	599	602	604	607	609	612	614	617				
170	4704	4724	4743	4762	4781	4800	4819	4838	4858	4877	466			
	619 4896	622 4915	624 4934	627 4953	629 4972	632 4991	634 5009	636 5028	639 5047	641 5066	466			
172	644	646	649	651	654	654 656 658		54 656 658 661		661	663	666		
PAC	K FLOW LO	ן		FLOW H		ENGIN	IE ANTI IC	E ON	TOTA	L ANTI IC	E ON			
∆FUE	L = -0.5	%		EL = + 1		∆Fl	JEL = + 3	3 %	∆FL	JEL = + !	5 %			

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03901 .990 .000 .000 0 FCOM-G0-02-05-30-041-115

INTEGRATED CRUISE

2.05.30 P 42 SEQ 115 REV 09

				INTE	GRATE	D CRUI	SE					
MAX. CRU NORMAL ANTI-ICIN	AIR CON			ISA DISTANCE (NM) TIME (MIN)			LR	FL :	390			
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS (KT)	
174	5085 668	5104 671	5122 673	5141 675	5160 678	5179 680	5197 683	5216 685	5235 687	5253 690	467	
176	5272 692	5291 695	5309 697	5328 699	5346 702	5365 704	5383 706	5402 709	5420 711	5439 714	467	
178	5457 716	5476 718	5494 721	5512 723	5531 725	5549 728	5567 730	5585 732	5604 735	5622 737	468	
180	5640 739	5658 742	5677 744	5695 746	5713 749	5731 751	5749 753	5767 756	5785 758	5803 760	469	
182	5821 763 6000	5839 765 6018	5857 767 6035	5875 769 6053	5893 772 6071	5911 774 6089	5929 776 6106	5947 779 6124	5964 781 6142	5982 783 6159	469 470	
184	785 6177	788 6194	790 6212	792 6229	794 6247	797 6264	799 6282	801 6299	803 6316	806 6334	470	
186	808 6351	810 6369	812 6386	815 6403	817 6420	819 6438	821 6455	824 6472	826 6489	828 6507	471	
188	830 6524	832 6541	835 6558	837 6575	839 6592	841 6609	843 6626	846 6643	848 6660	850 6677	471	
190 192	852 6694	854 6711	857 6728	859 6745	861 6761	863 6778	865	867	870	872	471	
194	874	876	878	880	883	885						
196												
198												
200												
	PACK FLOW LO		AND C	PACK FLOW HI OR/ AND CARGO COOL ON		ENGINE ANTI ICE ON						
	$\triangle FUEL = -0.5 \%$			△FUEL = + 1.5 %			△FUEL = + 3 %			△FUEL = + 5 %		

^{11.1-08}F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 03901 .990 .000 .000 0 FC0M-G0-02-05-30-042-115

INTENTIONALLY LEFT BLANK

INTEGRATED CRUISE

2.05.30 P 44 SEQ 115

REV 09

	INTEGRATED CRUISE													
BAAV ODI	UOF TUE	NIOT LIA	4ITO											
MAX. CRI				IS		DISTA								
NORMAL		IDITIONI	NG	CG=	37.0%	(NI	, ,		LR	FL	/1 0			
ANTI-ICIN	G OFF					TIME	(MIN)		LII	1 -				
WEIGHT	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS			
(1000KG)											(KT)			
126	0	24 3	49 6	73 10	97 13	121 16	146 19	170 22	194 26	218 29	452			
	242	266	290	314	338	362	386	410	434	458	454			
128	32	35	38	42	45	48	51	54	57	61				
130	482 64	506 67	530 70	553 73	577 76	601 79	625 82	648 86	672 89	696 92	455			
	719	743	766	790	814	837	861	884	908	931	457			
132	95	98	101	104	107	110	113	117	120	123	450			
134	954 126	978 129	1001 132	1024 135	1048 138	1071 141	1094 144	1118 147	1141 150	1164 153	458			
136	1187	1210	1233	1257	1280	1303	1326	1349	1372	1395	459			
	156 1418	159 1441	162 1464	165 1486	168 1509	171 1532	174 1555	177 1578	180 1600	183 1623	460			
138	186	189	192	195	198	201	204	207	210	213	400			
140	1646	1669	1691	1714	1737	1759	1782	1804	1827	1849	461			
	216 1872	219 1894	222 1917	225 1939	228 1962	231 1984	234 2006	237 2029	240 2051	242 2073	462			
142	245	248	251	254	257	260	263	266	269	271				
144	2095 274	2118 277	2140 280	2162	2184	2206	2228	2251	2273	2295 300	463			
	2317	2339	2361	283 2383	286 2405	289 2427	292 2448	294 2470	297 2492	2514	464			
146	303	306	309	312	314	317	320	323	326	329				
148	2536 331	2558 334	2579 337	2601 340	2623 343	2645 345	2666 348	2688 351	2710 354	2731 357	464			
	2753	2774	2796	2817	2839	2860	2882	2903	2925	2946	465			
150	359	362	365	368	371	373	376	379	382	384	405			
152	2967 387	2989 390	3010 393	3031 395	3053 398	3074 401	3095 404	3116 406	3137 409	3159 412	465			
	3180	3201	3222	3243	3264	3285	3306	3327	3348	3369	466			
154	414 3390	417 3410	420 3431	423 3452	425 3473	428 3494	431 3514	433 3535	436 3556	439 3576	466			
156	441	444	447	449	452	455	458	460	463	465	400			
158	3597	3618	3638	3659	3679	3700	3720	3741	3761	3782	467			
	468 3802	471 3823	473 3843	476 3863	479 3884	481 3904	484 3924	487 3944	489 3965	492 3985	468			
160	494	497	500	502	505	508	510	513	515	518				
162	4005 520	4025 523	4045 526	4065 528	4085 531	4105 533	4125 536	4145 538	4165 541	4185 544	468			
	4205	4225	4245	4265	4285	4304	4324	4344	4364	4383	469			
164	546	549	551	554	556	559	561	564	566	569	470			
166	4403 571	4423 574	4442 576	4462 579	4481 581	4501 584	4520 586	4540 589	4559 591	4579 594	470			
	4598	4618	4637	4656	4676	4695	4714	4733	4752	4772	470			
168	596 4791	599 4810	601 4829	604 4848	606 4867	609 4886	611 4905	614 4924	616 4943	618 4962	471			
170	621	623	4829 626	4848 628	4867 631	633	4905 635	638	640	496Z 643	4/1			
172	4981	5000	5019	5038	5056	5075	5094	5113	5131	5150	471			
	645 K FLOW LO	648	650	652 (FLOW H	655	65 657 659 ENGINE ANTI ICI				662	664	667 L anti ic	E ON	
PAU	K LLOAA TI			ARGO CO		ENGIN	IE ANTITIC	,E UN	IUIA	LANIII	E UN			
∆FUE	L = -0.5	%		EL = + 1		∆Fl	JEL = + 3	3 %	∆FU	JEL = +	5 %			

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 04101 .990 .000 .000 0 FC0M-G0-02-05-30-044-115

INTEGRATED CRUISE

2.05.30 P 45

REV 09

SEQ 115

	INTEGRATED CRUISE													
MAX. CRU NORMAL					SA 37.0%	DISTANCE (NM)			LR	FI	440			
ANTI-ICIN	G OFF					TIME (MIN)		TIME (MIN)			LIL			
WEIGHT (1000KG)	0	.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	TAS (KT)			
174	5169 669	5187 671	5206 674	5224 676	5243 678	5261 681	5280 683	5299 686			471			
176														
178														
180														
	AND			ARGO COOL ON		ENGINE ANTI ICE ON $\triangle FUEL = + 3 \%$			L ANTI IC JEL = +					

11.1-08F0A330-200 CF6-80E1A4 22200000C5KG370 0 018590 0 0 1 1.0 .0 .00 04101 .990 .000 .000 0 FC0M-G0-02-05-30-045-115

AIRBUS TRAINING A330	FLIGHT PLANNING	2.05.30	P 46
SIMULATOR FLIGHT CREW OPERATING MANUAL	INTEGRATED CRUISE	SEQ 010	REV 07

INTENTIONALLY LEFT BLANK

2.05.30 SEQ 010 F

P 47 REV 07

CLIMB CORRECTION

The planner must correct the values for the fuel and the time obtained from the integrated cruise tables with the numbers given in the following tables. The tables which are established for M.80, M.82, M.84 and long range speed take into account climbing from the brake release point at 250KT/300KT/M.80.

LONG RANGE SPEED

R

			CORR	ECTION	ON F	UEL CO	NSUM	PTION	(1000	kg)		
FL			W	EIGHT .	at Br/	KE RE	LEASE	(1000	kg)			time
FL	140	150	160	170	180	190	200	210	220	230	240	correction
410	2.2	2.5	2.5	2.7	_	-	_	-	-	_	-	3 min
390	2.1	2.3	2.4	2.6	2.8	2.9	_	-	-	-	-	4 min
370	2.0	2.2	2.4	2.5	2.6	2.8	2.9	2.9	-	_	_	4 min
350	2.0	2.2	2.3	2.4	2.5	2.7	2.8	2.9	3.1	3.2	_	5 min
330	1.9	2.1	2.2	2.3	2.4	2.5	2.7	2.9	3.1	3.1	3.2	5 min
310	1.8	2.0	2.1	2.2	2.3	2.4	2.6	2.7	2.8	3.0	3.1	5 min
290	1.7	1.9	1.9	2.1	2.1	2.3	2.4	2.5	2.6	2.8	2.9	5 min
270	1.6	1.8	1.8	2.0	2.0	2.2	2.3	2.4	2.5	2.6	2.8	5 min
250	1.5	1.6	1.7	1.9	1.9	2.1	2.1	2.3	2.3	2.5	2.6	5 min
200	1.2	1.4	1.4	1.4	1.6	1.7	1.8	1.9	2.0	2.1	2.2	4 min
150	1.0	1.1	1.1	1.2	1.4	1.4	1.5	1.5	1.6	1.7	1.8	3 min
100	0.7	0.8	0.8	1.0	1.0	1.0	1.1	1.1	1.2	1.3	1.3	2 min

CLIMB TO OPTIMUM FL

R

	CORRECTION ON FUEL CONSUMPTION (1000 kg)													
SPEED		WEIGHT AT BRAKE RELEASE (1000 kg)												
SPEED	140	150	160	170	180	190	200	210	220	230	240	correction		
LRC	2.4	2.5	2.5	2.6	2.6	2.8	2.8	2.9	3.0	3.1	3.1	5 min		
M.80	2.2	2.3	2.3	2.6	2.6	2.8	2.8	3.0	3.2	3.1	3.1	5 min		
M.82	2.2	2.4	2.5	2.6	2.7	2.8	2.9	2.9	3.0	3.0	3.2	6 min		
M.84	2.2	2.3	2.3	2.5	2.5	2.7	2.7	2.8	2.8	2.9	3.1	6 min		

STEP CLIMB CORRECTION

When the flight includes one or more step climbs (2000 feet below FL290, 4000 feet above), apply a correction of 160 kg per step climb to the fuel consumption.

2.05.30 SEQ 010 P 48

REV 14

DESCENT CORRECTION

Correct the fuel and the time values determined in the integrated cruise tables as follows to take into account the descent down to 1500 feet followed by 6 min IFR approach and landing.

R LONG RANGE CRUISE SPEED

	CORRECTION ON FUEL CONSUMPTION (1000 kg)													
FL		WEIGH	IT OVERHE	AD DESTIN	IATION (10	00 kg)		time						
I L	130	140	150	160	170	180	190	correction						
290 and above	0.3	0.3	0.4	0.5	0.5	0.6	0.7	11 min						
270	0.2	0.3	0.4	0.4	0.5	0.6	0.6	10 min						
250	0.2	0.3	0.3	0.4	0.5	0.5	0.6	10 min						
200	0.2	0.2	0.3	0.3	0.4	0.4	0.5	9 min						
150	0.1	0.1	0.2	0.2	0.2	0.3	0.3	8 min						
100	0.0	0.0	0.0	0.0	0.0	0.1	0.1	8 min						

LRC, M.80, M.82, M.84 FROM OPTIMUM FL

R

CORRECTION ON FUEL CONSUMPTION (1000 kg)												
	WEIGHT OVERHEAD DESTINATION (1000 kg)											
130	140	150	160	170	180	190	correction					
0.4	0.4	0.5	0.6	0.7	0.8	0.8	11 min					

QUICK DETERMINATION OF F-PLN

2.05.40

P 1

SEQ 001

REV 06

INTRODUCTION

R The following flight planning tables allow the planner to determine trip fuel consumption and trip time required to cover a given air distance.

These tables are established for:

R - Takeoff

R — Climb profile: 250kt/300kt/M.80

R — Cruise mach number: M.80, M.82, M.84, LR

R — Descent profile : Cruise Mach number/300kt/250kt

R — Approach and landing: 240 kg — 6 minute IFR

R - ISA

R

R - CG = 37 %

Normal air conditioning

Anti ice OFF

R Note: 1. In the tables, the asterisk (*) means that a step climb of 4000 feet must be flown to reach the corresponding FL.

- 2. To obtain a flight plan at optimum cruise level, the highest flight level desired within the flight has to be selected in the table.
- 3. For each degree Celsius above ISA temperature apply fuel correction 0.010 $(kg/^{\circ}C/NM) \times \triangle ISA(^{\circ}C) \times Air Distance (NM)$.

CORRECTION FOR DEVIATION FROM REFERENCE LANDING WEIGHT

R The fuel consumption must be corrected when the actual landing weight is different from the reference landing weight.

If it is lower (or greater) than the reference landing weight, subtract (or add) the value given in the correction part of the table per 1000 kg below (or above) the reference landing weight.

EXAMPLE

- R The following is an example of a complete flight plan based on the assumptions:
- R Zero fuel weight (OWE + PAYLOAD) : 160 000 kg = landing weight at alternate airport.
- R Cruise M.82 at FL390
- R Ground distance from departure to destination: 2500 NM
- R Average wind during flight : 50 kt (headwind)
- R ISA conditions
- R "Enroute" reserve: 5 %
- R Ground distance from destination to alternate: 200 NM, no wind at FL200
- R To calculate the flight plan, a reverse calculation is needed, i.e. start with the landing
- R weight at alternate (the schematic on 2.05.10 p 4 gives an overview of the calculation to
- R be performed).

QUICK DETERMINATION OF F-PLN

2.05.40

SEQ 115

P 2

REV 09

- 1. Alternate fuel and time
 - From 2.05.50 p2;

Alternate time = 41 min

Alternate fuel: $3489 + 10 \times (160 - 140) = 3689 \text{ kg}$

- 2. Holding fuel and time
 - A 30 min holding is assumed at 1500 feet. Read from 2.05.10 p2, holding fuel = 2400 kg
- 3. At destination, the landing weight $= 160\ 000 + 3689 + 2400 = 166\ 089\ kg$
- 4. Evaluation of the air distance between departure and destination.
 - The "Ground distance/Air distance" conversion tables from 2.05.60 p3, shows that the corresponding air distance is : 2796 NM (\sim 2800 NM).
- 5. Trip fuel and time
 - Enter air distance and flight level 390 (see tables on 2.05.40 p8), interpolate to find the corresponding values of fuel consumption and time, for the reference landing weight and without deviation from ISA.

Fuel = 29 496 kg

Time = 6 h 11 min

- Correction for landing weight
 - \triangle fuel consumption = 135 × (166.1 140) = 3523 kg
- Trip reserves (5 %) = $0.05 \times (29496 + 3523) = 1650 \text{ kg}$
- 6. Taxi fuel = 300 kg (2.05.10 p2)
- 7. Total fuel on board (Block fuel):

29496 + 3689 + 2400 + 3523 + 1650 + 300 = 41058 kg

QUICK DETERMINATION OF F-PLN

2.05.40

SEQ 115

REV 09

P 3

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.80 - DESCENT: M.80/300KT/250KT

REF. LANDING WEIGHT = 140000 KG NORMAL AIR CONDITIONING			ISA FU			JEL CONSUMED (KG)			
NURIVIAL AI ANTI ICING		HUNING		CG =	37.0 %		TIME (H	LMIN)	
AIR	011						COF	RECTION (
DIST.			FLIGHT	LEVEL			FUEL CONSUMPTION (KG/1000KG)		
Dioi.			T EIGITI				FL310	FL350	FL390
(NM)	310 3500	330 3488	350 3486	370 3494	390	410	FL330	FL370 13	FL410
200	0.38	0.38	0.39	0.39	4444	4400			10
300	4645 0.51	4567 0.51	4506 0.52	4465 0.52	4441 0.52	4432 0.52	14	16	18
400	5793 1.04	5649 1.04	5529 1.05	5438 1.05	5374 1.05	5334 1.05	16	19	22
500	6944 1.17	6733 1.17	6554 1.18	6414 1.18	6310 1.18	6240 1.18	18	22	26
600	8097 1.30	7820 1.30	7582 1.31	7394 1.31	7249 1.31	7149 1.31	21	25	30
700	9253 1.42	8910 1.43	8613 1.44	8377 1.44	8192 1.44	8062 1.44	23	28	34
800	10411 1.55	10002 1.56	9647 1.57	9362 1.57	9138 1.57	8979 1.57	25	31	38
900	11572 2.08	11096 2.09	10684 2.10	10350 2.10	10087 2.10	9900 2.10	28	34	42
1000	12735 2.21	12193 2.22	11723 2.23	11342 2.23	11040 2.23	10824 2.23	30	37	46
1100	13901 2.34	13292 2.35	12766 2.36	12336 2.36	11995 2.36	11752 2.36	33	41	50
1200	15070 2.47	14395 2.48	13811 2.49	13334 2.49	12954 2.49	12683 2.49	35	44	54
1300	16240 2.59	15500 3.01	14859 3.02	14334 3.03	13916 3.03	13618 3.03	37	47	59
1400	17413 3.12	16608 3.13	15911 3.15	15338 3.16	14882 3.16	14558 3.16	40	50	63
1500	18589 3.25	17718 3.26	16966 3.28	16346 3.29	15851 3.29	15502 3.29	42	54	67
1600	19766 3.38	18831 3.39	18023 3.41	17356 3.42	16825 3.42	16450 3.42	45	57	72
1700	20947 3.51	19947 3.52	19084 3.54	18370 3.55	17802 3.55	17402 3.55	48	61	77
1800	22131 4.03	21066 4.05	20148 4.07	19386 4.08	18783 4.08	18358 4.08	50	64	81
1900	23318 4.16	22188 4.18	21215 4.20	20407 4.21	19768 4.21	19318 4.21	53	68	86
2000	24507 4.29	23313 4.31	22286 4.33	21431 4.34	20756 4.34	20282 4.34	56	71	91
2100	25698 4.42	24441 4.44	23361 4.46	22458 4.47	21749 4.47	21251 4.47	59	75	97
2200	26892 4.55	25571 4.57	24438 4.59	23489 5.00	22746 5.00	22225 5.00	62	79	103
2300	28089 5.07	26704 5.10	25518 5.12	24524 5.14	23746 5.14	23224 5.14	65	82	108
2400	29289 5.20	27840 5.23	26601 5.25	25561 5.27	24751 5.27	24210 5.27	68	86	114
2500	30493 5.33	28980 5.36	27688 5.38	26602 5.40	25759 5.40	25201 5.40	71	90	121
2600	31700 5.46	30124 5.49	28779 5.51	27646 5.53	26770 5.53	26196 5.53	74	93	126
2700	32910 5.59	31271 6.01	29872 6.04	28695 6.06	27817 6.06	27196 6.06	77	97	132
PACK FLOV	N LO		K FLOW HI CARGO COO		ENGINE A	NTI ICE ON TOTAL ANTI ICE ON			ON
$\triangle FUEL = -$	0.5 %	ΔΕ	UEL = + 1	%	△FUEL =	+ 1.5 %	△FUEL = + 3 %		%

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-003-115

QUICK DETERMINATION OF F-PLN

2.05.40

P 4

SEO 115 **REV 09**

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.80 - DESCENT: M.80/300KT/250KT

IMC PROCEDURE: 240 KG (6MIN)

Ref. Landing Weight = 140000 kgISA FUEL CONSUMED (KG)

NORMAL AIR CONDITIONING CG = 37.0 %ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FL350 FL390 FL330 FL370 (NM) FL410 3<mark>2422</mark> 6.14 6.19 6.19 6.11 6.17 6.19 6.24 6.27 6.30 6.32 6.32 6.32 6.45 <u>6.3</u>7 6.40 6.45 6.43 6.45 6.50 6.53 6.56 6.58 6.58 6.58 <u>7</u>.11 7.037.06 7.10 7.117.117.19 7.23 7.24 7.16 7.25 7.25 7.28 7.32 7.38 7.38 7.38 7.36 7.51 7.41 7.45 7.49 7.51 7.51 7.54 8.04 7.58 8.02 8.04 8.04 8.07 8.11 8.15 8.17 8.17 8.17 8.20 8.24 8.28 8.30 8.30 8.30 8.37 8.41 8.43 8.43 8.32 8.43 8.45 8.49 8.54 8.56 8.56 8.56 9.09* 9.02 9.09 8.58 9.07 9.09 9.11 9.15 9.20 9.22 9.22* 9.22 9.35* 9.28 9.36 9.36 9.41 9.46 9.49 9.49 9.49*10.02* 9.54 9.49 9.59 10.02 10.02 10.15* 10.02 10.07 10.12 10.15 10.15 10.28* 10.20 10.25 10.28 10.28 10.15 10 41* 10.33 10.28 10.38 10.41 10.41 10.54 10.54* 10.41 10.46 10.51 10.54 10.53 11.07 10.59 11.04 11.07 11.07 11.20* 11.06 11.12 11.17 11.20 11.20 11.33 11.33 11 19 11.25 11.30 11.47* 11.32 11.43 11.47 11 47 PACK FLOW HI OR/ PACK FLOW LO **ENGINE ANTI ICE ON** TOTAL ANTI ICE ON AND CARGO COOL ON

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-004-115

 \triangle FUEL = + 1.5 %

 $\triangle FUEL = + 3 \%$

 \triangle FUEL = -0.5 %

 $\triangle FUEL = + 1 \%$

QUICK DETERMINATION OF F-PLN

2.05.40

SEQ 115

REV 09

P 5

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.80 - DESCENT: M.80/300KT/250KT IMC PROCEDURE: 240 KG (6MIN)

	REF. LANDING WEIGHT = 140000 KG NORMAL AIR CONDITIONING							UEL CONSUMED (KG)			
NURMAL A ANTI ICING		HONING		CG =	37.0 %		TIME (H.MIN)				
AIR								RECTION (CONSUMP			
DIST.			FLIGHT	LEVEL			()	KG/1000KG)		
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390 FL410		
5400	66956 11.45	63799 11.50	61011 11.56	58777 12.00	57239 12.00	56785 12.00*	182	228	327		
5500	68272 11.57	65062 12.03	62227 12.09	59963 12.13	58465 12.13	57966 12.13*	186	234	335		
5600	69591 12.10	66330 12.16	63447 12.22	61155 12.26	59671 12.26*	59153 12.26*	191	240	344		
5700	70920 12.23	67603 12.29	64671 12.36	62353 12.39	60888 12.39*	60345 12.39*	196	246	351		
5800	72256 12.36	68881 12.42	65901 12.49	63556 12.52	62110 12.52*	61550 12.52*	201	252	360		
5900	73596 12.49	70164 12.55	67135 13.02	64766 13.05	63336 13.05*	62763 13.05*	206	258	369		
6000	74942 13.02	71453 13.08	68375 13.15	65980 13.18	64575 13.18*	63982 13.18*	211	268	378		
6100	76293 13.14	72747 13.21	69621 13.28	67201 13.31	65814 13.31*	65207 13.31*	216	274	388		
6200	77648 13.27	74046 13.34	70871 13.41	68487 13.45	67059 13.44*	66440 13.44*	221	281	396		
6300	79008 13.40	75351 13.47	72131 13.54	69726 13.58	68311 13.57*	67681 13.58*	227	288	405		
6400	80373 13.53	76661 14.00	73396 14.07	70972 14.11	69569 14.10*	68930 14.11*	232	295	413		
6500	81743 14.06	77975 14.13	74667 14.20	72226 14.24	70833 14.23*	70186 14.24*	237	303	422		
6600	83118 14.18	79295 14.26	75945 14.33	73486 14.37	72104 14.36*	71450 14.37*	242	315	430		
6700	84498 14.31	80620 14.39	77228 14.46	74755 14.50	73380 14.49*	72721 14.50*	248	321	440		
6800	85884 14.44	81951 14.51	78517 14.59	76031 15.03	74664 15.02*	74032 15.03*	253	330	449		
6900	87275 14.57	83288 15.04	79811 15.12	77314 15.16	75954 15.15*	75330 15.16*	258	340	457		
7000	88673 15.10	84629 15.17	81190 15.25	78604 15.29	77251 15.28*	76638 15.29*	263	349	467		
7100	90075 15.23	85977 15.30	82503 15.38	79901 15.42	78554 15.41*	77955 15.42*	269	359	476		
7200	91482 15.35	87330 15.43	83822 15.51	81255 15.55*	79864 15.55*	79281 15.56*	274	369	484		
7300	92895 15.48	88690 15.56	85151 16.04	82601 16.08*	81181 16.08*	80622 16.09*	284	374	493		
7400	94313 16.01	90056 16.09	86491 16.17	83954 16.21*	82506 16.21*	81966 16.22*	290	383	503		
7500	95737 16.14	91516 16.22	87838 16.30	85312 16.34*	83840 16.34*	83315 16.34*	296 307	393 402	512 521		
7600	97166 16.27 98602	92899 16.35	89193 16.43	86677 16.47*	85185 16.47*	84671 16.47*			521		
7700	16.40	94288 16.48	90555 16.56	88049 17.00*	86537 17.00*	86033 17.00*	313	410			
7800	100044 16.52	95684 17.01	91923 17.09 93299	89427 17.13*	87899 17.13*	87401 17.13*	315	417	540 549		
7900	101589 17.05	97086 17.14	17.23	90814 17.26*	89295 17.26*	88777 17.26*	322	425			
PACK FLO		AND	K FLOW HI CARGO COO UEL = + 1	ĹŐN		NTI ICE ON		AL ANTI ICE			
\triangle FUEL = -	- U.5 %		UEL = + 1	70	∐ ∆FUEL =	+ 1.5 %		UEL = + 3	70		

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-005-115

QUICK DETERMINATION OF F-PLN

2.05.40

P 6

SEQ 115 | REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO L	LANDING
CLIMB: 250KT/300KT/M.80 - CRUISE: M.80 - DESCENT:	M.80/300KT/250

50KT **IMC PROCEDURE: 240 KG (6MIN)** Ref. Landing Weight = 140000 kgISA FUEL CONSUMED (KG) NORMAL AIR CONDITIONING CG = 37.0 %ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FL350 FL390 FL330 FL370 FL410 (NM) 17.39* 17.39* 17.39* 17.27 17.18 17.36 17.31 17.40 17.49 17.52* 17.52* 17.52* 17.53 18.05* 18.05* 18.05* 17.44 18.02 18.18* 17.57 18.06 18.15 18.18* 18.18* 18.31* 18.31* 18.31* 18.09 18.18 18.28 18.44* 18.44* 18.44* 18.22 18.31 18.41 18.57* 18.35 18.44 18.54 18.57* 18.57* 19.07* 19.10* 18.48 18.57 19.09* 19.10* 19.22* 19.23* 19.01 19.20* 19.10 19.23* 19.36* 19.36* 19.23 19.32* 19.35* 19.45* 19.48* 19.49* 19.49* 19.36 19.58* 20.02* 20.01* 19.49 20.01 20.11* 20.14* 20.14* 20.02 20.15* 20.24* 20.27* 20.28* 20.27* 20.37* 20.40* 20.40* 20.40* 20.53* 20.53 20.53* 21.06* 21.06* 21.06* 21.19 21.19* PACK FLOW HI OR/ AND CARGO COOL ON PACK FLOW LO **ENGINE ANTI ICE ON** TOTAL ANTI ICE ON

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-006-115

 \triangle FUEL = + 1.5 %

 $\triangle FUEL = + 3 \%$

 \triangle FUEL = -0.5 %

 $\triangle FUEL = + 1 \%$

QUICK DETERMINATION OF F-PLN

CLIMB: 250KT/300KT/M.80 - CRUISE: M.82 - DESCENT: M.82/300KT/250KT

2.05.40 P 7
SEQ 115 REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING

IMC PROCEDURE : 240 KG (6MIN)

REF. LANDING WEIGHT = 140000 KG NORMAL AIR CONDITIONING				ISA FU CG = 37.0 %			JEL CONSUMED (KG)			
ANTI ICING		HUNING			37.0 %		TIME (H.MIN)			
AIR								RECTION (CONSUMP		
DIST.			FLIGHT	LEVEL			(KG/1000KG)			
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390 FL410	
200	3523 0.38	3507 0.38	3502 0.38				11	12		
300	4717 0.51	4631 0.51	4560 0.51	4507 0.51	44 7 5 0.51	4461 0.51	13	15	18	
400	5915 1.03	5757 1.04	5621 1.04	5511 1.04	5432 1.04	5384 1.04	15	18	22	
500	7114 1.16	6885 1.16	6684 1.17	6517 1.17	6392 1.17	6311 1.17	18	21	25	
600	8316 1.28	8016 1.29	7750 1.29	7527 1.30	7355 1.30	7241 1.30	20	23	29	
700	9521 1.41	9150 1.41	8819 1.42	8539 1.42	8323 1.42	8176 1.42	22	26	33	
800	10729 1.53	10285 1.54	9891 1.55	9554 1.55	9293 1.55	9114 1.55	24	29	37	
900	11938 2.06	11424 2.07	10964 2.07	10571 2.08	10267 2.08	10055 2.08	27	32	41	
1000	13150 2.18	12564 2.19	12041 2.20	11591 2.21	11243 2.21	11001 2.21	29	34	45	
1100	14365 2.31	13708 2.32	13120 2.33	12614 2.33	12224 2.34	11949 2.34	31	37	50	
1200	15583 2.43	14854 2.44	14202 2.46	13640 2.46	13207 2.46	12902 2.46	34	40	54	
1300	16804 2.56	16003 2.57	15287 2.58	14669 2.59	14194 2.59	13859 2.59	36	43	58	
1400	18027 3.08	17154 3.10	16374 3.11	15701 3.12	15185 3.12	14820 3.12	39	46	62	
1500	19252 3.21	18309 3.22	17465 3.24	16736 3.25	16180 3.25	15784 3.25	41	49	67	
1600	20480 3.33	19466 3.35	18558 3.36	17773 3.37	17178 3.37	16754 3.37	44	52	71	
1700	21712 3.46	20626 3.47	19654 3.49	18814 3.50	18180 3.50	17728 3.50	46	55	76	
1800	22947 3.58	21789 4.00	20753 4.02	19858 4.03	19186 4.03	18706 4.03	49	58	81	
1900	24184 4.11	22955 4.13	21856 4.15	20905 4.16	20195 4.16	19689 4.16	51	62	85	
2000	25424 4.23	24124 4.25	22961 4.27	21955 4.29	21209 4.29	20676 4.29	54	65	91	
2100	26667 4.36	25296 4.38	24070 4.40	23009 4.41	22228 4.41	21684 4.41	57	68	96	
2200	27912 4.48	26470 4.51	25181 4.53	24066 4.54	23249 4.54	22684 4.54	59	72	102	
2300	29161 5.01	27647 5.03	26295 5.06	25126 5.07	24275 5.07	23689 5.07	62	76	107	
2400	30412 5.13	28827 5.16	27412 5.18	26188 5.20	25304 5.20	24698 5.20	65	79	114	
2500	31665 5.26	30011 5.28	28532 5.31	27254 5.32	26337 5.32	25712 5.33	67	83	118	
2600	32921 5.38	31197 5.41	29655 5.44	28324 5.45	27374 5.45	26730 5.45	70	86	124	
2700	34181 5.51	32387 5.54	30782 5.56	29396 5.58	28447 5.58	27756 5.58	73	90	129	
PACK FLO		PAC	K FLOW HI CARGO COO	OR/	ENGINE A		TOTA	AL ANTI ICE	ON	
△FUEL = -	- 0.5 %	ΔF	UEL = + 1	%	∆FUEL =	+ 1.5 %	△FUEL = + 3 %		%	

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-007-115

QUICK DETERMINATION OF F-PLN

2.05.40

P 8

SEQ 115

REV 09

							•	•		
	MB : 250	LIGHT PL <i>i</i> KT/300KT, I	/M.80 - C	RUISE : I		SCENT : I		CT/250KT		
REF. LANDIN		HT = 1400	000 KG	IS	Α		EL CONS	UMED (K	G)	
NORMAL AI ANTI ICING		HONING		CG =	37.0 %		TIME (H	I.MIN)		
AIR	<u> </u>						CORRECTION ON			
DIST.			FLIGHT	10			FUEL CONSUMPTION (KG/1000KG)			
(NM)	310	330	350				FL310 FL330	FL350 FL370	FL390 FL410	
2800	35443 6.03	33579	31913	30475	29496	28786	76	93	135	
2900	36708	6.06 34775	6.09 33046	6.11 31558	6.11 30551	6.11 29821	78	99	139	
3000	37975 37975	6.19 35974	6.22 34182	6.24 32645	6.24 31610	6.24 30863	81	103	145	
3100	6.28 39246	6.31 37176	6.35 35322	6.36 33736	6.36 32673	6.36 31911	84	107	151	
3200	6.41 40519	6.44 38380	6.47 36465	6.49 34873	6.49 33741	6.49 32964	87	112	157	
3300	6.53 41,796	6.57 39587	7.00 37611	7.02 35976	7.02 34815	7.02 34024	90	116	163	
3400	7.06 43075	7.09 40798	7.13 38760	7.15 37083	7.15 35893	7.15 35090	93	121	169	
3500	7.18 44359	7.22 42012	7.25 39912	7.27 38195	7.28 36975	7.28 36162	96	126	177	
	7.31 45646	7.34 43229	7.38 41119	7.40 39310	7.40 38063	7.40 37240	100	131	185	
3600	7.43 46936	7.47 44450	7.51 42283	7.53 40429	7.53 39155	7.53 38323	105	135	192	
3700	7.56 48230	8.00 45674	8.04 43451	8.06 41554	8.06 40252	8.06 39413	109	137	200	
3800	8.08 49527	8.12 46964	8.16 44624	8.19 42683	8.19 41355	8.19 40508	116	142	207	
3900	8.21 50827	8.25 48200	8.29 45799	8.31 43818	8.31 42463	8.32 41639	117	146	215	
4000	8.33 52197	8.38 49441	8.42 46978	43010 8.44 44961	8.44 43576	8.44* 42774	120	151	213	
4100	8.46	8.50	8.55	8.57	8.57	8.57*				
4200	53509 8.58	50685 9.03	48162 9.07	46108 9.10	44697 9.10	43914 9.10*	124	156	230	
4300	54824 9.11	51932 9.15	49350 9.20	47260 9.23	45823 9.23	45059 9.23*	125	161	238	
4400	56143 9.23	53183 9.28	50541 9.33	48418 9.35	46955 9.35	46209 9.35*	128	166	246	
4500	57468 9.36	54438 9.41	51736 9.45	49581 9.48	48094 9.48	47364 9.48*	132	171	254	
4600	58796 9.48	55696 9.53	52935 9.58	50749 10.01	49239 10.01	48526 10.01*	135	176	260	
4700	60128 10.01	56960 10.06	54138 10.11	51921 10.14	50389 10.14	49693 10.14*	139	182	267	
4800	61464 10.13	58228 10.18	55345 10.24	53099 10.27	51545 10.27	50866 10.26*	143	187	276	
4900	62804 10.26	59501 10.31	56557 10.36	54282 10.39	52706 10.39	52044 10.39*	146	192	283	
5000	64148 10.38	60777 10.44	57777 10.49	55471 10.52	53873 10.52	53228 10.52*	150	198	292	
5100	65495 10.51	62058 10.56	59002 11.02	56665 11.05	55080 11.05	54418 11.05*	154	203	301	
5200	66846 11.04	63343 11.09	60232 11.15	57865 11.18	56264 11.18	55615 11.18*	158	209	310	
5300	68202 11.16	64632 11.22	61467 11.27	59070 11.30	57455 11.31	56818 11.30*	162	215	319	
PACK FLOV		PAC	K FLOW HI CARGO COOL	OR/	ENGINE A		TOTA	AL ANTI ICE	ON	
△FUEL = -	0.5 %		UEL = + 1	%	△FUEL =	+ 1.5 %	△FUEL = + 3 %		%	

Ref. Landing Weight = 140000 kg

13.09

13.21

13.34

13.46

PACK FLOW LO

 \triangle FUEL = -0.5 %

13.15

13.28

13.40

13.53

13.22

13.35

13.47

14.00

PACK FLOW HI OR/ AND CARGO COOL ON

 \triangle FUEL = + 1 %

NORMAL AIR CONDITIONING

FLIGHT PLANNING

QUICK DETERMINATION OF F-PLN

2.05.40 P 9

REV 09

SEO 115

FUEL CONSUMED (KG)

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.82 - DESCENT: M.82/300KT/250KT **IMC PROCEDURE: 240 KG (6MIN)**

ISA

CG = 37.0 %

ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FL350 FL390 FL330 FL370 FL410 (NM) 11.43* 11.34 11.29 11.40 11.43 11.43 11.41 11.53 11.56 11.56* 11.56* 11.47 <u>12.</u>09 <u>12</u>.09 <u>11.</u>54 12.05 12.09* 11.59 12.06 12.12 12.22 12.21 12.22* 12 18 12.34* 12.19 12.25 12.31 12.34 12.34* 12.31 12.47* 12.47* 12.37 12.44 12.47 12.44 12.50 12.56 13.00 13.00* 13.00* 13.12* 13.13* 12.56 13.03 13.09 13.13 13.25*

13.26

13.38

13.51

14.04

13.38*

13.50*

14.03*

ENGINE ANTI ICE ON

 \triangle FUEL = + 1.5 %

13.59 14.06 14.13 14.17 14.16* 14.17* 14.18 14.30 14.29* 14.30* 14.11 14.26 14.41* 14.24 14.31 14.38 14.42 14.42* 14.54* 14.36 14.44 14.51 14.55 14.55* 14.49 14.56 15.04 15.08* 15.07* 15.08* 15.20* 15 01 15.09 15.16 15.20* 15.21 15.33* 15.14 15.21 15.29 15.33 15.32 15.26 15.46* 15.45* 15.46* 15.34 15.42

15.39 15.58* 15.58* 15.58* 15.47 15.55 16.11* 16.11* 15.59 16.11* 15.51 16.07 16.24* 16.12 16.24* 16.04 16.20 16.23 16.36* 16.33 16.16 16.25 16.36* 16.36* 16.46 16.29 16.37 16.49* 16.49* 16.49* 17.01* 17 02* 16.41 16.50 16.58 17.02*

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-009-115

13.26*

13.38*

13.51*

14.04*

TOTAL ANTI ICE ON

 $\triangle FUEL = + 3 \%$

QUICK DETERMINATION OF F-PLN

2.05.40

P 10

SEQ 115

REV 09

	EI	ICUT DI A	MINIMIC E	ROM BRA	VE DELE	SE TO LA	NDINC			
CLII		KT/300KT/	/M.80 - C	RUISE : N EDURE :	1.82 - DE	SCENT : I		(T/250KT		
REF. LANDIN			000 KG	ISA FU CG = 37.0 %			EL CONS	UMED (K	3)	
NORMAL AI ANTI ICING		IUNING		CG = .	37.0 %		TIME (H	I.MIN)		
AIR DIST.			FLIGHT	LEVEL	LEVEL			CORRECTION ON FUEL CONSUMPTION (KG/1000KG)		
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390 FL410	
8000	106689 16.54	101425 17.02	97380 17.11	94725 17.14*	93072 17.14*	92233 17.14*	309	447	559	
8100	108192 17.07	102886	98815 17.24	96173 17.27*	94498	93667 17.27*	313	457	569	
8200	109701	17.15 104353	100258 17.37	97629	17.27* 95934 17.40*	95111 17.40*	321	468	579	
8300	17.19 111215 17.32	17.28 105827 17.40	101793 17.49*	17.39* 99092 17.52*	97377 17.53*	96562 17.52*	329	478	590	
8400	112736 17.44	107308 17.53	103303 18.02*	100562 18.05*	98830 18.05*	98020 18.05*	337	489	600	
8500	114263 17.57	108799 18.06	104820 18.14*	102043 18.17*	100292 18.18*	99487 18.17*	342	500	611	
8600	115799 18.09	110296 18.18	106344 18.27*	103532 18.30*	101802 18.30*	100962 18.30*	350	511	622	
8700	16.09	111801 18.31	107875 18.39*	105028 18.42*	103312 18.43*	102446 18.43*	401	522	632	
8800		113323 18.44	109415 18.52*	106531 18.55*	104829 18.55*	103939 18.55*	388	528	643	
8900		114862 18.56	110964 19.04*	108060 19.08*	106353 19.08*	105439 19.08*	399	537	654	
9000		10.50	112520 19.17*	109585 19.20*	107885 19.20*	106947 19.21*		541	665	
9100			114084 19.29*	1111119 19.33*	109425 19.33*	108465 19.33*		550	674	
9200			115659 19.42*	112661 19.46*	110973 19.46*	109993 19.46*		553	684	
9300			13.42	114212 19.58*	112530 19.58*	111529 19.59*		586	682	
9400				115776 20.11*	114095 20.11*	113074 20.11*		593	691	
9500				20.11	115670 20.23*	114629 20.24*			701	
9600					20.20	20.21				
9700										
9800										
9900										
10000										
10100										
10200										
10300										
10400										
10500										
PACK FLOV	N LO	PAC AND	K FLOW HI	OR/ L ON	ENGINE AN	ITI ICE ON	TOTA	AL ANTI ICE	ON	

3.29

3.41

4.30

5.43

4 42

4.55

5.07

5.19

3.54

4.06

4.18

PACK FLOW LO

FLIGHT PLANNING

QUICK DETERMINATION OF F-PLN

2.05.40 P 11

REV 09

SEO 115

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.84 - DESCENT: M.84/300KT/250KT IMC PROCEDURE: 240 KG (6MIN)

Ref. Landing Weight = 140000 kgISA FUEL CONSUMED (KG) NORMAL AIR CONDITIONING CG = 37.0 %ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FL350 FL390 FL330 FL370 FL410 (NM) 0.38 0.38 0.38 0.50 0.51 0.51 0.51 0.51 0.51 1.03 <u>1.03</u> 1.03 1.03 1.03 1.04 1.16 1.15 1.16 1.16 1.16 1 15 1.27 <u>1.28</u> 1.28 1.28 1.28 1.29 1.39 1.40 1.40 1.41 1.41 1.41 1.51 1.53 1.53 1.54 1.52 1.53 2.04 2.04 2.05 2.06 2.06 2.06 2.18 2.16 2.17 2.18 2.18 2.18 2.28 2.29 2.30 2.31 2.31 2.31 2.41 2.43 2.43 2.40 2.43 2.43 2.52 2.55 2.56 2.56 2.56 3.08 3.05 3.06 3.07 3.08 3.08 3.20 3.21 3.17 3.18 3.21 3.21

> 3.33

4.36

5.13

5.26

5.51

ENGINE ANTI ICE ON

5.38

4 48

5.01

4.23

4 11

3.46

3.58

5.51

4.11

4.23

4.36

4 48

5.01

5.13

5.26

5.38

3.58

3.33

3.33

5.01*

5.13*

5.25*

5.38* 5.50*

4 11

4.23

4.36

4 48

3.46

3.58

TOTAL ANTI ICE ON

PACK FLOW HI OR/ AND CARGO COOL ON

5.12

5.24

5.37

5.49

3.57

4 10

4.22

4.34

4.47

4.59

3.32

3 31

3.43

3 55

4 08

4.20

4.32

4 45

4.57

5.09

5.22

5.34

ΔFUEL = - 0.5 % ΔFUEL = + 1 % ΔFUEL = + 1.5 % ΔFUEL = + 3 % FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FCOM-G0-02-05-40-011-115

QUICK DETERMINATION OF F-PLN

2.05.40

P 12

N9

SEQ 115 | REV

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB: 250KT/300KT/M.80 - CRUISE: M.84 - DESCENT: M.84/300KT/250KT

IMC PROCEDURE : 240 KG (6MIN)

Ref. Landing Weight = 140000 kgISA FUEL CONSUMED (KG) NORMAL AIR CONDITIONING CG = 37.0 %ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FL350 FL390 FL330 FL370 (NM) FL410 6.03* 5.58 6.03 6.03 6.015.56 6.14 6.15* 6.15 6.08 6.11 6.16 <u>6.2</u>3 6.28* 6.28 6.28 6.20 6.26 6.35 6.39 6.40* 6.32 6 40 6 41 6.53* 6.44 6.48 6.51 6.53 6.53 7.05* 7.00 6.57 7.03 7.05 7.06 7.09 7.12 7.18 7.18 7.18 7.16 7.30* 7.21 7.25 7.28 7.30 7.31 7.43* 7.33 7.37 7.41 7.43 7.43 7.55* 7.55* 7.46 7.49 7.53 7.55 7.58 8.08* 8.08* 8.02 8.06 8.08 8.10 8.14 8.20* 8.20* 8.18 8.20 8.33* 8.22 8.26 8.30 8.33 8.33* 8.45* 8.45* 8.34 8.39 8.43 8.45 8.58* 8.47 8.51 8.55 8.58 8.57 9.10* 8.59 9.03 9.08 9.10 9.10 9.23* 9.11 9.16 9.20 9.23 9.22*9.23 9.28 9.33 9.35 9.35 9.35 9.45 9.47* 9.36 9.40 9.48 9.48* 9.53 10.00 10.00* 10.00* 9.48 9.58 10.13* 10.00 10.05 <u>10</u>.10 <u>10</u>.13 10.12 10.12 10.25* 10.24* 10.17 10.22 10.25 10.37* 10.24 10.30 10.35 10.38* 10.38 10.37 10.42 10.49* 10.50 10.50* 10.47 10.49 10.54 11.00 11.02* 11.02* 11.03 11.15* 11.14* 11.15* 11.01 11 07 11.12 PACK FLOW HI OR/ PACK FLOW LO **ENGINE ANTI ICE ON** TOTAL ANTI ICE ON AND CARGO COOL ON

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-012-115

 \triangle FUEL = + 1.5 %

 $\triangle FUEL = + 3 \%$

 $\triangle FUEL = -0.5 \%$

 $\triangle FUEL = + 1 \%$

QUICK DETERMINATION OF F-PLN

2.05.40 P 13

REV 09

SEQ 115

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - CRUISE: M.84 - DESCENT: M.84/300KT/250KT IMC PROCEDURE : 240 KG (6MIN)

Ref. Landing Weight = 140000 kgFUEL CONSUMED (KG) ISA

	AL AIR CONDITIONING				CG = 37.0 %		LOEF COMPONED (KG)			
ANTI ICING		HOMING		00 -	37.0 /0		TIME (H	H.MIN)		
AIR DIST.			FLIGHT		CÓF FUEL	RECTION (CONSUMP (G/1000KG)	TION			
(1)	240	220			390	410	FL310	FL350	FL390	
5400	310 74458	330 70373	350 66795	370 64333	63410	410 62876	FL330 164	FL370 265	FL410 387	
5500	11.13 75918	71767 11.31	11.25 68124	11.27* 65714	11.27* 64752	11.27* 64252	169	275	398	
5600	11.26 77383	73165	11.37 69459	11.39* 67101	11.39* 66102	11.39* 65633	173	285	408	
5700	11.38 78852	11.43 74569	11.49 70799	11.52* 68495	11.51* 67458	11.52* 67019	178	287	418	
5800	11.50 80324 12.02	11.56 75978	12.02 72151	12.04* 69896	12.04* 68823	12.04* 68412	183	293	422	
5900	81802	12.08 77392	12.14 73510	12.16* 71303	12.16* 70194	12.16* 69813	188	306	429	
6000	12.14 83284	78811	74875	12.29* 72717 12.41*	12.29* 71573 12.41*	12.29* 71220 12.41*	193	317	437	
6100	12.27 84776 12.39	12.33 80234 12.45	12.39 76247 12.52	74137 12.53*	72958 12.54*	72633 12.53*	198	329	450	
6200	86279 12.51	81664 12.57	77624 13.04	75565 13.06*	74352 13.06*	74054 13.06*	203	341	461	
6300	87787 13.03	83098 13.10	79007 13.17	76999 13.18*	75755 13.19*	75482 13.18*	209	353	472	
6400	89301 13.16	84537 13.22	80595 13.28*	78440 13.30*	77165 13.31*	76916 13.30*	214	365	483	
6500	90819 13.28	85985 13.34	82096 13.41*	79887 13.43*	78617 13.43*	78357 13.43*	220	378	494	
6600	92343 13.40	87438 13.47	83604 13.53*	81343 13.55*	80136 13.55*	79805 13.55*	225	390	505	
6700	93872 13.52	88898 13.59	85117 14.05*	82807 14.07*	81635 14.08*	81260 14.07*	234	402	516	
6800	95407 14.04	90364 14.11	86636 14.17*	84281 14.20*	83141 14.20*	82725 14.20*	240	407	527	
6900	96947 14.17	91834 14.24	88163 14.30*	85762 14.32*	84652 14.32*	84199 14.32*	252	414	536	
7000	98493 14.29	93310 14.36	89696 14.42*	87251 14.44*	86170 14.44*	85680 14.44*	263	421	547	
7100	100049 14.41	94855 14.49	91238 14.54*	88749 14.57*	87694 14.57*	87170 14.57*	275	430	555	
7200	101612 14.53	96348 15.01	92787 15.06*	90255 15.09*	89225 15.09*	88669 15.09*	290	441	563	
7300	103180 15.06	97934 15.13*	94344 15.19*	91768 15.21*	90764 15.21*	90176 15.21*	303	452	575	
7400	104755 15.18	99563 15.25*	95910 15.31*	93291 15.34*	92312 15.33*	91691 15.34*	312	463	587	
7500	106404 15.30	101199 15.37*	97483 15.43*	94848 15.46*	93866 15.46*	93214 15.46*	324	475	599	
7600	107995 15.42	102842 15.49*	99064 15.55*	96393 15.58*	95430 15.58*	94759 15.58*	336	486	611	
7700	109593 15.55	104492 16.01*	100652 16.07*	98018 16.10*	97001 16.10*	96303 16.11*	353	497	622	
7800	111197 16.07	106149 16.14*	102250 16.20*	99647 16.22*	98580 16.22*	97922 16.23*	353	509	634	
7900	112809 16.19	107814 16.26*	103856 16.32*	101284 16.35*	100166 16.34*	99551 16.35*	360	520	646	
PACK FLOV		PAC AND	K FLOW HI Cargo Coo UEL = + 1	OR/ L ON		NTI ICE ON		AL ANTI ICE		
$\triangle FUEL = -$	U.J %	<u>Δ</u> Ε	UEL = + 1	70	△FUEL =	+ 1.5 %	△FUEL = + 3 %			

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-013-115

QUICK DETERMINATION OF F-PLN

2.05.40

P 14

SEQ 115 | REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB: 250KT/300KT/M.80 - CRUISE: M.84 - DESCENT: M.84/300KT/250KT

IMC PROCEDURE : 240 KG (6MIN)										
REF. LANDII			000 KG	IS		FU	EL CONS	UMED (K	G)	
NORMAL A		TIONING		CG = 3	37.0 %					
ANTI ICING	OFF						TIME (I		ONI	
AIR							CORRECTION OF FUEL CONSUMPTI			
DIST.			FLIGHT	LEVEL	LEVEL			(G/1000KG)		
							FL310	FL350	FL390	
(NM)	310 114428	330 109486	350 105472	370 102928	390 101761	410 101187	FL330 358	FL370 530	FL410 658	
8000	16.31	16.38*	16.44*	16.47*	16.47*	16.47*				
8100		111166 16.50*	107097 16.56*	104578 16.59*	103365 16.59*	102831 16.59*	432	541	670	
8200		112853 17.02*	108733 17.09*	106236 17.11*	104978 17.11*	104481 17.11*	430	551	682	
8300		114551 17.14*	110377 17.21*	107900 17.23*	106601 17.23*	106138 17.24*	437	557	694	
8400			112030 17.33*	109573 17.35*	108234 17.36*	107802 17.36*		563	702	
8500			113692 17.45*	111253 17.47*	109876 17.48*	109475 17.48*		568	709	
8600			115435 17.57*	112941 18.00*	111527 18.00*	111155 18.00*		578	716	
8700				114640 18.12*	113188 18.12*	112842 18.12*		639	723	
8800					114858 18.25*	114541 18.24*			732	
8900										
9000										
9100										
9200										
9300										
9400										
9500										
9600										
9700										
9800										
9900										
10000										
10100										
10200										
10300										
10400										
10500										
PACK FLO	W LO	PAC AND	K FLOW HI Cargo coo	OR/ L ON	ENGINE A	NTI ICE ON	TOTA	AL ANTI ICE	ON	
△FUEL = -	- 0.5 %		UEL = + 1		△FUEL =	+ 1.5 %	ΔF	UEL = + 3	%	

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8000 .00000 240 0300350140 0 260200 90164 18590 FC0M-G0-02-05-40-014-115

2.39

2.53

2.36

2.50

2.31

2.45

FLIGHT PLANNING

QUICK DETERMINATION OF F-PLN

2.05.40

SEO 115 REV 09

P 15

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - LONG RANGE CRUISE - DESCENT: M.80/300KT/250KT

IMC PROCEDURE: 240 KG (6MIN) Ref. Landing Weight = 140000 kgISA FUEL CONSUMED (KG) NORMAL AIR CONDITIONING CG = 37.0 %

ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FL350 FL390 FL330 FL370 FL410 (NM) 0.39 0.39 0.38 0.39 0.54 0.54 0.53 0.52 0.52 0.51 1.09 1.05 1.04 1.08 1.07 1.06 1.21 1.24 1.23 1.19 1.18 1 17 1.39 1.38 1.35 1.33 1.31 1.30 1.54 1.52 1.49 1.46 1.44 1.43 2.09 2.07 2.03 2.00 1.58 1.56 2 24 2 17 2.13 2.11 2.09

2.26

2.40

2.24

2.37

2.22

 $\triangle FUEL = + 5 \%$

2.35

2.59 2.53 2.50 3.08 3.04 2.48 3.23 3.03 3.19 3.13 3.06 3.01 3.37 3.33 3.26 3.19 3.16 3.14 3.52 3.27 3.47 3.40 3.33 3.29 3.42 4.07 3.46 3.40 4.21 4.15 3.59 3.55 3.53 4.36 4.30 4.20 4.12 4.09 4 06

4.50 4 44 4.33 4.26 4.22 4 19 5.05 4.58 4.47 4.39 4.35 4.32 5.19 5.12 4.52 5.00 4.44 4.48 5.05 5.00 4.57 5.34 5.13 5.255.39 5.26 5.10 5.48 5 18 5 13 5.32 5.23 6.02 5.53 5.39 5.26

5.36 6.17 6.07 5.52 5.45 5.39 6.31 6.21 6.05 5.58 5.52 5.49 6.05 6.45 6.11 6.02 PACK FLOW LO PACK FLOW HI OR/ **ENGINE ANTI ICE ON** TOTAL ANTI ICE ON

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8001 .00000 240 0300350140 0 260169 90179 18590 FC0M-G0-02-05-40-015-115

AND CARGO COOL ON △FUEL = + 1.5 %

 \triangle FUEL = -0.5 %

 $\triangle FUEL = + 3 \%$

QUICK DETERMINATION OF F-PLN

2.05.40

P 16 REV 09

SEQ 115

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING

CLIMB: 250KT/300KT/M.80 - LONG RANGE CRUISE - DESCENT: M.80/300KT/250KT IMC PROCEDURE : 240 KG (6MIN)

REF. LANDING WEIGHT = 140000 KG FUEL CONSUMED (KG)

REF. LANDIN NORMAL AI			JUU KG	rc –	37.0 %	" FUEL CONSUMED (KG)			(دَ)	
ANTI ICING		HOMING		- CG —	37.0 /0		TIME (H	I.MIN)		
AIR DIST.			FLIGHT	LEVEL			CORRECTION ON FUEL CONSUMPTION (KG/1000KG)			
Dioi.							FL310	FL350	FL390	
(NM)	310	330 30886	350 30161	370 29409	390 28817	410 28364	FL330 136	FL370 135	FL410 152	
2800	31695 6.59 32846	6.48 32005	30161 6.31 31249	6.24 30465	6.18	6.14 29392	141	143	157	
2900	7.13	7.01	6.44	6.37	6.31	6.27				
3000	34001 7.28	33129 7.15	32342 6.57	31525 6.50	30898 6.44	30428 6.40	146	149	163	
3100	35162 7.42	34258 7.28	33439 7.10	32652 7.03	31946 6.57	31472 6.53	151	157	170	
3200	36328 7.56	35393 7.42	34627 7.22	33728 7.16	32999 7.10	32522 7.06	156	159	177	
3300	37499 8.10	36532 7.55	35743 7.35	34809 7.29	34058 7.22	33579 7.18	166	164	184	
3400	38674 8.24	37787 8.07	36865 7.48	35896 7.42	35122 7.35	34644 7.31	172	164	191	
3500	39855 8.38	38948 8.20	37992 8.01	36988 7.55	36192 7.48	35716 7.44	185	168	198	
3600	41042 8.52	40115 8.33	39125 8.14	38085 8.08	37267 8.01	36794 7.57	185	173	205	
3700	42377 9.04	41288 8.46	40264 8.27	39187 8.21	38348 8.14	37879 8.09	191	177	213	
3800	43587 9.18	42467 8.59	41409 8.40	40295 8.34	39434 8.27	38971 8.22	190	182	220	
3900	44804 9.32	43647 9.12	42560	41408 8.46	40526 8.39	40070	196	187	227	
4000	46026 9.45	44831 9.25	8.52 43705 9.05	42528 8.59	41625 8.52	8.35 41203 8.48*	202	192	234	
4100	47255 9.58	46021 9.37	44853 9.19	43651 9.12	42729 9.05	42317 9.01*	207	197	241	
4200	48491 10.12	47217 9.50	46004 9.32	44777 9.25	43839 9.18	43438 9.14*	212	202	248	
4300	49733 10.25	48420 10.02	47161 9.45	45909 9.38	44953 9.31	44564 9.27*	217	207	255	
4400	50982 10.38	49629 10.15	48324 9.58	47047 9.51	46072 9.44	45695 9.39*	223	213	262	
4500	52237 10.52	50844 10.27	49492 10.11	48191 10.03	47198 9.56	46831 9.52*	228	218	267	
4600	53499 11.05	52065 10.39	50665 10.24	49341 10.16	48332 10.09	47974 10.05*	233	223	275	
4700	54769 11.18	53293 10.51	51843 10.37	50496 10.29	49471 10.22	49123 10.18*	239	228	283	
4800	56046 11.31	54527 11.03	53027 10.50	51657 10.42	50617 10.35	50277 10.31*	244	234	290	
4900	57321 11.44	55768 11.16	54216 11.03	52825 10.55	51769 10.47	51438 10.44*	250	239	301	
5000	58601 11.57	57013 11.28	55412 11.16	53998 11.07	52927 11.00	52605 10.57*	256	245	309	
5100	59888 12.09	58259 11.40	56613 11.29	55178 11.20	54093 11.13	53777 11.10*	262	252	317	
5200	61181 12.22	59512 11.53	57824 11.42	56365 11.33	55311 11.26	54958 11.23*	267	259	326	
5300	62481 12.35	60772 12.05	59042 11.55	57557 11.45	56495 11.38	56144 11.36*	272	265	334	
PACK FLO		PAC	K FLOW HI CARGO COO	OR/	OR/ ENGINE ANTI ICE ON			AL ANTI ICE	ON	
$\triangle FUEL = -$	\triangle FUEL = -0.5% AND CARGO C \triangle FUEL = $+$		JEL = + 1.5	5 %	△FUEL =	= + 3 %	△FUEL = + 5 %			

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8001 .00000 240 0300350140 0 260169 90179 18590 FC0M-G0-02-05-40-016-115

QUICK DETERMINATION OF F-PLN

2.05.40

REV 09

P 17

SEO 115

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING CLIMB: 250KT/300KT/M.80 - LONG RANGE CRUISE - DESCENT: M.80/300KT/250KT **IMC PROCEDURE: 240 KG (6MIN)** Ref. Landing Weight = 140000 kgISA FUEL CONSUMED (KG) NORMAL AIR CONDITIONING CG = 37.0 %ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL310 FL350 FL390 FL330 FL370 FL410 (NM) 11.49* 12.47 12.08 11.58 11.51 12.18 13.00 12.30 12.20 12.04* 12.02* 12.11 12.33 12.17* 12.14* 13.12 <u>12.2</u>4 12.43 13.24 12.55 12.46 12.37 12.30* 12.27* 12.40* 13.37 13.07 12.59 12.49 12.43 13.49 13.20 13.11 13.02 12.56* 12.53* 13.32 13.24 13.15 13.09* 13.06* 13.21* 14.13 13.44 13.36 13.28 13.19* 13.34* 13.57 14.24 13.49 13.40 13.31* 13.53 14.09 13.44* 14.36 14.02 13.47* 14.22 14.00* 13.57* 14.47 14.14 14.06 14.34 14.27 14.10* 14.59 14.13 14.18 15.10 14.47 14.39 14.31 14.26* 14.23* 14.35* 15.22 14.44 14.39* 14.59 14.52 14.52* 15.05 15.31 15.11 14.56 14.48* 15.04* 15.43 15.23 15.17 15.09 15.01* 15.55 15.36 15.30 15.22* 15.17* 15.14* 16.07 15.35* 15.48 15 42 15.30* 15.26* 15.47* 16.18 16.01 15.55 15.43* 15.39* 16.00* 15.56* 15.52* 16.14 16.08 16.42 <u>1</u>6.20 16.13 16.09* 16.05* 16.27 16.17* 16.40 16.21* 16.53 16.32 16.26* 17.05 16.34* 16.30* 16.52 16.45 16.39 16.51* 16.47* 17.16 17.05 16.57 16.43* 17.04* 17.10 17.00* 16.56* 17.28 17.18 17.17* 17.12* 17.22 17 09 PACK FLOW LO ENGINE ANTI ICE ON TOTAL ANTI ICE ON PACK FLOW HI OR AND CARGO COOL ON △FUEL = + 1.5 %

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8001 .00000 240 0300350140 0 260169 90179 18590 FC0M-G0-02-05-40-017-115

 \triangle FUEL = -0.5 %

 $\triangle FUEL = + 5 \%$

 $\triangle FUEL = + 3 \%$

QUICK DETERMINATION OF F-PLN

2.05.40 SEQ 115 P 18

REV 09

FLIGHT PLANNING FROM BRAKE RELEASE TO LANDING
CLIMB: 250KT/300KT/M.80 - LONG RANGE CRUISE - DESCENT: M.80/300KT/250KT
IMC PROCEDURE: 240 KG (6MIN)

REF. LANDII	REF. LANDING WEIGHT = 140000 KG ISA FUEL CONSUMED (KG)									
NORMAL A	IR CONDIT			CG =			TIRST (II BAIRI)			
ANTI ICING	OFF						TIME (H		n.	
AIR							CORRECTION ON FUEL CONSUMPTION			
DIST.			FLIGHT	LEVEL			(KG/1000KG)			
(NM)	310	330	350	370	390	410	FL310 FL330	FL350 FL370	FL390 FL410	
8000	100343 17.53	97299 17.43	94655 17.34	92784 17.30*	91564 17.25*	91210 17.21*	420	480	576	
8100	101825 18.05	98745 17.56	96092 17.47	94199 17.42*	92982 17.38*	92617 17.34*	428	492	586	
8200	103316 18.18	100204 18.08	97539 17.59	95623 17.55*	94411 17.50*	94032 17.47*	437	502	597	
8300	104815 18.30	101674 18.20	98991 18.11	97055 18.08*	95852 18.03*	95459 18.00*	445	511	606	
8400	106323 18.43	103154 18.33	100442 18.24	98495 18.21*	97302 18.16*	96891 18.12*	453	520	615	
8500	107839 18.55	104643 18.45	101904 18.37	99943 18.33*	98763 18.28*	98331 18.25*	462	531	625	
8600	109366 19.07	106141 18.57	103463 18.49*	101399 18.46*	100237 18.41*	99780 18.38*	470	540	636	
8700	110901 19.20	107649 19.10	104953 19.02*	102865 18.59*	101724 18.54*	101237 18.51*	480	550	646	
8800	112458 19.32	109169 19.22	106450 19.15*	104339 19.12*	103218 19.06*	102704 19.03*	475	560	656	
8900	114032 19.44	110698 19.34	107956 19.27*	105822 19.24*	104706 19.19*	104180 19.16*	487	570	667	
9000	115622 19.56	112235 19.46	109471 19.40*	107348 19.37*	106202 19.32*	105667 19.29*	502	576	677	
9100		113767 19.58	110993 19.53*	108865 19.50*	107706 19.45*	107170 19.42*	518	585	687	
9200		115398 20.11	112524 20.06*	110392 20.02*	109220 19.57*	108686 19.54*	542	593	698	
9300			114063 20.18*	111929 20.15*	110741 20.10*	110212 20.07*		595	708	
9400			115612 20.31*	113477 20.28*	112271 20.23*	111749 20.19*		607	704	
9500				115038 20.40*	113808 20.35*	113296 20.32*		645	715	
9600					115356 20.48*	114856 20.45*			727	
9700										
9800										
9900										
10000										
10100										
10200										
10300										
10400										
10500										
PACK FLO		AND	K FLOW HI CARGO COO	LÓN		NTI ICE ON		AL ANTI ICE		
△FUEL = -		∆Fl	JEL = + 1.9	9001 00000	△FUEL =			UEL = + 5		

FLIP23D A330-200 CF6-80E1A4 3420 03701.000011 0250300 .8001 .00000 240 0300350140 0 260169 90179 18590 FC0M-G0-02-05-40-018-115

ALTERNATE

2.05.50

P 1 REV 06

SEQ 001

GENERAL

The alternate planning tables allow the flight crew to determine the fuel consumption and time required to cover a given air distance from go-around at destination airport to landing at alternate airport.

These tables are established for: Go-around : 500 kg or 1100 lb Climb profile : 250kt/300kt/M.80

- Long Range Cruise

Descent profile : M.80/300kt/250kt

- Approach and landing at alternate airport: 160 kg or 350 lb (4 min)
- ISA
- CG = 30%
- Normal air conditioning (Packs NORM/Cargo cooling OFF or Packs LO/cargo cooling NORM)
- Anti ice OFF
- Note: 1. In the tables, the asterisk (*) means that a step climb of 4000 feet must be flown to reach the corresponding flight level.
 - 2. The flight level shown on the top of each column is the final flight level.
 - 3. For each degree Celsius above ISA temperature apply a fuel correction of 0.01 $(kg/^{\circ}C/NM) \times \triangle ISA (^{\circ}C) \times Air Distance (NM)$ or 0.022 (lb/°C/NM) $\times \triangle ISA$ (°C) \times Air Distance (NM)

CORRECTION FOR DEVIATION FROM REFERENCE WEIGHT

The alternate planning tables are based on a reference landing weight at alternate.

The fuel consumption must be corrected when the actual weight is different from the reference weight.

If it is lower (or greater) than the reference weight, subtract (or add) the value given in the correction part of the table per 1000 kg or 1000 lb below (or above) the reference weight.

8122

8863 1.58

9607 2.08

10353

2.18

2.28

11849 2.38

12601 2.48

13354

14109

14865

15623 3.28

16382

17144 3.48

17907

18672

3.58

3.38

2.58

3.08

3.18

1.48

500

550

600

650

700

750

800

850

900

950

1000

1050

1100

1150

1200

PACK FLOW LO

7895

1.45

8611

1.55

9328 2.05

10048

10769

11491

2.14

2.24

2.34

2.44

2.54

3.03

12216

12942

13670

14400

15131 3.23

15863

16597

17332

18070

3.33

3.42

3.52

3.13

FLIGHT PLANNING

ALTERNATE

2.05.50

P 2

SEQ 115

24

26

29

34

36

38

41

43

46

48

51

53

56

58

24

26

29

31

34

36

38

41

43

46

48

51

53

58

TOTAL ANTI ICE ON

24

27

29

31

34

36

39

41

43

46

48

51

53

55

58

REV 09

ALTERNATE PLANNING FROM DESTINATION TO ALTERNATE AIRPORT GO-AROUND: 500 KG - CLIMB: 250KT/300KT/M.80 - CRUISE: LONG RANGE DESCENT: M.80/300KT/250KT - VMC PROCEDURE: 160 KG (4MIN) Ref. LDG WT at alternate = 140000 kgISA FUEL CONSUMED (KG) CG = 30.0 %NORMAL AIR CONDITIONING ANTI ICING OFF TIME (H.MIN) CORRECTION ON AIR FUEL CONSUMPTION DIST. FLIGHT LEVEL (KG/1000KG) FL100 FL140 FL180 100 120 140 160 180 200 FL120 FL160 FL200 (NM) 1527 0.14 50 2253 0.25 2233 0.24 2245 0.23 5 5 5 2228 0.25 2227 0.24 2262 0.23 100 2930 0.35 2887 0.33 2875 0.32 7 7 150 2981 2905 2877 8 0.35 0.34 <u>0.3</u>3 3710 3634 3585 3543 3511 3489 10 10 200 0.45 0.45 0.44 0.43 0.42 0.41 4340 4201 4147 4105 12 12 12 4440 4266 250 0.55 0.52 0.50 0.56 0.54 0.53 4723 0.59 300 5173 1.06 5048 4949 4860 4784 14 14 15 1.05 1.03 1.02 1.01 5907 5757 5634 5520 5423 5342 17 17 17 350 1.15 1.12 1.10 1.08 1.17 1.13 19 19 19 6643 6468 6319 6182 6063 5962 400 1.23 1.20 1.17 450 7382 1.37 7181 7007 6846 6705 6583 21 21 22 1.35 1.33 1.31 1.29 1.26

7511

1.41

8177 1.50

8846 2.00

9515

10187

10860

11534

12210

12888

13567

14248 3.16

14930

15614

16298

16984

3.25

3.34

3.44

2.09

2.19

2.28

2.38

2.47

2.57

3.06

7348 1.39

7993

1.48

8639 1.57

9287

9937

10588

11241

11895

12551

13209

13868

14529

15192 3.29

15855

16520

3.38

ENGINE

ANTI ICE ON

2.25

2.34

2.43

2.52

3.02

3.11

<u>3</u>.20

2.16

2.06

7205

1.35

7829

1.44

8454 1.53

9080

9708

2.11

10337 2.20

10967

11599

12232

12866

13502 3.05

14139 3.13

14777

15417 3.31

16058

3.40

3.22

2 47

2.56

2.29

2.38

2.02

7695

1.42

8386

1.52

9077 2.02

9771

10466

11162

11860

12559

13260

13963

14667 3.19

15373 3 29

16081

16790 3.48

17500 3.58

PACK FLOW HI OR/

AND CARGO COOL ON

3.39

2.12

2.21

2.31

2.41

2.50

3.00

3.10

△FUEL = - 0.5 % △FUEL = + 1.5 % △FUEL = + 3 % △FUEL = + 5 % FLIP23D A330-200 CF6-80E1A4 3520 03001.300010 500250300 .8001 .00000 160 0300350140 0 217179100169 18590 FC0M-G0-02-05-50-002-115

ALTERNATE

2.05.50

DEM OO

SEQ 115 | REV 09

	AROUND	E PLANNIN : 500 KG - 0 Γ : M.80/300	CLIMB: 2	50KT/300K1	Г/M.80 - C	RUISE : LO	NG RANGE		
REF. LDG WT NORMAL AII ANTI ICING (AT ALT = R CONDITI	: 140000 KG		ISA CG = 3	Д	FUEL (ONSUMED ME (H.MIN		
AIR DIST.		FL	ight level			FUEL (CORRECTION ON FUEL CONSUMPTION (KG/1000KG)		
(NM)	230	270	310	350	390	FL230 FL270	FL310 FL350	FL390	
150	2880 0.31	2913 0.30				8		0	
200	3463 0.40	3459 0.38	3484 0.36	3508 0.36		10	11	0	
250	4048 0.48	4007 0.46	3998 0.44	3992 0.43	4000 0.42	12	13	14	
300	4633 0.57	4555 0.54	4513 0.52	4478 0.50	4460 0.49	14	15	16	
350	5220 1.06	5104 1.02	5029 0.59	4964 0.57	4921 0.55	17	18	18	
400	5808 1.14	5655 1.11	5546 1.07	5451 1.04	5383 1.02	19	20	20	
450	6398 1.23	6207 1.19	6064 1.14	5940 1.11	5847 1.09	21	22	23	
500	6988 1.31	6760 1.27	6584 1.22	6429 1.18	6311 1.15	23	24	25	
550	7580 1.40	7315 1.35	7104 1.29	6919 1.25	6776 1.22	26	26	27	
600	8173 1.49	7870 1.43	7626 1.37	7411 1.32	7242 1.28	28	29	29	
650	8768 1.57	8427 1.51	8149 1.44	7904 1.39	7709 1.35	30	31	31	
700	9364 2.06	8985 1.59	8673 1.51	8398 1.46	8177 1.42	33	33	34	
750	9961 2.14	9545 2.07	9198 1.59	8892 1.54	8646 1.48	35	35	36	
800	10559 2.23	10105 2.15	9724 2.06	9388 2.00	9116 1.55	37	38	38	
850	11159 2.31	10667 2.23	10251 2.14	9885 2.07	9587 2.01	39	40	40	
900	11760 2.40	11230 2.31	10779 2.21	10383 2.14	10059 2.08	42	42	43	
950	12363 2.48	11795 2.39	11309 2.28	10883 2.21	10532 2.15	44	44	45	
1000	12966 2.57	12360 2.47	11839 2.36	11383 2.28	11006 2.21	46	47	47	
1050	13571 3.05	12927 2.55	12371 2.43	11884 2.35	11481 2.28	49	49	49	
1100	14178 3.14	13495 3.03	12904 2.50	12387 2.42	11957 2.34	51	51	52	
1150	14786 3.22	14065 3.11	13439 2.58	12890 2.49	12435 2.41	53	54	54	
1200	15395 3.31	14636 3.19	13974 3.05	13395 2.56	12913 2.47	56	56	56	
PACK FLOY	M FO	PACK FLOV AND CARGO		ENGINE AN	TI ICE ON	TOT	AL ANTI ICE O	N	
A FLUE	!			A FLUE					

GROUND DISTANCE/AIR DISTANCE

2.05.60

SEQ 001

P 1 REV 06

GENERAL

- R The ground to air miles conversion tables show the air distance for a given ground distance due to influence of the wind.
- R The tables are given for:
 - M.80, M.82, M.84
- R Long range cruise

GROUND DISTANCE/AIR DISTANCE

2.05.60 SEQ 001 P 2 REV 11

M.80

GROUND			AIR D	DISTANCE (NM)			
DIST.	TAIL WIN	D	WIND	COMPONEN	IT (KT)	HEA	HEAD WIND	
(NM)	+150	+100	+ 50	0	-50	-100	-150	
10	8	8	9	10	11	13	15	
20	15	16	18	20	22	26	30	
30	23	25	27	30	34	38	44	
40	30	33	36	40	45	51	59	
50	38	41	45	50	56	64	74	
100	75	82	90	100	112	128	148	
200	151	164	180	200	224	255	296	
300	226	247	271	300	336	383	445	
400	302	329	361	400	449	511	593	
500	377	411	451	500	561	638	741	
1000	755	822	902	1000	1122	1277	1482	
1500	1132	1233	1353	1500	1682	1915	2223	
2000	1509	1644	1804	2000	2243	2554	2964	
2500	1886	2054	2255	2500	2804	3192	3705	
3000	2264	2465	2707	3000	3365	3831	4446	
3500	2641	2876	3158	3500	3926	4469	5187	
4000	3018	3287	3609	4000	4486	5108	5928	
4500	3395	3698	4060	4500	5047	5746	6669	
5000	3773	4109	4511	5000	5608	6385	7411	
5500	4150	4520	4962	5500	6169	7023	8152	
6000	4527	4931	5413	6000	6730	7661	8893	
6500	4905	5342	5864	6500	7290	8300	9634	
7000	5282	5753	6315	7000	7851	8938	10375	
7500	5659	6163	6766	7500	8412	9577	11116	
8000	6036	6574	7217	8000	8973	10215	11857	
8500	6414	6985	7669	8500	9534	10854	12598	
9000	6791	7396	8120	9000	10095	11492	13339	
9500	7168	7807	8571	9500	10655	12131	14080	
10000	7546	8218	9022	10000	11216	12769	14821	

GROUND DISTANCE/AIR DISTANCE

2.05.60 P 3 SEQ 001 REV 11

<u>M.82</u>

GROUND			AIR D	DISTANCE (NM)			
DIST	TAIL WIN	D	WIND	COMPONEN	IT (KT)	HEA	HEAD WIND	
(NM)	+150	+100	+ 50	0	-50	-100	-150	
10	8	8	9	10	11	13	15	
20	15	17	18	20	22	25	29	
30	23	25	27	30	34	38	44	
40	30	33	36	40	45	51	59	
50	38	41	45	50	56	63	73	
100	76	83	90	100	112	127	146	
200	152	165	181	200	224	254	293	
300	228	248	271	300	335	381	439	
400	304	330	362	400	447	507	586	
500	380	413	452	500	559	634	732	
1000	759	825	904	1000	1118	1268	1465	
1500	1139	1238	1357	1500	1677	1903	2197	
2000	1518	1651	1809	2000	2237	2537	2930	
2500	1898	2063	2261	2500	2796	3171	3662	
3000	2277	2476	2713	3000	3355	3805	4395	
3500	2657	2889	3165	3500	3914	4439	5127	
4000	3036	3302	3617	4000	4473	5073	5860	
4500	3416	3714	4070	4500	5032	5708	6592	
5000	3795	4127	4522	5000	5591	6342	7324	
5500	4175	4540	4974	5500	6151	6976	8057	
6000	4555	4952	5426	6000	6710	7610	8789	
6500	4934	5365	5878	6500	7269	8244	9522	
7000	5314	5778	6330	7000	7828	8878	10254	
7500	5693	6190	6783	7500	8387	9513	10987	
8000	6073	6603	7235	8000	8946	10147	11719	
8500	6452	7016	7687	8500	9506	10781	12451	
9000	6832	7428	8139	9000	10065	11415	13184	
9500	7211	7841	8591	9500	10624	12049	13916	
10000	7591	8254	9043	10000	11183	12683	14649	

GROUND DISTANCE/AIR DISTANCE

2.05.60 P 4

SEQ 001 | REV 11

M.84

GROUND			AIR D	DISTANCE (NM)		
DIST	TAIL WIN	D	WIND	COMPONEN	HEA	HEAD WIND	
(NM)	+150	+100	+ 50	0	-50	-100	-150
10	8	8	9	10	11	13	14
20	15	17	18	20	22	25	29
30	23	25	27	30	33	38	43
40	31	33	36	40	45	50	58
50	38	41	45	50	56	63	72
100	76	83	91	100	112	126	145
200	153	166	181	200	223	252	290
300	229	249	272	300	335	378	435
400	305	332	363	400	446	504	580
500	382	414	453	500	558	630	724
1000	763	829	906	1000	1115	1260	1449
1500	1145	1243	1360	1500	1673	1890	2173
2000	1527	1658	1813	2000	2230	2521	2898
2500	1909	2072	2266	2500	2788	3151	3622
3000	2290	2486	2719	3000	3345	3781	4347
3500	2672	2901	3172	3500	3903	4411	5071
4000	3054	3315	3626	4000	4461	5041	5795
4500	3436	3730	4079	4500	5018	5671	6520
5000	3817	4144	4532	5000	5576	6301	7244
5500	4199	4559	4985	5500	6133	6932	7969
6000	4581	4973	5438	6000	6691	7562	8693
6500	4963	5387	5892	6500	7249	8192	9417
7000	5344	5802	6345	7000	7806	8822	10142
7500	5726	6216	6798	7500	8364	9452	10866
8000	6108	6631	7251	8000	8921	10082	11591
8500	6490	7045	7704	8500	9479	10712	12315
9000	6871	7459	8158	9000	10036	11343	13040
9500	7253	7874	8611	9500	10594	11973	13764
10000	7635	8288	9064	10000	11152	12603	14488

GROUND DISTANCE/AIR DISTANCE

2.05.60 SEQ 001

P 5 REV 11

LONG RANGE CRUISE BELOW FL250

GROUND			AIR D	DISTANCE (NM)		
DIST.	TAIL WIN	D	WIND	COMPONEN	OMPONENT (KT)		
(NM)	+150	+100	+ 50	0	-50	-100	-150
10	7	8	9	10	12	14	17
20	14	16	18	20	23	27	33
30	22	24	27	30	35	41	50
40	29	32	35	40	46	54	66
50	36	40	44	50	58	68	83
100	72	79	88	100	115	136	165
200	143	158	177	200	230	271	330
300	215	238	265	300	345	407	495
400	287	317	354	400	461	543	660
500	359	396	442	500	576	678	825
1000	717	792	884	1000	1151	1357	1651
1500	1076	1188	1326	1500	1727	2035	2476
2000	1434	1584	1768	2000	2303	2713	3302
2500	1793	1980	2210	2500	2878	3391	4127
3000	2152	2376	2652	3000	3454	4070	4953
3500	2510	2772	3093	3500	4030	4748	5778
4000	2869	3167	3535	4000	4605	5426	6604
4500	3227	3563	3977	4500	5181	6105	7429
5000	3586	3959	4419	5000	5757	6783	8254
5500	3945	4355	4861	5500	6332	7461	9080
6000	4303	4751	5303	6000	6908	8139	9905
6500	4662	5147	5745	6500	7484	8818	10731
7000	5021	5543	6187	7000	8059	9496	11556
7500	5379	5939	6629	7500	8635	10174	12382
8000	5738	6335	7071	8000	9210	10853	13207
8500	6096	6731	7513	8500	9786	11531	14033
9000	6455	7127	7955	9000	10362	12209	14858
9500	6814	7523	8397	9500	10937	12887	15684
10000	7172	7919	8838	10000	11513	13566	16509

GROUND DISTANCE/AIR DISTANCE

2.05.60 SEQ 001 P 6

REV 11

LONG RANGE CRUISE ABOVE FL250

GROUND			AIR D	DISTANCE (NM)			
DIST.	TAIL WIN	D	WIND	COMPONEN	IT (KT)	HE <i>F</i>	HEAD WIND	
(NM)	+150	+100	+ 50	0	-50	-100	-150	
10	8	8	9	10	11	13	15	
20	15	16	18	20	22	25	29	
30	23	25	27	30	34	38	44	
40	30	33	36	40	45	51	59	
50	38	41	45	50	56	64	74	
100	76	82	90	100	112	127	147	
200	151	165	181	200	224	254	295	
300	227	247	271	300	336	382	442	
400	303	330	361	400	448	509	589	
500	379	412	452	500	560	636	736	
1000	757	824	903	1000	1120	1272	1473	
1500	1136	1236	1355	1500	1680	1908	2209	
2000	1514	1648	1807	2000	2240	2544	2945	
2500	1893	2059	2258	2500	2799	3180	3681	
3000	2271	2471	2710	3000	3359	3817	4418	
3500	2650	2883	3162	3500	3919	4453	5154	
4000	3028	3295	3613	4000	4479	5089	5890	
4500	3407	3707	4065	4500	5039	5725	6627	
5000	3785	4119	4517	5000	5599	6361	7363	
5500	4164	4531	4968	5500	6159	6997	8099	
6000	4542	4943	5420	6000	6719	7633	8836	
6500	4921	5354	5872	6500	7279	8269	9572	
7000	5299	5766	6324	7000	7839	8905	10308	
7500	5678	6178	6775	7500	8398	9541	11044	
8000	6056	6590	7227	8000	8958	10177	11781	
8500	6435	7002	7679	8500	9518	10814	12517	
9000	6813	7414	8130	9000	10078	11450	13253	
9500	7192	7826	8582	9500	10638	12086	13990	
10000	7570	8238	9034	10000	11198	12722	14726	

FUEL TANKERING

2.05.70

REV 06

P 1

SEQ 010

FUEL TANKERING

GENERAL

Fuel tankering graphs allow to determine the optimum fuel quantity to be tankered as a function of the fuel price ratio between departure and destination airports. The following pages present for one flight level per page the optimum aircraft takeoff weight depending on the fuel price ratio (departure fuel price divided by destination fuel price) and on the air distance to fly.

The computed optimum takeoff weight is based on the additional fuel consumption needed for the transport of the extra (tankered) fuel and it is the weight at which the maximum profit can be achieved. The quantity of extra fuel that can be loaded is calculated as the difference between the optimum takeoff weight (including extra fuel) and the planned takeoff weight (without fuel tankering).

The graphs are established for :

- FL 290, 310, 330, 350, 370, 390
- Air distances from 500 to 5000 NM

Flight profile :

Climb : 250kt/300kt/M.80

Cruise : M.80

Descent : M.80/300kt/250kt

<u>Note</u>: 1. If necessary, step climbs are performed to reach the indicated flight levels.

2. The crew/operator has to verify that the found aircraft weight complies with basic aircraft limitations (e.g. max fuel capacity) as well as with mission dependent restrictions (e.g. MLW at destination).

EXAMPLES

1. Fuel price ratio = 0.934

Cruising Altitude = FL310

Planned TOW = 190 000 kg (mission weight without fuel tankering)

Air Distance = 2500 NM Enter graph on page 2.05.70 p.4.

For the given air distance, the optimum fuel tankering weight is 180 000 kg, which is lower than the planned takeoff weight \rightarrow no fuel tankering recommended.

2.05.70

P 2

FUEL TANKERING

SEQ 010

REV 06

2. fuel price ratio = 0.908

Cruising Altitude = FL 350

Planned TOW = 190 000 kg (mission weight without fuel tankering)

Air Distance = 2250 NM Enter graph on page 2.05.70 P.6.

For the given air distance, the optimum fuel tankering weight is 203 000 kg, which is 13 000 kg higher than the planned takeoff weight \rightarrow optimum quantity of extra fuel is 13 000 kg.

Check:

- a) new TOW less or equal MTOW from departure airport.
- b) total fuel to be loaded less or equal maximum fuel capacity.
- c) MLW at destination

3. fuel price ratio = 0.874

Cruising Altitude = FL 390

Planned TOW = 190 000 kg (mission weight without fuel tankering)

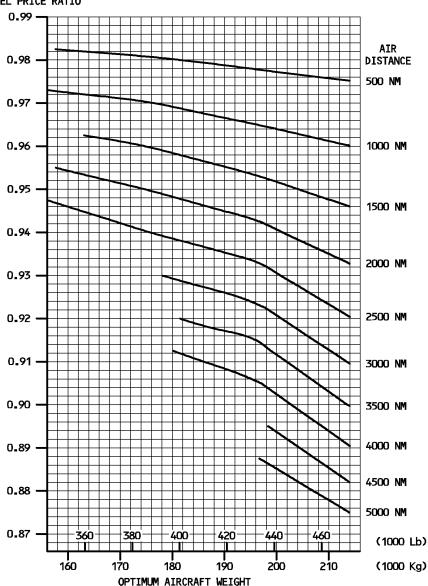
Air Distance = 2250 NM Enter graph on page 2.05.70 P. 8.

Interpolate for the air distance of 2250 NM between borderline and 2000 NM.

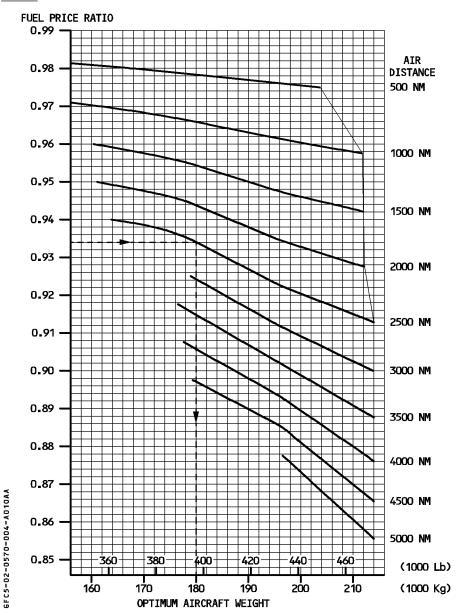
The optimum fuel tankering weight is 198 000 kg, which is 8 000 kg higher than the planned takeoff weight \rightarrow optimum quantity of extra fuel is 8 000 kg.

Check:

- a) new TOW less or equal MTOW from departure airport.
- b) total fuel to be loaded less than or equal to maximum fuel capacity.
- c) MLW at destination

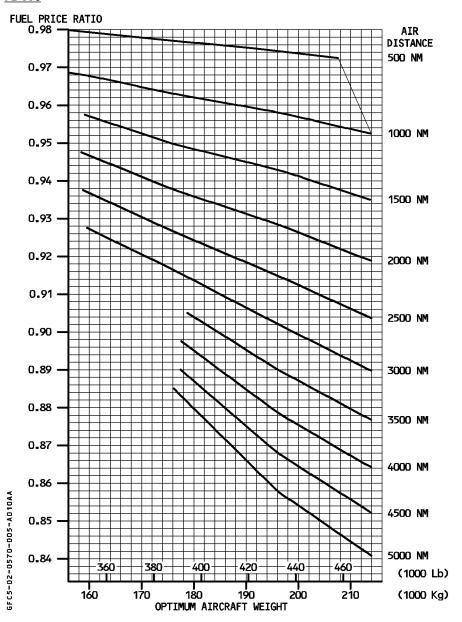


FUEL TANKERING


2.05.70 SEQ 010 P 3 REV 06

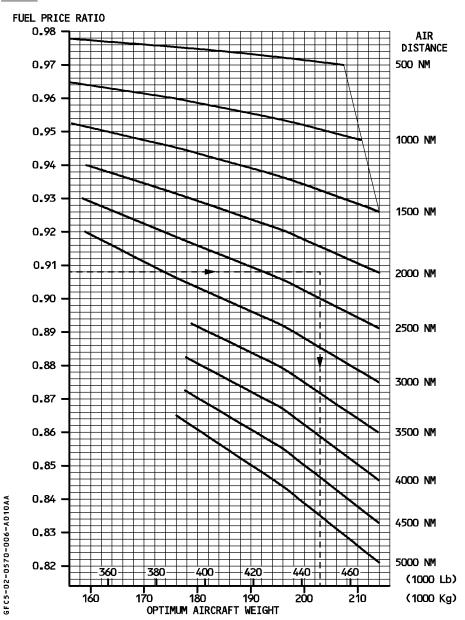
FL 290

GFC5-02-0570-003-A010AA



FUEL TANKERING

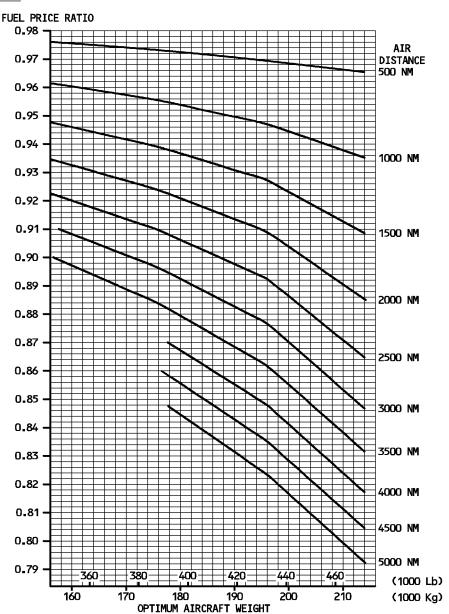
2.05.70


P 5

SEQ 010 | REV 06

FUEL TANKERING

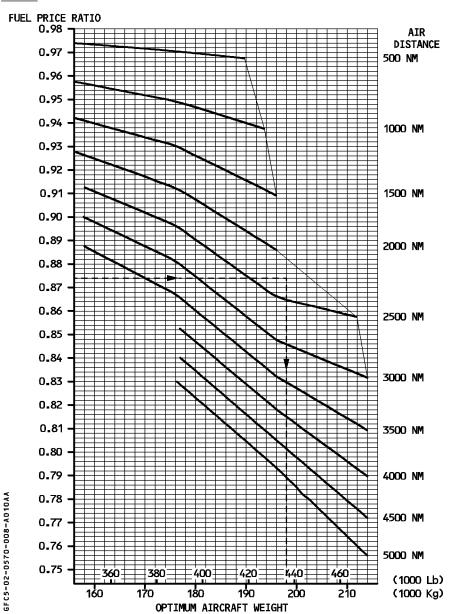
2.05.70 SEQ 010 P 6 REV 06



FUEL TANKERING

2.05.70 SEQ 010 P 7 REV 06

FL 370



GFC5-02-0570-007-A010AA

FUEL TANKERING

2.05.70 SEQ 010 P 8

REV 06

